7个提升Python程序性能的好习惯

掌握一些技巧,可尽量提高Python程序性能,也可以避免不必要的资源浪费。

1、使用局部变量

尽量使用局部变量代替全局变量:便于维护,提高性能并节省内存。

使用局部变量替换模块名字空间中的变量,例如 ls =os.linesep。一方面可以提高程序性能,局部变量查找速度更快;另一方面可用简短标识符替代冗长的模块变量,提高可读性。

2、减少函数调用次数

对象类型判断时,采用isinstance()最优,采用对象类型身份(id())次之,采用对象值(type())比较最次。

#判断变量num是否为整数类型

1.     type(num) == type(0)   
2.     #调用三次函数  
3.     type(num) is type(0)   
4.     #身份比较  
5.     isinstance(num,(int))   
6.     #调用一次函数 

不要在重复操作的内容作为参数放到循环条件中,避免重复运算。

1.     #每次循环都需要重新执行len(a)  
2.     while i < len(a):  
3.         statement  
4.     #len(a)仅执行一次  
5.     m = len(a)  
6.     while i < m:  
7.         statement 

如需使用模块X中的某个函数或对象Y,应直接使用from Ximport Y,而不是import X; X.Y。这样在使用Y时,可以减少一次查询(解释器不必首先查找到X模块,然后在X模块的字典中查找Y)。

3、采用映射替代条件查找

映射(比如dict等)的搜索速度远快于条件语句(如if等)。Python中也没有select-case语句。

1.     #if查找  
2.     if a == 1:  
3.         b = 10  
4.     elif a == 2:  
5.         b = 20  
6.     ...  
7.     #dict查找,性能更优  
8.     d = {1:10,2:20,...}  
9.     b = d[a] 

4、直接迭代序列元素

对序列(strlisttuple等),直接迭代序列元素,比迭代元素的索引速度要更快。

1.     a = [1,2,3]  
2.     #迭代元素 
3.     for item in a:     
4.     print(item)  
5.     #迭代索引  
6.     for i in range(len(a)):   
7.     print(a[i]) 

5、采用生成器表达式替代列表解析

列表解析(listcomprehension),会产生整个列表,对大量数据的迭代会产生负面效应。

而生成器表达式则不会,其不会真正创建列表,而是返回一个生成器,在需要时产生一个值(延迟计算),对内存更加友好。

1.     #计算文件f的非空字符个数  
2.     #生成器表达式  
3.     l = sum([len(word) for line in f for word in line.split()])  
4.     #列表解析  
5.     l = sum(len(word)   
6.     for line in f for word in line.split()) 

6、先编译后调用

使用eval()exec()函数执行代码时,最好调用代码对象(提前通过compile()函数编译成字节码),而不是直接调用str,可以避免多次执行重复编译过程,提高程序性能。

正则表达式模式匹配也类似,也最好先将正则表达式模式编译成regex对象(通过re.complie()函数),然后再执行比较和匹配。

7、模块编程习惯

模块中的最高级别Python语句(没有缩进的代码)会在模块导入(import)时执行(不论其是否真的必要执行)。因此,应尽量将模块所有的功能代码放到函数中,包括主程序相关的功能代码也可放到main()函数中,主程序本身调用main()函数。

可以在模块的main()函数中书写测试代码。在主程序中,检测name的值,如果为'main'(表示模块是被直接执行),则调用main()函数,进行测试;如果为模块名字(表示模块是被调用),则不进行测试。

 



YWSOS.COM 平台代运维解决方案
 评论
 发表评论
姓   名:

Powered by AKCMS