ORACLE

Oracle® Database
Data Warehousing Guide

11gRelease 2 (11.2)
E10810-02

August 2009

Oracle Database Data Warehousing Guide, 11g Release 2 (11.2)
E10810-02

Copyright © 2001, 2009, Oracle and/ or its affiliates. All rights reserved.
Primary Author: Paul Lane

Contributing Author: ~ Viv Schupmann (Change Data Capture)

Contributor: ~Patrick Amor, Hermann Baer, Mark Bauer, Subhransu Basu, Srikanth Bellamkonda, Randy
Bello, Paula Bingham, Tolga Bozkaya, Lucy Burgess, Donna Carver, Rushan Chen, Benoit Dageville, John
Haydu, Lilian Hobbs, Hakan Jakobsson, George Lumpkin, Alex Melidis, Valarie Moore, Cetin Ozbutun,
Ananth Raghavan, Jack Raitto, Ray Roccaforte, Sankar Subramanian, Gregory Smith, Margaret Taft, Murali
Thiyagarajan, Ashish Thusoo, Thomas Tong, Mark Van de Wiel, Jean-Francois Verrier, Gary Vincent,
Andreas Walter, Andy Witkowski, Min Xiao, Tsae-Feng Yu

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Contents

PUOIACE ... et s et s e e XiX
AN S Lo T VLT ORRTRRRRRRT XiX
Documentation AcCesSSIDILityccccciiiiiiiiiiiiiiiiii e XiX
Related DOCUITIEIESveevieieeiecieeeeeeeetee ettt et e et e e ete e eaaeeaeesaaeeseesseseseesneseseeesesenseensesensseseeans XX
(@03 4N T£=3 115 o) 0 I RTR TR RTRRN XX

What's New in Oracle DatabasS@? ... een XXi
Oracle Database 11g Release 2 (11.2) New Features in Data Warehousing...........c.ccccccoeeininnan. XXi
Oracle Database 11g Release 1 (11.1) New Features in Data Warehousing............ccccccccoecccenee. Xxii

Part | Concepts

1 Data Warehousing Concepts

What is a Data Warehouse?ccccouriiiiininiiiiniieitnreeetee ettt 1-1
SUDJECt OFIENEEA. ...t 1-2
INtEGIAted ... 1-2
INONVOLATILE ...ttt et s 1-2
TIMeE VATIANT «..ooviiiiie s 1-2
Contrasting OLTP and Data Warehousing Environmentsccccooovieiiioineeicciccecne, 1-2

Data Warehouse ArChiteCtUresocoeccoiririiiiiniiiiieiiiiece ettt 1-3
Data Warehouse Architecture: Basic..........coooviiiiiiiiiiniiiiiiiic, 1-4
Data Warehouse Architecture: with a Staging Areacccooooeeiiiiiiiiiiiccc 1-4
Data Warehouse Architecture: with a Staging Area and Data Martsccccooevviieeinicnnnn, 1-5

Extracting Information from a Data Warehouse ..o 1-6
OLAP ... 1-6

Full Integration of Multidimensional Technologycccccoiiiiiiiiiiiiiiiiciiens 1-6
Ease of Application Development...........cccccoeiiiiiiiiiiiiiiiiiiieee e 1-6
Ease of Administration..........cccooviiiiiiiiiiiiii s 1-7
SECUTILY ..t 1-7
Unmatched Performance and Scalabilitycooeviiiiriiiiiiiiii 1-7
Reduced COStS ... 1-7
Querying Dimensional ObjJects.........cccccciiiiiiiiiiiiiiiiiiiiiicccc e 1-8
Efficient Storage and Uniform Availability of Summary Data........cccccocoeueeniiiiiicniiccinnen 1-8
Tools for Creating and Managing Dimensional Objects.........c.ccccouorriiiiiiieiiiiicicie 1-8
Data MININEoovevieiiiiiic s 1-8

Oracle Data Mining FUNctionalityc.cccoeiiiiiiiiiiniiiccccecs 1-9
Oracle Data Mining INterfaces ... 1-9

Partll Logical Design

2 Logical Design in Data Warehouses

Logical Versus Physical Design in Data Warehouses................cccccccooiiiniiinninii, 2-1
Creating a Logical DeSign...........ccoiuiiiiiiiiiiiiiiiic e 2-2
Data Warehousing SChemas..............ccooiiiiiiiiiiiii e 2-2
STAT SCHEMAS ... 2-3
Other Data Warehousing SChemas..........c.cccccuicuiiiiiiiiieinicrceeeeeeeeee e 2-3
Data Warehousing ODbjects............cccccooviiiiiiiiiiiiii 2-3
Data Warehousing Objects: Fact Tables...........coooiiiiiiiii e, 2-4
Requirements of Fact Tables..........cccccociiiiiiiiiiiiiccceeceeeee e 2-4

Data Warehousing Objects: Dimension Tables.............cccoocoiiiieiiiiiiiic 2-4
HiErarchiesccovviiiiiiiiiiiiiic s 2-4

