ORACLE

Oracle® Database
Real Application Testing User's Guide

11gRelease 2 (11.2)
E12254-02

September 2009



Oracle Database Real Application Testing User's Guide, 11g Release 2 (11.2)
E12254-02

Copyright © 2008, 2009, Oracle and/ or its affiliates. All rights reserved.
Primary Author: Immanuel Chan

Contributors: Lance Ashdown, Pete Belknap, Supiti Buranawatanachoke, Romain Colle, Karl Dias,
Leonidas Galanis, Prabhaker Gongloor, Shantanu Joshi, Mughees Minhas, Valarie Moore, Yujun Wang,
Keith Wong, Khaled Yagoub, Hailing Yu

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.



Contents

PUrOIACE ...t aee e s et et eaee s vii
NS Lo = VT RRRTRR Vii
Documentation AccesSibility ... Vii
ReElated DOCUITIEIES .....veeveeeeeiecieeeeeeetee ettt ettt e e et e e eteeeateeseesneeeseessesesessseseseessesenssensessrssensesons viii
CONMVEIILIONS ..ooittiiieeeieiteeeeeeett e eeett e e e e e esatee e e e e sabaeeeseesabaseeeesebaaeeeeseaasseessessasesessesnasssessesssseseeessnssaneeeesns viii

1 Introduction to Oracle Real Application Testing

Database Replay ..o 1-1
SOL Performance ANALYZeT ..o 1-2

Partl| Database Replay

2

Introduction to Database Replay

WOIKIOad CaAPUTE ........coviiiiiiiii s 2-2
Workload Preprocessing ... 2-3
Workload Replay ... s 2-3
Analysis and Reporting............cccocovviviiiiiiiiiiniiiiii s 2-3

Capturing a Database Workload

Prerequisites for Capturing a Database Workload..............cccccccoiiiiiiiiniiicce, 3-1
Workload Capture OPtions ... 3-2
Restarting the Database...........ccoiiiiiiiiii s 3-2
Using Filters with Workload Capture...........ccccccciiiiiiiiiiiiiiiicccceceee 3-3
Setting Up the Capture DIireCtory .......coceiiieiiiiiiieiiiiiiiiiiicie s 3-3
Workload Capture Restrictions ... 3-3
Enabling and Disabling the Workload Capture Feature..............ccccooveiinniicinnnncninneeccenes 3-4
Capturing a Database Workload Using Enterprise Manager .............ccccoceveniiinieeeininenennen, 3-5
Monitoring Workload Capture Using Enterprise Manager............ccccocovvvinininnnnnnnnnnieencn. 3-9
Monitoring an Active Workload Capture ............ccccovvviiiiinnininininiiiiniinnnnnssss 3-10
Stopping an Active Workload Capture ...........cccovveeviiiiiiiiiiiiiic 3-11
Managing a Completed Workload Capture...........cccouoiiiiiiiiiiiicc e, 3-12
Capturing a Database Workload Using APIS ... 3-13
Defining Workload Capture Filters...........cccoovviviiiiiiiiiiiniiiccc s 3-13
Starting a Workload Capture ...........ccoiiiiiici e 3-14



Stopping a Workload Capture ...t 3-14
Exporting AWR Data for Workload Capture ... 3-15
Monitoring Workload Capture Using VIews ... 3-15

Preprocessing a Database Workload

Preprocessing a Database Workload Using Enterprise Manager ..., 4-1
Preprocessing a Database Workload Using APIs ..o, 4-4

Replaying a Database Workload

Setting Up the Test System ..o 5-1
Restoring the Database.............ccccocuiiiiiiiiiiiiiiiiii s 5-1
Resetting the System Time........cococieeieiciiiicicc e 5-2

Steps for Replaying a Database Workload.............cccccooviiiiiiiicce 5-2
Setting Up the Replay DIirectory ... 5-2
Resolving References to External SYStems ... 5-2
Remapping CONNECIONS .......ceviviiiiiiiieiiiteiee e 5-3
Specifying Replay OpHioNns .........cooiuiiiiiiiciic e 5-3
Using Filters with Workload Replay ..o 5-4
Setting Up Replay CHENtS ...t 5-4

Replaying a Database Workload Using Enterprise Manager ............ccccocoeviininniiiininicennnn, 5-8

Monitoring Workload Replay Using Enterprise Manager...............ccccovvviiiinniiiinniiicninnnens 5-12
Monitoring an Active Workload Replay .........c.cooimieiiiiiiiiiiieie 5-12
Viewing a Completed Workload Replay........cccouoiiuiiiiiciiiiic 5-13

Replaying a Database Workload Using APIs .............cccoviiiiniiiiiniiiic 5-17
Initializing Replay Data.........coieurieiiiieiiciei 5-17
Connection ReMAapPPING......ccocoviuiiiiiiiiiiiiietiictt e 5-18
Setting Workload Replay Options..........cceviiiiiiiiiiiniiiicicc e 5-18
Defining Workload Replay Filters and Replay Filter Sets .........ccccooovieiiiniiiniiiiiecc 5-20
Starting a Workload Replay ...t 5-21
Pausing a Workload Replay .........ccocvviiiiiiiiiiiiiicic e 5-22
Resuming a Workload Replay ... 5-22
Cancelling a Workload Replay..........cccocevviiiiiiininiiiniiiiiiiiiicncsses 5-22
Exporting AWR Data for Workload Replay.........ccccocviviiiiniiiiiiniiiiiiccecne, 5-23

Monitoring Workload Replay Using APISs............ccccccoeviiiiiiiiiiiis 5-23
Retrieving Information About Diverged Calls ..........ccccccecuririniiiiiiininiiiiniins 5-23
Monitoring Workload Replay Using VIEWS..........ccccoviriiiiiiiiniicneccccnnne 5-24

Analyzing Replayed Workload

Using Workload Capture Reports...........ccccovviiiiiiiiiiiiiiiiiccnnas 6-1
Generating Workload Capture Reports Using Enterprise Manager ............coocoevevviicieveennnen. 6-1
Generating Workload Capture Reports Using APIs..........ccocoviriiiiiinniniiiieecceccceene 6-2
Reviewing Workload Capture REPOILS.........cccociuiiuiuiiiiiiiiiiccieceereeieiceeteeeieereseeeeeeeeeeeeenes 6-3

Using Workload Replay Reports............cccooviiviiiiiiiiniiiiiiiii 6-3
Generating Workload Replay Reports Using Enterprise Manager ..............cocoeeveveieenereccnnnnn. 6-3
Generating Workload Replay Reports Using APIS........ccccoeeviviiiiininiiiniececcnnee, 6-4
Reviewing Workload Replay RepOrts.........ccoceuiiiuciiiiiicieiecceec e 6-5



Using Replay Compare Period Reports ..o 6-6

Generating Replay Compare Period Reports Using Enterprise Manager ..........ccccccccoeueueenncne. 6-6
Generating Replay Compare Period Reports Using APIS .........cccooverviviiiiiniineiccnnen, 6-7
Reviewing Replay Compare Period RepOrts .........ccccieuiiiiiiiiiiiiiiiiiiiiciicciicceeeeeeenenas 6-8
Using SQL Performance Analyzer to Compare SQL Tuning Sets ..........ccccccovvvnnnnnnnnnnnnn. 6-8

Partll SQL Performance Analyzer

7

10

11

Introduction to SQL Performance Analyzer

Capturing the SQL Workload ... 7-3
Setting Up the Test SyStem ..o 7-4
Creating a SQL Performance Analyzer TasK ..o 7-4
Measuring the Pre-Change SQL Performance..............ccocovvininiinninniinnns 7-5
Making a System CRANGE ... 7-6
Measuring the Post-Change SQL Performance...............ccocoovnininininininnininnn, 7-7
Comparing Performance Measurements .............cccccoeeuiiiiiiiiiiiiiiiiiiinieesesenssesesnns 7-7
Fixing Regressed SQL Statements ... 7-7

Creating an Analysis Task

Creating an Analysis Task Using Enterprise Manager.............cccccceovviiiinniiiinnnicnniecenes 8-1
Using the Parameter Change WOrkflow ...........ccoouiiiiiii e 8-2
Using the Exadata Simulation WOrkflow ..., 8-6
Using the Guided WOTKEIOW .......ooiiiiiiiiiiccc e 8-9

Creating an Analysis Task Using APIs...........cccooiiiiiiiiiiiiic e 8-11
Running the Exadata Simulation Using APIS........c.ccccoooimiiiiiiiiiiiiiccc e 8-11

Creating a Pre-Change SQL Trial

Creating a Pre-Change SQL Trial Using Enterprise Manager.............ccccccoevvinvnniinniinniennnnnnn, 9-2
Creating a Pre-Change SQL Trial Using APIs...........ccccccoviiiiiiiiiiiiccs 9-3

Creating a Post-Change SQL Trial

Creating a Post-Change SQL Trial Using Oracle Enterprise Manager............ccccocevvvirvnuinnnne. 10-1
Creating a Post-Change SQL Trial Using APIs...........ccccooiiiiiiiiiiiiccccnas 10-3

Comparing SQL Trials

Comparing SQL Trials Using Oracle Enterprise Manager ............cccooevuiriiierinirinieeeenenenennns 11-2
Analyzing SQL Performance Using Oracle Enterprise Manager...........cccccevvvvneninnincncnnnes 11-2
Reviewing the SQL Performance Analyzer Report Using Oracle Enterprise Manager ....... 11-3
Tuning Regressed SQL Statements Using Oracle Enterprise Manager .............cccoceueveununnne. 11-7

Comparing SQL Trials Using APIS...........cccccoiiiiiiiiiiiiiiccce e 11-9
Analyzing SQL Performance Using APIS.......c.cccoouiiiiiiininiiniicec s 11-9
Reviewing the SQL Performance Analyzer Report Using APISs ..o, 11-11
Comparing SQL Tuning Sets Using APISs.........ccccccooeiviiiiniiniiicccne 11-16
Tuning Regressed SQL Statements Using APISs.........cccccoviiiininiiiiniiiiccccnes 11-21
Tuning Regressed SQL Statements From a Remote SQL Trial Using APIs .............ccc.c...... 11-23



Creating SQL Plan Baselines Using APIS .........c.coooiuiiiiiieiniiniccc 11-25
Using SQL Performance Analyzer VIEWS........cccccoceuiiiiiiiiinininiiiniissnes 11-25

12 Testing a Database Upgrade

Upgrading from Oracle9i Database and Oracle Database 10g Release 1.............cccccciennnnee. 12-1
Enabling SQL Trace on the Production System.........c.cccccovvuiivviinniiiiiiiicccnee, 12-3
Creating a Mapping Table ... 12-4
Building a SQL TUNING Set .....c.ccccvuiiiiiiiiiiiiiiiiiiiiiiii s 12-4

Testing Database Upgrades from Oracle9i Database and Oracle Database 10g Release 1... 12-6
Upgrading from Oracle Database 10g Release 2 and Newer Releases
Testing Database Upgrades from Oracle Database 10g Release 2 and Newer Releases .... 12-11
Tuning Regressed SQL Statements After Testing a Database Upgrade................cccccoueunenene. 12-15

Index

vi



Audience

Preface

This preface contains the following topics:
= Audience

= Documentation Accessibility

= Related Documents

s Conventions

This document provides information about how to assure the integrity of database
changes using Oracle Real Application Testing. This document is intended for
database administrators, application designers, and programmers who are responsible
for performing real application testing on Oracle Database.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http: //www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Vii



Deaf/Hard of Hearing Access to Oracle Support Services

To reach Oracle Support Services, use a telecommunications relay service (TRS) to call
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle
technical issues and provide customer support according to the Oracle service request
process. Information about TRS is available at
http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone
numbers is available at http: //www. fcc.gov/cgb/dro/trsphonebk.html.

Related Documents

For more information about some of the topics discussed in this document, see the
following documents in the Oracle Database Release 11.1 documentation set:

»  Oracle Database 2 Day DBA

»  Oracle Database 2 Day + Performance Tuning Guide
»  Oracle Database Administrator’s Guide

s Oracle Database Concepts

»  Oracle Database Performance Tuning Guide

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

vii



1

Introduction to Oracle Real Application
Testing

Oracle Real Application Testing option enables you to perform real-world testing of
Oracle Database. By capturing production workloads and assessing the impact of
system changes before production deployment, Oracle Real Application Testing
minimizes the risk of instabilities associated with changes.

Oracle Real Application Testing comprises two components:
= Database Replay
= SQL Performance Analyzer

Database Replay and SQL Performance Analyzer are complementary solutions that
can be used for real application testing. Depending on the nature and impact of the
system change, and on which system the test will be performed (production or test),
you can use either solutions to perform your testing.

Note: The use of Database Replay and SQL Performance Analyzer
requires the Oracle Real Application Testing licensing option. For
more information, see Oracle Database Licensing Information.

Database Replay

Before system changes are made, such as hardware and software upgrades, extensive
testing is usually performed in a test environment to validate the changes. However,
despite the testing, the new system often experiences unexpected behavior when it
enters production because the testing was not performed using a realistic workload.
The inability to simulate a realistic workload during testing is one of the biggest
challenges when validating system changes.

Database Replay enables realistic testing of system changes by essentially re-creating
the production workload environment on a test system. Using Database Replay, you
can capture a workload on the production system and replay it on a test system with
the exact timing, concurrency, and transaction characteristics of the original workload.
This enables you to fully assess the impact of the change, including undesired results,
new contention points, or plan regressions. Extensive analysis and reporting is
provided to help identify any potential problems, such as new errors encountered and
performance divergence.

Database Replay performs workload capture of external client workload at the
database level and has negligible performance overhead. Capturing the production
workload eliminates the need to develop simulation workloads or scripts, resulting in
significant cost reduction and time savings. By using Database Replay, realistic testing

Introduction to Oracle Real Application Testing 1-1



SQL Performance Analyzer

of complex applications that previously took months using load simulation tools can
now be completed in days. This enables you to rapidly test changes and adopt new
technologies with a higher degree of confidence and at lower risk.

You can use Database Replay to test any significant system changes, including:
= Database and operating system upgrades

= Configuration changes, such as conversion of a database from a single instance to
an Oracle Real Application Clusters (Oracle RAC) environment

= Storage, network, and interconnect changes

= Operating system and hardware migrations

See Also:

s Part ], "Database Replay" for information about using Database
Replay

SQL Performance Analyzer

System changes—such as a upgrading a database or adding an index—may cause
changes to execution plans of SQL statements, resulting in a significant impact on SQL
performance. In some cases, the system changes may cause SQL statements to regress,
resulting in performance degradation. In other cases, the system changes may improve
SQL performance. Being able to accurately forecast the potential impact of system
changes on SQL performance enables you to tune the system beforehand, in cases
where the SQL statements regress, or to validate and measure the performance gain in
cases where the performance of the SQL statements improves.

SQL Performance Analyzer automates the process of assessing the overall effect of a
change on the full SQL workload by identifying performance divergence for each SQL
statement. A report that shows the net impact on the workload performance due to the
change is provided. For regressed SQL statements, SQL Performance Analyzer also
provides appropriate executions plan details along with tuning recommendations. As
a result, you can remedy any negative outcome before the end users are affected.
Furthermore, you can validate—with significant time and cost savings—that the
system change to the production environment will result in net improvement.

You can use the SQL Performance Analyzer to analyze the impact on SQL
performance of any type of system changes, including;:

= Database upgrade

s Configuration changes to the operating system or hardware
= Schema changes

s Changes to database initialization parameters

= Refreshing optimizer statistics

= SQL tuning actions

See Also:

s Partll, "SQL Performance Analyzer" for information about using
SQL Performance Analyzer

1-2 Oracle Database Real Application Testing User's Guide



Part |

Database Replay

Database Replay enables you to replay a full production workload on a test system to
assess the overall impact of system changes. This part contains information about how
to capture, preprocess, and replay a database workload using Database Replay, as well
as how to analyze the results of a replayed workload.

Part I contains the following chapters:

Chapter 2, "Introduction to Database Replay"
Chapter 3, "Capturing a Database Workload"
Chapter 4, "Preprocessing a Database Workload"
Chapter 5, "Replaying a Database Workload"
Chapter 6, "Analyzing Replayed Workload"






2

Introduction to Database Replay

You can use Database Replay to capture a workload on the production system and
replay it on a test system with the exact timing, concurrency, and transaction
characteristics of the original workload. This enables you to test the effects of a system
change without affecting the production system.

Database Replay supports workload capture on a system running Oracle Database 10g
Release 2 and newer releases. In order to capture a workload on a system running
Oracle Database 10g Release 2, the database version can be 10.2.0.4 or higher.
Workload replay is only supported on systems running Oracle Database 11g Release 1
and newer releases.

Note: To use the workload capture feature on a system running
Oracle9i Database or an earlier version of Oracle Database 10g Release
2, contact Oracle Support for more information.

Analyzing the effect of system changes using Database Replay involves the following
steps, as illustrated in Figure 2-1:

Introduction to Database Replay 2-1



Workload Capture

Figure 2—1 Database Replay Workflow

Production Test

Replay Replay
Client Client

Storage

Workload Analysis &
Replay Reporting

1. On the production system, capture the workload into capture files, as described in
"Workload Capture" on page 2-2.

2. Copy the capture files to the test system and preprocess them, as described in
"Workload Preprocessing" on page 2-3.

3. On the test system, replay the preprocessed files, as described in "Workload
Replay" on page 2-3.

4. Using the reports generated by Database Replay, perform detailed analysis of both
the workload capture and workload replay, as described in "Analysis and
Reporting" on page 2-3.

Workload Capture

The first step in using Database Replay is to capture the production workload.
Capturing a workload involves recording all requests made by external clients to
Oracle Database.

When workload capture is enabled, all external client requests directed to Oracle
Database are tracked and stored in binary files—called capture files—on the file
system. You can specify the location where the capture files will be stored. Once
workload capture begins, all external database calls are written to the capture files.
The capture files contain all relevant information about the client request, such as SQL

2-2 Oracle Database Real Application Testing User's Guide



Analysis and Reporting

text, bind values, and transaction information. Background activities and database
scheduler jobs are not captured. These capture files are platform independent and can
be transported to another system.

See Also:

»  Chapter 3, "Capturing a Database Workload" for information
about how to capture a workload on the production system

Workload Preprocessing

Once the workload has been captured, the information in the capture files need to be
preprocessed. Preprocessing creates all necessary metadata needed for replaying the
workload. This must be done once for every captured workload before they can be
replayed. After the captured workload is preprocessed, it can be replayed repeatedly
on a replay system running the same version of Oracle Database. Typically, the
capture files should be copied to another system for preprocessing. As workload
preprocessing can be time consuming and resource intensive, it is recommended that
this step be performed on the test system where the workload will be replayed.

See Also:

»  Chapter 4, "Preprocessing a Database Workload" for information
about how to preprocess a captured workload

Workload Replay

After a captured workload has been preprocessed, it can be replayed on a test system.
During the workload replay phase, Oracle Database performs the actions recorded
during the workload capture phase on the test system by re-creating all captured
external client requests with the same timing, concurrency, and transaction
dependencies of the production system.

Database Replay uses a client program called the replay client to re-create all external
client requests recorded during workload capture. Depending on the captured
workload, you may need one or more replay clients to properly replay the workload.
A calibration tool is provided to help determine the number of replay clients needed
for a particular workload. Because the entire workload is replayed—including DML
and SQL queries—the data in the replay system should be as logically similar to the
data in the capture system as possible. This will minimize data divergence and enable
a more reliable analysis of the replay.

See Also:

s Chapter 5, "Replaying a Database Workload" for information
about how to replay a preprocessed workload on the test system

Analysis and Reporting

Once the workload is replayed, in-depth reporting is provided for you to perform
detailed analysis of both workload capture and replay.

The workload capture report and workload replay report provide basic information
about the workload capture and replay, such as errors encountered during replay and
data divergence in rows returned by DML or SQL queries. A comparison of several
statistics—such as database time, average active sessions, and user calls—between the
workload capture and the workload replay is also provided.

Introduction to Database Replay 2-3



Analysis and Reporting

The replay compare period report can be used to perform a high-level comparison of
one workload replay to its capture or to another replay of the same capture. A
divergence summary with an analysis of whether any data divergence occurred and if
there were any significant performance changes is also provided. Furthermore, ADDM
findings are incorporated into these reports.

For advanced analysis, Automatic Workload Repository (AWR) reports are available
to enable detailed comparison of performance statistics between the workload capture
and the workload replay. The information available in these reports is very detailed,
and some differences between the workload capture and replay can be expected.

For application-level validation, you should consider developing a script to assess the
overall success of the replay. For example, if 10,000 orders are processed during
workload capture, you should validate that a similar number of orders are also
processed during replay.

After the replay analysis is complete, you can restore the database to its original state
at the time of workload capture and repeat workload replay to test other changes to
the system once the workload directory object is backed up to another physical
location.

See Also:

s Chapter 6, "Analyzing Replayed Workload" for information about
how to analyze data and performance divergence using Database
Replay reports

2-4 Oracle Database Real Application Testing User's Guide



3

Capturing a Database Workload

This chapter describes how to capture a database workload on the production system.
The first step in using Database Replay is to capture the production workload. For
more information about how capturing a database workload fits within the Database
Replay architecture, see "Workload Capture" on page 2-2.

This chapter contains the following sections:

Prerequisites for Capturing a Database Workload
Workload Capture Options

Workload Capture Restrictions

Enabling and Disabling the Workload Capture Feature
Capturing a Database Workload Using Enterprise Manager
Monitoring Workload Capture Using Enterprise Manager
Capturing a Database Workload Using APIs

Monitoring Workload Capture Using Views

Prerequisites for Capturing a Database Workload

Before starting a workload capture, you should have a strategy in place to restore the
database on the test system. Before a workload can be replayed, the logical state of the
application data on the replay system should be similar to that of the capture system
when replay begins. To accomplish this, consider using one of the following methods:

Recovery Manager (RMAN) DUPLICATE command
Snapshot standby
Data Pump Import and Export

This will allow you to restore the database on the replay system to the application
state as of the workload capture start time.

See Also:

»  Oracle Database Backup and Recovery User's Guide for information
about duplicating a database using RMAN

»  Oracle Data Guard Concepts and Administration for information
about managing snapshot standby databases

»  Oracle Database Utilities for information about using Data Pump

Capturing a Database Workload 3-1



Workload Capture Options

Workload Capture Options

Proper planning before workload capture is required to ensure that the capture will be
accurate and useful when replayed in another environment.

Before capturing a database workload, carefully consider the following options:
= Restarting the Database

= Using Filters with Workload Capture

= Setting Up the Capture Directory

Restarting the Database

While this step is not required, Oracle recommends that the database be restarted
before capturing the workload to ensure that ongoing and dependent transactions are
allowed to be completed or rolled back before the capture begins. If the database is not
restarted before the capture begins, transactions that are in progress or have yet to be
committed will not be fully captured in the workload. Ongoing transactions will thus
not be replayed properly, because only the part of the transaction whose calls were
captured will be replayed. This may result in undesired data divergence when the
workload is replayed. Any subsequent transactions with dependencies on the
incomplete transactions may also generate errors during replay.

Before restarting the database, determine an appropriate time to shut down the
production database before the workload capture when it is the least disruptive. For
example, you may want to capture a workload that begins at 8:00 a.m. However, to
avoid service interruption during normal business hours, you may not want to restart
the database during this time. In this case, you should consider starting the workload
capture at an earlier time, so that the database can be restarted at a time that is less
disruptive.

Once the database is restarted, it is important to start the workload capture before any
user sessions reconnect and start issuing any workload. Otherwise, transactions
performed by these user sessions will not be replayed properly in subsequent database
replays, because only the part of the transaction whose calls were executed after the
workload capture is started will be replayed. To avoid this problem, consider
restarting the database in RESTRICTED mode using STARTUP RESTRICT, which will
only allow the SYS user to login and start the workload capture. By default, once the
workload capture begins, any database instance that are in RESTRICTED mode will
automatically switch to UNRESTRICTED mode, and normal operations can continue
while the workload is being captured.

Only one workload capture can be performed at any given time. If you have a Oracle
Real Application Clusters (Oracle RAC) configuration, workload capture is performed
for the entire database. To enable a clean state before starting to capture the workload,
all the instances need to be restarted.

To restart all instances in a Oracle RAC configuration before workload capture:
1. Shut down all the instances.

2. Restart one of the instances.
3. Start workload capture.

4. Restart the rest of the instances.

3-2 Oracle Database Real Application Testing User's Guide



Workload Capture Restrictions

See Also:

n  Oracle Database Administrator’s Guide for information about
restricting access to an instance at startup

Using Filters with Workload Capture

By default, all user sessions are recorded during workload capture. You can use
workload filters to specify which user sessions to include in or exclude from the
workload during workload capture. There are two types of workload filters: inclusion
filters and exclusion filters. You can use either inclusion filters or exclusion filters in a
workload capture, but not both.

Inclusion filters enable you to specify user sessions that will be captured in the
workload. This is useful if you want to capture only a subset of the database workload.

Exclusion filters enable you to specify user sessions that will not be captured in the
workload. This is useful if you want to filter out session types that do not need to
captured in the workload, such as background processes that may already be running
on the test system. For example, if the system where the workload will be replayed is
running Oracle Enterprise Manager (EM), replaying captured EM sessions on the
system will result in duplication of workload. In this case, you may want to use
exclusion filters to filter out EM sessions.

Setting Up the Capture Directory

Determine the location and set up a directory where the captured workload will be
stored. Before starting the workload capture, ensure that the directory is empty and
has ample disk space to store the workload. If the directory runs out of disk space
during a workload capture, the capture will stop. To estimate the amount of disk space
that is required, you can run a test capture on your workload for a short duration
(such as a few minutes) to extrapolate how much space you will need for a full
capture. To avoid potential performance issues, you should also ensure that the target
replay directory is mounted on a separate file system.

For Oracle RAC, consider using a shared file system. Alternatively, you can set up one
capture directory path that resolve to separate physical directories on each instance,
but you will need to collect the capture files created in each of these directories into a
single directory before preprocessing the workload capture.

Workload Capture Restrictions
The following types of client requests are not captured in a workload:
= Direct path load of data from external files using utilities such as SQL*Loader
= Non-PL/SQL based Advanced Queuing (AQ)
»  Flashback queries
= Oracle Call Interface (OCI) based object navigations
= Non SQL-based object access

=  Distributed transactions (any distributed transactions that are captured will be
replayed as local transactions)

Capturing a Database Workload 3-3



Enabling and Disabling the Workload Capture Feature

Enabling and Disabling the Workload Capture Feature

Oracle Database 10g Release 2 supports using Database Replay to capture a database
workload that can be used to test database upgrades to Oracle Database 11g and
subsequent releases. To use this feature, it must be enabled on the capture system
running Oracle Database 10g Release 2 before a workload can be captured. By default,
the workload capture feature is not enabled in Oracle Database 10g Release 2 (10.2).
You can enable or disable this feature by specifying the PRE_11G_ENABLE_CAPTURE
initialization parameter.

Note: It is only necessary to enable the workload capture feature if
you are capturing a database workload on a system running Oracle
Database 10g Release 2.

If you are capturing a database workload on a system running Oracle
Database 11g Release 1 or a later release, it is not necessary to enable
the workload capture feature because it is enabled by default.
Furthermore, the PRE_11G_ENABLE_CAPTURE initialization
parameter is only valid with Oracle Database 10g Release 2 (10.2) and
cannot be used with subsequent releases.

To enable the workload capture feature on a system running Oracle Database 10g
Release 2, run the wrrenbl . sql script at the SQL prompt:

@SORACLE_HOME/rdbms/admin/wrrenbl.sql

The wrrenbl . sql script calls the ALTER SYSTEM SQL statement to set the PRE_
11G_ENABLE_CAPTURE initialization parameter to TRUE. If a server parameter file
(spfile) is being used, the PRE_11G_ENABLE_CAPTURE initialization parameter will be
modified for the currently running instance and recorded in the spfile, so that the new
setting will persist when the database is restarted. If a spfile is not being used, the
PRE_11G_ENABLE_CAPTURE initialization parameter will only be modified for the
currently running instance, and the new setting will not persist when the database is
restarted. To make the setting persistent without using a spfile, you will need to
manually specify the parameter in the initialization parameter file (init.ora).

To disable workload capture, run the wrrdsbl . sql script at the SQL prompt:

@SORACLE_HOME/rdbms/admin/wrrdsbl .sql

The wrrdsbl . sql script calls the ALTER SYSTEM SQL statement to set the PRE_
11G_ENABLE_CAPTURE initialization parameter to FALSE. If a server parameter file
(spfile) is being used, the PRE_11G_ENABLE_CAPTURE initialization parameter will be
modified for the currently running instance and also recorded in the spfile, so that the
new setting will persist when the database is restarted. If a spfile is not being used, the
PRE_11G_ENABLE_CAPTURE initialization parameter will only be modified for the
currently running instance, and the new setting will not persist when the database is
restarted. To make the setting persistent without using a spfile, you will need to
manually specify the parameter in the initialization parameter file (init.ora).

3-4 Oracle Database Real Application Testing User's Guide



Capturing a Database Workload Using Enterprise Manager

Note: The PRE_11G_ENABLE_CAPTURE initialization parameter can
only be used with Oracle Database 10g Release 2 (10.2). This
parameter is not valid in subsequent releases. After upgrading the
database, you will need to remove the parameter from the server
parameter file (spfile) or the initialization parameter file (init.ora);
otherwise, the database will fail to start up.

See Also:

»  Oracle Database Reference for more information about the PRE_
11G_ENABLE_CAPTURE initialization parameter

Capturing a Database Workload Using Enterprise Manager

This section describes how to capture a database workload using Enterprise Manager.
The primary tool for capturing database workloads is Oracle Enterprise Manager.

If for some reason Oracle Enterprise Manager is unavailable, you can capture database
workloads using APlIs, as described in "Capturing a Database Workload Using APIs"
on page 3-13.

To capture a database workload using Enterprise Manager:

1. On the Software and Support page, under Real Application Testing, click
Database Replay.

The Database Replay page appears.

Database Replay

Database Replay allows workloads te be captured from production Page Refreshed May 1, 2009 11:05:14 AM )
Refresh

systems and re-executed with high fidelity on test copies of production  PDT 2

databases. This enables detailed analysis of how the proposed changes

may affect production systems; for instance, patching or upgrading

database software.

Go | Overview

Task e 0 The following are the typical steps to perform Database Replay:
Task Name Description Task
1 Capture  Capture a workload =] 1. Capture the workload on a database. (Task 1)
workload from the production ngp 2. Optionally export the AWR. data. (Task 1)
environment. This can 3. Restaore the replay database on a test system to match the capture database

be scheduled to at the start of the workload capture.
accommodate a . Make changes (such as perform an upgrade) to the test system as needed.
database restart if . Copy the captured workload to the test system.
desired. . Preprocess the captured workload. (Task 2)
2 Preprocess Preprocessing prepares 2| 7. Configure the test system for the replay.
Workload a captured workload for "% . Replay the workload on the restored database. (Task 3)
replay. You must do
this once for every
captured workload.
Preprocessing is best
performed in the test
database. The captured
workload must be
accessible from the test
database.
3 Replay Replay the -S|
Workload preprocessed workload | "%
on a test copy of the
production database.

[ = N

View Workload Capture History

Active Capture and Replay
Directory Start
SelectName Type Object Time

Mo items
found

Capturing a Database Workload 3-5



Capturing a Database Workload Using Enterprise Manager

2. Inthe Go to Task column, click the icon that corresponds to the Capture Workload
task.

The Capture Workload: Plan Environment page appears.

Capture Workload: Plan Environment
Database x090422

Cancel ] Step 1 of 5 [Mext )
Logged In As  IMMCHAN

The following prerequisites should be met to a\fuT potential problems before proceeding to capture the workload.

Prerequisite |A|:knowledge
Make sure there is enough disk space to hold the captured workload. Consider doing a shert duration workload O
capture and using it for estimating the disk space requirement of a full workload capture.

Make sure you can restore the replay database to match the capture database at the start of the workload capture. O

A successful workload replay depends on application transactions accessing application data identical to that on a
capture system. Common ways to restore application data state include point-in-time recovery, flashback, and
import/export.

3. Verify that all prerequisites are met before proceeding.

For information about the prerequisites, see "Prerequisites for Capturing a
Database Workload" on page 3-1.

For each verified prerequisite, check the box in the Acknowledge column. Once all
prerequisites are verified, click Next.

The Capture Workload: Options page appears.

Capture Workload: Options

Database x090422 Cancel | | Back| Step 2 of 5 [Mext )
Logged In A5 IMMCHAN Bl ~
Database Restart Options

A database restart prior to a workload capture is recommended to ensure a complete and accurate capture. Mot restarting could capture in-flight
transactions, which may adversely affect the replay of subsequent captured transactions.

® Do not restart the database prior to the capture.
O Restart the database prior to the capture.

Workload Filters
Workload filters can customize the workload to be captured. By default, most external client requests made to the database are captured. Refer to the

Oracle Real Application Testing User's Guide for more information.
Filter Mode | Exclusion %

Excluded Sessions
All sessions will be captured except for those listed below.

Session
Filter Name Type | Attribute Value Remove
Oracle Management Service (DEFAULT) Excluded | Program % [|OMS ?
Oracle Management Agent {DEFALLT) Excluded | Program ¥ ||emagent9s g

Add Another Row )

4. Select the workload capture options:

s Under Database Restart Options, select whether the database will be restarted
before workload capture.

It is recommended that the database be restarted before capturing a workload
to enable a clean state for workload capture. Otherwise, potential problems
may arise when replaying the workload. For more information, see "Restarting
the Database" on page 3-2.

= Under Workload Filters, select whether to use exclusion filters by selecting
Exclusion in the Filter Mode list, or inclusion filters by selecting Inclusion in
the Filter Mode list.

To add filters, click Add Another Row and enter the filter name, session
attribute, and value in the corresponding fields. For more information, see
"Using Filters with Workload Capture" on page 3-3.

3-6 Oracle Database Real Application Testing User's Guide




Capturing a Database Workload Using Enterprise Manager

After selecting the desired workload capture options, click Next.

The Capture Workload: Parameters page appears.

Capture Workload: Parameters

Database x090422 cancel ) (Back| Sten 3 of 5 [Next )
| ep3ofd ext
Logged In As TMCHAN Cancel ) (Back| [Hext )

Workload Capture Parameters
* Capture Name |CAFTURE-x090422-20090501114705

Directory Object | CAPTUREL | | Create Directory Object]
Select 2 directory object to hold the captured worklozd, The sslected directory must be empty,

Database Shutdown Parameters

® Immediate

Rollback active transactions and disconnect all connected users,
O Transactional

Disconnect all connected users after transactions have completed.
O Abort

Instantanecus shutdown by sborting the datsbass instance,

Database Startup Parameters

@ startup using current spfile.
O Specify parameter file (pfile) on database host.

Specify the fully qualified name faor the pfile,

5. Define the parameters for the workload capture:

= Under Workload Capture Parameters, in the Capture Name field, enter a
name for the workload capture. In the Directory Object list, select the directory
where the captured workload will be stored. You must select a directory that
does not already contain a workload capture. For more information, see
"Setting Up the Capture Directory" on page 3-3.