Typical Dimension HIerarchy ... 2-5

Data Warehousing Objects: Unique Identifiers ..., 2-5
Data Warehousing Objects: Relationshipscccooueiiiiiiiiiii 2-5
Example of Data Warehousing Objects and Their Relationshipscccccoeeueecicicniiennes 2-5

Part Il Physical Design

3 Physical Design in Data Warehouses

Moving from Logical to Physical Designcccccccoviviiiiiiniiiiiiiies 3-1
Physical D@SINoouiiiiiiiii e 3-1
Physical Design STIUCIUIESccoiiiuiiiiiiiiiiiiiic s 3-2
TADIESPACES ... 3-2
Tables and Partitioned Tablesccieierieiiniiiieiecieeetee ettt ae s e s saensesseennas 3-3
Table COMPTESSIONcovviiiiriiiicirc s 3-3

VB S .o eiietteitiettete et et st e e st et e et e e e st e st e estesse e st e sseansesseanseeseenseaseenseaseenseeneenseeneenseentenseensensaensenseenseneenes 3-3
Integrity CONSEIAINtS.......ceviviiiiiiiiiiiciccc s 3-4
Indexes and Partitioned INAEXES..........cvecuiiiiiiiiiieiiieecieetecteee ettt ettt e v aeeaeennas 3-4
MaAtErialiZEA VIEWSeovveeieiiciieiieiieiietecetet ettt ettt e s e b e s essessesaeseaseaseesassessessessessassassesessensens 3-4
DIIMNIEINISIONS ...ttt ettt ettt et site st e st e s teesat e s be e beesabeesseesasesssaesssesabaesssannseensaesssesnsaenn 3-4

4 Hardware and I/O Considerations in Data Warehouses

Overview of Hardware and I/0O Considerations in Data Warehousescccccccceeiinnnnn 4-1
Configure I/0O for Bandwidth not Capacitycccoeeuvieiiiiniiiniicc 4-1
Stripe Far and WIdecccciiiiiiiiiiccccce e 4-2
Use REAUNAANCY ...ocvviiiiiiicei ettt 4-2
Test the I/O System Before Building the Database............cccocooooeiiiiiiiiiniie 4-2
Plan fOr GIOWth......cocviiiiiiici s 4-3

Storage Managementooooiiiiiiiii s 4-3

5 Partitioning in Data Warehouses

6 Indexes

Using Bitmap Indexes in Data Warehouses..............cccccoovviiiiiiininnin, 6-1
Benefits for Data Warehousing Applicationsc.coccceecciiiiiiiiecceececceeeeneeenenenes 6-2
CardiNality ..ocecveieiieciee e 6-2
How to Determine Candidates for Using a Bitmap IndeX..........c.cccoooreiiiriiiiiccinine, 6-4

Bitmap Indexes and NULLS.........ccccviiiiiiiiircr e 6-4
Bitmap Indexes on Partitioned Tables ..o, 6-5
Using Bitmap Join Indexes in Data Warehouses.............c.ccoeuoiieioiiiiiiiicccc 6-5
Four Join Models for Bitmap Join INAeXesc.cccoceuiiiiiiiiiiiiicicccccceecereeeeenas 6-5

Bitmap Join Index Restrictions and Requirementscccooviiiiiiiinniniiiiiiennns 6-7

Using B-Tree Indexes in Data Warehouses................ccccooviviiinininii s 6-7
Using Index COMPIESSIONcccuiviiiiiiiiiiiiiiic e 6-8
Choosing Between Local Indexes and Global Indexes...............cccocooeueiviniiiiiniiniicciien 6-8

7 Integrity Constraints

Why Integrity Constraints are Useful in a Data Warehouse ..., 7-1
Overview of Constraint States..............ccccooiiiiiiii 7-2
Typical Data Warehouse Integrity Constraints.............ccccccooovniiiinin 7-2
UNIQUE Constraints in a Data WarehousSe...........cccvevvieieniieeenieiese ettt 7-2
FOREIGN KEY Constraints in a Data Warehouse..............cccccovviiiinniiiiiiiins 7-3
RELY CONSIAINES ...cviviiiiiiiiiiiiicc s 7-4
NOT NULL CONSLIAINES ..ottt 7-4
Integrity Constraints and Parallelism ..o 7-5
Integrity Constraints and Partitioning...........cccoeeevirrnrnnnnnncnr e 7-5
VieW CONSLIAINES ...t 7-5

8 Basic Materialized Views

Overview of Data Warehousing with Materialized Views.............ccccocoviiiiniiiiiiniiin, 8-1
Materialized Views for Data Warehouses.............ccccccccuiuiiiiiiiiiiiiiiiiiiiicccccccccceeas 8-2
Materialized Views for Distributed COmMPULINGccceueuimiuiiiiiiiiiiiecciceeececeeeeeeeenes 8-2
Materialized Views for Mobile COMPUINGcoovuriiiiiiiiiiii e 8-2
The Need for MaterialiZzed VIEWS.......ccccivivieiiiinnieiciiictcccireeeteee et 8-2
Components of Summary Management...........c.ccccccueucueueueiiiueeiieeeieeeereneeeeeeeeneseneseseeeneaenenes 8-3
Data Warehousing TerminolOgyccccouiueieiiiicieieiiciciecte e 8-5
Materialized View Schema Design..........ccccocuiiiiiiiiiiiiiiiiniiiiiiiicircsss e 8-5
Schemas and Dimension Tables ..o 8-6
Materialized View Schema Design Guidelinescocooevoiiiieiiiiiiiciiece 8-6
Loading Data into Data Warehousesccccoiiiiiiiiiiiiiiiiiccccceeeeeeeeenas 8-7
Overview of Materialized View Management Taskscccocoeuvvrnnnninnnnnnnnecccceae, 8-8
Types of Materialized VIeWscccccoviiiiiiiiiiiii 8-8
Materialized Views with Aggregates............ccccccceiiiiiiiiiiiiiiiiiiiiii e 8-9
Requirements for Using Materialized Views with Aggregatesccccccccecervicunnnne. 8-11
Materialized Views Containing Only JOINS........cocouieiiiiiiiiciiiiicec e 8-11
Materialized Join Views FROM Clause Considerationsccceceeveeeeeeeereeeenreereesveenenn. 8-12

vi

Nested MaterialiZed VICWS.......oovi ittt e e s saae s saae s eenneeeennees 8-12

Why Use Nested Materialized VIEWS?cccouoiiiiiiiiiiiiicccc 8-12
Nesting Materialized Views with Joins and Aggregatesc.cccccccoevvvinnnnrnrnencnes 8-13

Nested Materialized View Usage Guidelines...........cccoooieieiiiiiiiiiiic 8-14
Restrictions When Using Nested Materialized Views..........cccccovvvniiiiinnninnnnnn, 8-14
Creating Materialized VIeWsccccoviiiiiiiiiiii s 8-14
Creating Materialized Views with Column Alias Lists.........cccooeoiiiiiiiiiiii 8-15
Naming Materialized VIEWS.......cccoouiiiiiiiii e 8-16
Storage And Table COMPIESSIONc.c.cuiuiuiuiiiiiiiiiieiiiciciccieiee et 8-16
Build Methodsc.ovoiiiiiiiiiiiic s 8-17
Enabling Query ReWTite.........coooriiiiii 8-17
Query Rewrite ReStrictions........cccccvviiiiiiiiiiiiiiiicc s 8-17
Materialized View ReStrictions.........ccciiiiiiiiiiiiiiiiiiiiciciciccccc s 8-18
General Query Rewrite Restrictions...........oooocueieioiiiiiiiiicc 8-18
Refresh OPHONScvvuiiiiicicccee et 8-18
General Restrictions on Fast Refresh...........ccccoiiiiiiic 8-20
Restrictions on Fast Refresh on Materialized Views with Joins Only..........c..ccccooeii. 8-20
Restrictions on Fast Refresh on Materialized Views with Aggregatesc.ccccccceueeee. 8-21
Restrictions on Fast Refresh on Materialized Views with UNION ALL 8-22
Achieving Refresh Goals...........cooouiiiiiiiii 8-23
Refreshing Nested Materialized VIEWSccccccciuiiiiiiiiiiiiiccccceceeccces 8-23
ORDER BY ClaUSE......cocviiiviiiiiiiiiiiiiiiiiiicece s 8-23
Materialized VIEW LOZScccoviiiriiieiiii e 8-24
Using the FORCE Option with Materialized View LOgsccccoeoiiiiiiiiicciiccnen 8-25
Materialized View Log PUIZING.........coooiiiiiiiiiiiiic 8-25

Using Oracle Enterprise Managercocococueieiiiicieinicicieeecie i 8-25
Using Materialized Views with NLS Parameters..........cccoooeevininininiiiniinincciiccccccecnenes 8-25
Adding Comments to Materialized VIEWs.........ccccoeiiiiiiiiiiiiiiics 8-26
Registering Existing Materialized VIeWs...........ccccccooiiiiiiiiiicca 8-26
Choosing Indexes for Materialized VieWs............ccccocooiiiiiiiiiniii 8-28
Dropping Materialized VIEWS ... 8-28
Analyzing Materialized View Capabilitiescccccocovviiiniiiiniic 8-28
Using the DBMS_MVIEW.EXPLAIN_MVIEW Procedureccccccccccuiuiennincninnenene 8-29
DBMS_MVIEW .EXPLAIN_MVIEW Declarationsc.ccccoceviininiinnininiinniniieninns 8-29

Using MV_CAPABILITIES_TABLEccccooviiiiicniccertcetsece e 8-29
MV_CAPABILITIES_TABLE.CAPABILITY_NAME Detailsccccoceovvvirriniinniniinnes 8-31
MV_CAPABILITIES_TABLE Column Details.........cccccocouiiiniinniiniiiicns 8-33