To create a directory object, click Create Directory Object. The Create
Directory Object page appears. In the Name field, enter a name for the
directory object. In the Path field, enter the path to the directory object. To test
if the directory exists in the file system, click Test File System. If the directory
does not exist, it will need to be created first.

= Under Database Shutdown Parameters, select the type of database shutdown
method to perform. This option only appears if the database will be restarted
before workload capture. The types of available database shutdown methods
include:

—  Immediate

An immediate shutdown will roll back all active transactions and discon-
nect all connected users before shutting down the database.

— Transactional

A transactional shutdown will first complete all active transactions and
then disconnect the connected user before shutting down the database.

— Abort

An abort shutdown will shut down the database instantaneously by abort-
ing all active transactions.

—  Force the database to shutdown

Capturing a Database Workload 3-7



Capturing a Database Workload Using Enterprise Manager

A force shutdown will shut down the database if any cluster-managed
database services are operational. This option only appears if you are run-
ning Oracle RAC.

s Under Database Startup Parameters, select if the database will restart using
the current default server parameter file (spfile) or a specific parameter file
(pfile). To select a pfile, enter the fully qualified name for the pfile. This option
only appears if the database will be restarted before workload capture.

After defining the parameters for the workload capture, click Next.

The Capture Workload: Schedule page appears.

Capture Workload: Schedule
Database x090422

Cancel Back | Step 4 of 5 Next )
Logged In As  TMMCHAN

Job Parameters
= Job Name |CAPTURE-X090422-20090501114705

Description

Job Schedule
Choose a start time and a capture duration so that the workload you are interested in replaying at a later time can be captured.

Start Capture Duration
@ Immediately @ Not Specified
Capture must be stopped manually if duration is not spacified
O Later O Duration
Date .Ma‘,- 13200 Hours 1] Minutes 0

(=ample: May 1, 2008)

Time |11 || [45 ¥ | |00 ¥ (@ am OPm

Job Credentials

Host Credentials Database Credentials
* Username  |immchan * Username  |immchan
* Password |[essses * Password |eessse
* Confirm Password |eessse = Confirm Password |sesess
[Jsave as Preferred Credential Connect As | SYSDBA |+

[Jsave as Preferred Credential
{D)¥ou need to login as SYSDBA or SYSOPER in order to restart the
database.

6. Under Job Parameters, define the parameters for the job:

= In the Job Name field, enter a name for the job name or accept the system
generated name.

s In the Description field, enter an optional description of the job.
7. Under Job Schedule, specify a start time and duration for the workload capture:

= Under Start, select whether the job will run immediately by selecting
Immediately, or at a later time by selecting Later and specifying the desired
time using the Date and Time fields.

s Under Capture Duration, specify how long the job will run by selecting
Duration and specifying the desired duration using the Hours and Minutes
fields. To not specify a capture duration, select Not Specified. If a capture
duration is unspecified, the job must be stopped manually.

8. Under Job Credentials, enter the host and database login credentials:

s Under Host Credentials, enter the username and password for the host
system.

= Under Database Credentials, enter the username and password for the
database that will used for the workload capture. The user needs the DBA

3-8 Oracle Database Real Application Testing User's Guide



Monitoring Workload Capture Using Enterprise Manager

privilege in order to restart the database. This section only appears if the
database will be restarted before workload capture.

Click Next.
The Capture Workload: Review page appears.

Capture Workload: Review

Database x090422 Cancel ) (Back] Step5of 5 (Submit )
Logged In As IMMCHAN ~ ’

Revievs the following settings for capturing the workload.

Job Name CAPTURE-X090422-20090501114705
Capture Name CAPTURE-x090422-20090501114705
Directory Object CAPTURE1
Start Time Immediately
Capture Duration Not Specified
Database Restart
Restart Database Yes
Shutdown Mode Immediate
Startup Initialization Parameter File Current SPFILE

Workload Filters: Excluded Sessions

Filter Name Type Session Attribute Value
Oracle Management Service (DEFAULT) Excluded Program oms
Oracle Management Agent (DEFAULT) Excluded Program emagents

9. Review the job settings for the workload capture that have been defined.

To run the job, click Submit. To make changes, click Back. To cancel the workload
capture without saving changes, click Cancel.

10. Depending on the job settings that have been defined:

= If the job is scheduled to start immediately and the database will be restarted,
the Confirmation: Restart Database page appears.

To restart the database, click Yes.

The Information: Restart Database page appears while the database is being
restarted. Once the database is restarted, the workload capture begins
automatically. Click Refresh.

The View Workload Capture page appears.

= If the job is scheduled to start immediately but the database will not be
restarted, the workload capture begins automatically and the View Workload
Capture page appears.

»  If the job is scheduled to start at a later time, the Database Replay page
appears with a confirmation that the job has been successfully created.

Once workload capture begins, you can monitor the capture process using the
View Workload Capture page, as described in "Monitoring Workload Capture
Using Enterprise Manager" on page 3-9.

Tip: After capturing a workload on the production system, you need
to preprocess the captured workload, as described in Chapter 4,
"Preprocessing a Database Workload".

Monitoring Workload Capture Using Enterprise Manager

This section describes how to monitor workload capture using Enterprise Manager.
The primary tool for monitoring workload capture is Oracle Enterprise Manager.
Using Enterprise Manager, you can:

Capturing a Database Workload 3-9



Monitoring Workload Capture Using Enterprise Manager

= Monitor or stop an active workload capture
= View or delete a completed workload capture

If for some reason Oracle Enterprise Manager is unavailable, you can monitor
workload capture using views, as described in "Monitoring Workload Capture Using
Views" on page 3-15.

This section contains the following topics:

= Monitoring an Active Workload Capture

= Stopping an Active Workload Capture

= Managing a Completed Workload Capture

Monitoring an Active Workload Capture

This section describes how to monitor an active workload capture using Enterprise
Manager.

To monitor an active workload capture:

1. On the Software and Support page, under Real Application Testing, click
Database Replay.

The Database Replay page appears.

2. Under Active Capture and Replay, select the workload capture you want to
monitor and click View.

The View Workload Capture page appears.

View Workload Capture: CAPTURE-x090422-20090501115751
Page Refreshed May 1, 2009 12:11:37 PM PDT |_Refresh )

oK)
Status In Progress | Stop Capiure )
¥ Summary
Hame CAPTURE-x090422- Captured Data Size (MB) 0.05 .
20090501115751 Duration (hh:mm:ss) 00:12:19 G2
Directory Object CAPTUREL [3) Start Time May 1, 2009 11:59:18 AM PDT
Database Name X090422 End Time njfa
Capture Database Version 11.2.0.0.2 Start SCMN 1427095
DBID 2409260343 End SCN n/a

Capture Error Code  None
Capture Error Message None

Workload Profile Workload Filters

Yiew Workload Capiure Report )

Average Active Sessions
1.0
0.8
0e

O others
0.4 W Capture

Active Sessions

0.2

0.0 —
11:59 12:10 12:20 12:30 12:40 12:50
May 1, 2000

Comparison
Total Capture Percentage of Total
Database Time (hh:mm:ss) po:00:35 00:00:01 1 2.86

Average Active Sessions 0.05 0.00 nfa
User Calls 11,337 2651 2.34
Transactions 302 11032
Session Logins 56 20 I 42.42
Application Errors nfa 1 nfa

3. Under Summary, information about the workload capture is displayed.

3-10 Oracle Database Real Application Testing User's Guide



Monitoring Workload Capture Using Enterprise Manager

To view the workload profile, click the Workload Profile tab.

Under Average Active Sessions, the Active Sessions chart provides a graphic
display of the captured session activity compared to the uncaptured session
activity (such as background activities or filtered sessions).

Under Comparison, various statistics for the workload capture are displayed,
including database time, average active sessions, user calls, transactions, session
logins, and application errors. The statistics for the total session activity are
displayed in the Total column, and the statistics for the captured session activity
are displayed in the Capture column. The Percentage of Total column displays the
percentage of total session activity that are being captured in the workload.

To view the workload capture report, click View Workload Capture Report.

To view workload filters used by the workload capture, click the Workload Filters
tab.

Details about the workload filters used by the workload capture are displayed,
including the workload filter name, type, session attribute, and value.

To return to the Database Replay page, click OK.

Stopping an Active Workload Capture

This section describes how to stop an active workload capture using Enterprise
Manager.

To stop an active workload capture:

1.

On the Software and Support page, under Real Application Testing, click
Database Replay.

The Database Replay page appears.

Under Active Capture and Replay, select the workload capture you want to stop
and click Stop.

The Confirmation page appears.

To confirm that you want to stop the workload capture, click Yes.

Once the workload capture is stopped, the Export AWR Data page appears.
To export the Automatic Workload Repository (AWR) data, click Yes.

The Export AWR Data page appears; click Yes.

Exporting AWR data enables detailed analysis of the workload. This data is also
required if you plan to run the Replay Compare Period report or the AWR
Compare Period report on a pair of workload captures or replays.

If you choose not to export AWR data, click No. You can still export AWR data
from a completed workload capture at a later time from the View Workload
Capture History page.

The View Workload Capture page appears.

See Also:

»  Oracle Database Performance Tuning Guide for information about the
AWR

Capturing a Database Workload 3-11



Monitoring Workload Capture Using Enterprise Manager

Managing a Completed Workload Capture

This section describes how to manage a completed workload capture using Enterprise
Manager.

To manage a completed workload capture:

1. On the Software and Support page, under Real Application Testing, click
Database Replay.

The Database Replay page appears.
2. Click View Workload Capture History.
The View Workload Capture History page appears.

View Workload Capture History
Page Refreshed May 1, 2009 12:20:21 PM PDT ( Refresh )
Yiew )| Delete )| Expaort AWR Data )

Directory AWR Data
Select Capture Name Status |Object Start SCN|Duration (hh:mm:ss)|Start Time Exported
® CAPTURE-x090422- Completed CAPTUREL 1427095 00:15:33 May 1, 2009 v
20090501115751 11:59:18 AM PDT

3. To delete a workload capture, select the workload capture and click Delete.
This will not remove the capture files from the capture directory.

4. To export AWR data for a workload capture, select the workload capture and click
Export AWR Data.

The Export AWR Data page appears; click Yes.

Exporting AWR data enables detailed analysis of the workload. This data is also
required if you plan to run the Replay Compare Period report or the AWR
Compare Period report on a pair of workload captures or replays.

5. To view details about a workload capture, select the workload capture and click
View.

The View Workload Capture page appears.
6. Under Summary, information about the workload capture is displayed.
7. To view the workload profile, click the Workload Profile tab.

Under Average Active Sessions, the Active Sessions chart provides a graphic
display of the captured session activity compared to the uncaptured session
activity (such as background activities or filtered sessions). This chart will be
shown only when there is Active Session History (ASH) data available for the
capture period.

Under Comparison, various statistics for the workload capture are displayed,
including database time, average active sessions, user calls, transactions, connects,
and application errors. The statistics for the total session activity are displayed in
the Total column, and the statistics for the captured session activity are displayed
in the Capture column. The Percentage of Total column displays the percentage of
total session activity that are being captured in the workload.

To view the workload capture report, click View Workload Capture Report.

8. To view workload filters used by the workload capture, click the Workload Filters
tab.

Details about the workload filters used by the workload capture are displayed,
including the workload filter name, type, session attribute, and value.

3-12 Oracle Database Real Application Testing User's Guide



Capturing a Database Workload Using APIs

9. To return to the Database Replay page, click OK.

See Also:

»  Oracle Database Performance Tuning Guide for information about
ASH

Capturing a Database Workload Using APIs

This section describes how to capture a database workload using APIs. You can also
use Oracle Enterprise Manager to capture database workloads, as described in
"Capturing a Database Workload Using Enterprise Manager" on page 3-5.

Capturing a database workload using the DBMS_WORKLOAD_CAPTURE package
involves:

s Defining Workload Capture Filters

= Starting a Workload Capture

= Stopping a Workload Capture

= Exporting AWR Data for Workload Capture

See Also:

»  Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_WORKLOAD_CAPTURE package

Defining Workload Capture Filters

This section describes how to add and remove workload capture filters. For
information about using workload filters with workload capture, see "Using Filters
with Workload Capture" on page 3-3.

To add filters to a workload capture, use the ADD_FILTER procedure:

BEGIN
DBMS_WORKLOAD_CAPTURE.ADD_FILTER (
fname => ‘user_ichan’,
fattribute => 'USER’,
fvalue => ’'ICHAN');
END;
/

In this example, the ADD_FILTER procedure adds a filter named user_ichan, which
can be used to filter out all sessions belonging to the user name ICHAN.
The ADD_FILTER procedure in this example uses the following parameters:

s The fname required parameter specifies the name of the filter that will be added.

s The fattribute required parameter specifies the attribute on which the filter
will be applied. Valid values include PROGRAM, MODULE, ACTION, SERVICE,
INSTANCE_NUMBER, and USER.

s The fvalue required parameter specifies the value for the corresponding
attribute on which the filter will be applied. It is possible to use wildcards such as
% with some of the attributes, such as modules and actions.

To remove filters from a workload capture, use the DELETE_FILTER procedure:

BEGIN
DBMS_WORKLOAD_CAPTURE.DELETE_FILTER (fname => ’user_ichan’);

Capturing a Database Workload 3-13



Capturing a Database Workload Using APIs

END;
/

In this example, the DELETE_FILTER procedure removes the filter named user_ichan
from the workload capture.

The DELETE_FILTER procedure in this example uses the fname required parameter,
which specifies the name of the filter to be removed. The DELETE_FILTER procedure
will not remove filters that belong to completed captures; it only applies to filters of
captures that have yet to start.

Starting a Workload Capture

Before starting a workload capture, you must first complete the prerequisites for
capturing a database workload, as described in "Prerequisites for Capturing a
Database Workload" on page 3-1. You should also review the workload capture
options, as described in "Workload Capture Options" on page 3-2.

It is important to have a well-defined starting point for the workload so that the replay
system can be restored to that point before initiating a replay of the captured
workload. To have a well-defined starting point for the workload capture, it is
preferable not to have any active user sessions when starting a workload capture. If
active sessions perform ongoing transactions, those transactions will not be replayed
properly in subsequent database replays, since only that part of the transaction whose
calls were executed after the workload capture is started will be replayed. To avoid
this problem, consider restarting the database in RESTRICTED mode using STARTUP_
RESTRICTED before starting the workload capture. Once the workload capture begins,
the database will automatically switch to UNRESTRICTED mode and normal
operations can continue while the workload is being captured. For more information
about restarting the database before capturing a workload, see "Restarting the
Database" on page 3-2.

To start the workload capture, use the START_CAPTURE procedure:

BEGIN
DBMS_WORKLOAD_CAPTURE.START_CAPTURE (name => ‘dec06_peak’,
dir => ’'dec06',
duration => 600);
END;
/

In this example, a workload named dec06_peak will be captured for 600 seconds and
stored in the operating system defined by the database directory object named dec06.
The START_CAPTURE procedure in this example uses the following parameters:

s The name required parameter specifies the name of the workload that will be
captured.

»  The dir required parameter specifies a directory object pointing to the directory
where the captured workload will be stored.

s The duration optional parameter specifies the number of seconds before the
workload capture will end. If a value is not specified, the workload capture will
continue until the FINISH_CAPTURE procedure is called.

Stopping a Workload Capture

To stop the workload capture, use the FINISH_CAPTURE procedure:

BEGIN

3-14 Oracle Database Real Application Testing User's Guide



Monitoring Workload Capture Using Views

DBMS_WORKLOAD_CAPTURE.FINISH_CAPTURE () ;
END;
/

In this example, the FINISH_CAPTURE procedure finalizes the workload capture and
returns the database to a normal state.

Tip: After capturing a workload on the production system, you need
to preprocess the captured workload, as described in Chapter 4,
"Preprocessing a Database Workload".

Exporting AWR Data for Workload Capture

Exporting AWR data enables detailed analysis of the workload. This data is also
required if you plan to run the Replay Compare Period report or the AWR Compare
Period report on a pair of workload captures or replays.

To export AWR data, use the EXPORT_AWR procedure:

BEGIN
DBMS_WORKLOAD_CAPTURE.EXPORT AWR (capture_id => 2);

END;

/

In this example, the AWR snapshots that correspond to the workload capture with a
capture ID of 2 are exported. The EXPORT_AWR procedure uses the capture_id
required parameter, which specifies the ID of the capture whose AWR snapshots will
be exported. This procedure will work only if the corresponding workload capture
was performed in the current database and the AWR snapshots that correspond to the
original capture time period are still available.

Monitoring Workload Capture Using Views

This section summarizes the views that you can display to monitor workload capture.
You can also use Oracle Enterprise Manager to monitor workload capture, as
described in "Monitoring Workload Capture Using Enterprise Manager" on page 3-9.

To access these views, you need DBA privileges:

s The DBA_WORKLOAD_CAPTURES view lists all the workload captures that have
been captured in the current database.

» The DBA_WORKLOAD_FILTERS view lists all workload filters used for workload
captures defined in the current database.

See Also:

»  Oracle Database Reference for information about these views

Capturing a Database Workload 3-15



Monitoring Workload Capture Using Views

3-16 Oracle Database Real Application Testing User's Guide



4

Preprocessing a Database Workload

After a workload is captured and setup of the test system is complete, the captured
data must be preprocessed. Preprocessing a captured workload creates all necessary
metadata for replaying the workload. This must be done once for every captured
workload before they can be replayed. After the captured workload is preprocessed, it
can be replayed repeatedly on a replay system.

To preprocess a captured workload, you will first need to move all captured data files
from the directory where they are stored on the capture system to a directory on the
instance where the preprocessing will be performed. Preprocessing is resource
intensive and should be performed on a system that is:

= Separate from the production system
= Running the same version of Oracle Database as the replay system

For Oracle Real Application Clusters (Oracle RAC), select one database instance of the
replay system for the preprocessing. This instance must have access to the captured
data files that require preprocessing, which can be stored on a local or shared file
system. If the capture directory path on the capture system resolves to separate
physical directories in each instance, you will need to move all the capture files created
in each of these directories into a single directory on which preprocessing will be
performed.

Typically, you will preprocess the captured workload on the replay system. If you
plan to preprocess the captured workload on a system that is separate from the replay
system, you will also need to move all preprocessed data files from the directory
where they are stored on the preprocessing system to a directory on the replay system
after preprocessing is complete.

This chapter contains the following sections:
»  Preprocessing a Database Workload Using Enterprise Manager
»  Preprocessing a Database Workload Using APIs
Tip: Before you can preprocess a captured workload, you need to

capture the workload on the production system, as described in
Chapter 3, "Capturing a Database Workload".

Preprocessing a Database Workload Using Enterprise Manager

This section describes how to preprocess a captured workload using Enterprise
Manager.

The primary tool for preprocessing workload captures is Oracle Enterprise Manager. If
for some reason Oracle Enterprise Manager is unavailable, you can preprocess

Preprocessing a Database Workload 4-1



Preprocessing a Database Workload Using Enterprise Manager

workload captures using the APIs, as described in "Preprocessing a Database

Workload Using APIs" on page 4-4.

To preprocess a captured workload using Enterprise Manager:
1. On the Software and Support page, under Real Application Testing, click

Database Replay.
The Database Replay page appears.

2. In the Go to Task column, click the icon that corresponds to the Preprocess

Captured Workload task.

The Preprocess Captured Workload page appears.

Preprocess Captured Workload

Directory
Select a directory object that contains a captured workload.

@ TIP If the capture

ras done on a cluster database and a shared capture directory w
capture directories from all database instances into a single directory and then

Cancel

s not used, copy the contents of the
lect the directory.

Directory Object v | ( Create Directary Object )

3. In the Directory Object list, select a directory that contains the captured workload

that you want to preprocess.

After a directory is selected, the Preprocess Captured Workload page will be
refreshed to display the Capture Summary section, which contains information
about the captured workload in the selected directory.

Preprocess Captured Workload

Directory
Select a directory object that contains a captured workload.

& TIP If the capture w

ras done on a cluster database and a shared capture directory
capture directories from all database instances into a single directory and then select the directory.

Cancel ) ( Preprocess Workload )

was not used, copy the contents of the

Directory Object | CAPTURE1 v | [ Create Directory Object )

¥ Capture Summary
Name CAPTURE-x090422-
20090501115751
Status Completed
Directory Object CAPTUREL [3)
Database Name X090422
Capture Database Version 11.2.0.0.2
DBID 2409269343
Capture Error Code None
Capture Error Message HNone

P> Capture Details

Captured Data Size (MB) 0.06
Duration (hh:mm:ss) 00:15:33
Start Time May 1, 2009 11:59:18
AM PDT
End Time May 1, 2009 12:14:51
PM PDT
Start SCN 1427095
End SCN 1428938

Preprocessed Database Version njfa

To view additional details about the captured workload, expand Capture Details.
The expanded Capture Details section displays the workload profile and details

for the captured workload.

4. Click Preprocess Workload.

The Preprocess Captured Workload: Database Version page appears.

4-2 Oracle Database Real Application Testing User's Guide




Preprocessing a Database Workload Using Enterprise Manager

Preprocess Captured Workload: Database Version
Database x090422
Version 11.2.0.0.2
Capture Name CAPTURE-x090422-20090501115751
Logged In As IMMCHAN

The current database version is 11.2.0.0.2.

Cancel ) Step 1 of 3 [Next )

Caontinue only if you intend to replay the captured workload on a database of the same version.

5. Ensure that the current database version displayed matches the database version
on the intended replay system and click Next.

Preprocessing must be performed on a system that is running the same version of
Oracle Database as the replay system.

The Preprocess Captured Workload: Schedule page appears.

Preprocess Captured Workload: Schedule
Database x090422
Version 11.2.0.0.2
Capture Name CAPTURE-x090422-20090501115751
Logged In As IMMCHAN

Specify the following information to schedule the preprocessing job.

Cancel ) (Back| Step 2 of 3 [Next )

Job Parameters
»* Job Mame |PREPROCESS-X090422-20090501123357

Description

Start
@ Immediately
O Later

Date |May 1, 2009

{escample: May 1, 2009)

Time |12 ||| |30 »||00 %| O AM @ FM

Host Credentials
* lJsername |immchan
* Password |[essses
* Confirm Password |eessss

[JSave as Preferred Credential

6. Define the parameters for the preprocessing job.
= Under Job Parameters, enter a name and a description for the job.

= Under Start, select whether the job will run immediately by selecting
Immediately, or at a later time by selecting Later and specifying the desired
time using the Date and Time fields.

= Under Host Credentials, enter the user name and password information for
the database host that will used for the preprocessing.

After defining the job parameters, click Next.
The Preprocess Captured Workload: Review page appears.

Preprocessing a Database Workload 4-3



Preprocessing a Database Workload Using APIs

Preprocess Captured Workload: Review
Logged In As  IMMCHAN Cancel ) (Back] Step 3 of 3 (_Subimit )

Workload CAPTURE-x090422-20090501115751 will be preprocessed on database 'x090422".

Job Mame PREPROCESS-X090422-20090501123357
Database x090422
Preprocessed Database Version 11.2.0.0.2
Directory Object CAPTUREL
Capture Mame CAPTURE-x090422-20090501115751
Captured Data Size (ME) 0.06
Start Time Immediately

7. Review the selected options for the preprocessing job.

To preprocess the captured workload, click Submit. To make changes, click Back.
To cancel preprocessing without saving changes, click Cancel.

Tip: After preprocessing a captured workload, you can replay it on
the test system, as described in Chapter 5, "Replaying a Database
Workload".

Preprocessing a Database Workload Using APIs

This section describes how to preprocess a captured workload using the DBMS_
WORKLOAD_REPLAY package. You can also use Oracle Enterprise Manager to
preprocess a captured workload, as described in "Preprocessing a Database Workload
Using Enterprise Manager" on page 4-1.
To preprocess a captured workload, use the PROCESS_CAPTURE procedure:
BEGIN

DBMS_WORKLOAD_REPLAY . PROCESS_CAPTURE (capture_dir => ’'dec06');

END;
/

In this example, the captured workload stored in the dec06 directory will be
preprocessed.

The PROCESS_CAPTURE procedure in this example uses the capture_dir required
parameter, which specifies the directory that contains the captured workload to be
preprocessed.

Tip: After preprocessing a captured workload, you can replay it on
the test system, as described in Chapter 5, "Replaying a Database
Workload".

See Also:

»  Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_WORKLOAD_REPLAY package

4-4 Oracle Database Real Application Testing User's Guide



O

Replaying a Database Workload

After a captured workload is preprocessed, it can be replayed repeatedly on a replay
system that is running the same version of Oracle Database.

This chapter describes how to replay a database workload on the test system and
contains the following sections:

= Setting Up the Test System

= Steps for Replaying a Database Workload

= Replaying a Database Workload Using Enterprise Manager
= Monitoring Workload Replay Using Enterprise Manager

= Replaying a Database Workload Using APIs

= Monitoring Workload Replay Using APIs

Tip: Before you can replay a database workload, you must first:

»  Capture the workload on the production system, as described in
Chapter 3, "Capturing a Database Workload"

»  Preprocess the captured workload, as described in Chapter 4,
"Preprocessing a Database Workload"

Setting Up the Test System

Typically, the replay system where the preprocessed workload will be replayed
should be a test system that is separate from the production system. Before a test
system can be used for replay, it must be prepared properly, as described in the
following sections:

= Restoring the Database
= Resetting the System Time

Restoring the Database

Before a workload can be replayed, the application data state should be logically
equivalent to that of the capture system at the start time of workload capture. This
minimizes data divergence during replay. The method for restoring the database
depends on the backup method that was used before capturing the workload. For
example, if RMAN was used to back up the capture system, you can use RMAN
DUPLICATE capabilities to create the test database. For more information, see
"Prerequisites for Capturing a Database Workload" on page 3-1.

Replaying a Database Workload 5-1



Steps for Replaying a Database Workload

After the database is created with the appropriate application data on the test system,
perform the system change you want to test, such as a database or operating system
upgrade. The primary purpose of Database Replay is to test the effect of system
changes on a captured workload. Therefore, the system changes you make should
define the test you are conducting with the captured workload.

Resetting the System Time

It is recommended that the system time on the replay system host be changed to a
value that approximately matches the capture start time just before replay is started.
Otherwise, an invalid data set may result when replaying time-sensitive workloads.
For example, a captured workload that contains SQL statements using the SYSDATE
and SYSTIMESTAMP functions may cause data divergence when replayed on a system
that has a different system time. Resetting the system time will also minimize job
scheduling inconsistencies between capture and replay.

Steps for Replaying a Database Workload

Proper planning of the workload replay ensures that the replay will be accurate.
Replaying a database workload requires the following steps:

»  Setting Up the Replay Directory

= Resolving References to External Systems
= Remapping Connections

= Specifying Replay Options

»  Using Filters with Workload Replay

= Setting Up Replay Clients

Setting Up the Replay Directory

The captured workload must have been preprocessed and copied to the replay system.
A directory object for the directory to which the preprocessed workload is copied
must exist in the replay system.

Resolving References to External Systems

A captured workload may contain references to external systems, such as database
links or external tables. Typically, you should reconfigure these external interactions to
avoid impacting other production systems during replay. External references that
need to be resolved before replay a workload include:

s Database links

It is typically not desirable for the replay system to interact with other databases.
Therefore, you should reconfigure all database links to point to an appropriate
database that contains the data needed for replay.

m  External tables

All external files specified using directory objects referenced by external tables
need to be available to the database during replay. The content of these files
should be the same as during capture, and the filenames and directory objects
used to define the external tables should also be valid.

= Directory objects

5-2 Oracle Database Real Application Testing User's Guide



Steps for Replaying a Database Workload

You should reconfigure any references to directories on the production system by
appropriately redefining the directory objects present in the replay system after
restoring the database.

] URLs

URLs/URIs that are stored in the database need to be configured so that Web
services accessed during the workload capture will point to the proper URLs
during replay. If the workload refers to URLs that are stored in the production
system, you should isolate the test system network during replay.

s E-mails

To avoid resending E-mail notifications during replay, any E-mail server
accessible to the replay system should be configured to ignore requests for
outgoing E-mails.

Tip: To avoid impacting other production systems during replay,
Oracle strongly recommends running the replay within an isolated
private network that does not have access to the production
environment hosts.

Remapping Connections

During workload capture, connection strings used to connect to the production system
are captured. In order for the replay to succeed, you need to remap these connection
strings to the replay system. The replay clients can then connect to the replay system
using the remapped connections.

For Oracle Real Application Clusters (Oracle RAC) databases, you can map all
connection strings to a load balancing connection string. This is especially useful if the
number of nodes on the replay system is different from the capture system.
Alternatively, if you want to direct workload to specific instances, you can use services
or explicitly specify the instance identifier in the remapped connection strings.

Specifying Replay Options

After the database is restored and connections are remapped, you can set the
following replay options as appropriate:

s Preserving COMMIT Order
= Controlling Session Connection Rate

= Controlling Request Rate Within a Session

Preserving COMMIT Order

The synchronization parameter controls whether the COMMIT order in the
captured workload will be preserved during replay.

If this parameter is set to SCN, the COMMIT order in the captured workload will be
preserved during replay and all replay actions will be executed only after all
dependent COMMIT actions have completed.

If this parameter is set to OBJECT_ID, all replay actions will be executed only after all
relevant COMMIT actions have completed. Relevant COMMIT actions must meet the
following criteria:

»  Issued before the given action in the workload capture

Replaying a Database Workload 5-3



Steps for Replaying a Database Workload

= Modified at least one of the database objects for which the given action is
referencing, either implicitly or explicitly

Setting this parameter to OBJECT_ID allows for more concurrency during workload
replays for COMMIT actions that do not reference the same database objects as the
workload capture.

You can disable this option by setting the parameter to OFF, but the replay will likely
yield significant data divergence. However, this may be desirable if the workload
consists primarily of independent transactions, and divergence during
unsynchronized replay is acceptable.

Controlling Session Connection Rate

The connect_time_scale parameter enables you to scale the elapsed time between
the time when the workload capture began and each session connects. You can use
this option to manipulate the session connect time during replay with a given
percentage value. The default value is 100, which will attempt to connect all sessions
as captured. Setting this parameter to 0 will attempt to connect all sessions
immediately.

Controlling Request Rate Within a Session

User think time is the elapsed time while the replayed user waits between issuing calls
within a single session. To control replay speed, use the think time_scale
parameter to scale user think time during replay.

If user calls are being executed slower during replay than during capture, you can
make the database replay attempt to catch up by setting the think_ time_auto_
correct parameter to TRUE. This will make the replay client shorten the think time
between calls, so that the overall elapsed time of the replay will more closely match
the captured elapsed time.

If user calls are being executed faster during replay than during capture, setting the
think_time_auto_correct parameter to TRUE will not change the think time. The
replay client will not increase the think time between calls to match the captured
elapsed time.

Using Filters with Workload Replay

By default, all captured database calls are replayed during workload replay. You can
use workload filters to specify which database calls to include in or exclude from the
workload during workload replay.

Workload replay filters are first defined and then added to a replay filter set so they
can be used in a workload replay. There are two types of workload filters: inclusion
filters and exclusion filters. Inclusion filters enable you to specify database calls that
will be replayed. Exclusion filters enable you to specify database calls that will not be
replayed. You can use either inclusion filters or exclusion filters in a workload replay,
but not both. The workload filter is determined as an inclusion or exclusion filter when
the replay filter set is created.

Setting Up Replay Clients

The replay client is a multithreaded program (an executable named wrc located in the
$ORACLE_HOME/bin directory) where each thread submits a workload from a
captured session. Before replay begins, the database will wait for replay clients to
connect. At this point, you need to set up and start the replay clients, which will

5-4 Oracle Database Real Application Testing User's Guide



Steps for Replaying a Database Workload

connect to the replay system and send requests based on what has been captured in
the workload.

Before starting replay clients, ensure that the:

= Replay client software is installed on the hosts where it will run
= Replay clients have access to the replay directory

= Replay directory contains the preprocessed workload capture

= Replay user has the correct user ID, password, and privileges (the replay user
needs the DBA role and cannot be the SYS user)

= Replay clients are not started on a system that is running the database

= Replay clients read the capture directory on a file system that is different from the
one on which the database files reside

To do this, copy the capture directory to the system where the replay client will
run. After the replay is completed, you can delete the capture directory.

After these prerequisites are met, you can proceed to set up and start the replay clients
using the wrc executable. The wrc executable uses the following syntax:

wrc [user/password[@server]] MODE=[value] [keyword=[value]]

The parameters user and password specify the username and password used to
connect to the host where the wrc executable is installed. The parameter server
specifies the server where the wrc executable is installed. The parameter mode
specifies the mode in which to run the wrc executable. Possible values include replay
(the default), calibrate, and 1ist_hosts. The parameter keyword specifies the
options to use for the execution and is dependent on the mode selected. To display the
possible keywords and their corresponding values, run the wrc executable without
any arguments.

The following sections describe the modes that you can select when running the wrc
executable:

s Calibrating Replay Clients
= Starting Replay Clients

= Displaying Host Information

Calibrating Replay Clients

Since one replay client can initiate multiple sessions with the database, it is not
necessary to start a replay client for each session that was captured. The number of
replay clients that need to be started depends on the number of workload streams, the
number of hosts, and the number of replay clients for each host.

To estimate the number of replay clients and hosts that are required to replay a
particular workload, run the wrc executable in calibrate mode.

In calibration mode, the wrc executable accepts the following keywords:

= replaydir specifies the directory that contains the preprocessed workload
capture you want to replay. If unspecified, it defaults to the current directory.

= process_per_cpu specifies the maximum number of client processes that can
run per CPU. The default value is 4.

» threads_per_process specifies the maximum number of thread that can run
within a client process. The default value is 50.

Replaying a Database Workload 5-5



Steps for Replaying a Database Workload

The following example shows how to run the wrc executable in calibrate mode:
%> wrc mode=calibrate replaydir=./replay

In this example, the wrc executable is executed to estimate the number of replay
clients and hosts that are required to replay the workload capture stored in a

subdirectory named replay under the current directory. In the following sample
output, the recommendation is to use at least 21 replay clients divided among 6 CPUs:

Workload Replay Client: Release 11.2.0.0.2 - Production on Fri May 1
13:06:33 2009

Copyright (c) 1982, 2009, Oracle. All rights reserved.

Report for Workload in: /oracle/replay/

Recommendation:
Consider using at least 21 clients divided among 6 CPU(s).

Workload Characteristics:
- max concurrency: 1004 sessions
- total number of sessions: 1013

Assumptions:

- 1 client process per 50 concurrent sessions
- 4 client process per CPU

- think time scale = 100

- connect time scale = 100

- synchronization = TRUE

Starting Replay Clients

After determining the number of replay clients that are needed to replay the workload,
you need to start the replay clients by running the wrc executable in replay mode on
the hosts where they are installed. Once started, each replay client will initiate one or
more sessions with the database to drive the workload replay.