Advanced Materialized Views

Partitioning and Materialized VIieWscccooooiiiii 9-1
Partition Change Tracking............cccoceiiiiiiiiiiii e 9-1
Partition Key ..o s 9-2

Join Dependent EXPIeSssion ... 9-3
Partition IMATKETcoviivieiieecteceecte ettt ettt ettt et et beeaeeebeerb e beessenbeessenseeseenns 9-4

Partial REWTITE ...cuvevievieeieiieiietieiesie sttt ettt sttt e s e s e b esaesaeseeseesassessessessessessessasenseasens 9-5
Partitioning a Materialized VIEW ... 9-5
Partitioning a Prebuilt Table...........cccoiiiiiiiiiiiiiiicccce e 9-5

10

Benefits of Partitioning a Materialized VIewccccocoviviiiininnniii, 9-6

Rolling Materialized VIEWScccoiiimiiiii e 9-6
Materialized Views in Analytic Processing Environmentsccccccoovvniiinniinnicnnnn, 9-7
CUDES ..o 9-7
Benefits of Partitioning Materialized VIEWSccoooiiiiiiiiiiii e, 9-7
Compressing Materialized VIEWS........ccccccciuiiiiiiiiiiiicccce e 9-8
Materialized Views with Set Operators..........ccooviiiiiiiiiiice 9-8
Examples of Materialized Views Using UNION ALL...........cccooooiiiiiiiiiciceee 9-8
Materialized Views and Modelsccoooiiiiiiiiniiii 9-9
Invalidating Materialized VIEWScccooiiiiiiiiiiiicc e 9-10
Security Issues with Materialized VIeWS ..o 9-11
Querying Materialized Views with Virtual Private Database (VPD).........cccccccccvuerivninnnene. 9-11
Using Query Rewrite with Virtual Private Databaseccoooooiioiiiiiiii 9-11
Restrictions with Materialized Views and Virtual Private Database...........cccccccceuevnnenn. 9-12
Altering Materialized VIeWS..........ccccocooiiiiiiiiniiii s 9-12
Dimensions

What are Dimensions?............cccccooviiioiiiiiiiii s 10-1
Creating DImenSioNns ...t 10-3
Dropping and Creating Attributes with Columns............ccooooii, 10-6
Multiple HIErarchi@sccococeucuiuiiiiiiiiieciecieieieictee et seees 10-7
Using Normalized Dimension Tables...........ccccooiiiii e, 10-8
Viewing Dimensions...........cocooiiiiiiiiiicc s 10-8
Using Oracle Enterprise Managercccccceeiieiiieiieeeieieieeeeeieeeseneseeeseseseseseseseseessennes 10-8
Using the DESCRIBE_DIMENSION Procedure.cccooveiieiiiiininiciiiiieeeeeeeeeeeenenens 10-9
Using Dimensions with Constraintscccocoviiiniiiiiis 10-9
Validating DIimensions ..o 10-10
Altering DIMeNSIONScccovvviiiiiiiiiii s 10-10
Deleting DImenSions............cccooviiiiiiiiiiiii e 10-11

Part IV Managing the Data Warehouse Environment

1

12

Overview of Extraction, Transformation, and Loading
Overview of ETL in Data WareOUSESoooouiiiiiiiieeee ettt eeaae e seavesseseeesanesenneas 11-1
ETL Basics in Data WarehouSIng.........cccoceuiuiiiiiiiiicececeeeeeeee e 11-1
) DD u = Tein (o) a W e) i D =Y - LSRR 11-1
Transportation of Data...........ccccccciiiiiiiiiiii s 11-2
ETL Too0ls for Data War€ROUSESccvoeioviiieeeeeeeeeeee et eae e enaeeeeeneeeeennees 11-2
Daily Operations in Data Warehouses. ..o 11-2
Evolution of the Data WarChOUSE.........ooouviiieeiiieeeeeeeeee ettt eat e e s e e e saeesennees 11-2

Extraction in Data Warehouses

Overview of Extraction in Data WarehOUSeSc..ooovuviiiieieiieieeeeeeeeeeee ettt ete e s 12-1
Introduction to Extraction Methods in Data Warehouses..........c..ccooovvvevviiieciiieceeeeceeeeeee e, 12-2
Logical Extraction Methods ... 12-2
FULL EXETACTION «.vveeieeieeeeee ettt ettt ettt st e et e seaaeeesaaeeeeaseesssaeesaaeeessnneesenseessnseessnns 12-2

vii

INncremental EXTTACHIONoovviieieiiceee ettt et e e e e s eaaee s sraaessnneeeenes 12-2

Physical Extraction Methodsc.ooiiiiiiiii 12-2
Online EXtractionccuiueviiiiiiiiiicicicicteece s 12-3
Offline EXtractioncviuiiiiiiiiiiiiiiiiciccic s 12-3

Change Data Captureccouiiririic e 12-3
TIMESTAINPS ... e 12-4
Partitioningcocoeiiiiiiiiii s 12-4
TTIGEOIS oottt s 12-4

Data Warehousing Extraction Examples.............ccccocooiiiniiiniiiic 12-5

Extraction Using Data Filesc.cccoiiiiiiii 12-5
Extracting into Flat Files Using SQL*PIUSccoooeiiiiiiiiiiicceci e 12-5
Extracting into Flat Files Using OCI or Pro*C Programs...........cccccceeuevvveencnvnnecnenenes 12-7
Exporting into Export Files Using the Export Utilityccccooiiiiiiiii 12-7
Extracting into Export Files Using External Tablescccccooriiiii 12-7

Extraction Through Distributed Operations............cccccceueuvvirrviriiinrneirrreeeeeeeeeeeeeenes 12-8

13 Transportation in Data Warehouses

Overview of Transportation in Data Warehousesccccccceeeveineeneeneneinccnccnececnneeene 13-1
Introduction to Transportation Mechanisms in Data Warehouses................ccccccniiiinninnne 13-1
Transportation Using Flat Files...........cccooiiiiiiiiii 13-1
Transportation Through Distributed Operations..........c.cccccccuveeueieurieeiiccnreeeeeeeeeeeeeees 13-2
Transportation Using Transportable Tablespaces...........cccoveiiiiiiiiiiiiiiiiiiicieccceeenen, 13-2
Transportable Tablespaces Example...........ccooiiiiiiiiiiiiii 13-2

Other Uses of Transportable TableSpacesccccoceceuieiieiiicieiecceeecceeereneenenens 13-4

14 Loading and Transformation

Overview of Loading and Transformation in Data Warehouses................ccccccccovniiinnnnnn 14-1
Transformation FIOW ... 14-1
Multistage Data Transformationcocoocrioioiiiiciicce s 14-1
Pipelined Data Transformationcccccoceeeiiiiieniiieicineeceeeeeee e 14-2
Loading MechaniSms.............cciiiiiiiiiiiii e 14-3
Loading a Data Warehouse with SQL*Loader...........cccooveueiniiiiinicieiceccce e 14-3
Loading a Data Warehouse with External Tablesccccccccovviiiininiiniiiicrceceene 14-4
Loading a Data Warehouse with OCI and Direct-Path APIsccccoooiiiiiiiii, 14-5
Loading a Data Warehouse with Export/Import.........ccccooevoiiiiiiiiiiccc, 14-5
Transformation MechaniSms ..o 14-5
Transforming Data Using SQL..........cccooiriiiiiiiiiiic e 14-5
CREATE TABLE ... AS SELECT And INSERT /*+APPEND*/ AS SELECT 14-6
Transforming Data Using UPDATE..........cccccccoiiiiiiiiiceeceeeeeeeeeeeeeeeeeeeeees 14-6
Transforming Data Using MERGE...........cccooiiiiiiiii s 14-7
Transforming Data Using Multitable INSERTccccooooiiiiminnicecce 14-7
Transforming Data Using PL/SQLccccccoiiiiiiiiiiiiiiceeceeeeeeneeeneeeienene s 14-9
Transforming Data Using Table FUNCHONSccccoeviiiiiiiiiiiiiiii 14-9
What is @ Table FUNCHON? ...ttt 14-9

Error Logging and Handling MechanisSms..............ccccooiiiiiiiiniiiccces 14-15
Business Rule VIiolationscccciiiiiiiiiiiiii v 14-16
Data Rule Violations (Data EITors)coecveerieirieiinieirieirietrietnieteeteeeeiest st ee 14-16

viii

15

Handling Data Errors in PL/SQL........cccccoiviiiiiiiiiiiccs 14-16

Handling Data Errors with an Error Logging Table...........cccccoooiiiiiii 14-17
Loading and Transformation Scenarios............cccovviiiiiiiiiiiinniiies 14-18
Key LooKUP SCONATIO.iiveiiiiiciict s 14-18
Business Rule Violation SCeNArio.........ccovviiiiiiiiiiiiiiniiiiiiii e 14-19
Data EITor SCONATIOSovoviviiiiiiiiii st 14-20
PivOting SCENATIOSucveveiiiiicieieicecie ettt bbb 14-22
Maintaining the Data Warehouse