In replay mode, the wrc executable accepts the following keywords:

» useridand password specify the user ID and password of a replay user for the
replay client. If unspecified, these values default to the system user.

» server specifies the connection string that is used to connect to the replay
system. If unspecified, the value defaults to an empty string.

» replaydir specifies the directory that contains the preprocessed workload
capture you want to replay. If unspecified, it defaults to the current directory.

»  workdir specifies the directory where the client logs will be written. This
parameter is only used with the debug parameter for debugging purposes.

= debug specifies whether debug data will be created. Possible values include:
- on
Debug data will be written to both files in the working directory
- off
No debug data will be written (the default value)

5-6 Oracle Database Real Application Testing User's Guide



Steps for Replaying a Database Workload

Note: Before running the wrc executable in debug mode, contact
Oracle Support for more information.

= connection_override specifies whether to override the connection mappings
stored in the DBA_WORKLOAD_CONNECTION_MAP view. If set to TRUE, connection
remappings stored in the DBA_ WORKLOAD_CONNECTION_MAP view will be
ignored and the connection string specified using the server parameter will be
used. If set to FALSE, all replay threads will connect using the connection
remappings stored in the DBA_ WORKLOAD_CONNECTION_MAP view. This is the
default setting.

The following example shows how to run the wrc executable in replay mode:

%> wrc system/password@test mode=replay replaydir=./replay

In this example, the wrc executable starts the replay client to replay the workload
capture stored in a subdirectory named replay under the current directory.

After all replay clients have connected, the database will automatically distribute
workload capture streams among all available replay clients and workload replay can
begin. You can monitor the status of the replay clients using the VSWORKLOAD_
REPLAY_CLIENTS view. After the replay finishes, all replay clients will disconnect
automatically.

Displaying Host Information

You can display the hosts that participated in a workload capture and workload
replay by running the wrc executable in list_hosts mode.

In list_hosts mode, the wrc executable accepts the keyword replaydir, which
specifies the directory that contains the preprocessed workload capture you want to
replay. If unspecified, it defaults to the current directory.

The following example shows how to run the wrc executable in list_hosts mode:

%> wrc mode=1list_hosts replaydir=./replay

In this example, the wrc executable is executed to list all hosts that participated in
capturing or replaying the workload capture stored in a subdirectory named replay
under the current directory. In the following sample output, the hosts that participated
in the workload capture and three subsequent replays are shown:

Workload Replay Client: Release 11.2.0.0.2 - Production on Fri May 1 13:44:48 2009
Copyright (c) 1982, 2009, Oracle. All rights reserved.

Hosts found:
Capture:
prodl
prod2
Replay 1:
testl
Replay 2:
testl
test2
Replay 3:
testwin

Replaying a Database Workload 5-7



Replaying a Database Workload Using Enterprise Manager

Replaying a Database Workload Using Enterprise Manager

This section describes how to replay a database workload using Enterprise Manager.

The primary tool for replaying database workloads is Oracle Enterprise Manager. If
for some reason Oracle Enterprise Manager is unavailable, you can also replay
database workloads using APIs, as described in "Replaying a Database Workload
Using APIs" on page 5-17.

To replay a database workload using Enterprise Manager:

1. On the Software and Support page, under Real Application Testing, click
Database Replay.

The Database Replay page appears.

2. In the Go to Task column, click the icon that corresponds to the Replay Workload
task.

The Replay Workload page appears.

Replay Workload
The captured workload must have been preprocessed and copied to the replay system. A directory Cancel |
object for the directory with the copied workload must exist in the replay system.

Directory
Select a directory object that contains the last replayed workload or a preprocessed workload.

Directory Object v | (Create Directory Object )

3. In the Directory Object list, select a directory that contains the preprocessed
workload that you want to replay.

After a directory is selected, the Replay Workload page will be refreshed to
display the Capture Summary and the Replay History sections. For more
information, see "Setting Up the Replay Directory" on page 5-2.

Replay Workload

The captured workload must have been preprocessed and copied to the replay system. A directory Cancel ) (Set Up Replay )
object for the directory with the copied workload must exist in the replay system.

Directory
Select a directory object that contains the last replayed workload or a preprocessed workload.

Directory Object | CAPTUREL v | [ Create Directory Object )

¥ Capture Summary

Name CAPTURE-x090422- Captured Data Size (ME) 0.06
20090501115751 Duration (hh:mm:ss) 00:15:33
Status Completed Start Time May 1, 2009 11:59:18
Directory Object CAPTUREL (3 AM PDT
Database Name X090422 End Time May 1, 2009 12:14:51
Capture Database Version 11.2.0.0.2 PM PDT
DBID 2409269343 Start SCN - 1427095
Capture Error Code  None End SCN 1428938
Capture Error Message HNone Preprocessed Database Version 11.2.0.0.2

P> Capture Details

Replay History
Select Name Status Duration (hh:mm:ss) Start Time  End Time AWR. Data Exported
Mo items found

The Capture Summary section displays information about the preprocessed
workload capture in the selected directory. To view additional details about the
workload capture, expand Capture Details. The expanded Capture Details section

5-8 Oracle Database Real Application Testing User's Guide



Replaying a Database Workload Using Enterprise Manager

displays the workload profile and workload filters used during the workload
capture.

4. Click Set Up Replay.
The Replay Workload: Prerequisites page appears.
5. Verify that all prerequisites are met before proceeding.

For more information about the prerequisites, see "Steps for Replaying a Database
Workload" on page 5-2. If you are replaying the workload on a test system, ensure
that the test system is properly prepared for replay. For more information, see
"Setting Up the Test System" on page 5-1.

Once all prerequisites are completed, click Continue.
The Replay Workload: References to External Systems page appears.

6. Verify potential references to all external systems and modify any invalid
references.

Use the links available on the Replay Workload: References to External Systems
page to verify the database links, directory objects, and Oracle Streams that may
be referenced during the workload capture process. There may be other references
to external systems that are not included in these categories. For more information,
see "Resolving References to External Systems" on page 5-2.

Once all references to external systems have been verified and modified as
necessary, click Continue.

The Replay Workload: Choose Initial Options page appears.

Replay Workload: Initialize Options
Database x090422
Capture Name CAPTURE-x090422-20090501115751
Logged In As IMMCHAN

Cancel ] Step 1 of 5 [Mext )

= Replay Name |REPLAY-x090422-20090501125040

Identify Source
Choose the initial replay options.

® Use the default replay options

Replay Name

7. In the Replay Name field, you may enter a name for the replay, or simply use the
name generated by the system.

8. Under Identify Source, select whether to use default replay options or replay
options from a previous replay (if one is available). If multiple replays exist, select
the replay you want to use from the Replay Name list.

Click Next.
The Replay Workload: Customize Options page appears.

Replaying a Database Workload 5-9



Replaying a Database Workload Using Enterprise Manager

Replay Workload: Customize Options

Database x090422 Cancel ) (Back| ste Fs )
) k| Step 2 of 5 |Mext
Capture Name CAPTURE-x090422-20090501115751

Logged In As IMMCHAN

Connection Mappings Replay Parameters

Replay Clients must establish connections to the replay database. Specify connection details to the replay database using either a
single connect descriptor or net service name. Optionally, you can map every captured connect descriptor to a separate connect
descriptor or net service name for the replay database.

& TIP Connections must peint to the replay database for a successful replay.

(@ Use a single connect descriptor for all client connections. Test Connection |

(DESCRIPTION=(ADDRESS_LIST={ADDRESS=(PROTQCOL=TCP)(HOST =dadvmni&72.us.oracle.com)(PORT=25170)))
(CONNECT_DATA=(SID=x090422)))

(O Use a single TNS net service name for all client connections.

@ TIP All Replay Clients must be able to resolve the net service name (for example through a local tnsnames.ora file).

(O Use a separate connect descripter or net service name for each client connect descriptor captured in the workload.

9. Remap captured connection strings to connection strings that point to the replay
system.

Click the Connection Mappings tab. There are several methods you can use to
remap captured connection strings. You can choose to:

= Use a single connect descriptor for all client connections by selecting this
option and entering the connect descriptor you want to use. The connect
descriptor should point to the replay system.

To test the connection, click Test Connection. If the connect descriptor is
valid, an Information message is displayed to inform you that the connection
was successful.

= Use asingle TNS net service name for all client connections by selecting this
option and entering the net service name you want to use. All replay clients
must be able to resolve the net service name, which can be done using a local
tnsnames.ora file.

= Use a separate connect descriptor or net service name for each client connect
descriptor captured in the workload by selecting this option and, for each
capture system value, entering a corresponding replay system value that will
be used by the replay client.

For more information, see "Remapping Connections" on page 5-3.
10. Specify the replay options using the replay parameters.

To modify the replay behavior, click the Replay Parameters tab and enter the
desired values for each replay parameter. Using the default values is
recommended. For information about setting the replay parameters, see
"Specifying Replay Options" on page 5-3.

5-10 Oracle Database Real Application Testing User's Guide



Replaying a Database Workload Using Enterprise Manager

Connection Mappings Replay Parameters

Some replay parameters can be modified to change the behavior of the replay. Refer to the Oracle Real Application Testing User's
Guide for more information.

Name Description Valuel

synchronization This paramgter determings what type of synchronization \:\i'ill be used during workload. SCHN v
replay. If this parameter is set to SCN, the COMMIT order in the captured workload will be
globally preserved during replay and all replayed requests will be executed only after all
COMMIT actions with a lower capture-time SCN have completed. If this parameter is set to
OBJECT_ID, a finer method of synchrenization is used which is based both on capture-time
SCN values as well as database objects to calculate the dependencies among replayed
calls. The default value is SCM.
This parameter scales the elapsed time from when the workload capture started to when 100|eg
the session connects with the specified value and is interpreted as a % value. The
parameter controls the rate of logon activity during replay. The default value is 100.
This parameter scales the elapsed time between two successive user calls from the same 100 g
session and is interpreted as a % value. The parameter controls the replayed request rate.
Thus, setting this parameter to 0 will send user calls to the database as fast as possible
during replay. The default value is 100.
think time auto correct 1S parameter reduces the think time if workload replay goes slower than warkload TRUE '~
- 0T capture, in an attempt to maintain the captured request rate. If this parameter is set to
TRUE, the system will correct the think time (based on the think_time_scale parameter)
between calls when user calls take longer to complete during replay than during capture.
The default value is TRUE.

connect_time_scale

think_time_scale

After setting the replay parameters, click Next.
The Replay Workload: Prepare Replay Clients page appears.
11. Ensure that replay clients are prepared for replay.

Before proceeding, the replay clients need to be prepared. For more information,
see "Setting Up Replay Clients" on page 5-4.

After all replay clients are ready to start, click Next.
The Replay Workload: Wait for Client Connections page appears.

Replay Workload: Wait for Client Connections
Database x090422

Capture Name CAPTURE-x090422-20090501115751
Logged In As IMMCHAN

(Cancel ) (Back] Step 4 of 5 [Mext

The database is waiting for connections from the Replay Clients. Start the Replay Clients now.

After all the Replay Clients have connected, proceed to the next step to continue the replay setup.

The database is waiting for connections from Replay Clients.

/\This operation may take some time to complete. If you close this browser window or navigate to a different page, your place in
the replay process will not be saved.

Client Connections

SID Host 05 Process ID 05 User Name Program
Mo items found

12. Start the replay clients.

For information about starting replay clients, see "Setting Up Replay Clients" on
page 5-4.

As replay clients are started, the replay client connections will be displayed under
Client Connections. When all replay clients have connected, click Next.

The Replay Workload: Review page appears.

Replaying a Database Workload 5-11



Monitoring Workload Replay Using Enterprise Manager

Replay Workload: Review
Logged In As  IMMCHAN Cancel ] (Back| Step 5 of 5 ( Submit

{i) Information
Time for resetting the clock: Jun 4, 2009 3:07:34 AM PDT.

It is recommended that the system time on the database host platform be changed to a value that is close to the capture
start time. This must be done just before replay is started. Not doing so might present an invalid data set to the replayed
time-sensitive workload. thus causing data divergence. Examples include statements that use the SYSDATE and
SYSTIMESTAMP functions. Resetting the time will also minimize job scheduling inconsistencies between replay and
capture.

Waorkload CAPTURE-x112-20090604030648 will be replayed on database %112

Database x112
Capture Name CAPTURE-x112-20090604030648
Replay Mame REPLAY-x112-20090604033037
Directory Object CAPTURE1
Connected Replay Clients 1

13. Review the options and parameters that have been defined for the workload
replay.

Before starting replay, reset the system clock to a value that is as close to the
capture start time as possible. This minimizes any data divergence that may result
from replaying a time-sensitive workload. For more information, see "Resetting
the System Time" on page 5-2.

To begin replay, click Submit. If no replay clients are connected, this button will
be disabled. To make changes, click Back. To cancel replay without saving
changes, click Cancel.

Once the replay is started, the View Workload Replay page appears. For
information about monitoring an active workload replay, see "Monitoring an
Active Workload Replay" on page 5-12.

Monitoring Workload Replay Using Enterprise Manager

This section describes how to monitor workload replay using Enterprise Manager. The
primary tool for monitoring workload replay is Oracle Enterprise Manager. Using
Enterprise Manager, you can:

= Monitor or stop an active workload replay
= View a completed workload replay

If for some reason Oracle Enterprise Manager is unavailable, you can monitor
workload replay using APIs and views, as described in "Monitoring Workload Replay
Using APIs" on page 5-24.

This section contains the following topics:
= Monitoring an Active Workload Replay
= Viewing a Completed Workload Replay

Monitoring an Active Workload Replay

This section describes how to monitor an active workload replay using Enterprise
Manager.

To monitor an active workload replay:

1. On the Software and Support page, under Real Application Testing, click
Database Replay.

5-12 Oracle Database Real Application Testing User's Guide




Monitoring Workload Replay Using Enterprise Manager

The Database Replay page appears.

monitor and click View.

The View Workload Replay page appears.

Under Active Capture and Replay, select the workload replay you want to

View Workload Replay: REPLAY-x112-20090604035557

Status  In Progress | Stop Replay

¥ Summary

REPLAY-x112-20090604035557
CAPTURE1 (@

X112

2469865358

nia

None

Replay Mame
Directory Object
Datahase MName

DEID

Replay Error Code
Replay Error Message
Replay Parameters

Workload Profile Connection Mappings

pDetailed Comparison

Capture Mame
Duration (hh:mm:ss)
Prepare Time

Chart Type | Elapsed Time Comparison %
Capture
O Replay Elapsed
B Capture Elapsed
Replay [l Mot Yet Replayed
0 1 2 3 4 S [
Elapsed Time (Minutes)
Metwork Time (hh-mm-ss) 00:00:01 Clients 1
Think Time (hh:mm:ss) 00:00:58 Clients Finished 0
Divergence
Number of  Percentage of
Calls Total Calls
Error Divergence:
Session Failures Seen During Replay 0 0.00
Errors No Longer Seen During Replay 0 0.00
Errors Mutated During Replay 0 0.00
New Errors Seen During Replay 0 0.00
Data Divergence:
DMLs with Different Number of Rows Modified 0 0.00
SELECTs with Different Number of Rows Fetched 0 0.00

Page Refreshed Jun 4, 2009 3:58:04 AM PDT (_Refresh
O

CAPTURE-x112-20090604030648
00:01:32 (

Jun 4, 2009 3:56:09 AM PDT
Jun 4, 2009 3:56:32 AM PDT
nia

Start Time
End Time

Assessing the Replay

The Elapsed Time Comparison chart shows how
much time the replayed workload has taken to
accomplish the same amount of work as
captured

When the Replay bar is shorter than the
Capture bar, the replay emvironment is
processing the workload faster than the capture
environment

The divergence table gives information about
both the data and error discrepancies between
the replay and capture emvironments, which can
be used as a measure of the replay quality.

iew Wiorkload Replay Report J

3. Once the workload replay is completed, you can assess various types of
information about the replay using this page, as described in "Viewing a

Completed Workload Replay" on page 5-13.

To stop the workload replay manually, click Stop Replay. To return to the

Database Replay page, click OK.

Viewing a Completed Workload Replay

This section describes how to view a completed workload replay using Enterprise

Manager.

To view a completed workload replay:

1. On the Software and Support page, under Real Application Testing, click

Database Replay.
The Database Replay page appears.

2, In the Go to Task column, click the icon that corresponds to the Replay Workload

task.
The Replay Workload page appears.

Replaying a Database Workload 5-13



Monitoring Workload Replay Using Enterprise Manager

3. In the Directory Object list, select the directory that contains the replayed
workload that you want to view.

After the directory is selected, the Replay Workload page will be refreshed to
display the Capture Summary and the Replay History sections.

4. The Replay History section displays previous replays of the workload capture. To
view details about a replay, select the replay and click View.

The View Workload Replay page appears.

5. Under Summary, information about the workload replay is displayed.

6. To view the workload profile, click the Workload Profile tab.
There are two types of charts that are available under the Workload Profile tab:
= Elapsed Time Comparison

To view this chart, in the Chart Type field, select Elapsed Time Comparison.

Chart Type |Elapsed Time Comparison %
Capture
O Replay Elapsed
B Capture Elapsed
Replay B Mot Yet Replayed
o] 1 2 3 4 5 &
Elapsed Time (Minutes)
Metwork Time (hh:mmiss)  00:00:01 Clients 1
Think Time (hh:mm:ss) 00:00:58 Clients Finished 1

The Elapsed Time Comparison chart shows how much time it has taken to
replay the same workload compared to the elapsed time during the workload
capture. If the Replay bar is shorter than the Capture bar, the replay system is
processing the workload faster than the capture system.

= User Call Progress
To view this chart, in the Chart Type field, select User Call Progress.

Chart Type | User Call Progress v
200
n 150
[}
“ 100 O Replay
g B Capture

o0 05 lo 15 20 25 20 35 40 45 50 55 &0
Elapsed Time (Minutes)

Metwork Time (hh:mmiss)  00:00:01 Clients 1
Think Time (hh:mm:ss) 00:00:58 Clients Finished 1

The User Call Progress chart shows how much time it has taken to replay the

same workload compared to the elapsed time during the workload capture in
terms of user calls. If the Replay line is above or to the left of the Capture line,
the replay system is processing the workload faster than the capture system.

If the workload capture was performed on an older version of Oracle
Database, then the Capture line may not appear in the User Call Progress
chart because the user call data may be unavailable. In this case, import the
user call data by clicking the Import User Call Data button, which will appear
next to the Chart Type list.

5-14 Oracle Database Real Application Testing User's Guide



Monitoring Workload Replay Using Enterprise Manager

Under Divergence, any error and data discrepancies between the replay system
and the capture system are displayed as diverged database calls during replay.
The percentage of total calls that diverged can be used as a measure of the replay
quality. To view details about the diverged calls, click the link that corresponds to
the type of diverged call in the Number of Calls column to bring up the Diverged
Calls During Replay page. The Diverged Calls During Replay page shows the
most relevant set of replayed calls that diverged from the workload captured by
grouping them based on common attribute values and specified filter conditions.
To view details about a particular diverged call—such as the call attributes, SQL
text, and bind variables—click the corresponding link in the SQL ID column to
bring up the Replay Diverged Statement page.

To view a detailed comparison of the workload during capture and replay, expand
Detailed Comparison.

¥ Detailed Comparison
Capture Replay Percentage of Capture
Duration (hh:mm:ss) 00-05-53 00-02-05 N 35.G9
Database Time (hh:mm:ss) 00:00:01 00-00:02 EREEEEEN 20000
Average Active Sessions 0.00 0.02 n/a
User Calls 189 157 I 100.00

The Detailed Comparison section displays the following information:
= Duration

The duration that was captured in a workload is compared to the amount of
time it took to replay the workload. In the Capture column, the duration of the
time period that was captured is shown. In the Replay column, the amount of
time it took to replay the workload is shown. The Percentage of Capture
column shows the percentage of the captured duration that it took to replay
the workload. If the value is under 100 percent, the replay system processed
the workload faster than the capture system. If the value is over 100 percent,
the replay system processed the workload slower than the capture system.

s Database time

The database time that is consumed in the time period that was captured is
compared to the amount of database time that is consumed when replaying
the workload.

= Average active sessions

The number of average active sessions captured in the workload is compared
to the number of average active session that are replayed.

s User calls

The number of user calls captured in the workload is compared to the number
of user calls that are replayed.

To view the workload replay report, click View Workload Replay Report. For
information about using the Workload Replay report, see "Reviewing Workload
Replay Reports" on page 6-5.

7. To view the connection strings used in the capture and the replay systems, click
the Connection Mappings tab.

8. To view replay parameters used by the workload replay, click the Replay
Parameters tab.

9. To run areport, click the Report tab.

Replaying a Database Workload 5-15



Monitoring Workload Replay Using Enterprise Manager

Workload Profile Connection Mappings Replay Parameters Report

Workload Replay Report
Run Repart |

Compare Period Report
First Workload Capture or Replay | CAPTURE-x112-20090604030648 (Jun 4, 2009 3:07:34 AM} v

Second Workload Capture or Replay |REPLAY-x112-20090604035557 (Jun 4, 2009 3:56:32 AM) v

Fun Replay Cormpare Period Report ) Fun AWR Compare Period Repor‘tj

AWR Report
Workload Capture or Replay | REPLAY-x112-20090604035557 {Jun 4, 2009 3:56:32 AM) |+

Run Report |

ASH Report
Workload Capture or Replay | REPLAY-x112-20090604035557 (Jun 4, 2009 3:56:32 AM) v

Start Date |Jun 4, 2009 End Date |Jun 4, 2009

(example: Jun 4, 2008 (example: Jun 4, 2008

Start Time |3 ¥ |[|586 ¥| @AM OFPM EndTime |3 (#|[588 ¥ @AM OPM

Filter | SID v

Fun Report )

There are several types of reports you can run for a completed workload replay:
s Workload Replay

The Workload Replay report contains information that can be used to measure
data and performance divergence between the capture system and the replay
system. To run this report, under Workload Replay Report, click Run Report.
For information about using the Workload Replay report, see "Reviewing
Workload Replay Reports" on page 6-5.

= Replay Compare Period

The Replay Compare Period report can be used to compare one workload
replay to its capture or to another replay of the same capture. Before running
this report, AWR data for the captured or replayed workload must have been
previously exported. To run this report, under Compare Period Report, select
the first and second workload captures or replays you want to compare and
click Run Replay Compare Period Report.

= AWR Compare Period

The AWR Compare Period report can be used to compare the AWR data in
one workload capture or replay with another. Before running this report,
AWR data for the captured or replayed workload must have been previously
exported. To run this report, under Compare Period Report, select the first
and second workload captures or replays you want to compare and click Run
AWR Compare Period Report. If AWR data is not previously exported from
the captured or replayed workload, you will be prompted to import the AWR
data before continuing. For more information about the AWR Compare Period
report, see Oracle Database 2 Day + Performance Tuning Guide.

= AWR

The AWR report shows the AWR data contained in a workload that was
captured or replayed. Before running this report, AWR data must have been
previously exported from the captured or replayed workload. To run this

5-16 Oracle Database Real Application Testing User's Guide



Replaying a Database Workload Using APIs

report, under AWR Report, select the workload capture or replay for which
you want to generate an AWR report and click Run Report. If AWR data is
not previously exported from the captured or replayed workload, you will be
prompted to import the AWR data before continuing. For more information
about the AWR report, see Oracle Database Performance Tuning Guide.

= ASH

The ASH report contains active session history (ASH) information for a
specified duration of a workload that was captured or replayed. Before
running this report, AWR data must have been previously exported from the
captured or replayed workload. To run this report, under ASH Report, select
the workload capture or replay for which you want to generate an ASH
report. Specify the duration using the Start Date, Start Time, End Date, and
End Time fields. You can also apply filters using the Filter field. Once the
duration and filters are specified, click Run Report. If AWR data is not
previously exported from the captured or replayed workload, you will be
prompted to import the AWR data before continuing. For more information
about the ASH report, see Oracle Database 2 Day + Performance Tuning Guide.

The Report window opens while the report is being generated. Once the report is
generated, you can save the report by clicking Save to File.

10. To return to the Database Replay page, click OK.

Replaying a Database Workload Using APls

This section describes how to replay a database workload using the DBMS_
WORKLOAD_REPLAY package. You can also use Oracle Enterprise Manager to replay a
database workload, as described in "Replaying a Database Workload Using Enterprise
Manager" on page 5-8.

Replaying a database workload using the DBMS_WORKLOAD_REPLAY package is a
multi-step process that involves:

s Initializing Replay Data

s Connection Remapping

= Setting Workload Replay Options

= Defining Workload Replay Filters and Replay Filter Sets
= Starting a Workload Replay

= Pausing a Workload Replay

= Resuming a Workload Replay

s Cancelling a Workload Replay

= Exporting AWR Data for Workload Replay

See Also:

»  Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_WORKLOAD_REPLAY package

Initializing Replay Data

After the workload capture is preprocessed and the test system is properly prepared,
the replay data can be initialized. Initializing replay data loads the necessary metadata

Replaying a Database Workload 5-17



Replaying a Database Workload Using APIs

into tables required by workload replay. For example, captured connection strings are
loaded into a table where they can be remapped for replay.

To initialize replay data, use the INITIALIZE REPLAY procedure:

BEGIN
DBMS_WORKLOAD_REPLAY.INITIALIZE_REPLAY (replay_name => ‘dec06_102",
replay_dir => 'dec06');
END;
/

In this example, the INITIALIZE_REPLAY procedure loads preprocessed workload
data from the dec06 directory into the database.

The INITIALIZE_REPLAY procedure in this example uses the following parameters:

s The replay_name required parameter specifies a replay name that can be used
with other APIs to retrieve settings and filters of previous replays.

s The replay_ dir required parameter specifies the directory that contains the
workload capture that will be replayed.

See Also:

»  '"Preprocessing a Database Workload Using APIs" on page 4-4 for
information about preprocessing a workload capture

= "Setting Up the Test System" on page 5-1 for information
preparing the test system

Connection Remapping

After the replay data is initialized, connection strings used in the workload capture
need to be remapped so that user sessions can connect to the appropriate databases
and perform external interactions as captured during replay. To view connection
mappings, use the DBA_ WORKLOAD_CONNECTION_MAP view. For information about
connection remapping, see "Remapping Connections" on page 5-3.

To remap connections, use the REMAP_CONNECTION procedure:

BEGIN
DBMS_WORKLOAD_REPLAY.REMAP_CONNECTION (connection_id => 101,
replay_connection => 'dlsun244:3434/bjava2l’);
END;
/

In this example, the connection that corresponds to the connection ID 101 will use the
new connection string defined by the replay_connection parameter.

The REMAP_CONNECTION procedure in this example uses the following parameters:

s The connection_idrequired parameter is generated when initializing replay
data and corresponds to a connection from the workload capture.

s Thereplay connection optional parameter specifies the new connection string
that will be used during workload replay.

Setting Workload Replay Options

After the replay data is initialized and the connections are appropriately remapped,
you need to prepare the database for workload replay. For information about
workload replay preparation, see "Steps for Replaying a Database Workload" on
page 5-2.

5-18 Oracle Database Real Application Testing User's Guide



Replaying a Database Workload Using APIs

To prepare workload replay on the replay system, use the PREPARE_REPLAY
procedure:

BEGIN

/

DBMS_WORKLOAD_REPLAY . PREPARE_REPLAY (synchronization => TRUE) ;
END;

In this example, the PREPARE_REPLAY procedure prepares a replay that has been
previously initialized. The COMMIT order in the workload capture will be preserved.

The PREPARE_REPLAY procedure uses the following parameters:

The synchronization required parameter determines if synchronization will be
used during workload replay.

If this parameter is set to SCN, the COMMIT order in the captured workload will be
preserved during replay and all replay actions will be executed only after all
dependent COMMIT actions have completed. The default value is SCN.

If this parameter is set to OBJECT_1ID, all replay actions will be executed only after
all relevant COMMIT actions have completed. Relevant COMMIT actions must meet
the following criteria:

— Issued before the given action in the workload capture

- Modified at least one of the database objects for which the given action is
referencing, either implicitly or explicitly

Setting this parameter to OBJECT_ID allows for more concurrency during
workload replays for COMMIT actions that do not reference the same database
objects as the workload capture.

You can disable this option by setting the parameter to OFF, but the replay will
likely yield significant data divergence. However, this may be desirable if the
workload consists primarily of independent transactions, and divergence during
unsynchronized replay is acceptable.

The connect_time_scale parameter scales the elapsed time from when the
workload capture started to when the session connects with the specified value
and is interpreted as a % value. Use this parameter to increase or decrease the
number of concurrent users during replay. The default value is 100.

The think_time_scale parameter scales the elapsed time between two
successive user calls from the same session and is interpreted as a % value. Setting
this parameter to 0 will send user calls to the database as fast as possible during
replay. The default value is 100.

The think_time_auto_correct parameter corrects the think time (based on
the think_time_scale parameter) between calls when user calls take longer to
complete during replay than during capture. This parameter can be set to either
TRUE or FALSE. Setting this parameter to TRUE reduces the think time if the
workload replay is taking longer than the workload capture. The default value is
TRUE.

The scale_up_multiplier parameter defines the number of times the
workload is scaled up during replay. Each captured session will be replayed
concurrently for as many times as specified by this parameter. However, only one
session in each set of identical replay sessions will execute both queries and
updates. The rest of the sessions will only execute queries.

For more information about setting these parameters, see "Specifying Replay Options"
on page 5-3.

Replaying a Database Workload 5-19



Replaying a Database Workload Using APIs

Defining Workload Replay Filters and Replay Filter Sets

This section describes how to add and remove workload replay filters, and how to
create and use replay filter sets. For information about using workload filters and
replay filter sets with workload replay, see "Using Filters with Workload Replay" on
page 5-4.

This section contains the following topics:
= Adding Workload Replay Filters

= Deleting Workload Replay Filters

s Creating a Replay Filter Set

= Using a Replay Filter Set

Adding Workload Replay Filters

To add a new filter to be used in a replay filter set, use the ADD_FILTER procedure:

BEGIN
DBMS_WORKLOAD_REPLAY.ADD_FILTER (
fname => ‘user_ichan’,
fattribute => 'USER’,
fvalue => 'ICHAN');
END;
/

In this example, the ADD_FILTER procedure adds a filter named user_ichan, which
can be used to filter out all sessions belonging to the user name ICHAN.

The ADD_FILTER procedure in this example uses the following parameters:
s The fname required parameter specifies the name of the filter that will be added.

s The fattribute required parameter specifies the attribute on which the filter
will be applied. Valid values include PROGRAM, MODULE, ACTION, SERVICE,
USER, and CONNECTION_STRING. You must specify a valid captured
connection string that will be used during replay as the CONNECTION_STRING
attribute.

»s  The fvalue required parameter specifies the value for the corresponding
attribute on which the filter will be applied. It is possible to use wildcards such as
% with some of the attributes, such as modules and actions.

Once all workload replay filters are added, you can create a replay filter set that can be
used when replaying the workload.

Deleting Workload Replay Filters
To delete workload replay filters, use the DELETE_FILTER procedure:

BEGIN

DBMS_WORKLOAD_REPLAY .DELETE_FILTER (fname => ’‘user_ichan’);
END;
/

In this example, the DELETE_FILTER procedure removes the filter named user_ichan.

The DELETE_FILTER procedure in this example uses the fname required parameter,
which specifies the name of the filter to be removed.

5-20 Oracle Database Real Application Testing User's Guide



Replaying a Database Workload Using APIs

Creating a Replay Filter Set

After the workload replay filters are added, you can create a set of replay filters to use
with workload replay. When creating a replay filter set, all workload replay filters that
were added since the previous replay filter set was created will be used.

To create a replay filter set, use the CREATE_FILTER_SET procedure:

BEGIN
DBMS_WORKLOAD_REPLAY .CREATE_FILTER_SET (
replay_dir => ’'apr09’,
filter_set => ’‘replayfilters’,
default_action => 'INCLUDE’);
END;
/

In this example, the CREATE_FILTER_SET procedure creates a replay filter set named
replayfilters, which will replay all captured calls for the replay stored in the apr09
directory, except for the part of the workload defined by the replay filters.

The CREATE_FILTER_SET procedure in this example uses the following parameters:

s Thereplay_dir parameter specifies the directory where the replay to be filtered
is stored

s The filter_set parameter specifies the name of the filter set to create

s Thedefault_action parameter determines if every captured database call
should be replayed and whether the workload replay filters should be considered
as inclusion or exclusion filters.

If this parameter is set to INCLUDE, all captured database calls will be replayed,
except for the part of the workload defined by the replay filters. In this case, all
replay filters will be treated as exclusion filters, since they will define the part of
the workload that will not be replayed. This is the default behavior.

If this parameter is set to EXCLUDE, none of the captured database calls will be
replayed, except for the part of the workload defined by the replay filters. In this
case, all replay filters will be treated as inclusion filters, since they will define the
part of the workload that will be replayed.

Using a Replay Filter Set

Once the replay filter set is created and the replay is initialized, you can use the replay
filter set to filter the replay in the replay_dir directory.

To use a replay filter set, use the USE_FILTER_SET procedure:

BEGIN
DBMS_WORKLOAD_REPLAY.USE FILTER SET (filter set => ’‘replayfilters’);

END;

/

In this example, the USE_FILTER_SET procedure uses the filter set named
replayfilters.

The USE_FILTER_SET procedure in this example uses the filter_set required
parameter, which specifies the name of the filter set to be used in the replay.
Starting a Workload Replay

Before starting a workload replay, you must first:

Replaying a Database Workload 5-21



Replaying a Database Workload Using APIs

»  Preprocess the captured workload, as described in "Preprocessing a Database
Workload Using APIs" on page 4-4

s Initialize the replay data, as described in "Initializing Replay Data" on page 5-17

= Specify the replay options, as described in "Setting Workload Replay Options" on
page 5-18

»  Start the replay clients, as described in "Starting Replay Clients" on page 5-6

Note: Once a workload replay is started, new replay clients will not
be able to connect to the database. Only replay clients that were
started before the START_REPLAY procedure is executed will be used
to replay the captured workload.

To start a workload replay, use the START_REPLAY procedure:

BEGIN

DBMS_WORKLOAD_REPLAY.START REPLAY () ;
END;
/

Pausing a Workload Replay
To pause a workload replay that is in progress, use the PAUSE_REPLAY procedure:

BEGIN

DBMS_WORKLOAD_REPLAY.PAUSE_REPLAY ();
END;
/

Pausing a workload replay will halt all subsequent user calls issued by the replay
clients until the workload replay is either resumed or cancelled. User calls that are
already in progress will be allowed to complete. This option enables you to
temporarily stop the replay to perform a change and observe its impact for the
remainder of the replay.

Resuming a Workload Replay
To resume a workload replay that is paused, use the RESUME_REPLAY procedure:

BEGIN

DBMS_WORKLOAD_REPLAY .RESUME_REPLAY () ;
END;
/

Cancelling a Workload Replay

To cancel a workload replay, use the CANCEL_REPLAY procedure:

BEGIN

DBMS_WORKLOAD_REPLAY .CANCEL_REPLAY ();
END;
/

5-22 Oracle Database Real Application Testing User's Guide



Monitoring Workload Replay Using APIs

Exporting AWR Data for Workload Replay

Exporting AWR data enables detailed analysis of the workload. This data is also
required if you plan to run the AWR Compare Period report on a pair of workload
captures or replays.