Using Partitioning to Improve Data Warehouse Refresh...............cccocooinniin 15-1
Refresh SCENATIOScccvviiiiiiiiiiiiiiiic s 15-4
Scenarios for Using Partitioning for Refreshing Data Warehouses...........cccccccovvevvrnnncnne. 15-5
Refresh Scenario L. 15-5
Refresh SCenario 2. 15-5
Optimizing DML Operations During Refresh...............cccccccoooin, 15-6
Implementing an Efficient MERGE Operationcccccocvieviiiininininiiiiccns 15-6
Maintaining Referential INtegritycccooruiioiiiiiiiiii 15-9
Purging Data ... s 15-9
Refreshing Materialized VIeWs...........ccccoooiiiiiiiiiic 15-10
Complete Refresh ... 15-11
Fast RefI@SNcoviiiiiic 15-11
Partition Change Tracking (PCT) Refresh ... 15-11
ON COMMIT RefIeshcuuiiiiiiiiiiciiiccie s 15-12
Manual Refresh Using the DBMS_MVIEW Package........cccccceeuvuvvivirinnnnirnneerceecne 15-12
Refresh Specific Materialized Views with REFRESHccccoooviviiininiiiii, 15-12
Refresh All Materialized Views with REFRESH_ALL_MVIEWS.........ccccccccoeinnnivnninnnn. 15-13
Refresh Dependent Materialized Views with REFRESH_DEPENDENTcccccccceeueneee. 15-14
Using Job Queues for Refreshccoooiiiiiiiii 15-14
When Fast Refresh is Possiblecccccoovviiiiiiiiiiica 15-15
Recommended Initialization Parameters for Parallelism...........ccccocovviviiiiiniininiiinnnnn, 15-15
Monitoring a Refresh...........oo s 15-15
Checking the Status of a Materialized VIew ..o, 15-15
Viewing Partition FreShness........c.ccooviiiiiiniiiiiiicccccccccccccceeenenenee 15-16
Scheduling Refreshocuoviiiiiiiiiii e 15-18
Tips for Refreshing Materialized Views with Aggregates............cccccoouviiiiiiiiiiiiccnne. 15-18
Tips for Refreshing Materialized Views Without Aggregatesc.cocovvvrnnnninncncncnne. 15-20
Tips for Refreshing Nested Materialized VIeWs........cccccovviiiiiiiiiiiiine, 15-21
Tips for Fast Refresh with UNION ALL.......ccccccoviiiiiiiniiiinciicccccccenas 15-22
Tips for Fast Refresh with Commit SCN-Based Materialized View Logs.........c.cccccevuruencee. 15-22
Tips After Refreshing Materialized VIEWScooouiuiiiiiiiiciiiiiiccc 15-23
Using Materialized Views with Partitioned Tables.............ccccocooiiiiiiiiiiicn, 15-23
Fast Refresh with Partition Change Trackingcccccccoceueneiinennnirrrrccrrreeeeeceeeaes 15-23
PCT Fast Refresh Scenario L. 15-23

PCT Fast Refresh SCenario 2..........cccccvieiininiiciiniieiineeeneeee et 15-25

PCT Fast Refresh Scenario 3. 15-25

Fast Refresh with CONSIDER FRESHcccccoviiiiiiiiiiiicis s 15-26

16 Change Data Capture

Overview of Change Data Capture...........ccccoiiiiiiiiiiiiiiic e 16-1
Capturing Change Data Without Change Data Capturec.cccccceeueueueuernnenrnerrereeene 16-1
Capturing Change Data with Change Data Capture.........c.ccccooooieiiiiiiiii 16-3
Publish and Subscribe Model............cccccooviiiiiiiiiiniiiiiiii 16-4

PUDLSRET ...t 16-4
SUDSCIIDETS ... s 16-6

Change Sources and Modes of Change Data Capture..............cccccooiiiiiiiiiiiiiiiecnes 16-8
Synchronous Change Data Capturec.c.ccccucueeiiiiiciieiiiicceeeeeeeee e 16-8
Asynchronous Change Data Capture ..o 16-9

Asynchronous HotLog Mode............oooiiiii s 16-9
Asynchronous Distributed HotLog Modecccccccciiiiiiiiiiicccccceeeeernes 16-10
Asynchronous AutoLog MOde ...t 16-11

CRANEGE SeLS ... 16-13
Valid Combinations of Change Sources and Change Sets...........cocccceurieniiiinciccnnccnne 16-14

Change Tables...........oiiiiiiii s 16-14

Getting Information About the Change Data Capture Environment...............cccocooeiiininn. 16-15

Preparing to Publish Change Dataccccoiiiiiiiies 16-16
Creating a User to Serve As a Publisher ... 16-17

Granting Privileges and Roles to the Publisher..............cccoooiii 16-17
Creating a Default Tablespace for the Publisher ... 16-17
Password Files and Setting the REMOTE_LOGIN_PASSWORDFILE Parameter 16-18
Determining the Mode in Which to Capture Data.........c.c.cooooiiiiiii 16-18
Setting Initialization Parameters for Change Data Capture Publishing...........cccccccevvecnce. 16-19
Initialization Parameters for Synchronous Publishing............ccccccoeoeiiniininiinicnnn 16-19
Initialization Parameters for Asynchronous HotLog Publishingcccccceeveininia 16-19
Initialization Parameters for Asynchronous Distributed HotLog Publishing.............. 16-20
Initialization Parameters for Asynchronous AutoLog Publishing...........cc..cccceeeeuinene. 16-22
Adjusting Initialization Parameter Values When Oracle Streams Values Change.............. 16-25
Tracking Changes to the CDC ENVIronmentcccccceevuveveririrnnnennnnrrnseeeesece e 16-25

Publishing Change Data.............ccooiiiiiiiii e 16-25
Performing Synchronous Publishing ... 16-25
Performing Asynchronous HotLog Publishing..........ccccoeeiiiiiiniiiniiiciiicccccccnes 16-28
Performing Asynchronous Distributed HotLog Publishing............ccccoooeiiiiniininninnnn. 16-31
Performing Asynchronous AutoLog Publishing............ccccccceiiiiiiiiiiiiiiiiicccccnes 16-37

Subscribing to Change Data ... 16-43

Managing Published Data..............ccccoooiiiiiiiiiii e 16-47
Managing Asynchronous Change SOUICeSccccoeviieieieiiiiniiiicc e 16-47

Enabling And Disabling Asynchronous Distributed HotLog Change Sources............ 16-47
Managing Asynchronous Change Sets ... 16-48
Creating Asynchronous Change Sets with Starting and Ending Dates......................... 16-48
Enabling and Disabling Asynchronous Change Setsc.ccccccceeenviennnnenrneenes 16-49
Stopping Capture on DDL for Asynchronous Change Sets.........c.cccooorueiiiiiiciiininnnen. 16-49
Recovering from Errors Returned on Asynchronous Change Setsccccoeveveeennene. 16-50
Managing Synchronous Change Sets............cccocccciiiiiiiiecicreeeeeeeeeee e 16-53
Enabling and Disabling Synchronous Change Sets............cccoooeuiiiiiiiiiciicc 16-53
Managing Change Tables............ccccceviiiiiiiiiiiiii e 16-53

Creating Change Tables............cccoooviiiiiiiiinii s 16-53

Understanding Change Table Control Columnsccccoeviiniiiiiicecccce 16-54
Understanding TARGET_COLMAP$ and SOURCE_COLMAPS$ Values..................... 16-56

Using Change Markers...........oouiiiiiiicieiiiicet s 16-58
Controlling Subscriber Access to Change Tables.............cccoooeiiiiiiiiiiiiie 16-59
Purging Change Tables of Unneeded Data...........cccoovnninninnnininiiiiccicccccccenenes 16-60
Dropping Change Tables..........coooiiiiii s 16-61
Exporting and Importing Change Data Capture Objects Using Oracle Data Pump 16-62
Restrictions on Using Oracle Data Pump with Change Data Capture...........c.ccceuucee. 16-62
Examples of Oracle Data Pump Export and Import Commandscccccevveveinininnnne. 16-63
Publisher Considerations for Exporting and Importing Change Tables....................... 16-63
Re-Creating AutoLog Change Data Capture Objects After an Import Operation....... 16-64

Impact on Subscriptions When the Publisher Makes Changes.............ccccccovviinnninninnne 16-65
Considerations for Synchronous Change Data Captureccocoooiiiiiiiiiiiiiiinnn. 16-65
Restriction on Direct-Path INSERT..........cccooviiiiiiiiiiiiiic e 16-65
Datatypes and Table Structures Supported for Synchronous Change Data Capture......... 16-66
Limitation on Restoring Source Tables from the Recycle Bin...........cccooviiiiiiiininnnnns 16-66
Considerations for Asynchronous Change Data Capture..............cccccocovviiiiiniiiinniiinns 16-66
Asynchronous Change Data Capture and Redo Log Filesccooceiiiiiiiiiiie, 16-67
Asynchronous Change Data Capture and Supplemental Loggingccccooeoreiniiricnne. 16-69
Asynchronous Change Data Capture and Oracle Streams Components............c.cccceereencee. 16-69
Datatypes and Table Structures Supported for Asynchronous Change Data Capture...... 16-70
Restrictions for NOLOGGING and UNRECOVERABLE Operationscccccocueveieirunen. 16-71
Implementation and System Configuration ... 16-71
Database Configuration Assistant Considerationsc.cooeeueveioiiicieiiciciecee 16-71
Summary of Supported Distributed HotLog Configurations and Restrictions................... 16-72
Oracle Database Releases for Source and Staging Databases..........c.ccccceevvvrrrrncnne. 16-72
Upgrading a Distributed HotLog Change Source to Oracle Release 11 (11.1 or 11.2). 16-72
Hardware Platforms and Operating Systems...........cccooiiieiiiiiicicicce 16-72
Requirements for Multiple Publishers on the Staging Databasecccccceevrurencnce. 16-73
Requirements for Database Links..........c.cccooviiiiiiiii 16-73