To export AWR data, use the EXPORT_AWR procedure:

BEGIN

DBMS_WORKLOAD_REPLAY .EXPORT_AWR (replay_id => 1);
END;
/

In this example, the AWR snapshots that correspond to the workload replay with a
replay ID of 1 are exported. The EXPORT_AWR procedure uses the replay_id
required parameter, which specifies the ID of the replay whose AWR snapshots will be
exported. This procedure will work only if the corresponding workload replay was
performed in the current database and the AWR snapshots that correspond to the
original replay time period are still available.

Monitoring Workload Replay Using APIs

This section describes how to monitor workload replay using APIs and views. You can
also use Oracle Enterprise Manager to monitor workload replay, as described in
"Monitoring Workload Replay Using Enterprise Manager" on page 5-12.

This section contains the following topics:
s Retrieving Information About Diverged Calls

= Monitoring Workload Replay Using Views

Retrieving Information About Diverged Calls

During replay, any error and data discrepancies between the replay system and the
capture system are recorded as diverged calls.

To retrieve information about a diverged call—including its SQL identifier, SQL text,
and bind values—call the GET_DIVERGING_STATEMENT function using the following
parameters:

= Set the replay_id parameter to the ID of the replay in which the call diverged
»  Set the stream_id parameter to the stream ID of the diverged call
m  Setthe call_counter parameter to the call counter of the diverged call

To view these information about a diverged call, use the DBA_ WORKLOAD_REPLAY__
DIVERGENCE view. The following example illustrates a function call:

EXEC DBMS_WORKLOAD_REPLAY.GET_DIVERGENT_STATEMENT (replay_id => 1, -
stream_id => 3, -
call counter => 5);

See Also:

»  Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_WORKLOAD_REPLAY package

Replaying a Database Workload 5-23



Monitoring Workload Replay Using APIs

Monitoring Workload Replay Using Views

This section summarizes the views that you can display to monitor workload replay.
You need DBA privileges to access these views.

The DBA_WORKLOAD_CAPTURES view lists all the workload captures that have
been captured in the current database.

The DBA_WORKLOAD_FILTERS view lists all workload filters for workload
captures defined in the current database.

The DBA_WORKLOAD_REPLAYS view lists all the workload replays that have been
replayed in the current database.

The DBA_WORKLOAD_REPLAY_DIVERGENCE view enables you to view
information about diverged calls, such as the replay identifier, stream identifier,
and call counter.

The DBA_WORKLOAD_REPLAY_FILTER_SET view lists all workload filters for
workload replays defined in the current database.

The DBA_WORKLOAD_CONNECTION_MAP view lists the connection mapping
information for workload replay.

The VSWORKLOAD_REPLAY THREAD view lists information about all sessions
from the replay clients.

See Also:

»  Oracle Database Reference for information about these views

5-24 Oracle Database Real Application Testing User's Guide



6

Analyzing Replayed Workload

There are three types of reports for Database Replay: workload capture, workload
replay, and replay compare period.

This chapter describes how to generate and analyze these reports and contains the
following sections:

= Using Workload Capture Reports

= Using Workload Replay Reports

= Using Replay Compare Period Reports

s Using SQL Performance Analyzer to Compare SQL Tuning Sets

Note: After the replay analysis is complete, you can restore the
database to its original state at the time of workload capture and
repeat workload replay to test other changes to the system once the
workload directory object is backed up to another physical location.

Using Workload Capture Reports

Workload capture reports contain captured workload statistics, information about the
top session activities that were captured, and any workload filters used during the
capture process.

The following sections describe how to generate and utilize workload capture reports:
= Generating Workload Capture Reports Using Enterprise Manager

= Generating Workload Capture Reports Using APIs

= Reviewing Workload Capture Reports

Generating Workload Capture Reports Using Enterprise Manager

This section describes how to generate a workload capture report using Oracle
Enterprise Manager.

The primary tool for generating workload capture reports is Oracle Enterprise
Manager. If for some reason Oracle Enterprise Manager is unavailable, you can
generate workload capture reports using APIs, as described in "Generating Workload
Capture Reports Using APIs" on page 6-2.

Analyzing Replayed Workload 6-1



Using Workload Capture Reports

To generate a workload capture report using Enterprise Manager:

1. On the Software and Support page, under Real Application Testing, click
Database Replay.

The Database Replay page appears.
2. C(Click View Workload Capture History.
The View Workload Capture History page appears.

3. Select the workload capture for which you want to run a workload capture report
and click View.

The View Workload Capture page appears.

4. To view the workload capture report, click View Workload Capture Report.
The Report window opens while the report is being generated.

5. Once the report is generated, you can save the report by clicking Save to File.

For information about how to interpret the workload capture report, see
"Reviewing Workload Capture Reports" on page 6-3.

Generating Workload Capture Reports Using APIs

This section describes how to generate a workload capture report using the DBMS_
WORKLOAD_CAPTURE package. You can also use Oracle Enterprise Manager to
generate a workload capture report, as described in "Generating Workload Capture
Reports Using Enterprise Manager" on page 6-1.

To generate a report on the latest workload capture, use the DBMS_WORKLOAD_
CAPTURE.GET_CAPTURE_INFO procedure and the DBMS_WORKLOAD_
CAPTURE.REPORT function:

DECLARE
cap_id NUMBER;
cap_rpt CLOB;
BEGIN
cap_id = DBMS_WORKLOAD_CAPTURE.GET_CAPTURE_INFO (dir => 'dec06');

cap_rpt := DBMS_WORKLOAD_CAPTURE.REPORT (capture_id => cap_id,
format => DBMS_WORKLOAD_CAPTURE.TYPE_TEXT) ;
END;
/

In this example, the GET_CAPTURE_INFO procedure retrieves all information
regarding the workload capture in the dec06 directory and returns the appropriate
cap_id for the workload capture. The REPORT function generates a text report using
the cap_id that was returned by the GET_CAPTURE_INFO procedure.

The GET_CAPTURE_INFO procedure uses the dir required parameter, which specifies
the name of the workload capture directory object.

The REPORT function uses the following parameters:

s The capture_idrequired parameter relates to the directory that contains the
workload capture for which the report will be generated. The directory should be
a valid directory in the host system containing the workload capture. The value of
this parameter should match the cap_id returned by the GET_CAPTURE_INFO
procedure.

6-2 Oracle Database Real Application Testing User's Guide



Using Workload Replay Reports

s The format parameter required parameter specifies the report format. Valid
values include DBMS_WORKLOAD_CAPTURE.TYPE_TEXT and DBMS_
WORKLOAD_REPLAY.TYPE_HTML.

For information about how to interpret the workload capture report, see "Reviewing
Workload Capture Reports" on page 6-3.
See Also:

»  Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_WORKLOAD_CAPTURE package

Reviewing Workload Capture Reports

The workload capture report contains various types of information that can be used to
assess the validity of the workload capture. Using the information provided in this
report, you can determine if the captured workload:

= Represents the actual workload you want to replay
= Does not contain any workload you want to exclude
= Can be replayed

The information contained in the workload capture report are divided into the
following categories:

= Details about the workload capture (such as the name of the workload capture,
defined filters, date, time, and SCN of capture)

»  Overall statistics about the workload capture (such as the total DB time captured,
and the number of logins and transactions captured) and the corresponding
percentages with respect to total system activity

»  Profile of the captured workload
»  Profile of the workload that was not captured due to version limitations
= Profile of the uncaptured workload that were excluded using defined filters

»  Profile of the uncaptured workload that consists of background process or
scheduled jobs

Using Workload Replay Reports

Workload replay reports contain information that can be used to measure performance
differences between the capture system and the replay system.

The following sections describe how to generate and review workload replay reports:
»  Generating Workload Replay Reports Using Enterprise Manager

= Generating Workload Replay Reports Using APIs

= Reviewing Workload Replay Reports

Generating Workload Replay Reports Using Enterprise Manager

This section describes how to generate a workload replay report using Oracle
Enterprise Manager.

The primary tool for generating workload replay reports is Oracle Enterprise
Manager. If for some reason Oracle Enterprise Manager is unavailable, you can

Analyzing Replayed Workload 6-3



Using Workload Replay Reports

generate workload replay reports using APlIs, as described in "Generating Workload
Replay Reports Using APIs" on page 6-4

To generate a workload replay report using Enterprise Manager:

1. On the Software and Support page, under Real Application Testing, click
Database Replay.

The Database Replay page appears.

2. In the Go to Task column, click the icon that corresponds to the Replay Workload
task.

The Replay Workload page appears.

3. In the Directory Object list, select a directory that contains the preprocessed
workload that was used for the replay for which you want to generate a workload
replay report.

After a directory is selected, the Replay Workload page will be refreshed to
display the Capture Summary and the Replay History sections.

4. Under Replay History, select the replay for which you want to generate a
workload replay report and click View.

Replay History
Yiew )| Export AWE Data )
Duration AWR Data
Select Name Status (hh:mm:ss)| Start Time End Time Exported
® REPLAY-x112- Completed 00-02-06 Jun 4, 2009 3:56:32 AM Jun 4, 2009 3:55:38 i
20090604035557 POT A PDT
O REPLAY-x112- Completed 00-02-07 Jun 4, 2009 3:35:47 AM Jun 4, 2009 3:37:54 "
20090604033037 PDT AM PDT

The View Workload Replay page appears.
5. Click View Workload Replay Report.

For information about how to interpret the workload replay report, see
"Reviewing Workload Replay Reports" on page 6-5.

Generating Workload Replay Reports Using APls

This section describes how to generate a workload replay report using the DBMS_
WORKLOAD_REPLAY package. You can also use Oracle Enterprise Manager to generate
a workload replay report, as described in "Generating Workload Replay Reports Using
Enterprise Manager" on page 6-3.

To generate a report on the latest workload replay for a workload capture, use the
DBMS_WORKLOAD_REPLAY.GET_REPLAY_INFO procedure and the DBMS_
WORKLOAD_REPLAY . REPORT function:

DECLARE
cap_id NUMBER;
rep_id NUMBER;
rep_rpt CLOB;
BEGIN

cap_id := DBMS_WORKLOAD_REPLAY.GET REPLAY INFO(dir => 'dec06');
/* Get the latest replay for that capture */

SELECT max (id)

INTO rep_id

FROM  dba_workload_replays

WHERE capture_id = cap_id;

6-4 Oracle Database Real Application Testing User's Guide



Using Workload Replay Reports

rep_rpt := DBMS_WORKLOAD_REPLAY.REPORT (replay_id => rep_id,
format => DBMS_WORKLOAD_REPLAY.TYPE_TEXT) ;
END;
/

In this example, the GET_REPLAY_INFO procedure retrieves all information regarding
the workload capture in the dec06 directory and the history of all the workload replay
attempts from this directory. The procedure first imports a row into DBA_ WORKLOAD_
CAPTURES, which contains information about the workload capture. It then imports a
row for every replay attempt retrieved from the replay directory into the DBA_
WORKLOAD_REPLAYS view. The SELECT statement returns the appropriate rep_id
for the latest replay of the workload. The REPORT function generates a text report
using the rep_id that was returned by the SELECT statement.

The GET_CAPTURE_INFO procedure uses the dir required parameter, which specifies
the name of the workload replay directory object.

The REPORT function uses the following parameters:

s The replay_idrequired parameter relates to the directory that contains the
workload replay for which the report will be generated. The directory should be a
valid directory in the host system containing the workload replay. The value of
this parameter should match the rep_id returned by the GET_CAPTURE_INFO
procedure.

»  The format parameter required parameter specifies the report format. Valid
values include DBMS_WORKLOAD_REPLAY.TYPE_TEXT, DBMS_
WORKLOAD_REPLAY.TYPE_HTML, and DBMS_WORKLOAD_REPLAY.TYPE_
XML.

For information about how to interpret the workload replay report, see "Reviewing
Workload Replay Reports" on page 6-5.

See Also:

»  Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_WORKLOAD_REPLAY package

Reviewing Workload Replay Reports

After the workload is replayed on a test system, there may be some divergence in
what is replayed compared to what was captured. There are numerous factors that can
cause replay divergence, which can be analyzed using the workload replay report. The
information contained in the workload replay report consists of performance and data
divergence.

Performance divergence may result when new algorithms are introduced in the replay
system that affect the overall performance of the database. For example, if the
workload is replayed on a newer version of Oracle Database, a new algorithm may
cause specific requests to run faster, and the divergence will appear as a faster
execution. In this case, this is a desirable divergence.

Data divergence occurs when the results of DML or SQL queries do not match results
that were originally captured in the workload. For example, a SQL statement may
return fewer rows during replay than those returned during capture.

Error divergence occurs when a replayed database call:
= Encounters a new error that was not captured

= Does not encounter an error that was captured

Analyzing Replayed Workload 6-5



Using Replay Compare Period Reports

= Encounters a different error from what was captured

The information contained in the workload replay report are divided into the
following categories:

s Details about the workload replay and the workload capture, such as job name,
status, database information, duration and time of each process, and the directory
object and path

= Replay options selected for the workload replay and the number of replay clients
that were started

s Opverall statistics about the workload replay and the workload capture (such as the
total DB time captured and replayed, and the number of logins and transactions
captured and replay) and the corresponding percentages with respect to total
system activity

s Profile of the replayed workload
= Replay divergence
= Error divergence

= DML and SQL query data divergence

Using Replay Compare Period Reports

Replay compare period reports can be used to perform a high-level comparison of one
workload replay to its capture or to another replay of the same capture. Only
workload replays that contain at least 5 minutes of database time can be compared
using this report.

The following sections describe how to generate and review replay compare period
reports:

= Generating Replay Compare Period Reports Using Enterprise Manager
= Generating Replay Compare Period Reports Using APIs
= Reviewing Replay Compare Period Reports

Generating Replay Compare Period Reports Using Enterprise Manager

This section describes how to generate a replay compare period report using Oracle
Enterprise Manager.

The primary tool for generating replay compare period is Oracle Enterprise Manager.
If for some reason Oracle Enterprise Manager is unavailable, you can generate replay
compare period using APIs, as described in "Generating Replay Compare Period
Reports Using APIs" on page 6-7.

To generate a replay compare period report using Enterprise Manager:

1. On the Software and Support page, under Real Application Testing, click
Database Replay.

The Database Replay page appears.

2. In the Go to Task column, click the icon that corresponds to the Replay Workload
task.

The Replay Workload page appears.

6-6 Oracle Database Real Application Testing User's Guide



Using Replay Compare Period Reports

In the Directory Object list, select the directory that contains the replayed
workload for which you want to generate a replay compare period report.

After the directory is selected, the Replay Workload page will be refreshed to
display the Capture Summary and the Replay History sections.

The Replay History section displays previous replays of the workload capture.
Select the replay for which you want to generate a replay compare period report
and click View.

The View Workload Replay page appears.
Click the Report tab.

Under Compare Period Report, select the first and second workload captures or
replays you want to compare and click Run Replay Compare Period Report.

The Report window opens while the report is being generated. Once the report is
generated, you can save the report by clicking Save to File. For information about
how to interpret the workload replay report, see "Reviewing Replay Compare
Period Reports" on page 6-8.

Generating Replay Compare Period Reports Using APIs

This section describes how to generate a replay compare period report using the
DBMS_WORKLOAD_REPLAY package. You can also use Oracle Enterprise Manager to
generate a replay compare period report, as described in "Generating Replay Compare
Period Reports Using Enterprise Manager" on page 6-6.

To generate a replay compare period report comparing a replay to its capture or to
another replay of the same capture, use the DBMS_WORKLOAD_REPLAY.COMPARE_
PERIOD_REPORT procedure:

BEGIN
DBMS_WORKLOAD_REPLAY . COMPARE_PERIOD_REPORT (

END;
/

replay_idl => 12,

replay_id2 => 17,

format => ’'DBMS_WORKLOAD_CAPTURE.TYPE_HTML',
result => :report_bind);

In this example, the COMPARE_PERIOD_REPORT procedure generates a replay
compare period report in HTML format that compares a workload replay with a
replay ID of 12 with another replay with an ID of 17.

The

COMPARE_PERIOD_REPORT procedure in this example uses the following

parameters:

The replay_id1l parameter specifies the numerical identifier of the first
workload replay for which the reported will be generated. This parameter is
required.

The replay_1id2 parameter specifies the numerical identifier of the first
workload replay for which the reported will be generated. If unspecified, the
comparison will be performed with the workload capture.

The format parameter specifies the report format. Valid values include DBMS_
WORKLOAD_CAPTURE.TYPE_HTML for HTML and DBMS_WORKLOAD_
CAPTURE.TYPE_XML for XML. This parameter is required.

Analyzing Replayed Workload 6-7



Using SQL Performance Analyzer to Compare SQL Tuning Sets

For information about how to interpret the workload replay report, see "Reviewing
Replay Compare Period Reports" on page 6-8.
See Also:

»  Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_WORKLOAD_REPLAY package

Reviewing Replay Compare Period Reports

You can use replay compare period reports to perform a high-level comparison of one
workload replay to its capture or to another replay of the same capture. The replay
compare period report contains a summary of the most important changes between
the two runs. By reviewing this report, you can determine if any data divergence
occurred and whether there were any significant performance changes. You can then
use this information to determine the appropriate action to take, such as reviewing
ADDM reports to diagnose a new concurrency issue, or running SQL Tuning Advisor
to fix a new SQL performance problem.

The replay compare period report uses the following structure:
= General Information

This section contains metadata about the two runs being compared in the report.
Any init.ora parameter changes between the two runs are also shown here.

= Replay Divergence
This section contains the divergence analysis of the second run relative to the first.
= Main Performance Statistics

This section contains a high-level performance statistic comparison across the two
runs (such as change in database time).

s Top SQL by Change in DB Time

This section compares the performance change of top SQL statements (ordered by
total changed in database time) from one run to the next.

»  Hardware Usage Comparison
This section compares the hardware resource usage across the two runs.
= ADDM Comparison

This section contains an ADDM report comparison across the two runs.

Using SQL Performance Analyzer to Compare SQL Tuning Sets

While Database Replay provides analysis of how a change affects your entire system,
you can use it in conjunction with SQL Performance Analyzer APIs to gain a more
SQL-centric analysis of how the change affects SQL statements and execution plans.

When running Database Replay, you can use the DBMS_SQLTUNE.CAPTURE_CURSOR_
CACHE_SQLSET procedure to capture:

= One SQL tuning set during workload capture
= Another SQL tuning set during workload replay
= Additional SQL tuning sets during subsequent workload replays

You can then use SQL Performance Analyzer to compare these SQL tuning sets to each
other, without having to re-execute the SQL statements. This enables you to obtain a

6-8 Oracle Database Real Application Testing User's Guide



Using SQL Performance Analyzer to Compare SQL Tuning Sets

SQL Performance Analyzer report and compare the SQL performance, before and after
the change, while running Database Replay.

For information about using SQL Performance Analyzer to compare SQL tuning sets,
see "Comparing SQL Tuning Sets Using APIs" on page 11-16.
See Also:

»  Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_SQLTUNE package

Analyzing Replayed Workload 6-9



Using SQL Performance Analyzer to Compare SQL Tuning Sets

6-10 Oracle Database Real Application Testing User's Guide



Part li

SQL Performance Analyzer

SQL Performance Analyzer enables you to assess the impact of system changes on the
response time of SQL statements.

Part II contains the following chapters:

»  Chapter 7, "Introduction to SQL Performance Analyzer"
s Chapter 8, "Creating an Analysis Task"

»  Chapter 9, "Creating a Pre-Change SQL Trial"

s Chapter 10, "Creating a Post-Change SQL Trial"

»  Chapter 11, "Comparing SQL Trials"

»  Chapter 12, "Testing a Database Upgrade"






7

Introduction to SQL Performance Analyzer

You can run SQL Performance Analyzer on a production system or a test system that
closely resembles the production system. Testing a system change on a production
system will impact the system’s throughput because SQL Performance Analyzer must
execute the SQL statements that you are testing. Any global changes made on the
system to test the performance effect may also affect other users of the system. If the
system change does not impact many sessions or SQL statements, then running SQL
Performance Analyzer on the production system may be acceptable. However, for
systemwide changes—such as a database upgrade—using a production system is not
recommended. Instead, consider running SQL Performance Analyzer on a separate
test system so that you can test the effects of the system change without affecting the
production system. Using a test system also ensures that other workloads running on
the production system will not affect the analysis performed by SQL Performance
Analyzer. Running SQL Performance Analyzer on a test system is the recommended
approach and the methodology described here. If you choose to run the SQL
Performance Analyzer on the production system, then substitute the production
system for the test system where applicable.

Analyzing the SQL performance effect of system changes using SQL Performance
Analyzer involves the following steps, as illustrated in Figure 7-1:

Introduction to SQL Performance Analyzer 7-1



Figure 7-1 SQL Performance Analyzer Workflow

Production Test

Client Client Client

[£]

5

1

'—%é

Middle Tier

Oracle
Database

i =)@ @ @

L

Capture the SQL workload that you intend to analyze and store it in a SQL tuning
set, as described in "Capturing the SQL Workload" on page 7-3.

(%)

L Ny

—HWF—;[I

Execute  Make Execute  Compare Fix
SaL Change  SQL Pert Regressed

&

‘ SQL

-—

2. If you plan to use a test system separate from your production system, then
perform the following steps:

a. Set up the test system to match the production environment as closely as
possible.

b. Transport the SQL tuning set to the test system.
For more information, see "Setting Up the Test System" on page 7-4.

3. On the test system, create a SQL Performance Analyzer task, as described in
"Creating a SQL Performance Analyzer Task" on page 7-4.

4. Build the pre-change SQL trial by test executing or generating execution plans for
the SQL statements stored in the SQL tuning set, as described in "Measuring the
Pre-Change SQL Performance" on page 7-5

5. Perform the system change, as described in "Making a System Change" on
page 7-6

6. Build the post-change SQL trial by re-executing the SQL statements in the SQL
tuning set on the post-change test system, as described in "Measuring the
Post-Change SQL Performance" on page 7-7

7-2 Oracle Database Real Application Testing User's Guide



Capturing the SQL Workload

7. Compare and analyze the pre-change and post-change versions of performance
data, and generate a report to identify the SQL statements that have improved,
remained unchanged, or regressed after the system change, as described in
"Comparing Performance Measurements" on page 7-7

8. Tune any regressed SQL statements that are identified, as described in "Fixing
Regressed SQL Statements" on page 7-7.

9. Ensure that the performance of the tuned SQL statements is acceptable by
repeating steps 6 through 8 until your performance goals are met.

For each comparison, you can use any previous SQL trial as the pre-change SQL
trial and the current SQL trial as the post-change SQL trial. For example, you may
want to compare the first SQL trial to the current SQL trial to assess the total
change, or you can compare the most recent SQL trial to the current SQL trial to
assess just the most recent change.

Note: Oracle Enterprise Manager provides automated workflows for
steps 3 through 9 to simplify this process.

Capturing the SQL Workload

Before running SQL Performance Analyzer, capture a set of SQL statements on the
production system that represents the SQL workload which you intend to analyze.

The captured SQL statements should include the following information:
s SQL text
= Execution environment

— SQL binds, which are bind values needed to execute a SQL statement and
generate accurate execution statistics

- Parsing schema under which a SQL statement can be compiled

- Compilation environment, including initialization parameters under which a
SQL statement is executed

s Number of times a SQL statement was executed

Capturing a SQL workload has a negligible performance impact on your production
system and should not affect throughput. A SQL workload that contains more SQL
statements will better represent the state of the application or database. This will
enable SQL Performance Analyzer to more accurately forecast the potential impact of
system changes on the SQL workload. Therefore, you should capture as many SQL
statements as possible. Ideally, you should capture all SQL statements that are either
called by the application or are running on the database.

You can store captured SQL statements in a SQL tuning set and use it as an input
source for SQL Performance Analyzer. A SQL tuning set is a database object that
includes one or more SQL statements, along with their execution statistics and
execution context. SQL statements can be loaded into a SQL tuning set from different
sources, including the cursor cache, Automatic Workload Repository (AWR), and
existing SQL tuning sets. Capturing a SQL workload using a SQL tuning set enables
you to:

»  Store the SQL text and any necessary auxiliary information in a single, persistent
database object

= Populate, update, delete, and select captured SQL statements in the SQL tuning set

Introduction to SQL Performance Analyzer 7-3



Setting Up the Test System

s Load and merge content from various data sources, such as the Automatic
Workload Repository (AWR) or the cursor cache

= Export the SQL tuning set from the system where the SQL workload is captured
and import it into another system

= Reuse the SQL workload as an input source for other advisors, such as the SQL
Tuning Advisor and the SQL Access Advisor

See Also:

»  Oracle Database 2 Day + Performance Tuning Guide for information
about creating SQL tuning sets using Oracle Enterprise Manager

»  Oracle Database Performance Tuning Guide for information about
creating SQL tuning sets using APIs

Setting Up the Test System

After you have captured the SQL workload into a SQL tuning set on the production
system, you can conduct SQL Performance Analyzer analysis on the same database
where the workload was captured or on a different database. Because the analysis is
resource-intensive, it is recommended that you capture the workload on a production
database and transport it to a separate test database where the analysis can be
performed. To do so, export the SQL tuning set from the production system and
import it into a separate system where the system change will be tested.

There are many ways to create a test database. For example, you can use the
DUPLICATE command of Recovery Manager (RMAN), Oracle Data Pump, or
transportable tablespaces. Oracle recommends using RMAN because it can create the
test database from pre-existing backups or from the active production datafiles. The
production and test databases can reside on the same host or on different hosts.

You should configure the test database environment to match the database
environment of the production system as closely as possible. In this way, SQL
Performance Analyzer can more accurately forecast the effect of the system change on
SQL performance.

After the test system is properly configured, export the SQL tuning set from the
production system to a staging table, then import it from the staging table into the test
system.

See Also:

»  Oracle Database Backup and Recovery User’s Guide for information
about duplicating a database with RMAN

»  Oracle Database 2 Day + Performance Tuning Guide for information
about transporting SQL tuning sets using Oracle Enterprise
Manager

»  Oracle Database Performance Tuning Guide for information about
transporting SQL tuning sets using APIs

Creating a SQL Performance Analyzer Task

After the SQL workload is captured and transported to the test system, and the initial
database environment is properly configured, you can run SQL Performance Analyzer
to analyze the effects of a system change on SQL performance.

7-4 Oracle Database Real Application Testing User's Guide



Measuring the Pre-Change SQL Performance

To run SQL Performance Analyzer, you must first create a SQL Performance Analyzer
task. A task is a container that encapsulates all of the data about a complete SQL
Performance Analyzer analysis. A SQL Performance Analyzer analysis comprises of at
least two SQL trials and a comparison. A SQL trial encapsulates the execution
performance of a SQL tuning set under specific environmental conditions. When
creating a SQL Performance Analyzer task, you will need to select a SQL tuning set as
its input source. When building SQL trials using the test execute or explain plan
methods, the SQL tuning set will be used as the source for SQL statements. The SQL
Performance Analyzer analysis will show the impact of the environmental differences
between the two trials.

See Also:

s Chapter 8, "Creating an Analysis Task" for information about how
to create a SQL Performance Analyzer task

Measuring the Pre-Change SQL Performance

Create a pre-change SQL trial before making the system change. You can use the
following methods to generate the performance data needed for a SQL trial with SQL
Performance Analyzer:

n Test execute

This method test executes SQL statements through SQL Performance Analyzer.
This can be done on the database running SPA Performance Analyzer or on a
remote database.

= Explain plan

This method generates execution plans only for SQL statements through SQL
Performance Analyzer. This can be done on the database running SPA
Performance Analyzer or on a remote database.

s Convert SQL tuning set

This method converts the execution statistics and plans stored in a SQL tuning set.
This is only supported for APIs.

The test execute method runs each of the SQL statements contained in the workload to
completion. During execution, SQL Performance Analyzer generates execution plans
and computes execution statistics for each SQL statement in the workload. Each SQL
statement in the SQL tuning set is executed separately from other SQL statements,
without preserving their initial order of execution or concurrency. This is done at least
twice for each SQL statement, for as many times as possible until the execution times
out (up to a maximum of 10 times). The first execution is used to warm the buffer
cache. All subsequent executions are then used to calculate the run-time execution
statistics for the SQL statement based on their averages. The actual number of times
that the SQL statement is executed depends on how long it takes to execute the SQL
statement. Long-running SQL statement will only be executed a second time, and the
execution statistics from this execution will be used. Other (faster-running) SQL
statements are executed multiple times, and their execution statistics are averaged
over these executions (statistics from the first execution are not used in the
calculation). By averaging statistics over multiple executions, SQL Performance
Analyzer can calculate more accurate execution statistics for each SQL statement. To
avoid a potential impact to the database, DDLs are not supported; by default, only the
query portion of DMLs are executed. Using APIs, you can execute the full DML by
using the EXECUTE_FULLDML task parameter.

Introduction to SQL Performance Analyzer 7-5



Making a System Change

Depending on its size, executing a SQL workload can be time and resource intensive.
With the explain plan method, you can choose to generate execution plans only,
without collecting execution statistics. This technique shortens the time to run the trial
and lessens the effect on system resources, but a comprehensive performance analysis
is not possible because only the execution plans will be available during the analysis.
However, unlike generating a plan with the EXPLAIN PLAN command, SQL
Performance Analyzer provides bind values to the optimizer when generating
execution plans, which provides a more reliable prediction of what the plan will be
when the SQL statement is executed.

In both cases, you can execute the SQL workload remotely on a separate database
using a database link. SQL Performance Analyzer will establish a connection to the
remote database using the database link, execute the SQL statements on that database,
collect the execution plans and run-time statistics for each SQL statement, and store
the results in a SQL trial on the local database that can be used for later analysis. This
method is useful in cases where you want to:

s Test a database upgrade

= Execute the SQL workload on a system running another version of Oracle
Database

s Store the results from the SQL Performance Analyzer analysis on a separate test
system

s Perform testing on multiple systems with different hardware configurations

s Use the newest features in SQL Performance Analyzer even if you are using an
older version of Oracle Database on your production system

Once the SQL workload is executed, the resulting execution plans and run-time
statistics are stored in a SQL trial.

You can also build a SQL trial using the execution statistics and plan stored in a SQL
tuning set. While this method is only supported for APIs, it may be useful in cases
where you have another method to run your workload (such as Database Replay or
another application testing tool), and you do not need SQL Performance Analyzer to
drive the workload on the test system. In such cases, if you capture a SQL tuning set
during your test runs, you can build SQL trials from these SQL tuning sets using SQL
Performance Analyzer to view a more comprehensive analysis report. Unlike a
standard SQL Performance Analyzer report—which has only one execution plan in
each trial and one set of execution statistics generated by executing the SQL statement
with one set of binds—you can generate a report that compares SQL trials built from
SQL tuning sets that show all execution plans from both trials with potentially many
different sets of binds across multiple executions.

See Also:

s Chapter 9, "Creating a Pre-Change SQL Trial" for information
about how to measure the pre-change performance

s Chapter 12, "Testing a Database Upgrade" for information about
executing a SQL workload on a remote system to test a database
upgrade

Making a System Change

Make the change whose effect on SQL performance you intend to measure. SQL
Performance Analyzer can analyze the effect of many types of system changes. For
example, you can test a database upgrade, new index creation, initialization parameter

7-6 Oracle Database Real Application Testing User's Guide



Fixing Regressed SQL Statements

changes, or optimizer statistics refresh. If you are running SQL Performance Analyzer
on the production system, then consider making a change using a private session to
avoid affecting the rest of the system.

Measuring the Post-Change SQL Performance

After performing the system change, create a post-change SQL trial. It is highly
recommended that you create the post-change SQL trial using the same method as the
pre-change SQL trial. Once built, the post-change SQL trial represents a new set of
performance data that can be used to compare to the pre-change version. The results
are stored in a new, or post-change, SQL trial.

See Also:

s Chapter 10, "Creating a Post-Change SQL Trial" for information
about how to measure the post-change performance

Comparing Performance Measurements

SQL Performance Analyzer compares the performance of SQL statements before and
after the change and produces a report identifying any changes in execution plans or
performance of the SQL statements.

SQL Performance Analyzer measures the impact of system changes both on the overall
execution time of the SQL workload and on the response time of every individual SQL
statement in the workload. By default, SQL Performance Analyzer uses elapsed time
as a metric for comparison. Alternatively, you can choose the metric for comparison
from a variety of available SQL run-time statistics, including;:

s CPU time

= DBuffer gets

=  Disk reads

s Disk writes

= Any combination of these metrics in the form of an expression

If you chose to generate explain plans only in the SQL trials, then SQL Performance
Analyzer will use the optimizer cost stored in the SQL execution plans.

See Also:

»  Chapter 11, "Comparing SQL Trials" for information about how to
compare performance measurements

Fixing Regressed SQL Statements

If the performance analysis performed by SQL Performance Analyzer reveals
regressed SQL statements, then you can make changes to remedy the problem. For
example, you can fix regressed SQL by running SQL Tuning Advisor or using SQL
plan baselines. You can then repeat the process of executing the SQL statements and
comparing its performance to the first execution. Repeat these steps until you are
satisfied with the outcome of the analysis.

See Also:

»  Chapter 11, "Comparing SQL Trials" for information about fixing
regressed SQL statements

Introduction to SQL Performance Analyzer 7-7



Fixing Regressed SQL Statements

7-8 Oracle Database Real Application Testing User's Guide



8

Creating an Analysis Task

Once you have captured a SQL workload that you want to analyze into a SQL tuning
set, you can run SQL Performance Analyzer to analyze the effects of a system change
on SQL performance. To run SQL Performance Analyzer, you must first create a SQL
Performance Analyzer task. A task is a container that encapsulates all of the data about
a complete SQL Performance Analyzer analysis. A SQL Performance Analyzer
analysis comprises of at least two SQL trials and a comparison. A SQL trial captures
the execution performance of a SQL tuning set under specific environmental
conditions and can be generated automatically using SQL Performance Analyzer by
one of the following methods:

s Test executing SQL statements
= Generating execution plans for SQL statements
= Referring to execution statistics and plans captured in a SQL tuning set

When creating a SQL Performance Analyzer task, you will need to select a SQL tuning
set as its input source. The SQL tuning set will be used as the source for test executing
or generating execution plans for SQL trials. Thus, performance differences between
trials are caused by environmental differences. For more information, see "Creating a
SQL Performance Analyzer Task" on page 7-4.

This chapter described how to create a SQL Performance Analyzer task and contains
the following topics:

s Creating an Analysis Task Using Enterprise Manager

s Creating an Analysis Task Using APIs

Note: The primary interface for running SQL Performance Analyzer
is Oracle Enterprise Manager. If for some reason Oracle Enterprise
Manager is unavailable, you can run SQL Performance Analyzer
using the DBMS_SQLPA PL/SQL package.

Tip: Before running SQL Performance Analyzer, capture the SQL
workload to be used in the performance analysis into a SQL tuning set
on the production system, then transport it to the test system where
the performance analysis will be performed, as described in
"Capturing the SQL Workload" on page 7-3.

Creating an Analysis Task Using Enterprise Manager

There are 5 types of workflow available in Oracle Enterprise Manager for creating a
SQL Performance Analyzer task:

Creating an Analysis Task 8-1



Creating an Analysis Task Using Enterprise Manager

s Upgrade from 9i or 10.1

Use the upgrade from 9i or 10.1 workflow to test a database upgrade from
Oracle9i Database or Oracle Database 10g Release 1 to Oracle Database 10g Release
2 and newer releases, as described in "Upgrading from Oracle9i Database and
Oracle Database 10g Release 1" on page 12-1.

s Upgrade from 10.2 or 11g

Use the upgrade from 10.2 or 11g workflow to test a database upgrade from Oracle
Database 10g Release 2 or Oracle Database 11g to a later release, as described in
"Upgrading from Oracle Database 10g Release 2 and Newer Releases" on

page 12-10.

= Parameter Change

Use the parameter change workflow to determine how a database initialization
parameter change will affect SQL performance, as described in "Using the
Parameter Change Workflow" on page 8-2.

s Exadata Simulation

Use the Exadata simulation workflow to simulate how using Oracle Exadata will
affect SQL performance, as described in "Using the Exadata Simulation Workflow"
on page 8-6.

s Guided workflow

Use the guided workflow to compare SQL performance for all other types of
system changes, as described in "Using the Guided Workflow" on page 8-9.

Using the Parameter Change Workflow

The parameter change workflow enables you to test the performance effect on a SQL
workload when you change the value of a single environment initialization parameter.
For example, you can compare SQL performance when the sort area size is increased
from 1 MB to 2 MB.

After you select a SQL tuning set and a comparison metric, SQL Performance Analyzer
creates a task and performs a trial with the initialization parameter set to the original
value. SQL Performance Analyzer then performs a second trial with the parameter set
to the changed value by issuing an ALTER SESSION statement. The impact of the
change is thus contained locally to the testing session. Any regression or change in
performance is reported in a system-generated SQL Performance Analyzer report.

Note: To create an analysis task for other types of system changes,
use the guided workflow instead, as described in "Using the Guided
Workflow" on page 8-9.

To use the SQL Performance Analyzer parameter change workflow:

1. On the Software and Support page, under Real Application Testing, click SQL
Performance Analyzer.

The SQL Performance Analyzer page appears.

8-2 Oracle Database Real Application Testing User's Guide



Creating an Analysis Task Using Enterprise Manager

SQL Performance Analyzer

Page Refreshed May 1, 2009 1:16:57 PM PDT | Refresh | View Data |Real Time: 15 Second Refresh »

SQL Performance Analyzer allows you to test and to analyze the effects of changes on the execution performance of SQL contained
ina SQL Tuning Set.

SQL Performance Analyzer Workflows

Create and execute SQL Performance Analyzer Task experiments of different types using the following links.
Upgrade from 9i or 10.1 Test and analyze the effects of database upgrade from 9i or 10.1 en SQL Tuning Set performance.
Upgrade from 10.2 or

11g Test and analyze the effects of database upgrade from 10.2 or 11g on SQL Tuning Set performance.
Parameter Change Test and compare an initialization parameter change on SQL Tuning Set performance.

Exadata Simulation Simulate the effects of a Exadata Storage Server installation on SQL Tuning Set performance.
Guided Workflow grQeLa:;aE:SSQL Performance Analyzer Task and execute custorn experiments using manually created

SQL Performance Analyzer Tasks

Last Current Step SQLs Steps
Select Name Owner Modified Name Type Status Processed Completed
Mo SQL Performance Analyzer
Tasks available.

2. Under SQL Performance Analyzer Workflows, click Parameter Change.
The Parameter Change page appears.

Parameter Change

Task Information

* Task Mame | |

* 30L Tuning Set |

\

Description | |

Creation Method | Execute SQls +
Per-SQL Time Limit

@ TIP Time limit is on elapsed time of test execution of SQL

Parameter Change

* Parameter Name |

* Base Value | |

* Changed Value | |

Trial Comparison

Comparison Metric | Elapsed Time "|

Schedule

Time Zone |Anmrica.f'Lns_AngeIes V|

@ Immediately
O Later

Date un 3. 2009 |

(example: Jun 3, 2009

Time |6 »|[[59 40." @AM CPM

In the Task Name field, enter the name of the task.

In the SQL Tuning Set field, enter the name of the SQL tuning set that contains the
SQL workload to be analyzed.

Alternatively, click the search icon to search for a SQL tuning set using the Search
and Select: SQL Tuning Set window.

Creating an Analysis Task 8-3



Creating an Analysis Task Using Enterprise Manager

The selected SQL tuning set now appears in the SQL Tuning Set field.

5. In the Description field, optionally enter a description of the task.

6. In the Creation Method list, determine how the SQL trial is created and what
contents are generated by performing one of the following actions:

Select Execute SQLs.

The SQL trial generates both execution plans and statistics for each SQL
statement in the SQL tuning set by actually running the SQL statements.

Select Generate Plans.

The SQL trial invokes the optimizer to create execution plans only without
actually running the SQL statements.

7. In the Per-SQL Time Limit list, determine the time limit for SQL execution during
the trial by performing one of the following actions:

Select 5 minutes.

The execution will run each SQL statement in the SQL tuning set up to 5
minutes and gather performance data.

Select Unlimited.

The execution will run each SQL statement in the SQL tuning set to
completion and gather performance data. Collecting execution statistics
provides greater accuracy in the performance analysis but takes a longer time.
Using this setting is not recommended because the task may be stalled by one
SQL statement for a prolonged time period.

Select Customize and enter the specified number of seconds, minutes, or
hours.

8. In the Parameter Change section, complete the following steps:

a.

In the Parameter Name field, enter the name of the initialization parameter
whose value you want to modify, or click the Search icon to select an
initialization parameter using the Search and Select: Initialization Parameters
window.

In the Base Value field, enter the current value of the initialization parameter.

In the Changed Value field, enter the new value of the initialization
parameter.

9. In the Comparison Metric list, select the comparison metric to use for the analysis:

If you selected Generate Plans in Step 6, then select Optimizer Cost.

If you selected Execute SQLs in Step 6, then select one of the following
options:

— Elapsed Time

- CPUTime

— UserI/O Time

— Buffer Gets

— Physical I/O

— Optimizer Cost

- 1/O Interconnect Bytes

8-4 Oracle Database Real Application Testing User's Guide



Creating an Analysis Task Using Enterprise Manager

To perform the comparison analysis by using more than one comparison metric,

perform separate comparison analyses by repeating this procedure using different
metrics.

10. In the Schedule section:
a. In the Time Zone list, select your time zone code.

b. Select Immediately to start the task now, or Later to schedule the task to start
at a time specified using the Date and Time fields.

11. Click Submit.
The SQL Performance Analyzer page appears.

In the SQL Performance Analyzer Tasks section, the status of this task is
displayed. To refresh the status icon, click Refresh. After the task completes, the
Status field changes to Completed.

SQL Performance Analyzer Tasks

[ Delete ] | Wiew Latest Report |

Current Step
Name

SQLs
Processed

Steps
Select Name Owner |Last Modified Type |Status Completed

() SPA PARAM CHANGE IMMCHAN May 1, 2009 2:08:47 pxgc_258 Compare Completed 1134 of 1134 4 of 4
PM

12. In the SQL Performance Analyzer Tasks section, select the task and click the link
in the Name column.

The SQL Performance Analyzer Task page appears.

SQL Performance Analyzer Task: IMMCHAN.SPA_PARAM_CHANGE
Views Latest Report Page Refreshed May 1, 2009 2:14:03 PM PDT (Refresh )

The SQL Performance Analyzer Task is a container for experimental results of executing a specific SQL Tuning Set under changed
environmental conditions and assessing the impact of environmental changes on STS execution performance.

P> SQL Tuning Set

¥ SQL Trials
A SQL Trial captures the execution performance of the SQL Tuning Set under specific environmental conditions.

|_Create SOL Trial
SQL Trial Hame Description Created SQL Executed  Status
INITIAL SQL TRIAL parameter sort_area_size set to 1048576 3/1/09 2:08 PM  Yes COMPLETED
SECOND_SQL_TRIAL parameter sort_area_size set to 2097152 5/1/09 2:08 PM  Yes COMPLETED

¥ SQL Trial Comparisons

Compare SQL Trials to assess change impact of environmental differences on SQL Tuning Set execution costs. i
| Run SQL Trial Comparisan |

Compare Comparison SQL Tune
Trial 1 Name Trial 2 Name Metric Created Status Report Report
INITIAL_SQL_TRIAL SECOND_SQL_TRIAL Elapsed Time 5/1/09 2:08  COMPLETED jaey
PM

This page contains the following sections:
s SQL Tuning Set

This section summarizes information about the SQL tuning set, including its
name, owner, description, and the number of SQL statements it contains.

s SQL Trials

This section includes a table that lists the SQL trials used in the SQL
Performance Analyzer task.

= SQL Trial Comparisons

Creating an Analysis Task 8-5



Creating an Analysis Task Using Enterprise Manager

This section contains a table that lists the results of the SQL trial comparisons
13. Click the icon in the Comparison Report column.
The SQL Performance Analyzer Task Result page appears.

14. Review the results of the performance analysis, as described in "Reviewing the
SQL Performance Analyzer Report Using Oracle Enterprise Manager" on
page 11-3.

15. In cases when regression are identified, click the icon in the SQL Tune Report
column to view a SQL tuning report.

Using the Exadata Simulation Workflow

The Exadata simulation workflow enables you to simulate the effects of an Exadata
Storage Server installation on the performance of a SQL workload.

Oracle Exadata provides extremely large I/O bandwidth coupled with a capability to
offload SQL processing from the database to storage. This allows Oracle Database to
significantly reduce the volume of data sent through the I/O interconnect, while at the
same time offloading CPU resources to the Exadata storage cells.

SQL Performance Analyzer can analyze the effectiveness of Exadata SQL offload
processing by simulating an Exadata Storage Server installation and measuring the
reduction in I/O interconnect usage for the SQL workload.

Running the Exadata simulation does not require any hardware or configuration
changes to your system. After you select a SQL tuning set, SQL Performance Analyzer
creates a task and performs an initial trial with the Exadata Storage Server simulation
disabled. SQL Performance Analyzer then performs a second trial with the Exadata
Storage Server simulation enabled. SQL Performance Analyzer then compares the two
trials using the I/O Interconnect Bytes comparison metric and generates a SQL
Performance Analyzer report, which estimates the amount of data that would not
need to be sent from the Exadata storage cells to the database if Oracle Exadata is
being used. In both SQL trials, the SQL statements are executed to completion and I/O
interconnect bytes measurements are taken are the actual and simulated Exadata
values for the first and second trials, respectively. The measured change in I/O
interconnect bytes provides a good estimate of how much filtering can be performed
in the Exadata storage cells and, in turn, the amount of CPU that normally would be
used to process this data, but now can be offloaded from the database.

Note: Using the Exadata simulation will not result in any plan
changes. Execution plans do not change in an Exadata Storage Server
installation because the simulation focuses on measuring the
improvement in I/O interconnect usage. Moreover, I/O interconnect
bytes will not increase, except when data compression is used (see
next note), because Oracle Exadata will only decrease the amount of
data sent to the database.

8-6 Oracle Database Real Application Testing User's Guide



Creating an Analysis Task Using Enterprise Manager

Note: Because I/O interconnect bytes is the only metric used to
measure the performance change impact of using an Exadata Storage
Server installation, it will not work properly if Oracle Exadata is used
with data compression. Since Exadata storage cells also decompress
data, the I/O interconnect bytes with Oracle Exadata (or the second
SQL trial) of a SQL statement may be greater than the I/O
interconnect bytes without Oracle Exadata (or the first SQL trial)
where the data is compressed. This comparison will be misleading

because the SQL statement will be reported as a regression; when in
fact, it is not.

Note: The Exadata simulation workflow is used to simulate an
Exadata Storage Server installation on non-Exadata hardware. To test
changes on Exadata hardware, use the standard SQL Performance
Analyzer workflows.

To use the SQL Performance Analyzer Exadata simulation workflow:

1. On the Software and Support page, under Real Application Testing, click SQL
Performance Analyzer.

The SQL Performance Analyzer page appears.
2. Under SQL Performance Analyzer Workflows, click Exadata Simulation.

The Exadata Simulation page appears.

Exadata Simulation

Task Information

* Tagk Mame

* 3QL Tuning Set

Description
Creation Method Execute SQLs

Per-SQL Time Limit | & minutes |

@ TIP Time limit iz on elapsed time of test execution of SQL

Trial Comparison

Comparison Metric /O Interconnect Bytes

Schedule

Time Zone | America/Llos_Angeles &

® Immediately

O Later

Jun 3. 2009

(example: Jun 3, 2009

Time |7 || 02 %||15 | @aM OPM

Date

3. In the Task Name field, enter the name of the task.

4. Inthe SQL Tuning Set field, enter the name of the SQL tuning set that contains the
SQL workload to be analyzed.

Creating an Analysis Task 8-7



Creating an Analysis Task Using Enterprise Manager

Alternatively, click the search icon to search for a SQL tuning set using the Search
and Select: SQL Tuning Set window.

The selected SQL tuning set now appears in the SQL Tuning Set field.
In the Description field, optionally enter a description of the task.

In the Per-SQL Time Limit list, determine the time limit for SQL execution during
the trial by performing one of the following actions:

s Select 5 minutes.

The execution will run each SQL statement in the SQL tuning set up to 5
minutes and gather performance data.

m  Select Unlimited.

The execution will run each SQL statement in the SQL tuning set to
completion and gather performance data. Collecting execution statistics
provides greater accuracy in the performance analysis but takes a longer time.
Using this setting is not recommended because the task may be stalled by one
SQL statement for a prolonged time period.

= Select Customize and enter the specified number of seconds, minutes, or
hours.

In the Schedule section:
a. In the Time Zone list, select your time zone code.

b. Select Immediately to start the task now, or Later to schedule the task to start
at a time specified using the Date and Time fields.

Click Submit.
The SQL Performance Analyzer page appears.

In the SQL Performance Analyzer Tasks section, the status of this task is
displayed. To refresh the status icon, click Refresh. After the task completes, the
Status field changes to Completed.

SQL Performance Analyzer Tasks

Delete | | Wiew Latest Report |

Current Step SaLs Steps
Select Name Owner |Last Modified Name Type Status Processed |Completed
@ SPA_EXADATA_SIM IMMCHANJun 3. 2003 4:50:48 Exgc_12 Compare Completed 1543 of 1543 4 of 4

A

In the SQL Performance Analyzer Tasks section, select the task and click the link
in the Name column.

The SQL Performance Analyzer Task page appears.

8-8 Oracle Database Real Application Testing User's Guide




Creating an Analysis Task Using Enterprise Manager

SQL Performance Analyzer Task: IMMCHAN.SPA_EXADATA_SIM
[View Latest Report Page Refreshed Jun 3, 2009 5:06:40 AM PDT (_Refresh )

[The SQL Performance Analyzer Task is a container for experimental results of executing a specific SQAL Tuning Set under changed
environmental conditions and assessing the impact of environmental changes on STS execution performance

P SQAL Tuning Set

¥ SQAL Trials

A SQL Trial captures the execution performance of the SQL Tuning Set under specific environmental conditions

SQAL Trial Name Description Created SQL Executed Status
INITIAL_SQL_TRIAL Exadata Storage Server simulation disabled 6/3/09 4:43 AM  Yes COMPLETED
SECOND_SQL_TRIAL  Exadata Storage Server simulation enabled 6/3/09 4:50 AM  Yes COMPLETED

¥ SQAL Trial Comparisons
Compare SQL Trials to assess change impact of envirenmental differences on SQL Tuning Set execution costs

Trial 1 Name Trial 2 Name Compare Metric Created Status Comparison Report
INITIAL_SQL_TRIAL SECCOND_SQL_TRIAL IO Interconnect Bytes  6/3/09 4:50 AM  COMPLETED e

This page contains the following sections:
s SQL Tuning Set

This section summarizes information about the SQL tuning set, including its
name, owner, description, and the number of SQL statements it contains.

s SQL Trials

This section includes a table that lists the SQL trials used in the SQL
Performance Analyzer task.

= SQL Trial Comparisons
This section contains a table that lists the results of the SQL trial comparisons
10. Click the icon in the Comparison Report column.
The SQL Performance Analyzer Task Result page appears.

11. Review the results of the performance analysis, as described in "Reviewing the
SQL Performance Analyzer Report Using Oracle Enterprise Manager" on
page 11-3.

Any SQL performance improvement with the Exadata simulation between the first
and second trials is captured in the report. In general, you can expect a greater
impact if the SQL workload contains queries that scan a large number of rows or a
small subset of table columns. Conversely, a SQL workload that queries indexed
tables or tables with fewer rows will result in a lesser impact from the Exadata
simulation.

Using the Guided Workflow

The guided workflow enables you to test the performance effect of any types of system
changes on a SQL workload, as listed in "SQL Performance Analyzer" on page 1-2.

Note: To create an analysis task to test database initialization
parameter changes, use the simplified parameter change workflow
instead, as described in "Using the Parameter Change Workflow" on
page 8-2.

Creating an Analysis Task 8-9



Creating an Analysis Task Using Enterprise Manager

To use the SQL Performance Analyzer task guided workflow:

1. On the Software and Support page, under Real Application Testing, click SQL
Performance Analyzer.

The SQL Performance Analyzer page appears.
2. Under SQL Performance Analyzer Workflows, click Guided Workflow.
The Guided Workflow page appears.

The guided workflow enables you to test the performance effect on a SQL
workload when you perform any type of system changes, as described in "SQL
Performance Analyzer" on page 1-2.

This page lists the required steps in the SQL Performance Analyzer task in
sequential order. Each step must be completed in the order displayed before the
next step can begin.

Guided Workflow
Fage Refreshed May 1, 2009 2:22:50 PM PDT (Refresh ) viey pata |Real Time: 15 Second Refresh (v

The following guided workflow contains the sequence of steps necessary to execute a successful two-trial SQL Performance
Analyzer test.

lote: Be sure that the Trial environment matches the tests you want to conduct.

Step Description Executed Status Execute
1 Create SQL Performance Analyzer Task based on SQL Tuning Set = "’@

2 Create SQL Trial in Initial Environment 1

3 Create SQL Trial in Changed Environment n

4 Compare Step 2 and Step 3 n

5 View Trial Comparison Report n

3. On the Guided Workflow page, click the Execute icon for the Step 1: Create SQL
Performance Analyzer Task based on SQL Tuning Set.

The Create SQL Performance Analyzer Task page appears.

Create SQL Performance Analyzer Task

The SQL Performance Analyzer Task is a container for the execution of trial experiments designed to test the effects of changes in
execution environment on the SQL performance of an STS.

* Name |
Owner IMMCHAN

Description -
& TIP Use the description to characterize the intended SQL Performance Analyzer investigations.
SQL Tuning Set

The SQL Tuning Set is the basis for SQL Performance Analyzer Task experiments. The STS should represent a coherent set of
SQL for the changes being investigated (e.qg. full workload for an upgrade test).

* Name | J

(& TIP You can create a new STS here: Link to STS Creation Wizard

Cancel | | Create )

4. In the Name field, enter the name of the task.
5. In the Description field, optionally enter a description of the task.

6. Under SQL Tuning Set, in the Name field, enter the name the SQL tuning set that
contains the SQL workload to be analyzed.

Alternatively, click the search icon to select a SQL tuning set from the Search and
Select: SQL Tuning Set window.

7. Click Create.

8-10 Oracle Database Real Application Testing User's Guide




Creating an Analysis Task Using APIs

The Guided Workflow page appears.

The Status icon of this step has changed to a check mark and the Execute icon for
the next step is now enabled.

8. Once the analysis task is created, you can build the pre-change performance data
by executing the SQL statements stored in the SQL tuning set, as described in
Chapter 9, "Creating a Pre-Change SQL Trial".

Creating an Analysis Task Using APIs

This section describes how to create a SQL Performance Analyzer task by using the
DBMS_SQLPA.CREATE_ANALYSIS_ TASK function. A task is a database container for
SQL Performance Analyzer execution inputs and results.

Tip: Before proceeding, capture the SQL workload to be used in the
performance analysis into a SQL tuning set on the production system,
then transport it to the test system where the performance analysis
will be performed, as described in "Capturing the SQL Workload" on
page 7-3.

Call the CREATE_ANALYSIS_TASK function to prepare the analysis of a SQL tuning
set using the following parameters:

= Set task_name to specify an optional name for the SQL Performance Analyzer
task.

= Set sglset_name to the name of the SQL tuning set.

= Set sglset_owner to the owner of the SQL tuning set. The default is the current
schema owner.

s Setbasic_filter to the SQL predicate used to filter the SQL from the SQL
tuning set.

= Set order_by to specify the order in which the SQL statements will be executed.

You can use this parameter to ensure that the more important SQL statements will
be processed and not skipped if the time limit is reached.

= Set top_sqgl to consider only the top number of SQL statements after filtering and
ranking.

The following example illustrates a function call:

VARIABLE t_name VARCHAR2 (100);
EXEC :t_name := DBMS_SQLPA.CREATE_ANALYSIS TASK(sglset_name => 'my sts',6 -
task_name => 'my_spa_task');

Once the analysis task is created, you can build the pre-change performance data by
executing the SQL statements stored in the SQL tuning set, as described in Chapter 9,
"Creating a Pre-Change SQL Trial".

See Also:

»  Oracle Database PL/SQL Packages and Types Reference to learn more
about the DBMS_SQLPA . CREATE_ANALYSIS_TASK function

Running the Exadata Simulation Using APls

This section describes how to run the Oracle Exadata simulation using APIs. For
information about how SQL Performance Analyzer simulates the effects of an Exadata

Creating an Analysis Task 8-11



Creating an Analysis Task Using APIs

Storage Server installation on the performance of a SQL workload, see "Using the
Exadata Simulation Workflow" on page 8-6.

To enable Exadata simulation for an analysis task, call the SET_ANALYSIS_TASK_
PARAMETER procedure before creating the post-change SQL trial, as shown in the
following example:

EXEC DBMS_SQLPA.SET ANALYSIS_TASK_PARAMETER (task_name => 'my_spa_task',6 -
parameter => 'CELL_SIMULATION_ENABLED', -
value => 'TRUE');

This will enable Exadata simulation when you create the post-change SQL trial, which
can then be compared to the pre-change SQL trial that was created with Exadata
simulation disabled.

Alternatively, you can run the Exadata simulation using the tcellsim.sql script:
1. At the SQL prompt, enter:

@SORACLE_HOME/rdbms/admin/tcellsim.sql

2. Enter the name and owner of the SQL tuning set to use:

Enter value for sts_name: MY_STS
Enter value for sts_owner: IMMCHAN

The script then runs the following four steps automatically:

s Creates a SQL Performance Analyzer task

m  Test executes SQL statements with Exadata simulation disabled
s Test executes SQL statements with Exadata simulation enabled

s Compares performance and generates analysis report

8-12 Oracle Database Real Application Testing User's Guide



9

Creating a Pre-Change SQL Trial

After creating a SQL Performance Analyzer task and selecting a SQL tuning set as the
input source, you need to establish the initial environment on the test system.
Establishing the database environment on the test system involves manually making
any necessary environmental changes that affect SQL optimization and performance.
These changes may include changing initialization parameters, gathering or setting
optimizer statistics, and creating indexes. It is recommended that you build a test
system that is as similar to the production system as possible. The dedicated
workflows in Enterprise Manager simplifies this process by creating both SQL trials
automatically and performing the change restricted to the testing session. For
information about setting up the database environment, see "Setting Up the Test
System" on page 7-4.

Once the environment on the test system is properly configured, you can build the
pre-change version of performance data before performing the system change. You
can build SQL trials using SQL Performance Analyzer by using one of the following
methods:

= Executing the SQL statements in the workload

= Generating execution plans for the SQL statements in the workload

s Loading performance data and execution plans from a SQL tuning set (APIs only)
For more information, see "Measuring the Pre-Change SQL Performance" on page 7-5

This chapter described how to create the pre-change SQL trial and contains the
following topics:

s Creating a Pre-Change SQL Trial Using Enterprise Manager
»  Creating a Pre-Change SQL Trial Using APIs

Note: The primary interface for creating a pre-change SQL trial is
Oracle Enterprise Manager. If for some reason Oracle Enterprise
Manager is unavailable, you can create a pre-change SQL trial using
the DBMS_SQLPA PL/SQL package.

Tip: Before creating a pre-change SQL trial, you need to create a SQL
Performance Analyzer task, as described in Chapter 8, "Creating an
Analysis Task".

Creating a Pre-Change SQL Trial 9-1



Creating a Pre-Change SQL Trial Using Enterprise Manager

Creating a Pre-Change SQL Trial Using Enterprise Manager

This section describes how to collect the pre-change SQL performance data using
Oracle Enterprise Manager.

To create a pre-change SQL trial using Enterprise Manager:

1. On the Guided Workflow page, click the Execute icon for the Create SQL Trial in
Initial Environment step.

The Create SQL Trial page appears. A summary of the selected SQL tuning set
containing the SQL workload is displayed.

Create SQL Trial

Cancel | | Submit
SQL Trials capture execution performance of the SQL Tuning Set under a given optimizer Trial environment determines results
L The SQL Tuning Set remains constant under the SQL
SQL Performance Analyzer Task IMMCHAN.SPA_GUIDED_WORKFLOW Performance Analyzer Task and its SQL is executed in isolation to
SQL Tuning Set IMMCHAN.STS_CURSOR_CACHE create each SQL Trial. Performance differences between trials

are thus attributed to environmental differences between trials.
* SQL Trial Mame |SQL_TRIAL_1241213421833

Environmental changes affecting SQL optimization and
performance may need to be made manually prior to execution of
the Trial. These could include changing initialization parameters,
gathering or setting optimizer statistics and creating indexes.

SQL Trial Description

Creation Method | Execute SQLs Locally A
The Creation Method determines how the SQL Trial is created
Per-5QL Time Limit | 5 minutes | and what contents are generated, as follows:

@ TIP Time limit is on elapsed time of test execution of SQL Executing SQLs generates bath plans and statistics by
actually running the SQL statements.

Generating plans invokes the optimizer to create execution
plans only without running the SQL statements.

Remote execution and plan generation are done over a
public database link on the remote system.

Building frem the SQL Tuning Set simply copies the plans

O Later and statistics from the Tuning Set directly into the Trial.

Schedule

Time Zone | Pacific/Pago_Fago b

® Immediately

Date (May 1, 2003 HOTE: Be sure trial environment has been established
{example: May 1, 2008) prior to submitting.
Time |2 [¥|[21 |%||00 ¥| OAM @FPM [ Trial environment established

2. Inthe SQL Trial Name field, enter the name of the SQL trial.
3. In the SQL Trial Description field, enter a description of the SQL trial.

4. In the Creation Method list, determine how the SQL trial is created and what
contents are generated by performing one of the following actions:

n  Select Execute SQLs Locally.

The SQL trial generates both execution plans and statistics for each SQL
statement in the SQL tuning set by actually running the SQL statements
locally on the test system.

»  Select Execute SQLs Remotely.

The SQL trial generates both execution plans and statistics for each SQL
statement in the SQL tuning set by actually running the SQL statements
remotely on another test system over a public database link.

m  Select Generate Plans Locally.

The SQL trial invokes the optimizer to create execution plans locally on the
test system, after taking bind values and optimizer configuration into account,
without actually running the SQL statements.

ms  Select Generate Plans Remotely.

The SQL trial invokes the optimizer to create execution plans remotely on
another test system, after taking bind values and optimizer configuration into
account, over a public database link without actually running the SQL
statements.

»s  Select Build From SQL Tuning Set.

9-2 Oracle Database Real Application Testing User's Guide



Creating a Pre-Change SQL Trial Using APIs

The SQL trial copies the execution plans and statistics from the SQL tuning set
directly into the trial.

For more information about the different methods, see "Measuring the Pre-Change
SQL Performance" on page 7-5.

5. In the Per-SQL Time Limit list, determine the time limit for SQL execution during
the trial by performing one of the following actions:

m  Select 5 minutes.

The execution will run each SQL statement in the SQL tuning set up to 5
minutes and gather performance data.

s Select Unlimited.

The execution will run each SQL statement in the SQL tuning set to
completion and gather performance data. Collecting execution statistics
provides greater accuracy in the performance analysis but takes a longer time.
Using this setting is not recommended because the task may be stalled by one
SQL statement for a prolonged period.

= Select Customize and enter the specified number of seconds, minutes, or
hours.

6. Ensure that the database environment on the test system matches the production
environment as closely as possible, and select Trial environment established.

7. In the Schedule section:
a. In the Time Zone list, select your time zone code.

b. Select Immediately to start the task now, or Later to schedule the task to start
at a time specified using the Date and Time fields.

8. Click Submit.
The Guided Workflow page appears when the execution begins.

The status icon of this step changes to a clock while the execution is in progress.
To refresh the status icon, click Refresh. Depending on the options selected and
the size of the SQL workload, the execution may take a long time to complete.
After the execution is completed, the Status icon will change to a check mark and
the Execute icon for the next step is enabled.

9. Once the pre-change performance data is built, you can make the system change
and build the post-change performance data by re-executing the SQL statements
in the SQL tuning set on the post-change test system, as described in Chapter 10,
"Creating a Post-Change SQL Trial".

Creating a Pre-Change SQL Trial Using APIs

This section describes how to build the pre-change performance data by using the
DBMS_SQLPA.EXECUTE_ANALYSIS_TASK procedure.

Call the EXECUTE_ANALYSIS_TASK procedure using the following parameters:

= Set the task_name parameter to the name of the SQL Performance Analyzer task
that you want to execute.

»  Set the execution_type parameter in one of the following ways:

- Setto EXPLAIN PLAN to generate execution plans for all SQL statements in
the SQL tuning set without executing them.

Creating a Pre-Change SQL Trial 9-3



Creating a Pre-Change SQL Trial Using APIs

— Setto TEST EXECUTE (recommended) to execute all statements in the SQL
tuning set and generate their execution plans and statistics. When TEST
EXECUTE is specified, the procedure generates execution plans and execution
statistics. The execution statistics enable SQL Performance Analyzer to
identify SQL statements that have improved or regressed. Collecting
execution statistics in addition to generating execution plans provides greater
accuracy in the performance analysis, but takes longer.

— Set to CONVERT SQLSET to refer to a SQL tuning set for the execution
statistics and plans for the SQL trial. Values for the execution parameters
SQLSET_NAME and SQLSET_OWNER should also be specified.

= Specify a name to identify the execution using the execution_name parameter.
If not specified, then SQL Performance Analyzer automatically generates a name
for the task execution.

»  Specify execution parameters using the execution_params parameters. The
execution_params parameters are specified as (name, value) pairs for the
specified execution. For example, you can set the following execution parameters:

— The time_limit parameter specifies the global time limit to process all SQL
statements in a SQL tuning set before timing out.

— Thelocal_time_limit parameter specifies the time limit to process each
SQL statement in a SQL tuning set before timing out.

— To perform a remote test execute, set the DATABASE_LINK task parameter to
the global name of a public database link connecting to a user with the
EXECUTE privilege for the DBMS_SQLPA package and the ADVISOR privilege
on the test system.

The following example illustrates a function call made before a system change:

EXEC DBMS_SQLPA.EXECUTE_ANALYSIS_TASK (task_name => 'my_spa_task', -
execution_type => 'TEST EXECUTE', -
execution_name => 'my_exec_BEFORE_change') ;

Once the pre-change performance data is built, you can make the system change and
build the post-change performance data by re-executing the SQL statements in the
SQL tuning set on the post-change test system, as described in Chapter 10, "Creating a
Post-Change SQL Trial".

See Also:

»  Oracle Database PL/SQL Packages and Types Reference to learn about
the DBMS_SQLPA . EXECUTE_ANALYSIS_TASK function

9-4 Oracle Database Real Application Testing User's Guide



10

Creating a Post-Change SQL Trial

After computing the pre-change SQL performance data, you can perform the system
change on the test system. Before making the system change, ensure that you have
executed the SQL workload in the initial environment to generate the pre-change
performance data. For example, if you are testing how changing a database
initialization parameter will affect SQL performance, execute the SQL workload once
before changing the database initialization parameter to a new value. Depending on
the type of change you are making, it may be necessary to reconfigure the
environment on the test system to match the new environment for which you want to
perform SQL performance analysis. For more information, see "Making a System
Change" on page 7-6.

"SQL Performance Analyzer" on page 1-2 lists examples of possible system changes
that can be analyzed using SQL Performance Analyzer. For example, you may want to
determine how a database initialization parameter change or database upgrade will
affect SQL performance. You may also decide to change the system based on
recommendations from an advisor such as Automatic Database Diagnostic Monitor
(ADDM), SQL Tuning Advisor, or SQL Access Advisor.

After you have made the system change, you can build the post-change version of
performance data by executing the SQL workload again. SQL Performance Analyzer
will store the results from executing the SQL statements in a post-change SQL trial. For
more information, see "Measuring the Post-Change SQL Performance" on page 7-7.

This section described how to create the post-change SQL trial and contains the
following topics:

s Creating a Post-Change SQL Trial Using Oracle Enterprise Manager
»  Creating a Post-Change SQL Trial Using APIs

Note: The primary interface for creating a post-change SQL trial is
Oracle Enterprise Manager. If for some reason Oracle Enterprise
Manager is unavailable, you can create a post-change SQL trial using
the DBMS_SQLPA PL/SQL package.

Tip: Before making the system change creating a post-change SQL
trial, you need to create a pre-change SQL trial, as described in
Chapter 9, "Creating a Pre-Change SQL Trial".

Creating a Post-Change SQL Trial Using Oracle Enterprise Manager

This section describes how to collect the post-change SQL performance data using
Oracle Enterprise Manager.

Creating a Post-Change SQL Trial 10-1



Creating a Post-Change SQL Trial Using Oracle Enterprise Manager

To create a post-change SQL trial using Enterprise Manager:

1.

On the Guided Workflow page, click the Execute icon for the Create SQL Trial in
Changed Environment step.

The Create SQL Trial page appears.
In the SQL Trial Name field, enter the name of the SQL trial.
In the SQL Trial Description field, enter a description of the SQL trial.

In the Creation Method list, determine how the SQL trial is created and what
contents are generated by performing one of the following actions:

= Select Execute SQLs Locally.

The SQL trial generates both execution plans and statistics for each SQL
statement in the SQL tuning set by actually running the SQL statements
locally on the test system.

»  Select Execute SQLs Remotely.

The SQL trial generates both execution plans and statistics for each SQL
statement in the SQL tuning set by actually running the SQL statements
remotely on another test system over a public database link.

= Select Generate Plans Locally.

The SQL trial invokes the optimizer to create execution plans locally on the
test system without actually running the SQL statements.

= Select Generate Plans Remotely.

The SQL trial invokes the optimizer to create execution plans remotely on
another test system over a public database link without actually running the
SQL statements.

For each of these creation methods, the application schema and data should
already exist on the local or remote test system.

In the Per-SQL Time Limit list, determine the time limit for SQL execution during
the trial by performing one of the following actions:

m  Select 5 minutes.

The execution will run each SQL statement in the SQL tuning set up to 5
minutes and gather performance data.

»  Select Unlimited.

The execution will run each SQL statement in the SQL tuning set to
completion and gather performance data. Collecting execution statistics
provides greater accuracy in the performance analysis but takes a longer time.
Using this setting is not recommended because the task may be stalled by one
SQL statement for a prolonged time period.

= Select Customize and enter the specified number of seconds, minutes, or
hours.

Ensure that the system change you are testing has been performed on the test
system, and select Trial environment established.

In the Schedule section:
a. In the Time Zone list, select your time zone code.

b. Select Immediately to start the task now, or Later to schedule the task to start
at a time specified using the Date and Time fields.

10-2 Oracle Database Real Application Testing User's Guide



Creating a Post-Change SQL Trial Using APIs

8. Click Submit.
The Guided Workflow page appears when the execution begins.

The status icon of this step changes to a clock while the execution is in progress.
To refresh the status icon, click Refresh. Depending on the options selected and
the size of the SQL workload, the execution may take a long time to complete.
After the execution is completed, the Status icon will change to a check mark and
the Execute icon for the next step is enabled.

9. Once the post-change performance data is built, you can compare the pre-change
SQL trial to the post-change SQL trial by running a comparison analysis, as
described in Chapter 11, "Comparing SQL Trials".

Creating a Post-Change SQL Trial Using APIs

This section describes how to collect the post-change SQL performance data using the
DBMS_SQLPA.EXECUTE_ANALYSIS_TASK procedure.

Note: If you are running the SQL statements remotely on another
test system over a database link, the remote user calling this
procedure needs to have the EXECUTE privilege for the DBMS_SQLPA
package.

Call the EXECUTE_ANALYSIS_TASK procedure using the parameters described in
"Creating a Pre-Change SQL Trial Using APIs" on page 9-3. Be sure to specify a
different value for the execution_name parameter. It is also highly recommended
that you create the post-change SQL trial using the same method as the pre-change
SQL trial by using the same value for the execution_type parameter.

Note: If you want to run an Oracle Exadata simulation, you should
first set the CELL_SIMULATION_ENABLED task parameter to TRUE.
For more information, see "Running the Exadata Simulation Using
APIs" on page 8-11.

The following example illustrates a function call made after a system change:

EXEC DBMS_SQLPA.EXECUTE_ANALYSIS_TASK (task_name => 'my_spa_task', -
execution_type => 'TEST EXECUTE', -
execution_name => 'my_exec_AFTER_change');

Once the post-change performance data is built, you can compare the pre-change SQL
trial to the post-change SQL trial by running a comparison analysis, as described in
Chapter 11, "Comparing SQL Trials".

See Also:

»  Oracle Database PL/SQL Packages and Types Reference to learn about
the DBMS_SQLPA . EXECUTE_ANALYSIS_TASK function

Creating a Post-Change SQL Trial 10-3



Creating a Post-Change SQL Trial Using APIs

10-4 Oracle Database Real Application Testing User's Guide



11

Comparing SQL Trials

After the post-change SQL performance data is built, you can compare the
performance data collected in the pre-change SQL trial to the post-change SQL trial by
running a comparison analysis using SQL Performance Analyzer. After the
comparison analysis is completed, you can generate a report to identify the SQL
statements that have improved, remained unchanged, or regressed due to the system
change. The SQL Performance Analyzer report calculates two chief impact
measurements for the change in performance of each SQL statement:

Impact on workload

This represents the percentage of impact that this change to the SQL statement has
on the cumulative execution time of the workload, after accounting for execution
frequency. For example, a change that causes a SQL statement’s cumulative
execution time to improve from 101 seconds to 1 second—where the rest of the
workload had a total execution time of 99 seconds before the change—would have
a 50% (2x) value for this measurement.

Impact on SQL

This represents the percentage of impact that this change to the SQL statement has
on the SQL statement’s response time. For example, a change that causes a SQL
statement’s response time to improve from 10 seconds to 1 second will have a 90%
(10x) value for this measurement.

For more information, see "Comparing Performance Measurements" on page 7-7.

This chapter describes how to compare and analyze the performance data from the
pre-change and post-change SQL trials and contains the following topics:

Comparing SQL Trials Using Oracle Enterprise Manager
Comparing SQL Trials Using APIs

Note: The primary interface for comparing SQL trials is Oracle
Enterprise Manager. If for some reason Oracle Enterprise Manager is
unavailable, you can compare SQL trials using the DBMS_SQLPA
PL/SQL package.

Tip: Before comparing SQL trials, you need to create a post-change
SQL trial, as described in Chapter 10, "Creating a Post-Change SQL
Trial".

Comparing SQL Trials  11-1



Comparing SQL Trials Using Oracle Enterprise Manager

Comparing SQL Trials Using Oracle Enterprise Manager
Comparing SQL trials using Oracle Enterprise Manager involves the following steps:
= Analyzing SQL Performance Using Oracle Enterprise Manager

= Reviewing the SQL Performance Analyzer Report Using Oracle Enterprise
Manager

s  Tuning Regressed SQL Statements Using Oracle Enterprise Manager

Analyzing SQL Performance Using Oracle Enterprise Manager

This section describes how to analyze SQL performance before and after the system
change using Oracle Enterprise Manager.

To analyze SQL performance using Enterprise Manager:

1. On the Guided Workflow page, click the Execute icon for Compare Step 2 and
Step 3.

The Run SQL Trial Comparison page appears.

Run SQL Trial Comparison
Cancel ) | Subrmit )

Task Name IMMCHAN.SPA_GUIDED_WORKFLOW Compare trials to assess change impact
SQL Tuning Set IMMCHAN.STS_CURSOR_CACHE SQL Performance Analyzer trial comparisen allows you to
assess the impact on SQL Tuning Set performance of
Trial 1 Name | SQL_TRIAL 1241213421833 changes made between two trials.
Description It is important to know the difference between Trial 1 and
SOL Executed Yes Trial 2 execution environments in order to properly assign

impacts to the changes between trials. Tracking
environmental changes between trials is currently a user

Trial 2 Name | SQL_TRIAL_1241213881923 ¥ responsibility.

Desciption The selected comparison metric is used as the basis for
SQL Executed Yes comparison, and defaults to execute elapsed time when
both trials contain test execution statistics. When execution
Comparison Metric | Elapsed Time v statistics are not available, a less accurate comparison can
be made using optimizer cost.
Schedule
Time Zane Pacific_.-'F'ago_Pago A
® Immediately
O Later
Date (May L 2009_ ]

{=xample: May 1, 2005)

Time |2 *[|21 %[[00 ¥| OaM ®PM

In this example, the SQL._TRIAL_1241213421833 and SQL_TRIAL_
1241213881923 trials are selected for comparison.

2. To compare trials other than those listed by default, select the desired trials in the
Trial 1 Name and Trial 2 Name lists.

Note that you cannot compare a statistical trial with a trial that tests the explain
plan only.

3. In the Comparison Metric list, select the comparison metric to use for the
comparison analysis:

- Elapsed Time
- CPU Time
— UserI/O Time

11-2 Oracle Database Real Application Testing User's Guide



Comparing SQL Trials Using Oracle Enterprise Manager

— Buffer Gets

— Physical I/O

— Optimizer Cost

— I/O Interconnect Bytes

Optimizer Cost is the only comparison metric available if you generated execution
plans only in the SQL trials.

To perform the comparison analysis by using more than one comparison metric,
perform separate comparison analyses by repeating this procedure with different
metrics.

4. In the Schedule section:
a. In the Time Zone list, select your time zone code.

b. Select Immediately to start the task now, or Later to schedule the task to start
at a time specified using the Date and Time fields.

5. Click Submit.
The Guided Workflow page appears when the comparison analysis begins.

The status icon of this step changes to an arrow icon while the comparison
analysis is in progress. To refresh the status icon, click Refresh. Depending on the
amount of performance data collected from the pre-change and post-change
executions, the comparison analysis may take a long time to complete. After the
comparison analysis is completed, the Status icon changes to a check mark and the
Execute icon for the next step is enabled.

6. Once SQL Performance Analyzer has analyzed the pre-change and post-change
performance data, generate a SQL Performance Analyzer report that you can use
for further analysis.

On the Guided Workflow page, click the Execute icon for View Trial Comparison
Report.

The SQL Performance Analyzer Task Report page appears. Review the report, as
described in "Reviewing the SQL Performance Analyzer Report Using Oracle
Enterprise Manager" on page 11-3.

Reviewing the SQL Performance Analyzer Report Using Oracle Enterprise Manager

When a SQL Performance Analyzer task is completed, the resulting data is generated
into a SQL Performance Analyzer report that compares the pre-change and
post-change SQL performance.

Figure 11-1 shows a sample SQL Performance Analyzer report. This sample report
uses the elapsed time comparison metric to compare the pre-change and post-change
executions of a SQL workload.

Comparing SQL Trials 11-3



Comparing SQL Trials Using Oracle Enterprise Manager

Figure 11-1 SQL Performance Analyzer Report

SQL Performance Analyzer Task Report: IMMCHAN.SPA_GUIDED_WORKFLOW
SQL Tuning Set

Name STS CURSOR CACHE SQL Trial 1 SQL_TRIAL_1241213421833
STS Owner IMMCHAN SQL Trial 2 SQL_TRIAL_1241213881923
Total SQL
Statemants 1134 Comparison Metric  Elapsed Time
SQL Statements SQL Statements 0
With Errors === with Timeout
5QL Statements 15
Unsupported
Global Statistics
Projected Workload Elapsed Time SQL Statement Count Recommendations
< 20 = 1,200 Explore alternate
£ 15 2 @oo execution plans using SQL
E [¥] Tuning Advisor.
E 10 = 400 - :
= =3 Fun S0QL Tuning Advisor
= 5 wn o
H 0 Improvec Regressed Unchanged
= Change in Elapsed Time
™)
[ 5oL Trial 1 [ SQL Trial 2 [ Mew Plan [l Same Plan

Improvement Impact 20%
Regression Impact -2%

Overall Impact 17%

Top 10 SQL Statements Based on Impact on Workload
Elapsed Time (sec)

SQL ID Net Impact on Workload (%) SQL Trial 1 SQL Trial 2 Het Impact on SQL (%) New Plan
{+ a8j39gb13tgkr 18.520 1.728 1.068 38.170 N
€+ 96g93hntrzjtr 1.660 0.000 0.000 33.330|N
{+ aStgepz7erkaq -1.560 0.637 0.859 -34.820 N
{+ 3nkd3g3juSphi -0.920 0.000 0.000 -50.000 N
4 cpScaasd2udnw -0.600 0.027 0.031 -13.110 N
f Stgjd4gByarvvs 0.420 0.000 0.000 32.360 N
{+ 87gaftwrm2h6s 0.370 0.000 0.000 34.150 N
€+ 0g5d27pSnmimd 0.350 0.000 0.000 57.140 N
{+ 53saaZzkrowc -0.330 0.000 0.000 -50.000 N
4+ Sms6rbzdngift 0.290 0.000 0.000 33.730 N

Tip: Before you can view the SQL Performance Analyzer report,
compare the pre-change version of performance data with the
post-change version, as described in "Comparing SQL Trials Using
Oracle Enterprise Manager" on page 11-2

To generate and review the SQL Performance Analyzer report:
1. On the Software and Support page, under Real Application Testing, click SQL
Performance Analyzer.

The SQL Performance Analyzer page appears. A list of existing SQL Performance
Analyzer tasks are displayed.

2. Under SQL Performance Analyzer Tasks, select the task for which you want to
view a SQL Performance Analyzer report and click View Latest Report.

The SQL Performance Analyzer Task Report page appears.

3. Review the general information about the performance analysis, as described in
"Reviewing the SQL Performance Analyzer Report: General Information" on
page 11-4.

4. Review general statistics, as described in "Reviewing the SQL Performance
Analyzer Report: Global Statistics” on page 11-5.

5. Optionally, review the detailed statistics, as described in "Reviewing the SQL
Performance Analyzer Report: Global Statistics Details" on page 11-6.

Reviewing the SQL Performance Analyzer Report: General Information

The General Information section contains basic information and metadata about the
workload comparison performed by SQL Performance Analyzer.

11-4 Oracle Database Real Application Testing User's Guide



Comparing SQL Trials Using Oracle Enterprise Manager

To review general information:

1. On the SQL Performance Analyzer Task Report page, review the summary at the
top of the page.

SQL Tuning Set Name 5T5 CURSOR CACHE SQLTrial 1 SQL_TRIAL_1241213421833
5TS Owner IMMCHARN SQL Trial 2 SQL_TRIAL_1241213881923
Total SQL Statements 1,134 Comparison Metric  Elapsed Time

SQL Statements With
Errors

SQL Statements
Unsupported

SQL Statements With
Timeout

331

15

This summary includes the following information:
s The name and owner of the SQL tuning set

s The total number of SQL statements in the tuning set and the number of SQL
statements that had errors, are unsupported, or timed out

s The names of the SQL trials and the comparison metric used
2. Optionally, click the link next to SQL Tuning Set Name.
The SQL Tuning Set page appears.

This page contains information—such as SQL ID and SQL text—about every SQL
statement in the SQL tuning set.

3. Click the link next to SQL Statements With Errors if errors were found.

The Errors table reports all errors that occurred while executing a given SQL
workload. An error may be reported at the SQL tuning set level if it is common to
all SQL executions in the SQL tuning set, or at the execution level if it is specific to
a SQL statement or execution plan.

4. Review the global statistics, as described in "Reviewing the SQL Performance
Analyzer Report: Global Statistics” on page 11-5.

Reviewing the SQL Performance Analyzer Report: Global Statistics

The Global Statistics section reports statistics that describe the overall performance of
the entire SQL workload. This section is a very important part of the SQL Performance
Analyzer analysis, because it reports on the impact of the system change on the overall
performance of the SQL workload. Use the information in this section to understand
the tendency of the workload performance, and determine how it will be affected by
the system change.

To review global statistics:
1. Review the chart in the Projected Workload Elapsed Time subsection.

Note: The name of the subsection may vary based on the comparison
metric that is selected.

The chart shows the two trials on the x-axis and the elapsed time (in seconds) on
the y-axis.

Comparing SQL Trials 11-5



Comparing SQL Trials Using Oracle Enterprise Manager

Elapsed Time (seQ

Projected Workload Elapsed Time

[l
L=

[
[=TE B

[ 5oL Trial 1 [ SOL Trial 2

Improvement Impact 20% 4
Regression Impact -2%{-

Overall Impact 17% {+

The most important statistic is the overall impact, which is given as a percentage.
The overall impact is the difference between the improvement impact and the
regression impact. You can click the link for any impact statistic to obtain more
details, as described in "Reviewing the SQL Performance Analyzer Report: Global
Statistics Details" on page 11-6.

In this example, the improvement impact is 20%, while the regression impact is
-2%, so the overall impact of the system change is an improvement of
approximately 18%. This means that if all regressions are fixed in this example, the
overall impact of the change will be an improvement of 20%

Review the chart in the SQL Statement Count subsection.

The x-axis of the chart shows the number of SQL statements whose performance
improved, regressed, or remain unchanged after the system change. The y-axis
shows the number of SQL statements. The chart also indicates whether the explain
plans changed for the SQL statements.

SOL Count

SQL Statement Count

1,200

800
0
Improved Fegressed Unchanged

Change in Elapsed Time
B Hew Plan [ Same Plan

This chart enables you to quickly weigh the relative performance of the SQL
statements. You can click any bar in the chart to obtain more details about the SQL
statements, as described in "Reviewing the SQL Performance Analyzer Report:
Global Statistics Details" on page 11-6. Only up to the top 100 SQL statements will
be displayed, even if the actual number of SQL statements exceeds 100.

In this example, all SQL statements were unchanged after the system change.

Reviewing the SQL Performance Analyzer Report: Global Statistics Details

You can use the SQL Performance Analyzer Report to obtain detailed statistics for the
SQL workload comparison. The details chart enables you to drill down into the
performance of SQL statements that appears in the report. Use the information in this
section to investigate why the performance of a particular SQL statement regressed.

Note: The report displays only up to the top 100 SQL statements,
even if the actual number of SQL statements exceeds 100.

11-6 Oracle Database Real Application Testing User's Guide



Comparing SQL Trials Using Oracle Enterprise Manager

To review global statistics details:

1. In the Projected Workload Elapsed Time subsection, click the impact percentage of
the SQL statements for which you want to view details. To view SQL statements
whose performance:

= Improved, click the percentage for Improvement Impact
= Regressed, click the percentage for Regression Impact
s Improved or regressed, click the percentage for Overall Impact

A table including the detailed statistics appears. Depending on the type of SQL
statements chosen, the following columns are included:

= SQLID
This column indicates the ID of the SQL statement.
= Net Impact on Workload (%)

This column indicates the impact of the system change relative to the
performance of the SQL workload.

= Elapsed Time

This column indicates the total time (in seconds) of the SQL statement
execution.

= Net Impact on SQL (%)

This column indicates the local impact of the change on the performance of a
particular SQL statement.

= New Plan
This column indicates whether the SQL execution plan changed.

2. To view details about a particular SQL statement, click the SQL ID link for the SQL
statement that you are interested in.

The SQL Details page appears.

You can use this page to access the SQL text and obtain low-level details about the
SQL statement, such as its execution statistics and execution plan.

Tuning Regressed SQL Statements Using Oracle Enterprise Manager

After reviewing the SQL Performance Analyzer report, you should tune any regressed
SQL statements that are identified after comparing the SQL performance. If there are
large numbers of SQL statements that appear to have regressed, you should try to
identify the root cause and make system-level changes to rectify the problem. In cases
when only a few SQL statements have regressed, consider using one of the following
tuning methods to implement a point solution for them:

»  Creating SQL Plan Baselines
= Running SQL Tuning Advisor

After tuning the regressed SQL statements, you should test these changes using SQL
Performance Analyzer. Run a new SQL trial on the test system, followed by a second
comparison (between this new SQL trial and the first SQL trial) to validate your
results. Once SQL Performance Analyzer shows that performance has stabilized, the
testing is complete. Implement the fixes from this step to your production system.

Comparing SQL Trials  11-7



Comparing SQL Trials Using Oracle Enterprise Manager

Note: SQL Performance Analyzer does not provide the option to
create SQL plan baselines or run SQL Tuning Advisor directly after
after completing a remote SQL trial. In such cases, you need to use
APIs to manually transport the SQL tuning set and complete the
appropriate procedure on the remote database.

Creating SQL Plan Baselines

Creating SQL plan baselines enables the optimizer to avoid performance regressions
by using better execution plans. When performance regressions occur due to plan
changes, creating a SQL plan baseline using an existing plan for a SQL statement will
prevent the optimizer from pick the new, regressed execution plan.

To create SQL plan baselines:

1. On the SQL Performance Analyzer Task Result page, under Recommendations,
click Create SQL Plan Baselines.

The Create SQL Plan Baselines page appears. The Regressed SQL Statements
section lists the regressed SQL statements that will be associated with the new
SQL plan baselines.

2. Under Job Parameters, specify the parameters for the job:

a. In the Job Name field, enter a name for the job.

b. In the Description field, optionally enter a description for the job.
3. Under Schedule, select:

» Immediately to start the job now.

= Later to schedule the job to start at a time specified using the Time Zone, Date,
and Time fields.

4. Click OK.
The SQL Performance Analyzer Task Result page appears. A message is displayed
to inform you that the job has been submitted successfully.
See Also:

»  Oracle Database 2 Day + Performance Tuning Guide for information
about creating and managing SQL plan baselines

Running SQL Tuning Advisor

The SQL Tuning Advisor performs an in-depth analysis of regressed SQL statements
and attempts to fix the root cause of the problem.

To run SQL Tuning Advisor:

1. On the SQL Performance Analyzer Task Result page, under Recommendations,
click Run SQL Tuning Advisor.

The Schedule SQL Tuning Task page appears.
2. In the Tuning Task Name field, enter a name for the SQL tuning task.

3. In the Tuning Task Description field, optionally enter a name for the SQL tuning
task.

4. Under Schedule, select:

11-8 Oracle Database Real Application Testing User's Guide



Comparing SQL Trials Using APIs

s Immediately to start the job now.

= Later to schedule the job to start at a time specified using the Time Zone, Date,
and Time fields.

Click OK.

The SQL Performance Analyzer Task Result page appears. A link to the SQL
tuning report appears under Recommendations.

To view the SQL tuning report, click the SQL Tune Report link.
The SQL Tuning Results page appears.

See Also:

»  Oracle Database 2 Day + Performance Tuning Guide for information
about running the SQL Tuning Advisor

Comparing SQL Trials Using APIs

Comparing SQL trials using APIs involves the following steps:

Analyzing SQL Performance Using APIs

Reviewing the SQL Performance Analyzer Report Using APIs
Comparing SQL Tuning Sets Using APIs

Tuning Regressed SQL Statements Using APIs

Tuning Regressed SQL Statements From a Remote SQL Trial Using APIs
Creating SQL Plan Baselines Using APIs

Using SQL Performance Analyzer Views

Analyzing SQL Performance Using APIs

After the post-change SQL performance data is built, you can compare the pre-change
version of performance data to the post-change version. Run a comparison analysis
using the DBMS_SQLPA . EXECUTE_ANALYSIS_TASK procedure or function.

To compare the pre-change and post-change SQL performance data:

1.

Call the EXECUTE_ANALYSIS_TASK procedure or function using the following
parameters:

m  Set the task_name parameter to the name of the SQL Performance Analyzer
task.

m  Setthe execution_type parameter to COMPARE PERFORMANCE. This
setting will analyze and compare two versions of SQL performance data.

= Specify a name to identify the execution using the execution_name
parameter. If not specified, it will be generated by SQL Performance Analyzer
and returned by the function.

= Specify two versions of SQL performance data using the execution_params
parameters. The execution_params parameters are specified as (name,
value) pairs for the specified execution. Set the execution parameters that are
related to comparing and analyzing SQL performance data as follows:

— Set the execution_namel parameter to the name of the first execution
(before the system change was made). This value should correspond to the

Comparing SQL Trials 11-9



Comparing SQL Trials Using APIs

value of the execution_name parameter specified in "Creating a
Pre-Change SQL Trial Using APIs" on page 9-3.

—  Set the execution_name2 parameter to the name of the second
execution (after the system change was made). This value should
correspond to the value of the execution_name parameter specified in
"Creating a Post-Change SQL Trial Using APIs" on page 10-3 when you
executed the SQL workload after the system change. If the caller does not
specify the executions, then by default SQL Performance Analyzer will
always compare the last two task executions.

—  Set the comparison_metric parameter to specify an expression of
execution statistics to use in the performance impact analysis. Possible
values include the following metrics or any combination of them:
elapsed_time (default), cpu_time, buffer_gets,disk_reads,
direct_writes, optimizer_cost,and io_interconnect_bytes.

For other possible parameters that you can set for comparison, see the
description of the DBMS_SQLPA package in Oracle Database PL/SQL Packages
and Types Reference.

The following example illustrates a function call:

EXEC DBMS_SQLPA.EXECUTE_ANALYSIS_TASK (task_name => 'my_spa_task', -
execution_type => 'COMPARE PERFORMANCE', -
execution_name => 'my_exec_compare', -
execution_params => dbms_advisor.arglist (-
'comparison_metric', 'buffer_gets'));

2. Call the DBMS_SQLPA.REPORT_ANALYSIS_TASK function using the following
parameters:

»  Set the task_name parameter to the name of the SQL Performance Analyzer
task.

»  Set the execution_name parameter to the name of the execution to use. This
value should match the execution_name parameter of the execution for
which you want to generate a report.

To generate a report to display the results of:

—  Execution plans generated for the SQL workload, set this value to match
the execution_name parameter of the desired EXPLAIN PLAN
execution.

- Execution plans and execution statistics generated for the SQL workload,
set this parameter to match the value of the execution_name parameter
used in the desired TEST EXECUTE execution.

- A comparison analysis, set this value to match the execution_name
parameter of the desired ANALYZE PERFORMANCE execution.

If unspecified, SQL Performance Analyzer generates a report for the last
execution.

= Set the type parameter to specify the type of report to generate. Possible
values include TEXT (default), HTML, and XML.

s Set the 1evel parameter to specify the format of the recommendations.
Possible values include TYPICAL (default), BASIC, IMPROVED, REGRESSED,
CHANGED_PLANS, ERRORS, and ALL.

11-10 Oracle Database Real Application Testing User's Guide



Comparing SQL Trials Using APIs

= Set the section parameter to specify a particular section to generate in the
report. Possible values include SUMMARY (default) and ALL.

= Set the top_sqgl parameter to specify the number of SQL statements in a SQL
tuning set to generate in the report. By default, the report shows the top 100
SQL statements impacted by the system change.

The following example illustrates a portion of a SQL script that you could use to
create and display a comparison summary report:

VAR rep CLOB;

EXEC :rep := DBMS_SQLPA.REPORT ANALYSIS_TASK('my_spa_task',6 -
'text', 'typical', 'summary');

SET LONG 100000 LONGCHUNKSIZE 100000 LINESIZE 130

PRINT :rep

3. Review the SQL Performance Analyzer report, as described in "Reviewing the SQL
Performance Analyzer Report Using APIs" on page 11-11.
See Also:

»  Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_SQLPA . EXECUTE_ANALYSIS_TASK
and DBMS_SQLPA.REPORT_ANALYSIS_TASK functions

Reviewing the SQL Performance Analyzer Report Using APls
The SQL Performance Analyzer report is divided into the following sections:
= General Information
= Result Summary
= Result Details

This section uses a sample report to illustrate how to review the SQL Performance
Analyzer report. The sample report uses buffer_gets as the comparison metric to
compare the pre-change and post-change executions of a SQL workload.

General Information

The General Information section contains basic information and metadata about the
SQL Performance Analyzer task, the SQL tuning set used, and the pre-change and
post-change executions. Example 11-1 shows the General Information section of a
sample report.

Example 11-1 General Information

Task Information: Workload Information:

Task Name : my_spa_task SQL Tuning Set Name : my_sts
Task Owner : APPS SQL Tuning Set Owner : APPS
Description : Total SQL Statement Count : 101

Execution Information:

Execution Name : my_exec_compare Started : 05/21/2007 11:30:09
Execution Type : ANALYZE PERFORMANCE Last Updated : 05/21/2007 11:30:10
Description : Global Time Limit : UNLIMITED

Scope : COMPREHENSIVE Per-SQL Time Limit : UNUSED

Comparing SQL Trials  11-11



Comparing SQL Trials Using APIs

Status : COMPLETED Number of Errors : 0

Analysis Information:

Before Change Execution: After Change Execution:

Execution Name : my_exec_BEFORE_change Execution Name : my_exec_AFTER_change
Execution Type : TEST EXECUTE Execution Type : TEST EXECUTE
Description : Description :

Scope : COMPREHENSIVE Scope : COMPREHENSIVE
Status : COMPLETED Status : COMPLETED

Started : 05/21/2007 11:22:06 Started : 05/21/2007 11:25:56
Last Updated : 05/21/2007 11:24:01 Last Updated : 05/21/2007 11:28:30
Global Time Limit : 1800 Global Time Limit : 1800

Per-SQL Time Limit : UNUSED Per-SQL Time Limit : UNUSED

Number of Errors : 0 Number of Errors : 0

In Example 11-1, the Task Information section indicates that the task name is my_
spa_task. The Workload Information section indicates that the task compares
executions of the my_sts SQL tuning set, which contains 101 SQL statements. As
shown in the Execution Information section, the comparison execution is named my_
exec_compare.

The Analysis Information sections shows that SQL Performance Analyzer compares
two executions of the my_sts SQL tuning set, my_exec_BEFORE_change and my_
exec_AFTER_change, using buffer_gets as a comparison metric.

Result Summary

The Result Summary section summarizes the results of the SQL Performance Analyzer
task. The Result Summary section is divided into the following subsections:

s Overall Performance Statistics

s Performance Statistics of SQL Statements

s Errors

Overall Performance Statistics The Overall Performance Statistics subsection displays
statistics about the overall performance of the entire SQL workload. This section is a
very important part of the SQL Performance Analyzer analysis because it shows the
impact of the system change on the overall performance of the SQL workload. Use the
information in this section to understand the change of the workload performance,
and determine whether the workload performance will improve or degrade after
making the system change.

Example 11-2 shows the Overall Performance Statistics subsection of a sample report.

Example 11-2 Overall Performance Statistics

Report Summary

Overall Impact : 47.94%

11-12 Oracle Database Real Application Testing User's Guide



Comparing SQL Trials Using APIs

Improvement Impact : 58.02%
Regression Impact : -10.08%

SQL Statement Count

SQL Category SQL Count Plan Change Count

Overall 101 6
Improved 2 2
Regressed 1 1
Unchanged 98 3

This example indicates that the overall performance of the SQL workload improved by
47.94%, even though regressions had a negative impact of -10.08%. This means that if
all of the regressions are fixed in this example, the overall change impact will be
58.02%. After the system change, 2 of the 101 SQL statements ran faster, while 1 ran
slower. Performance of 98 statements remained unchanged.

Performance Statistics of SQL Statements The Performance Statistics subsection highlights
the SQL statements that are the most impacted by the system change. The pre-change
and post-change performance data for each SQL statement in the workload are
compared based on the following criteria:

= Execution frequency, or importance, of each SQL statement

= Impact of the system change on each SQL statement relative to the entire SQL
workload

= Impact of the system change on each SQL statement
»  Whether the structure of the execution plan for each SQL statement has changed

Example 11-3 shows the Performance Statistics of SQL Statements subsection of a
sample report. The report has been altered slightly to fit on the page.

Example 11-3 Performance Statistics of SQL Statements

SQL Statements Sorted by their Absolute Value of Change Impact on the Workload

| | | Impact on | Execution | Metric | Metric | Impact | Plan

| object_id | sql_id | Workload | Frequency | Before | After | on SQL | Change

| 205 | 73s2sgy2svfrw | 29.01% | 100000 | 1681683 | 220590 | 86.88% | y |
| 206 | gq2ad07mv2hsy | 29.01% | 949141 | 1681683 | 220590 | 86.88% | y |
| 204 | 2wtgxbjz6uzby | -10.08% | 478254 | 1653012 | 2160529 | -30.7% | y |

The SQL statements are sorted in descending order by the absolute value of the net
impact on the SQL workload, that is, the sort order does not depend on whether the
impact was positive or negative.

Errors The Errors subsection reports all errors that occurred during an execution. An
error may be reported at the SQL tuning set level if it is common to all executions in
the SQL tuning set, or at the execution level if it is specific to a SQL statement or
execution plan.

Example 11-4 shows an example of the Errors subsection of a SQL Performance
Analyzer report.

Comparing SQL Trials 11-13



Comparing SQL Trials Using APIs

Example 11-4 Errors

47bjmcdtwehtn ORA-00942: table or view does not exist
br6lbjpdtnf7y ORA-00920: invalid relational operator

Result Details

The Result Details section represents a drill-down into the performance of SQL
statements that appears in the Result Summary section of the report. Use the
information in this section to investigate why the performance of a particular SQL
statement regressed.

This section will contain an entry of every SQL statement processed in the SQL
performance impact analysis. Each entry is organized into the following subsections:

s SQL Details

s Execution Statistics

s Execution Plans

SQL Details This section of the report summarizes the SQL statement, listing its
information and execution details.

Example 11-5 shows the SQL Details subsection of a sample report.

Example 11-5 SQL Details

SQL Details:

Object ID : 204

Schema Name : APPS

SQL ID . 2wtgxbjz6ulby

Execution Frequency : 1

SQL Text : SELECT /* my_query_l4_scott */ /*+ ORDERED INDEX(tl)
USE_HASH(tl) */ 'B' || t2.pg_featurevalue 05_id
pg_featurevalue_05_id, 'r' || t4.elementrange_id
pg_featurevalue_15_id, 'G' |\ t5.elementgroup_id
pg_featurevalue 01_id, 'r' || t6.elementrange_id . .

In Example 11-5, the report summarizes the regressed SQL statement whose ID is
2wtgxbjz6u2by and corresponding object ID is 204.

Execution Statistics The Execution Statistics subsection compares execution statistics of
the SQL statement from the pre-change and post-change executions and then
summarizes the findings.

Example 11-6 shows the Execution Statistics subsection of a sample report.

Example 11-6 Execution Statistics

Execution Statistics:

11-14 Oracle Database Real Application Testing User's Guide



Comparing SQL Trials Using APIs

| | Impact on | Value | Value | Impact | $ Workload | % Workload
| Stat Name | workload | Before | After | on SQL | Before | After

| elapsed_time |  -95.54%| 36.484 | 143.161 | -292.39% | 32.68% | 94.73% |
| parse_time |  -12.37%|  .004 |  .062 | -1450% | .85% | 11.79% |
| exec_elapsed |  -95.89%| 36.48 | 143.099 | -292.27% | 32.81% | 95.02% |
| exec_cpu | -19.73%| 36.467 | 58.345 |  -59.99% | 32.89% | 88.58% |
| buffer_gets |  -10.08%| 1653012 | 2160529 | -30.7% | 32.82% | 82.48% |
| cost \ 12.17%| 11224 | 2771 | 75.31% | 16.16% | 4.66% |
| reads | -1825.72%| 4091 | 455280 | -11028.82% | 16.55% | 96.66% |
| writes \ -1500%| 0| 15 | -1500% | 0% | 100% |
| rows \ | 135 | 135 | | | |
Notes

Before Change:
1. The statement was first executed to warm the buffer cache.
2. Statistics shown were averaged over next 9 executions.

After Change:
1. The statement was first executed to warm the buffer cache.
2. Statistics shown were averaged over next 9 executions.

Findings (2):

1. The performance of this SQL has regressed.
2. The structure of the SQL execution plan has changed.

Execution Plans The Execution Plans subsection displays the pre-change and
post-change execution plans for the SQL statement. In cases when the performance
regressed, this section also contains findings on root causes and symptoms.

Example 11-7 shows the Execution Plans subsection of a sample report.

Example 11-7 Execution Plans

Execution Plan Before Change:

Plan Id 1
Plan Hash Value : 3412943215

| 1d& | Operation | Name | Rows | Bytes | Cost | Time

| 0 | SELECT STATEMENT | | 1 126 | 11224 | 00:02:15 |
\ 1 | HASH GROUP BY | | 1 126 | 11224 | 00:02:15 |
| 2| NESTED LOOPS | | 1 126 | 11223 | 00:02:15 |
| *3 ] HASH JOIN \ | 1| 111 | 11175 | 00:02:15 |
| * 4| TABLE ACCESS FULL | LU_ELEMENTGROUP_REL | 1| 11 | 162 | 00:00:02 |
| *5 | HASH JOIN | | 487 | 48700 | 11012 | 00:02:13 |
| 6 | MERGE JOIN | | 14 | 924 | 1068 | 00:00:13 |
\ 7] SORT JOIN | | 5391 | 274941 | 1033 | 00:00:13 |
| *8 | HASH JOIN | | 5391 | 274941 | 904 | 00:00:11 |
| *9 | TABLE ACCESS FULL | LU_ELEMENTGROUP_REL | 123 | 1353 | 175 | 00:00:03 |
| * 10 | HASH JOIN | | 5352 | 214080 | 729 | 00:00:09 |
| * 11 | TABLE ACCESS FULL | LU_ITEM 293 | 5355 | 128520 | 56 | 00:00:01 |
| * 12 | TABLE ACCESS FULL | ADM_PG_FEATUREVALUE | 1629 | 26064 | 649 | 00:00:08 |
| 13 | FILTER | | | | | |
| * 14 | SORT JOIN | | 1 15 | 36 | 00:00:01 |
| * 15 | TABLE ACCESS FULL | LU_ELEMENTRANGE_REL | 1 15 | 35 | 00:00:01 |
| 16 | INLIST ITERATOR | | | | | |
| * 17 | TABLE ACCESS BY INDEX ROWID | FACT_PD_OUT_ITM_ 293 | 191837 | 6522458 | 9927 | 00:02:00 |

Comparing SQL Trials 11-15



Comparing SQL Trials Using APIs

| 18 | BITMAP CONVERSION TO ROWIDS | | \ \ \ |
| * 19 | BITMAP INDEX SINGLE VALUE | FACT 274_PER_IDX | | | | |
| * 20 | TABLE ACCESS FULL | LU_ELEMENTRANGE_REL | 1 15 | 49 | 00:00:01 |
Execution Plan After Change:
Plan Id : 102
Plan Hash Value : 1923145679

| Id | Operation | Name | Rows | Bytes | Cost | Time |

| 0 | SELECT STATEMENT | | 1 126 | 2771 | 00:00:34 |

| 1 | HASH GROUP BY | | 1 126 | 2771 | 00:00:34 |

\ 2| NESTED LOOPS \ | 1| 126 | 2770 | 00:00:34 |

| *3 ] HASH JOIN | | 1| 111 | 2722 | 00:00:33 |

| * 4| HASH JOIN \ | 1| 100 | 2547 | 00:00:31 |

| *5 ] TABLE ACCESS FULL | LU_ELEMENTGROUP_REL | 1| 11 | 162 | 00:00:02 |

| 6 | NESTED LOOPS | | | | | |

| 7 NESTED LOOPS \ | 484 | 43076 | 2384 | 00:00:29 |

| * 8] HASH JOIN \ | 14| 770 | 741 | 00:00:09 |

| 9 | NESTED LOOPS | | 4 | 124 | 683 | 00:00:09 |

| * 10 | TABLE ACCESS FULL | LU_ELEMENTRANGE_REL | 1 15 | 35 | 00:00:01 |

| * 11 | TABLE ACCESS FULL | ADM_PG_FEATUREVALUE | 4| 64 | 649 | 00:00:08 |

| * 12 | TABLE ACCESS FULL | LU_ITEM_293 | 5355 | 128520 | 56 | 00:00:01 |

| 13 | BITMAP CONVERSION TO ROWIDS | | | | | |

| * 14 | BITMAP INDEX SINGLE VALUE | FACT 274_ITEM_IDX | | \ | \

| * 15 | TABLE ACCESS BY INDEX ROWID | FACT_PD_OUT_ITM 293 | 36 | 1224 | 2384 | 00:00:29 |

| * 16 | TABLE ACCESS FULL | LU_ELEMENTGROUP_REL | 123 | 1353 | 175 | 00:00:03 |

| * 17 | TABLE ACCESS FULL | LU_ELEMENTRANGE_REL | 1 15 | 49 | 00:00:01 |

Comparing SQL Tuning Sets Using APls

You can compare two SQL tuning sets using SQL Performance Analyzer APIs. For
example, while using Database Replay, you may have captured a SQL tuning set on
the production system during workload capture, and another SQL tuning set on a test
system during workload replay. You can then use SQL Performance Analyzer to
compare these SQL tuning sets, without having to re-execute the SQL statements. This
is useful in cases where you already have another utility to run your workload before
and after making the system change, such as a custom script.

When comparing SQL tuning sets, SQL Performance Analyzer uses the runtime
statistics captured in the SQL tuning sets to perform its comparison analysis, and
reports on any new or missing SQL statements that are found in one SQL tuning set,
but not in the other. Any changes in execution plans between the two SQL tuning sets
are also reported. For each SQL statement in both SQL tuning sets, improvement and
regression findings are reported for each SQL statement—calculated based on the
average statistic value per execution—and for the entire workload—calculated based
on the cumulative statistic value.

To compare SQL tuning sets using the DBMS_ SQLPA package:
1. Create a SQL Performance Analyzer task:

VAR aname varchar2 (30);
EXEC :aname := 'compare_s2s';
EXEC :aname := DBMS_SQLPA.CREATE_ANALYSIS_TASK (task_name => :aname);

11-16 Oracle Database Real Application Testing User's Guide



Comparing SQL Trials Using APIs

Onc

It is not necessary to associate a SQL tuning set to the task during creation.
Create the first SQL trial and convert the first SQL tuning set:

EXEC DBMS_SQLPA.EXECUTE_ANALYSIS_TASK (task_name => :aname, -
execution_type => 'convert sqglset', -
execution_name => 'first trial', -
execution_params => DBMS_ADVISOR.ARGLIST (
'sglset_name', 'my_ first_sts', -
'sglset_owner', 'APPS'));

Specify the name and owner of the SQL tuning set using the SQL.SET_NAME and
SQLSET_OWNER task parameters. The content of the SQL tuning set will not be
duplicated by the SQL Performance Analyzer task. Instead, a reference to the SQL
tuning set is recorded in association to the new SQL trial, which in this example is
"first trial".

Create a second SQL trial and associate it to the second SQL tuning second to
which you want to compare:

EXEC DBMS_SQLPA.EXECUTE_ANALYSIS_TASK (task_name => :aname,
execution_type => 'convert sqglset', -
execution_name => 'second trial', -
execution_params => DBMS_ADVISOR.ARGLIST (
'sglset_name', 'my_second_sts', -
'sglset_owner', 'APPS'));

Compare the performance data from the two SQL trials (or SQL tuning sets) by
running a comparison analysis:

EXEC DBMS_SQLPA.EXECUTE_ANALYSIS_TASK (task _name => :aname, -
execution_type => 'compare',6 -
execution_name => 'comparison', -
execution_params => DBMS_ADVISOR.ARGLIST (
'workload_impact_threshold', 0, -
'sqgl_impact_threshold', 0));

In this example, the workload and per-SQL impact threshold are set to 0% for
comparison (the default value is 1%).

After the comparison analysis is complete, generate a SQL Performance Analyzer
report using the DBMS_SQLPA . REPORT_ANALYSIS_TASK function.

For information about generating a SQL Performance Analyzer report using APlIs,
see "Analyzing SQL Performance Using APIs" on page 11-9.

e the report is generated, review it to identify any differences between the contents

of the two SQL tuning sets. Example 11-8 shows the Analysis Information and Report
Summary sections of a sample report generated by comparing two SQL tuning sets:

Example 11-8 Analysis Information and Report Summary

Analysis Information:

Execution Name
Execution Type

Before Change Execution: After Change Execution:
: first trial Execution Name : second trial
: CONVERT SQLSET Execution Type : CONVERT SQLSET
: COMPLETED Status : COMPLETED

Status
Started
Last Updated

Comparing SQL Trials 11-17



Comparing SQL Trials Using APIs

Before Change Workload: After Change Workload:
SQL Tuning Set Name : my_first_sts SQL Tuning Set Name : my_second_sts
SQL Tuning Set Owner : APPS SQL Tuning Set Owner : APPS
Total SQL Statement Count : 5 Total SQL Statement Count : 6

Overall Impact : 72.32%
Improvement Impact : 47.72%
Regression Impact : -.02%
Missing-SQL Impact : 33.1%
New-SQL Impact ;. -8.48%

SQL Statement Count

SQL Category SQL Count Plan Change Count

Overall 7 1
Common 4 1
Improved 3 1
Regressed 1 0
Different 3 0
Missing SQL 1 0
New SQL 2 0

As shown in Example 11-8, this report contains two additional categories that are not
found in standard SQL Performance Analyzer reports; both categories are grouped
under the heading Different:

= Missing SQL

This category represents all SQL statements that are present in the first SQL tuning
set, but are not found in the second SQL tuning set. In this example, only one SQL
statement is missing. As shown in Example 11-9, this SQL statement has:

- A sqgl_idvalue of gv7xb8tyd1v9l
- A performance impact on the workload of 33.1% based on the change

- No performance impact on the SQL statement based on the change because its
"Total Metric After" change value is missing

= New SQL

This category represents all SQL statements that are present in the second SQL
tuning set, but are not found in the first SQL tuning set. In this example, only two
SQL statements are new in the second SQL tuning set. As shown in Example 11-9,
these SQL statements have:

- sqgl_id values of 4c8nrqxhtb2sf and 9utadgu5udmh4
- A total performance impact on the workload of -8.48%
- Missing "Total Metric Before" change values

Example 11-9 shows a table in the sample report that lists the missing and new SQL
statements, as well as other top SQL statements as determined by their impact on the
workload:

11-18 Oracle Database Real Application Testing User's Guide



Comparing SQL Trials Using APIs

Example 11-9 Top 7 SQL Sorted by Absolute Value of Change Impact on the Workload
Top 7 SQL Sorted by Absolute Value of Change Impact on the Workload

| | | Impact on | Total Metric | Total Metric | Impact | Plan |
| object_id | sql_id | Workload | Before After | on SQL | Change |
| 4 | 7gi3wdyadd9si |  41.04% | 812791 | 36974 | 95% | vy |
| 7 | gvixb8tydlvol | 33.1% | 625582 | | | n

| 2 | 4c8nrgxhtb2sf | -8.35% | | 157782 | | n |
| 1 | 22u3tvrtlyrég | 4.58% | 302190 | 215681 | 28.63% | n |
| 6 | £gdd0fd56qmto | 2.1% | 146128 | 106369 | 27.21% | n |
| 5 | 9utadguSudmhd | -.13% | \ 2452 | | n |
| 3 | 4dtva3awxnmv3 | -.02% | 3520 | 3890 | -47.35% | n |

Once you have identified a SQL statement of interest, you can generate a report for the
SQL statement to perform more detailed investigation. For example, you may want to
investigate the SQL statement with the sgql_1d value of 7gj3w9ya4d9sj and object_
id value of 4 because it has the highest impact on the workload:

SELECT DBMS_SQLPA.REPORT_ANALYSIS_TASK (task_name => :aname, object_id => 4) rep
FROM dual;

Example 11-10 shows a sample report generated for this SQL statement:

Example 11-10 Sample Report for SQL Statement
SQL Details:

Object ID : 4
SQL ID : 7gj3w9yadd9sj
SQL Text : /* my_csts_queryl */ select * FROM emp where empno=2

SQL Execution Statistics (average):

| | Impact on | Value | Value | Impact |
| Stat Name | Workload | Before | After | on SQL |
| elapsed_time |  41.04% | .036945 | .001849 |  95% |
| cpu_time | 13.74% | .004772 | .00185 | 61.24% |
| buffer_gets | 9.59% | 8 | 2 | 69.01% |
| cost | 11.76% | 1] 1] 10% |
| reads | 4.08% | 0 | 0 | 63.33% |
| writes | 0% | 0 | 0 | 0% |
| rous | | 0 | 0 | |
| executions | | 22 | 20 | |
| plan_count | | 3 2 | |

1. The performance of this SQL has improved.
2. The structure of the SQL execution plan has changed.

Plan Execution Statistics (average):

| Statistic Name | Plans Before Change | Plans After Change

Comparing SQL Trials 11-19



Comparing SQL Trials Using APIs

| plan hash value | 440231712 571903972 3634526668 | 571903972 3634526668

|

|
| schema name | | apps2 APPS2 |
| executions | | 10 10 |
| cost | | 1 2 |
| elapsed_time | .108429 .000937 .00491 | .000503 .003195 |
| cpu_time | .00957 L0012 .0032 | .0005 .0032 |
| buffer_gets | 18 |
| reads | | |
| writes | | |
| | | |

rows

| 0 | SELECT STATEMENT | |
| 1| PX COORDINATOR | |
| 2 | PX SEND QC (RANDOM) | :TQ10000 |
| 3| PX BLOCK ITERATOR | |
| 4| TABLE ACCESS FULL | |

- dynamic sampling used for this statement
Plan Hash Value : 571903972

0 | SELECT STATEMENT | | | 1|
| 1| TABLE ACCESS BY INDEX ROWID | EMP | 1 87 | 1 |00:00:01]
2 | INDEX UNIQUE SCAN | My_EMP_IDX | 1] 0 |

| 0 | SELECT STATEMENT | | | | 2 | |
1 | TABLE ACCESS FULL | EMP | 1] 87 | 2 | 00:00:01 |

- dynamic sampling used for this statement

Executions Plan After Change:

0 | SELECT STATEMENT | | | 1]
| 1| TABLE ACCESS BY INDEX ROWID | EMP | 1] 87 | 1 ]00:00:01|
2 | INDEX UNIQUE SCAN | MY _EMP_IDX | 1 0|

11-20 Oracle Database Real Application Testing User's Guide



Comparing SQL Trials Using APIs

| 0 | SELECT STATEMENT | | | | 2 |
1 | TABLE ACCESS FULL | EMP | 1| 87 | 2 | 00:00:01 |

The SQL Execution Statistics section shows the average runtime statistics (per
execution) of the SQL statement. The data in this table reveals that this SQL statement
is present in both SQL tuning sets, but that it has only three execution plans in the first
SQL tuning set and two execution plans in the second SQL tuning set. Furthermore,
the SQL statement was executed 22 times in the first SQL tuning set, but only 20 times
in the second SQL tuning set.

The Plan Execution Statistics section shows runtime statistics per execution plan (or
plan hash value). The Plans Before Change column lists plans and their associated
execution statistics for the first SQL tuning set; the Plans After Change columns lists
these values for the second SQL tuning set. Execution plans structures for both SQL
tuning sets are shown at the end of the report.

You can use these sections in the report to identify changes in execution plans between
two SQL tuning sets. This is important because changes in execution plans may be a
result of test changes that can have a direct impact to performance. When comparing
two SQL tuning sets, SQL Performance Analyzer reports execution plan changes when
a SQL statement has:

= One plan in both SQL tuning sets, but the plan structure is different
= More than one plan, and the number of plans in both SQL tuning sets are:

— The same, but at least one plan in the second SQL tuning set is different from
all plans in the first SQL tuning set

- Different

After evaluating the SQL statement and plan changes, determine if further action is
required. If the SQL statement has regressed, perform one of the following actions:

»  Tune the regressed SQL statement, as described in "Tuning Regressed SQL
Statements Using APIs" on page 11-21

s Create SQL plan baselines, as described in "Creating SQL Plan Baselines Using
APIs" on page 11-25

Tuning Regressed SQL Statements Using APIs

After reviewing the SQL Performance Analyzer report, you should tune any regressed
SQL statements that are identified after comparing the SQL performance. If there are
large numbers of SQL statements that appear to have regressed, you should try to
identify the root cause and make system-level changes to rectify the problem. In cases
when only a few SQL statements have regressed, consider using the SQL Tuning
Advisor to implement a point solution for them, or creating SQL plan baselines to
instruct the optimizer to select the original execution plan in the future.

To tune regressed SQL statements reported by SQL Performance Analyzer using APISs,
create a SQL tuning task for the SQL Performance Analyzer execution by using the
CREATE_TUNING_TASK function in the DBMS_ SQLTUNE package:

BEGIN
DBMS_SQLTUNE.CREATE_TUNING_TASK (
spa_task_name => 'my_spa_task',

Comparing SQL Trials 11-21



Comparing SQL Trials Using APIs

spa_task_owner => 'immchan',
spa_compare_exec => 'my_exec_compare');
DBMS_SQLTUNE.EXECUTE_TUNING_TASK (spa_task _name => 'my_spa_task');
END;
/

This example creates and executes a SQL tuning task to tune the SQL statements that
regressed in the compare performance execution named my_exec_compare of the
SQL Performance Analyzer task named my_spa_task. In this case, it is important to
use this version of the CREATE_TUNING_TASK function call. Otherwise, SQL
statements may be tuned in the environment from the production system where they
were captured, which will not reflect the system change.

Note: If you chose to execute the SQL workload remotely on a
separate database, you should not use this version of the CREATE_
TUNING_TASK function call to tune regressed SQL statements.
Instead, you should tune any regressions identified by the SQL trials
on the remote database, because the application schema is not on the
database running SQL Performance Analyzer. Therefore, you need to
run SQL Tuning Advisor on the database where the schema resides
and where the change was made. For more information, see "Tuning
Regressed SQL Statements From a Remote SQL Trial Using APIs" on
page 11-23.

Table 11-1 lists the SQL Performance Analyzer parameters that can be used with the
DBMS_SQLTUNE.CREATE_TUNING_TASK function.

Table 11-1 CREATE_TUNING_TASK Function SQL Performance Analyzer Parameters

Parameter Description

SPA_TASK_NAME Name of the SQL Performance Analyzer task.

SPA_TASK_OWNER Owner of the specified SQL Performance Analyzer task. If unspecified,
this parameter will default to the current user.

SPA_COMPARE_EXEC Execution name of the compare performance trial for the specified SQL
Performance Analyzer task. If unspecified, this parameter defaults to
the most recent execution of the COMPARE PERFORMANCE type for the
given SQL Performance Analyzer task.

After tuning the regressed SQL statements, you should test these changes using SQL
Performance Analyzer. Run a new SQL trial on the test system, followed by a second
comparison (between this new SQL trial and the first SQL trial) to validate your
results. Once SQL Performance Analyzer shows that performance has stabilized,
implement the fixes from this step to your production system.

See Also:

»  Oracle Database Performance Tuning Guide for information about
using the SQL Tuning Advisor

»  Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_SQLTUNE package

11-22 Oracle Database Real Application Testing User's Guide



Comparing SQL Trials Using APIs

Tuning Regressed SQL Statements From a Remote SQL Trial Using APIs

If you chose to execute the SQL workload remotely on a separate database, then you
should tune any regressions identified by the SQL trials on the remote database,
instead of the system where the SQL Performance Analyzer task resides.

To tune regressed SQL statements from a remote SQL trial:

1. On the system running SQL Performance Analyzer, create a subset of the
regressed SQL statements as a SQL tuning set:

DECLARE
tname varchar2 (100) ;
exec_name varchar2 (100) ;
dest_sts varchar2 (100) ;
sglset_cur DBMS_SQLTUNE.SQLSET CURSOR;

src_sts varchar2 (100) ;
src_sts_own varchar2 (100) ;
BEGIN
tname := 'SPA_TASK1l';
exec_name := 'COMP';
dest_sts := 'SUB_STS1';
src_sts := 'FULL_STS';
src_sts_own := 'IMMCHAN';

DBMS_SQLTUNE.CREATE_SQLSET (dest_sts, 'test purpose');

OPEN sqglset_cur FOR
SELECT value (p)
FROM table(
DBMS_SQLTUNE . SELECT_SQLSET (
sglset_name => src_sts,
sqglset_owner => src_sts_own,
basic_filter => 'sgl_id in (
SELECT s.sgl_id
FROM dba_advisor_objects o, dba_hist_sgltext s
WHERE o.task_name = ''' || tname || ''' AND o.execution_name =
""" || exec_name || ''' AND o.type_id = 7 AND o.attrl = s.sql_id
AND s.dbid = (SELECT max(d.dbid) FROM vSdatabase d)
AND bitand(o.attr7, 2)=2)"')
) pi

DBMS_SQLTUNE.LOAD_SQLSET (dest_sts, sglset_cur);
CLOSE sqglset_cur;

END;
/

2. Create a staging table to where the SQL tuning set will be exported:

BEGIN
DBMS_SQLTUNE.CREATE_STGTAB_SQLSET (
table_name => 'STG_TAB1',
schema_name => 'JOHNDOE',
tablespace_name => 'TBS_1',
db_version => DBMS_SQLTUNE.STS_STGTAB 11 1 VERSION) ;
END;
/

Comparing SQL Trials  11-23



Comparing SQL Trials Using APIs

Use the db_version parameter to specify the appropriate database version to
where the SQL tuning set will be exported and tuned. In this example, the staging
table will be created with a format so that it can be exported to a system running
Oracle Database 11g Release 1, where it will later be tuned using SQL Tuning
Advisor.

3. Export the SQL tuning set into the staging table:

BEGIN
DBMS_SQLTUNE. PACK_STGTAB_SQLSET (
sglset_name => 'SUB_STS1',
sqglset_owner => 'JOHNDOE',
staging_table_name => 'STG_TABl',
staging_schema_owner => 'JOHNDOE',
db_version => DBMS_SQLTUNE.STS_STGTAB_11_1_VERSION) ;
END;
/

4. Move the staging table to the remote database (where the SQL workload was
executed) using the mechanism of choice (such as Oracle Data Pump or database
link).

5. On the remote database, import the SQL tuning set from the staging table:

BEGIN
DBMS_SQLTUNE . UNPACK_STGTAB_SQLSET (
sqlset_name => 'SUB_STS1',
staging_table_name => 'STG_TABl',
replace => TRUE) ;
END;
/

6. Tune the regressed SQL statements in the SQL tuning set by running SQL Tuning

Advisor:

BEGIN
sts_name := 'SUB_STS1';
sts_owner := 'JOHNDOE';
tune_task name := 'TUNE_TASK1';

tname := DBMS_SQLTUNE.CREATE_TUNING_TASK (sglset_name => sts_name,
sglset_owner => sts_owner,
task_name => tune_task_name) ;
EXEC DBMS_SQLTUNE.SET TUNING_TASK_PARAMETER (:tname,
'APPLY_CAPTURED_COMPILENV',
'FALSE’) ;
exec_name := DBMS_SQLTUNE.EXECUTE_TUNING_TASK (tname) ;
END;
/

Note: The APPLY_CAPTURED_COMPILENV parameter used in this
example is only supported by Oracle Database 11g Release 1 and
newer releases. If you are testing a database upgrade from an earlier
version of Oracle Database, SQL Tuning Advisor will use the
environment variables stored in the SQL tuning set instead.

After tuning the regressed SQL statements, you should test these changes using SQL
Performance Analyzer. Run a new SQL trial on the test system, followed by a second
comparison (between this new SQL trial and the first SQL trial) to validate your

11-24 Oracle Database Real Application Testing User's Guide



Comparing SQL Trials Using APIs

results. Once SQL Performance Analyzer shows that performance has stabilized,
implement the fixes from this step to your production system.

See Also:

»  Oracle Database Performance Tuning Guide for information about
using the SQL Tuning Advisor and transporting SQL tuning sets

»  Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_SQLTUNE package

Creating SQL Plan Baselines Using APIs

Creating SQL plan baselines for regressed SQL statements with plan changes is
another option to running the SQL Tuning Advisor. Doing so instructs the optimizer
to use the original execution plans for these SQL statements in the future.

To create SQL plan baselines for the original plans, first create a subset of a SQL tuning
set of only the regressed SQL statements. Next, create SQL plan baselines for this
subset of SQL statements by loading their plans using the LOAD_PLANS_FROM_
SQLSET function of the DBMS_SPM package, as shown in the following example:

DECLARE
my_plans PLS_INTEGER;
BEGIN
my_plans := DBMS_SPM.LOAD_PLANS_FROM_SQLSET (
sqglset_name => 'regressed_sql');
END;
/

See Also:

»  Oracle Database Performance Tuning Guide for information about
using SQL plan baselines

»  Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_SPM package

Using SQL Performance Analyzer Views

You can query the following views to monitor SQL Performance Analyzer and view
its analysis results:

Note: The information available in these views are also contained in
the SQL Performance Analyzer report. It is recommended that you
use the SQL Performance Analyzer report to view analysis results
instead. Consider using these views only for performing more
advanced analysis of the results.

s The DBA_ADVISOR_TASKS and USER_ADVISOR_TASKS views display
descriptive information about the SQL Performance Analyzer task that was
created.

s The DBA_ADVISOR_EXECUTIONS and USER_ADVISOR_EXECUTIONS views
display information about task executions. SQL Performance Analyzer creates at
least three executions to analyze the SQL performance impact caused by a
database change on a SQL workload. The first execution collects a pre-change
version of the performance data. The second execution collects a post-change

Comparing SQL Trials 11-25



Comparing SQL Trials Using APIs

version of the performance data. The third execution performs the comparison
analysis.

s The DBA_ADVISOR_FINDINGS and USER_ADVISOR_FINDINGS views display
the SQL Performance Analyzer findings. SQL Performance Analyzer generates the
following types of findings:

- Problems, such as performance regression
- Symptoms, such as when the structure of an execution plan has changed
-  Errors, such as nonexistence of an object or view

- Informative messages, such as when the structure of an execution plan in the
pre-change version is different than the one stored in the SQL tuning set

» The DBA_ADVISOR_SQLPLANS and USER_ADVISOR_SQLPLANS views display a
list of all execution plans.

» The DBA_ADVISOR_SQLSTATS and USER_ADVISOR_SQLSTATS views display a
list of all SQL compilations and execution statistics.

s The V$ADVISOR_PROGRESS view displays the operation progress of SQL
Performance Analyzer. Use this view to monitor how many SQL statements have
completed or are awaiting execution in a SQL trial. The SOFAR column indicates
the number of SQL statements processed so far, and the TOTAL WORK column
shows the total number of SQL statements to be processed by the task execution.

You must have the SELECT_CATALOG_ROLE role to access the DBA views.

See Also:

»  Oracle Database Reference for information about the DBA_
ADVISOR_TASKS, DBA_ADVISOR_EXECUTIONS, and DBA_
ADVISOR_SQLPLANS views

11-26 Oracle Database Real Application Testing User's Guide



12

Testing a Database Upgrade

SQL Performance Analyzer supports testing database upgrades from Oracle9i and
later releases to Oracle Database 10g Release 2 or newer releases. The methodology
used to test a database upgrade from Oracle9i Database and Oracle Database 10g
Release 1 is slightly different from the one used to test a database upgrade from Oracle
Database 10g Release 2 and later releases, so both methodologies are described here.

This chapter describes how to use SQL Performance Analyzer in a database upgrade
and contains the following sections:

s Upgrading from Oracle9i Database and Oracle Database 10g Release 1
»  Upgrading from Oracle Database 10g Release 2 and Newer Releases
s Tuning Regressed SQL Statements After Testing a Database Upgrade

Note: For information about using SQL Performance Analyzer in
other cases, see "SQL Performance Analyzer" on page 1-2

Upgrading from Oracle9i Database and Oracle Database 10g Release 1

As illustrated in Figure 12-1, SQL Performance Analyzer supports testing database
upgrades of Oracle9i Database and Oracle Database 10g Release 1 to Oracle Database
10g Release 2 and later releases by building a SQL tuning set from SQL trace files
captured on the production system, executing the SQL tuning set on the upgraded
database remotely over a database link, and then comparing the results to those
captured on the production system. Because SQL Performance Analyzer only accepts a
set of SQL statements stored in a SQL tuning set as its input source, and SQL tuning
sets are not supported in Oracle9i Database, a SQL tuning set must be constructed so
that it can be used as an input source for SQL Performance Analyzer if you are
upgrading from Oracle9i Database.

Testing a Database Upgrade 12-1



Upgrading from Oracle9i Database and Oracle Database 10g Release 1

Figure 12-1 SQL Performance Analyzer Workflow for Database Upgrade from Oracle9i
to Oracle Database 10g Release 2

Oracle9i Database -
Production

2

— |-} SQL Trace
—| (subset of sessions)
Remote Test-execute

Build 8TS (db link)

Mapping
Table

U
-

ol
{SOL} o—>
«+ 55 {Flan + Stats}
) Oracle Database
Compare Perf, View Report 10.2.0.2 or higher - Test

The production system which you are upgrading from should be running Oracle9i or
Oracle Database 10g Release 1. The test system which you are upgrading to should be
running Oracle Database 10g Release 2 or a newer release. The database version can be
release 10.2.0.2 or higher. If you are upgrading to Oracle Database 10g release 10.2.0.2,
10.2.0.3, or 10.2.0.4, you will also need to install a one-off patch before proceeding.

To ensure that the analysis made by SQL Performance Analyzer is accurate, the test
system should resemble the production system as closely as possible because the
performance on both systems will be compared to each other. Furthermore, the
hardware configurations on both systems should also be as similar as possible.

Next, you will need to set up a separate SQL Performance Analyzer system running
Oracle Database 11g Release 2. You will be using this system to build a SQL tuning set
and to run SQL Performance Analyzer. Neither your production data or schema need
to be available on this system, since the SQL tuning set will be built using statistics
stored in the SQL trace files from the production system. SQL Performance Analyzer
tasks will be executed remotely on the test system to generate the execution plan and
statistics for the SQL trial over a database link that you specify. The database link must
be a public database link that connects to a user with the EXECUTE privilege for the
DBMS_SQLPA package and the ADVISOR privilege on the test system. You should also
drop any existing PLAN_TABLE from the user’s schema on the test system.

Once the upgrade environment is configured as described, perform the steps as
described in the following procedure to use SQL Performance Analyzer in a database
upgrade from Oracle9i or Oracle Database 10g Release 1 to a newer release.

1. Enable the SQL Trace facility on the production system, as described in "Enabling
SQL Trace on the Production System" on page 12-3.

To minimize the performance impact on the production system and still be able to
fully capture a representative set of SQL statements, consider enabling SQL Trace
for only a subset of the sessions, for as long as required, to capture all important
SQL statements at least once.

12-2 Oracle Database Real Application Testing User's Guide



Upgrading from Oracle9i Database and Oracle Database 10g Release 1

On the production system, create a mapping table, as described in "Creating a
Mapping Table" on page 12-4.

This mapping table will be used to convert the user and object identifier numbers
in the SQL trace files to their string equivalents.

Move the SQL trace files and the mapping table from the production system to the
SQL Performance Analyzer system, as described in "Creating a Mapping Table" on
page 12-4.

On the SQL Performance Analyzer system, construct a SQL tuning set using the
SQL trace files, as described in "Building a SQL Tuning Set" on page 12-4.

The SQL tuning set will contain the SQL statements captured in the SQL trace
files, along with their relevant execution context and statistics.

On the SQL Performance Analyzer system, use SQL Performance Analyzer to
create a SQL Performance Analyzer task and convert the contents in the SQL
tuning set into a pre-upgrade SQL trial that will be used as a baseline for
comparison, then remotely test execute the SQL statements on the test system over
a database link to build a post-upgrade SQL trial, as described in "Testing
Database Upgrades from Oracle9i Database and Oracle Database 10g Release 1" on
page 12-6.

Compare SQL performance and fix regressed SQL.

SQL Performance Analyzer compares the performance of SQL statements read
from the SQL tuning set during the pre-upgrade SQL trial to those captured from
the remote test execution during the post-upgrade SQL trial. A report is produced
to identify any changes in execution plans or performance of the SQL statements.

If the report reveals any regressed SQL statements, you can make further changes
to fix the regressed SQL, as described in "Tuning Regressed SQL Statements After
Testing a Database Upgrade" on page 12-15.

Repeat the process of executing the SQL tuning set and comparing its performance
to a previous execution to test any changes made until you are satisfied with the
outcome of the analysis.

Enabling SQL Trace on the Production System

Oracle9i uses the SQL Trace facility to collect performance data on individual SQL
statements. The information generated by SQL Trace is stored in SQL trace files. SQL
Performance Analyzer consumes the following information from these files:

SQL text and username under which parse occurred
Bind values for each execution

CPU and elapsed times

Physical reads and logical reads

Number of rows processed

Execution plan for each SQL statement (only captured if the cursor for the SQL
statement is closed)

Although it is possible to enable SQL Trace for an instance, it is recommended that
you enable SQL Trace for a subset of sessions instead. When the SQL Trace facility is
enabled for an instance, performance statistics for all SQL statements executed in the
instance are stored into SQL trace files. Using SQL Trace in this way can have a severe
performance impact and may result in increased system overhead, excessive CPU

Testing a Database Upgrade 12-3



Upgrading from Oracle9i Database and Oracle Database 10g Release 1

usage, and inadequate disk space. It is required that trace level be set to 4 to capture
bind values, along with the execution plans.

For production systems running Oracle Database 10g Release 1, use the DBMS_
MONITOR.SESSION_TRACE_ENABLE procedure to enable SQL Trace transparently
in another session. You should also enable binds explicitly by setting the binds
procedure parameter to TRUE (its default value is FALSE).

After enabling SQL Trace, identify the SQL trace files containing statistics for a
representative set of SQL statements that you want to use with SQL Performance
Analyzer. You can then copy the SQL trace files to the SQL Performance Analyzer
system. Once the SQL workload is captured in the SQL trace files, disable SQL Trace
on the production system.

See Also:

»  Oracle Database Performance Tuning Guide for additional
considerations when using SQL Trace, such as setting
initialization parameters to manage SQL trace files

»  Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_MONITOR package

Creating a Mapping Table

To convert the user and object identifier numbers stored in the SQL trace files to their
respective names, you need to provide a table that specifies each mapping. The SQL
Performance Analyzer system will read this mapping table when converting the trace
files into a SQL tuning set.

To create a mapping table, run the following SQL statements on the production
database:

CREATE TABLE mapping AS

SELECT object_id id, owner, SUBSTR(object_name, 1, 30) name FROM dba_objects

WHERE object_type NOT IN ('CONSUMER GROUP', 'EVALUATION CONTEXT', 'FUNCTION',
'INDEXTYPE', 'JAVA CLASS', 'JAVA DATA’,
'JAVA RESOURCE', 'LIBRARY', 'LOB’, ’'OPERATOR’,
'PACKAGE', 'PACKAGE BODY', 'PROCEDURE’, 'QUEUE’,
'RESOURCE PLAN', ’SYNONYM’, 'TRIGGER', 'TYPE',
'TYPE BODY')

UNION ALL

SELECT user_id id, username owner, null name FROM dba_users;

Once the mapping table is created, you can use Data Pump to transport it to the SQL
Performance Analyzer system.

See Also:

s Oracle Database Ultilities for information about using Data Pump

Building a SQL Tuning Set

Once the SQL trace files and mapping table are moved to the SQL Performance
Analyzer system, you can build a SQL tuning set using the DBMS_SQLTUNE package.

To build a SQL tuning set:
1. Copy the SQL trace files to a directory on the SQL Performance Analyzer system.

2. Create a directory object for this directory.

12-4 Oracle Database Real Application Testing User's Guide



Upgrading from Oracle9i Database and Oracle Database 10g Release 1

3. Use the DBMS_SQLTUNE.SELECT_SQL_TRACE function to read the SQL
statements from the SQL trace files.

For each SQL statement, only information for a single execution is collected. The
execution frequency of each SQL statement is not captured. Therefore, when
performing a comparison analysis for a production system running Oracle
Database 10g Release 1 and older releases, you should ignore the workload-level
statistics in the SQL Performance Analyzer report and only evaluate performance
changes on an execution level.

The following example reads the contents of SQL trace files stored in the sgl_
trace_prod directory object and loads them into a SQL tuning set.

DECLARE

cur sys_refcursor;

BEGIN

DBMS_SQLTUNE.CREATE_SQLSET (‘my_sts_9i’) ;

OPEN cur FOR

SELECT VALUE (P)

FROM table (DBMS_SQLTUNE.SELECT SQL_TRACE('sqgl_trace_prod', ’‘%ora%’)) P;
DBMS_SQLTUNE.LOAD_SQLSET (‘my_sts_9i’, cur);

CLOSE cur;
END;
/

The syntax for the SELECT_SQL_TRACE function is as follows:

DBMS_SQLTUNE. SELECT_SQL_TRACE (

directory

file_name
mapping_table_name
mapping_table_owner
select_mode

options
pattern_start
parttern_end
result_limit

IN VARCHAR2,

IN VARCHAR2 := NULL,

IN VARCHAR2 := NULL,

IN VARCHAR2 := NULL,

IN POSITIVE := SINGLE_EXECUTION,

IN BINARY_INTEGER := LIMITED_COMMAND_TYPE,
IN VARCHAR2 := NULL,

IN VARCHAR2 := NULL,

IN POSITIVE := NULL)

RETURN sys.sqlset PIPELINED;

Table 12-1 describes the available parameters for the SELECT_SQL_TRACE function.

Table 12-1 DBMS_SQLTUNE.SELECT_SQL_TRACE Function Parameters

Parameter

Description

directory

file_name

mapping_ table_name

mapping_table_owner

Specifies the directory object pointing to the directory where the
SQL trace files are stored.

Specifies all or part of the name of the SQL trace files to process.
If unspecified, the current or most recent trace file in the
specified directory will be used. % wildcards are supported for
matching trace file names.

Specifies the name of the mapping table. If set to the default
value of NULL, mappings from the current database will be used.
Note that the mapping table name is not case-sensitive.

Specifies the schema where the mapping table resides. If set to
NULL, the current schema will be used.

Testing a Database Upgrade 12-5



Upgrading from Oracle9i Database and Oracle Database 10g Release 1

Table 12-1 (Cont.) DBMS_SQLTUNE.SELECT_SQL_TRACE Function Parameters

Parameter Description

select_mode Specifies the mode for selecting SQL statements from the trace
files. The default value is SINGLE_EXECUTION. In this mode,
only statistics for a single execution per SQL statement will be
loaded into the SQL tuning set. The statistics are not cumulative,
as is the case with other SQL tuning set data source table
functions.

options Specifies the options for the operation. The default value is
LIMITED_COMMAND_TYPE, only SQL types that are meaningful
to SQL Performance Analyzer (such as SELECT, INSERT,
UPDATE, and DELETE) are returned from the SQL trace files.

pattern_start Specifies the opening delimiting pattern of the trace file sections
to consider. This parameter is currently not used.

pattern_end Specifies the closing delimiting pattern of the trace file sections
to process. This parameter is currently not used.

result_limit Specifies the top SQL from the (filtered) source. The default
value is MAXSBA4.

See Also:

»  Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_SQLTUNE package

Testing Database Upgrades from Oracle9i Database and Oracle Database 10g Release 1

Once the SQL tuning set is built, you can use SQL Performance Analyzer to build a
pre-upgrade SQL trial from the execution plans and run-time statistics in the SQL
tuning set. After the pre-upgrade SQL trial is built, you need to perform a test execute
or generate plans of SQL statements in the SQL tuning set on the test system to build a
post-upgrade SQL trial. SQL Performance Analyzer test executes the SQL statements
using a public database link that you specify by connecting to the test system remotely
and generating the execution plans and statistics for the SQL trial. The database link
should exist on the SQL Performance Analyzer system and connect to a remote user
with privileges to execute the SQL tuning set on the test system.

You can run SQL Performance Analyzer to test a database upgrade from Oracle9i
Database or Oracle Database 10g Release 1 using Oracle Enterprise Manager or APlIs,
as described in the following sections:

s Testing Database Upgrades from Oracle9i Database and Oracle Database 10g
Release 1 Using Enterprise Manager

s Testing Database Upgrades from Oracle9i Database and Oracle Database 10g
Release 1 Using APIs

Testing Database Upgrades from Oracle9i Database and Oracle Database 10g
Release 1 Using Enterprise Manager

To test a database upgrade from Oracle9i Database or Oracle Database 10g Release 1
using SQL Performance Analyzer:

1. On the Software and Support page, under Real Application Testing, click SQL
Performance Analyzer.

The SQL Performance Analyzer page appears.
2. Under SQL Performance Analyzer Workflows, click Upgrade from 9i or 10.1.

12-6 Oracle Database Real Application Testing User's Guide



Upgrading from Oracle9i Database and Oracle Database 10g Release 1

The Upgrade from 9i or 10.1 page appears.

Upgrade from 9i or 10.1

Task Information

# SQL Tuning Set 1,5?

Pre-upgrade Trial
Creation Method Build From 5QL Tuning Set

Post-upgrade Trial

Per-SQL Time Limit | 5 minutes |

Trial Comparison

Comparison Metric | Elapsed Time v
Schedule

Time Zone | America/Los_Angeles v

@ Immediately
O Later

* Task Mame

Creation Method | Execute SQls v

= Database Link ,,;? Create Database Link )

Description

@ TIP Time limit is on elapsed time of test execution of SQL

& TIP Provide a PUBLIC database link connecting to a remate
user with privileges to execute the Tuning Set SQL

Jun 3. 2009

(example: Jun 3, 2005

Time |6 » |43 # |00 *| @ aM OPM

Date

Under Task Information:

C.

In the Task Name field, enter the name of the task.

In the SQL Tuning Set field, enter the name of the SQL tuning set that was
built.

Alternatively, click the search icon to search for the SQL tuning set using the
Search and Select: SQL Tuning Set window.

The selected SQL tuning set now appears in the SQL Tuning Set field.

In the Description field, optionally enter a description of the task.

In the Creation Method field, select:

Execute SQLs to generate both execution plans and statistics for each SQL
statement in the SQL tuning set by actually running the SQL statements
remotely on the test system over a public database link.

Generate Plans to create execution plans remotely on the test system over a
public database link without actually running the SQL statements.

In the Per-SQL Time Limit list, determine the time limit for SQL execution during
the trial by performing one of the following actions:

Select 5 minutes.

Testing a Database Upgrade 12-7



Upgrading from Oracle9i Database and Oracle Database 10g Release 1

10.

The execution will run each SQL statement in the SQL tuning set up to 5
minutes and gather performance data.

m  Select Unlimited.

The execution will run each SQL statement in the SQL tuning set to
completion and gather performance data. Collecting execution statistics
provides greater accuracy in the performance analysis but takes a longer time.
Using this setting is not recommended because the task may be stalled by one
SQL statement for a prolonged time period.

= Select Customize and enter the specified number of seconds, minutes, or
hours.

In the Database Link field, enter the global name of a public database link
connecting to a user with the EXECUTE privilege for the DBMS_SQLPA package
and the ADVISOR privilege on the test system.

Alternatively, click the search icon to search for and select a database link, or click
Create Database Link to create a database link using the Create Database Link

page.
In the Comparison Metric list, select the comparison metric to use for the
comparison analysis:

— Elapsed Time

- CPUTime

— UserI/O Time

— Buffer Gets

— Physical I/O

— Optimizer Cost

- 1/O Interconnect Bytes

Optimizer Cost is the only comparison metric available if you generated execution
plans only in the SQL trials.

To perform the comparison analysis by using more than one comparison metric,
perform separate comparison analyses by repeating this procedure with different
metrics.

Under Schedule:
a. In the Time Zone list, select your time zone code.

b. Select Immediately to start the task now, or Later to schedule the task to start
at a time specified using the Date and Time fields.

Click Submit.
The SQL Performance Analyzer page appears.

In the SQL Performance Analyzer Tasks section, the status of this task is
displayed. To refresh the status icon, click Refresh. After the task completes, the
Status field changes to Completed.

Under SQL Performance Analyzer Tasks, select the task and click the link in the
Name column.

The SQL Performance Analyzer Task page appears.

This page contains the following sections:

12-8 Oracle Database Real Application Testing User's Guide



Upgrading from Oracle9i Database and Oracle Database 10g Release 1

s SQL Tuning Set

This section summarizes information about the SQL tuning set, including its
name, owner, description, and the number of SQL statements it contains.

s SQL Trials

This section includes a table that lists the SQL trials used in the SQL
Performance Analyzer task.

s SQL Trial Comparisons
This section contains a table that lists the results of the SQL trial comparisons
11. Click the icon in the Comparison Report column.
The SQL Performance Analyzer Task Result page appears.

12. Review the results of the performance analysis, as described in "Reviewing the
SQL Performance Analyzer Report Using Oracle Enterprise Manager" on
page 11-3.

If regressed SQL statements are found following the database upgrade, tune them
as described in "Tuning Regressed SQL Statements After Testing a Database
Upgrade" on page 12-15.

Testing Database Upgrades from Oracle9i Database and Oracle Database 10g
Release 1 Using APIs

After creating a SQL Performance Analyzer task on the SQL Performance Analyzer
system, you can use APIs to build the pre-upgrade SQL trial from the execution plans
and run-time statistics in the SQL tuning set. To do so, call the EXECUTE_ANALYSIS_
TASK procedure using the following parameters:

= Set the task_name parameter to the name of the SQL Performance Analyzer task
that you want to execute.

»  Set the execution_type parameter to CONVERT SQLSET to direct SQL
Performance Analyzer to treat the statistics in the SQL tuning set as a trial
execution.

»  Specify a name to identify the execution using the execution_name parameter.
If not specified, then SQL Performance Analyzer automatically generates a name
for the task execution.

The following example executes the SQL Performance Analyzer task named my_spa_
task as a trial execution:

EXEC DBMS_SQLPA.EXECUTE_ANALYSIS_TASK(task _name => 'my_spa_task',6 -
execution_type => 'CONVERT SQLSET', -
execution_name => 'my_trial_9i');

To build the post-upgrade SQL trial using APIs, perform an explain plan or test
execute using the SQL Performance Analyzer system by calling the EXECUTE_
ANALYSIS_TASK procedure. Set the DATABASE_LINK task parameter to the global
name of a public database link connecting to a user with the EXECUTE privilege for the
DBMS_SQLPA package and the ADVISOR privilege on the test system.

If you choose to use EXPLAIN PLAN, only execution plans will be generated.
Subsequent comparisons will only be able to yield a list of changed plans without
making any conclusions about performance changes. If you choose to use TEST
EXECUTE, the SQL workload will be executed to completion. This effectively builds
the post-upgrade SQL trial using the statistics and execution plans generated from the

Testing a Database Upgrade 12-9



Upgrading from Oracle Database 10g Release 2 and Newer Releases

test system. Using TEST EXECUTE is recommended to capture the SQL execution
plans and performance data at the source, thereby resulting in a more accurate
analysis.

The following example performs a test execute of the SQL statements remotely over a
database link:

EXEC DBMS_SQLPA.EXECUTE_ANALYSIS_TASK (task_name => 'my_spa_task', -
execution_type => 'TEST EXECUTE', -
execution_name => 'my_remote_trial_10g', -
execution_params => dbms_advisor.arglist (’database_link’,
'LINK.A.B.C.BIZ.COM'));

Upgrading from Oracle Database 10g Release 2 and Newer Releases

You can use SQL Performance Analyzer to test the impact on SQL response time of a
database upgrade from Oracle Database 10g Release 2 or a newer release to any later
release by capturing a SQL tuning set on the production system, then executing it
twice remotely over a database link on a test system—first to create a pre-change SQL
trial, then again to create a post-change SQL trial.

The production system which you are upgrading from should be running Oracle
Database 10g Release 2 or a newer release. Initially, the test system should also be
running the same release. To ensure that the analysis made by SQL Performance
Analyzer is accurate, the test system should contain an exact copy of the production
data found on the production system. Furthermore, the hardware configuration
should also be as similar to the production system as possible.

Next, you will need to set up a separate SQL Performance Analyzer system running
Oracle Database 11g Release 2. You will be using this system to run SQL Performance
Analyzer. Neither your production data or schema need to be available on this system,
since the SQL tuning set will be built using statistics stored in the SQL trace files from
the production system. SQL Performance Analyzer tasks will be executed remotely on
the test system to generate the execution plan and statistics for the SQL trial over a
database link that you specify. The database link must be a public database link that
connects to a user with the EXECUTE privilege for the DBMS_SQLPA package and the
ADVISOR privilege on the test system. You should also drop any existing PLAN_
TABLE from the user’s schema on the test system.

Once the upgrade environment is configured as described, perform the steps as
described in the following procedure to use SQL Performance Analyzer in a database
upgrade from Oracle Database 10g Release 2 or a newer release to any later release.

1. On the production system, capture the SQL workload that you intend to analyze
and store it in a SQL tuning set, as described in "Capturing the SQL Workload" on
page 7-3.

2. Set up the test system so that it matches the production environment as closely as
possible, as described in "Setting Up the Test System" on page 7-4.

3. Transport the SQL tuning set to the SQL Performance Analyzer system.
For information about transporting SQL tuning sets using:

s Oracle Enterprise Manager, see Oracle Database 2 Day + Performance Tuning
Guide

»  APIs, see Oracle Database Performance Tuning Guide

12-10 Oracle Database Real Application Testing User's Guide



Upgrading from Oracle Database 10g Release 2 and Newer Releases

4. On the SQL Performance Analyzer system, create a SQL Performance Analyzer
task using the SQL tuning set as its input source.

Remotely test execute the SQL statements in the SQL tuning set on the test system
over a database link to build a pre-upgrade SQL trial that will be used as a
baseline for comparison, as described in "Testing Database Upgrades from Oracle
Database 10g Release 2 and Newer Releases" on page 12-11.

5. Upgrade the test system.

6. Remotely test execute the SQL statements a second time on the upgraded test
system over a database link to build a post-upgrade SQL trial, as described in
"Testing Database Upgrades from Oracle Database 10g Release 2 and Newer
Releases" on page 12-11.

7. Compare SQL performance and fix regressed SQL.

SQL Performance Analyzer compares the performance of SQL statements read
from the SQL tuning set during the pre-upgrade SQL trial to those captured from
the remote test execution during the post-upgrade SQL trial. A report is produced
to identify any changes in execution plans or performance of the SQL statements.

If the report reveals any regressed SQL statements, you can make further changes
to fix the regressed SQL, as described in "Tuning Regressed SQL Statements After
Testing a Database Upgrade" on page 12-15.

Repeat the process of executing the SQL tuning set and comparing its performance
to a previous execution to test any changes made until you are satisfied with the
outcome of the analysis.

Testing Database Upgrades from Oracle Database 10g Release 2 and Newer Releases

Once the SQL tuning set is transported to the SQL Performance Analyzer system, you
can use SQL Performance Analyzer to build a pre-upgrade SQL trial by executing or
generating plans of SQL statements in the SQL tuning set on the test system. SQL
Performance Analyzer test executes the SQL statements using a database link that you
specify by connecting to the test system remotely and generating the execution plans
and statistics for the SQL trial. The database link should exist on the SQL Performance
Analyzer system and connect to a remote user with privileges to execute the SQL
tuning set on the test system.

After the pre-upgrade SQL trial is built, you need to upgrade the test system. Once the
database has been upgraded, SQL Performance Analyzer will need to execute or
generate plans of SQL statements in the SQL tuning set a second time on the upgraded
test system to build a post-upgrade SQL trial. Alternatively, if hardware resources are
available, you can use another upgraded test system to execute the second remote SQL
trial. This method can be useful in helping you investigate issues identified by SQL
Performance Analyzer.

You can run SQL Performance Analyzer to test a database upgrade from Oracle
Database 10g Release 2 or a newer release using Oracle Enterprise Manager or APlIs, as
described in the following sections:

s Testing Database Upgrades from Oracle Database 10g Release 2 and Newer
Releases Using Enterprise Manager

s Testing Database Upgrades from Oracle Database 10g Release 2 and Newer
Releases Using APIs

Testing a Database Upgrade 12-11



Upgrading from Oracle Database 10g Release 2 and Newer Releases

Testing Database Upgrades from Oracle Database 10g Release 2 and Newer
Releases Using Enterprise Manager

To test a database upgrade from Oracle Database 10g Release 2 or a newer release
using SQL Performance Analyzer:

1. On the Software and Support page, under Real Application Testing, click SQL
Performance Analyzer.

The SQL Performance Analyzer page appears.

2. Under SQL Performance Analyzer Workflows, click Upgrade from 10.2 or 11g.
The Upgrade from 10.2 or 11g page appears.

Upgrade from 10.2 or 11g

Task Information

* Task Mame

* SQL Tuning Set :,,5?

Description

Pre-upgrade Trial
Creation Method | Execute SQLs  +
Per-SQL Time Limit | 5 minutes | *
@ TIP Time limit is on elapsed time of test execution of SQL

* Database Link ,,5? Create Database Link )

@ TIP Provide a PUBLIC database link connecting to a remate
user with privileges to execute the Tuning Set SAL

Post-upgrade Trial

Use the same system as in the pre-upgrade trial

* Database Link

& TIP Same creation method and per-SQL time limit as in the pre-upgrade trial will be
applied

Trial Comparison

Comparison Metric | Elapsed Time W

Schedule

Time Zone | America/Los_Angeles |+

® Immediately
O Later

Date 1Jun 3. 2009

(example: Jun 3, 2009

Time |8 (29 %[00 ¥ ®AM OPM

3. Under Task Information:
a. In the Task Name field, enter the name of the task.

b. In the SQL Tuning Set field, enter the name of the SQL tuning set that was
built.

Alternatively, click the search icon to search for the SQL tuning set using the
Search and Select: SQL Tuning Set window.

The selected SQL tuning set now appears in the SQL Tuning Set field.

c. In the Description field, optionally enter a description of the task.

12-12 Oracle Database Real Application Testing User's Guide



Upgrading from Oracle Database 10g Release 2 and Newer Releases

In the Creation Method field, select:

= Execute SQLs to generate both execution plans and statistics for each SQL
statement in the SQL tuning set by actually running the SQL statements
remotely on the test system over a public database link.

= Generate Plans to create execution plans remotely on the test system over a
public database link without actually running the SQL statements.

In the Per-SQL Time Limit list, determine the time limit for SQL execution during
the trial by performing one of the following actions:

s Select 5 minutes.

The execution will run each SQL statement in the SQL tuning set up to 5
minutes and gather performance data.

s Select Unlimited.

The execution will run each SQL statement in the SQL tuning set to
completion and gather performance data. Collecting execution statistics
provides greater accuracy in the performance analysis but takes a longer time.
Using this setting is not recommended because the task may be stalled by one
SQL statement for a prolonged time period.

= Select Customize and enter the specified number of seconds, minutes, or
hours.

In the Database Link field, enter the global name of a public database link
connecting to a user with the EXECUTE privilege for the DBMS_SQLPA package
and the ADVISOR privilege on the pre-upgrade system.

Alternatively, click the search icon to search for and select a database link, or click
Create Database Link to create a database link using the Create Database Link

page.
Under Post-upgrade Trial:

a. Select Use the same system as in the pre-upgrade trial to use the same system
for executing both the pre-upgrade and post-upgrade trials.

Oracle recommends using this option to avoid possible errors due to different
system configurations. When using this option, you will need to upgrade the
test database to the higher database version before the post-upgrade trial is
executed.

b. In the Database Link field, enter the global name of a public database link
connecting to a user with the EXECUTE privilege for the DBMS_SQLPA package
and the ADVISOR privilege on the post-upgrade system.

In the Comparison Metric list, select the comparison metric to use for the
comparison analysis:

— Elapsed Time
- CPUTime

— UserI/O Time
— Buffer Gets

— Physical I/O

— Optimizer Cost

- 1/O Interconnect Bytes

Testing a Database Upgrade 12-13



Upgrading from Oracle Database 10g Release 2 and Newer Releases

10.

11.

12.

13.

Optimizer Cost is the only comparison metric available if you generated execution
plans only in the SQL trials.

To perform the comparison analysis by using more than one comparison metric,
perform separate comparison analyses by repeating this procedure with different
metrics.

Under Schedule:
a. In the Time Zone list, select your time zone code.

b. Select Immediately to start the task now, or Later to schedule the task to start
at a time specified using the Date and Time fields.

Click Submit.
The SQL Performance Analyzer page appears.

In the SQL Performance Analyzer Tasks section, the status of this task is
displayed. To refresh the status icon, click Refresh.

If you are using the same system to execute both the pre-upgrade and
post-upgrade trials, you will need to upgrade the database after the pre-upgrade
trial step is completed. After the database is upgraded, the post-upgrade trial can
be executed. After the task completes, the Status field changes to Completed.

Under SQL Performance Analyzer Tasks, select the task and click the link in the
Name column.

The SQL Performance Analyzer Task page appears.
This page contains the following sections:
s SQL Tuning Set

This section summarizes information about the SQL tuning set, including its
name, owner, description, and the number of SQL statements it contains.

s SQL Trials

This section includes a table that lists the SQL trials used in the SQL
Performance Analyzer task.

s SQL Trial Comparisons

This section contains a table that lists the results of the SQL trial comparisons
Click the icon in the Comparison Report column.
The SQL Performance Analyzer Task Result page appears.

Review the results of the performance analysis, as described in "Reviewing the
SQL Performance Analyzer Report Using Oracle Enterprise Manager" on
page 11-3.

If regressed SQL statements are found following the database upgrade, tune them
as described in "Tuning Regressed SQL Statements After Testing a Database
Upgrade" on page 12-15.

Testing Database Upgrades from Oracle Database 10g Release 2 and Newer
Releases Using APIs

After creating a SQL Performance Analyzer task on the SQL Performance Analyzer
system, you can use APIs to build the pre-upgrade SQL trial by performing an explain
plan or test execute of SQL statements in the SQL tuning set. To do so, call the
EXECUTE_ANALYSIS_TASK procedure using the following parameters:

12-14 Oracle Database Real Application Testing User's Guide



Tuning Regressed SQL Statements After Testing a Database Upgrade

= Set the task_name parameter to the name of the SQL Performance Analyzer task
that you want to execute.

m  Set the execution_type parameter to EXPLAIN PLAN or TEST EXECUTE.

If you choose to use EXPLAIN PLAN, only execution plans will be generated.
Subsequent comparisons will only be able to yield a list of changed plans without
making any conclusions about performance changes. If you choose to use TEST
EXECUTE, the SQL workload will be executed to completion. This effectively
builds the pre-upgrade SQL trial using the statistics and execution plans generated
from the test system. Using TEST EXECUTE is recommended to capture the SQL
execution plans and performance data at the source, thereby resulting in a more
accurate analysis.

= Specify a name to identify the execution using the execution_name parameter.
If not specified, then SQL Performance Analyzer automatically generates a name
for the task execution.

= Set the DATABASE_LINK task parameter to the global name of a public database
link connecting to a user with the EXECUTE privilege for the DBMS_SQLPA
package and the ADVISOR privilege on the test system.

The following example executes the SQL Performance Analyzer task named my_spa_
task and performs a test execute of the SQL statements remotely over a database link:

EXEC DBMS_SQLPA.EXECUTE_ANALYSIS_TASK (task name => 'my_spa_task', -
execution_type => 'TEST EXECUTE', -
execution_name => 'my_remote_trial_ 10g', -
execution_params => dbms_advisor.arglist (’database_link’,
'LINK.A.B.C.BIZ.COM'));

To build the post-upgrade SQL trial using APIs, perform an explain plan or test
execute using the SQL Performance Analyzer system by calling the EXECUTE_
ANALYSIS_TASK procedure with the DATABASE_LINK task parameter set to the
global name of a public database link connecting to a user with the EXECUTE privilege
for the DBMS_SQLPA package and the ADVISOR privilege on the test system. If you
choose to use EXPLAIN PLAN, only execution plans will be generated. Subsequent
comparisons will only be able to yield a list of changed plans without making any
conclusions about performance changes. If you choose to use TEST EXECUTE, the
SQL workload will be executed to completion. This effectively builds the post-upgrade
SQL trial using the statistics and execution plans generated from the test system.
Using TEST EXECUTE is recommended to capture the SQL execution plans and
performance data at the source, thereby resulting in a more accurate analysis.

The following example performs a test execute of the SQL statements remotely over a
database link:

EXEC DBMS_SQLPA.EXECUTE_ANALYSIS_TASK (task name => 'my_spa_task', -
execution_type => 'TEST EXECUTE', -
execution_name => 'my_remote_trial_ 1lg', -
execution_params => dbms_advisor.arglist (’database_link’,
'LINK.A.B.C.BIZ.COM'));

Tuning Regressed SQL Statements After Testing a Database Upgrade

In some cases, SQL Performance Analyzer may identify SQL statements whose
performance regressed after you upgrade the database on the test system.

Testing a Database Upgrade 12-15



Tuning Regressed SQL Statements After Testing a Database Upgrade

You can tune the regressed SQL statements by using the SQL Tuning Advisor or SQL
plan baselines, as described in Chapter 11, "Comparing SQL Trials". This involves
using APIs to build a subset of a SQL tuning set with only the regressed SQL
statements, transport this subset of regressed SQL statements to the remote database,
and running the SQL Tuning Advisor on the remote database. Oracle Enterprise
Manager does not provide support for fixing regressions after running SQL
Performance Analyzer involving one or more remote SQL trials. For more
information, see "Tuning Regressed SQL Statements From a Remote SQL Trial Using
APIs" on page 11-23.

If you are upgrading from Oracle Database 10g Release 2 and newer releases, you can
also create SQL plan baselines to instruct the optimizer to select existing execution
plans in the future. For more information, see "Creating SQL Plan Baselines Using
APIs" on page 11-25.

12-16 Oracle Database Real Application Testing User's Guide



D

Database Replay
about, 1-1
methodology, 2-1
reporting, 2-3
usage, 1-2
using, 2-1
workflow, 2-1
workload capture, 2-2,3-1
workload preprocessing, 2-3
workload replay, 2-3
database version
production system, 12-2,12-10
system running SQL Performance Analyzer,
12-10
test system, 12-2,12-10

E

EXECUTE_ANALYSIS_TASK procedure, 12-9,
12-14, 12-15

M

mapping table
about, 12-4
creating, 12-3,12-4
moving, 12-3,12-4

R

regressed SQL

tuning, 11-7,11-21,12-3,12-11
replay filter set

about, 5-4

S

SELECT_SQL_TRACE function
parameters, 12-5
syntax, 12-5
using, 12-5
SQL performance
comparing, 12-3,12-11
SQL Performance Analyzer
about, 1-2

IndeXx

comparing SQL performance, 11-9
creating a task, 8-11
executing the SQL workload, 9-3
executing the SQL workload after a change, 10-3
following guided workflow, 8-10
initial environment
establishing, 9-1
input source, 12-1
making a change, 10-1
methodology, 7-1
monitoring, 11-25
performance data
collecting post-change version, 10-1
collecting pre-change version, 9-1
comparing, 11-1
remote test execution, 12-6, 12-11
setting up the test system, 7-4
SQL Performance Analyzer report
general information, 11-4,11-11
global statistics, 11-5
global statistics details, 11-6
result details, 11-14
result summary, 11-12
reviewing, 11-3,11-11
SQL tuning set
selecting, 7-5, 8-1
SQL workload
capturing, 7-3
executing, 7-5
transporting, 7-4
system change
making, 10-1
task
creating, 12-3,12-11
usage, 1-2
using, 7-1
workflow, 7-1
Exadata simulation, 8-6
guided, 8-9
parameter change, 8-2

SQL statements

regressed, 1-2

SQL Trace

about, 12-3
enabling, 12-2,12-3
trace level, 12-4

Index-1



SQL trace files
about, 12-3
moving, 12-3,12-4
SQL trial
about, 7-5,7-6
building
post-upgrade version, 12-3,12-6,12-11
pre-upgrade version, 12-3,12-9,12-11,12-14
SQL tuning set
about, 7-3
building, 12-4
constructing, 12-3
converting, 12-3
using APIs, 12-9

U

upgrade environment, 12-2,12-10

w

workload capture
about, 2-2
capture directory, 3-3
capture files, 2-2
options, 3-2
prerequisites, 3-1
restarting the database, 3-2
restrictions, 3-3
workload filters, 3-3
workload filters
about, 3-3,5-4
exclusion filters, 3-3,5-4
inclusion filters, 3-3,5-4
workload preprocessing
about, 2-3
workload replay
about, 2-3
replay client, 2-3
workload filters, 5-4

Index-2



	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction to Oracle Real Application Testing
	Database Replay
	SQL Performance Analyzer

	Part I Database Replay
	2 Introduction to Database Replay
	Workload Capture
	Workload Preprocessing
	Workload Replay
	Analysis and Reporting

	3 Capturing a Database Workload
	Prerequisites for Capturing a Database Workload
	Workload Capture Options
	Restarting the Database
	Using Filters with Workload Capture
	Setting Up the Capture Directory

	Workload Capture Restrictions
	Enabling and Disabling the Workload Capture Feature
	Capturing a Database Workload Using Enterprise Manager
	Monitoring Workload Capture Using Enterprise Manager
	Monitoring an Active Workload Capture
	Stopping an Active Workload Capture
	Managing a Completed Workload Capture

	Capturing a Database Workload Using APIs
	Defining Workload Capture Filters
	Starting a Workload Capture
	Stopping a Workload Capture
	Exporting AWR Data for Workload Capture

	Monitoring Workload Capture Using Views

	4 Preprocessing a Database Workload
	Preprocessing a Database Workload Using Enterprise Manager
	Preprocessing a Database Workload Using APIs

	5 Replaying a Database Workload
	Setting Up the Test System
	Restoring the Database
	Resetting the System Time

	Steps for Replaying a Database Workload
	Setting Up the Replay Directory
	Resolving References to External Systems
	Remapping Connections
	Specifying Replay Options
	Preserving COMMIT Order
	Controlling Session Connection Rate
	Controlling Request Rate Within a Session

	Using Filters with Workload Replay
	Setting Up Replay Clients
	Calibrating Replay Clients
	Starting Replay Clients
	Displaying Host Information


	Replaying a Database Workload Using Enterprise Manager
	Monitoring Workload Replay Using Enterprise Manager
	Monitoring an Active Workload Replay
	Viewing a Completed Workload Replay

	Replaying a Database Workload Using APIs
	Initializing Replay Data
	Connection Remapping
	Setting Workload Replay Options
	Defining Workload Replay Filters and Replay Filter Sets
	Adding Workload Replay Filters
	Deleting Workload Replay Filters
	Creating a Replay Filter Set
	Using a Replay Filter Set

	Starting a Workload Replay
	Pausing a Workload Replay
	Resuming a Workload Replay
	Cancelling a Workload Replay
	Exporting AWR Data for Workload Replay

	Monitoring Workload Replay Using APIs
	Retrieving Information About Diverged Calls
	Monitoring Workload Replay Using Views


	6 Analyzing Replayed Workload
	Using Workload Capture Reports
	Generating Workload Capture Reports Using Enterprise Manager
	Generating Workload Capture Reports Using APIs
	Reviewing Workload Capture Reports

	Using Workload Replay Reports
	Generating Workload Replay Reports Using Enterprise Manager
	Generating Workload Replay Reports Using APIs
	Reviewing Workload Replay Reports

	Using Replay Compare Period Reports
	Generating Replay Compare Period Reports Using Enterprise Manager
	Generating Replay Compare Period Reports Using APIs
	Reviewing Replay Compare Period Reports

	Using SQL Performance Analyzer to Compare SQL Tuning Sets

	Part II SQL Performance Analyzer
	7 Introduction to SQL Performance Analyzer
	Capturing the SQL Workload
	Setting Up the Test System
	Creating a SQL Performance Analyzer Task
	Measuring the Pre-Change SQL Performance
	Making a System Change
	Measuring the Post-Change SQL Performance
	Comparing Performance Measurements
	Fixing Regressed SQL Statements

	8 Creating an Analysis Task
	Creating an Analysis Task Using Enterprise Manager
	Using the Parameter Change Workflow
	Using the Exadata Simulation Workflow
	Using the Guided Workflow

	Creating an Analysis Task Using APIs
	Running the Exadata Simulation Using APIs


	9 Creating a Pre-Change SQL Trial
	Creating a Pre-Change SQL Trial Using Enterprise Manager
	Creating a Pre-Change SQL Trial Using APIs

	10 Creating a Post-Change SQL Trial
	Creating a Post-Change SQL Trial Using Oracle Enterprise Manager
	Creating a Post-Change SQL Trial Using APIs

	11 Comparing SQL Trials
	Comparing SQL Trials Using Oracle Enterprise Manager
	Analyzing SQL Performance Using Oracle Enterprise Manager
	Reviewing the SQL Performance Analyzer Report Using Oracle Enterprise Manager
	Reviewing the SQL Performance Analyzer Report: General Information
	Reviewing the SQL Performance Analyzer Report: Global Statistics
	Reviewing the SQL Performance Analyzer Report: Global Statistics Details

	Tuning Regressed SQL Statements Using Oracle Enterprise Manager
	Creating SQL Plan Baselines
	Running SQL Tuning Advisor


	Comparing SQL Trials Using APIs
	Analyzing SQL Performance Using APIs
	Reviewing the SQL Performance Analyzer Report Using APIs
	General Information
	Result Summary
	Overall Performance Statistics
	Performance Statistics of SQL Statements
	Errors

	Result Details
	SQL Details
	Execution Statistics
	Execution Plans


	Comparing SQL Tuning Sets Using APIs
	Tuning Regressed SQL Statements Using APIs
	Tuning Regressed SQL Statements From a Remote SQL Trial Using APIs
	Creating SQL Plan Baselines Using APIs
	Using SQL Performance Analyzer Views


	12 Testing a Database Upgrade
	Upgrading from Oracle9i Database and Oracle Database 10g Release 1
	Enabling SQL Trace on the Production System
	Creating a Mapping Table
	Building a SQL Tuning Set
	Testing Database Upgrades from Oracle9i Database and Oracle Database 10g Release 1
	Testing Database Upgrades from Oracle9i Database and Oracle Database 10g Release 1 Using Enterprise Manager
	Testing Database Upgrades from Oracle9i Database and Oracle Database 10g Release 1 Using APIs


	Upgrading from Oracle Database 10g Release 2 and Newer Releases
	Testing Database Upgrades from Oracle Database 10g Release 2 and Newer Releases
	Testing Database Upgrades from Oracle Database 10g Release 2 and Newer Releases Using Enterprise Manager
	Testing Database Upgrades from Oracle Database 10g Release 2 and Newer Releases Using APIs


	Tuning Regressed SQL Statements After Testing a Database Upgrade

	Index
	D
	E
	M
	R
	S
	U
	W