PartV Data Warehouse Performance

17 Basic Query Rewrite

Overview of Query ReWTite ..o 17-1
When Does Oracle Rewrite @ QUETY? ..o 17-2
Ensuring that Query Rewrite Takes Effect...............ccccooiiiini, 17-2
Initialization Parameters for Query Rewrite.........cccooviiiiiiiiiiiiiiii, 17-3
Controlling QUETY REWTILecoiiiiiiiiiiiiiicc s 17-3
Accuracy of QUETY REWTILEc.c.cuiuiiiiiiiiiiiiiicccccr s 17-3
Privileges for Enabling Query ReWTitecoooeiiiiiiiiiiii e, 17-4
Sample Schema and Materialized VIEWS.........cccccoooviiniiiiiiniicccc e 17-5
How to Verify Query Rewrite OCCUITEdcceuiuimiiimiuimiiiiiiieicicicceee e 17-6
Example of Query ReWTite ... 17-6

xi

18 Advanced Query Rewrite

How Oracle ReWTites QUETIESc.cciiuiiiiriiiiiiiieieiete ettt sttt sttt ese et eaeebeebesbeseeean 18-1
Cost-Based OptimIZationc.ccciuieiiuiiiiiiiciceeccceieeee e eeees 18-2
General Query Rewrite Methods ..., 18-3

When are Constraints and Dimensions Needed?ccooooiiii 18-3
Checks Made by QUery REWTIec.ccucuiiiiiiiiiiiiicccercc s 18-4
Join Compatibility ChecK..........ccooouiiiiiiiiiiiic e 18-4
Data Sufficiency Check ... 18-8
Grouping Compatibility Checkcccooiiiiiiiiiiccccre s 18-9
Aggregate Computability Check..........coooii 18-9
Query Rewrite Using DImMeNSIONS........cciiuiiiiiiiiiiciiiniciciieieieinsi e 18-9
Benefits of Using DIMeNSIONSc.cccccucueuiuriciiiiiiiiiiiciciciieeeeeeeeeeeee e eeeas 18-9
How to Define DImMeNSIONScceeuiviiiiiiiiiiiieiiiiinicccns s 18-10

Types of Query REWTIteccoiiiiiiiiiiiii e 18-11
Text Match REWTItE ...t 18-11
JOIN BACK ..ttt ettt b bbbttt ettt ebe b 18-12
Aggregate Computabilitycooouoiiiiii 18-14
AGEregate ROIIUP ...c.couiiiiiiciccce et 18-15
Rollup Using @ DIMeNSION........ccovviiiiiiiiiiiiiiiiiiiiciciccs s 18-16
When Materialized Views Have Only a Subset of Data.........c.ccccooeiiiiiie, 18-16

Query Rewrite Definitions.......c.ccooeueiiiiiiriririiiiiiccirer e 18-17
Selection Categories.........coviiiiiiieiiiiiiicii 18-17
Examples of Query Rewrite Selection...........cccooeuiiiiiiiiiiic 18-18
Handling of the HAVING Clause in Query Rewrite.........cccccccceciiiiniiinniiirnes 18-20
Query Rewrite When the Materialized View has an IN-Listcccooeiiiiinnnnn 18-21
Partition Change Tracking (PCT) ReWTite.......cccocooiiiiiiiiiiiiicc 18-21
PCT Rewrite Based on Range Partitioned Tablescccoovoiiiiniiiiiiciiiccnes 18-22
PCT Rewrite Based on Range-List Partitioned Tables...........cccccccovvvininninnnnnn 18-23
PCT Rewrite Based on List Partitioned Tables..........cccccoovviiiiiiiiiiiicns 18-25
PCT Rewrite and PMARKERccccooviiiiiiic s 18-28
PCT Rewrite Using Rowid as PMARKER..........cccoooiiiiiii 18-29
Multiple Materialized VIEWS.........ccccceviriiiiiiiniiiiiiiiiiiiiisc e 18-30

Other Query Rewrite Considerations ... 18-37
Query Rewrite Using Nested Materialized Views.........c.cccooiiiiiiiiiiiiie, 18-37
Query Rewrite in the Presence of Inline VIewscccccccvvviiiiiiinnnininccccea 18-38
Query Rewrite Using Remote Tables ..o 18-39
Query Rewrite in the Presence of Duplicate Tables............ccccoooiiiiiiiiiiniiic 18-40
Query Rewrite Using Date FOIdINg..........cccccoviiiviiniiiiiiiiniiiicccccccccne 18-41
Query Rewrite Using View CONSraintsccccoviiivininiiiiiiniiiiiiccneccnes 18-43

View Constraints RestriCtionsccccovvvviviiniiininiii e 18-44
Query Rewrite Using Set Operator Materialized VIeWsccccoovviiiiiiiiiniiicccene, 18-44
UNION ALL MATKETooviiiiiiiiiiiiiiiciccnsce s 18-46
Query Rewrite in the Presence of Grouping Sets..........ccoceuoiiiiiiiiciiiiccccc 18-47
Query Rewrite When Using GROUP BY Extensions..........c.cccocoeeuviviceieinicennincccnennnes 18-47
Hint for Queries with Extended GROUP BYc.cooeiviiiiieitieeeteceeereeeeeteeeeve e 18-51
Query Rewrite in the Presence of Window Functions...........cccceuoiiiiiiiiiiiiccic 18-51
Query Rewrite and Expression Matching ..o 18-51

Xii

Query Rewrite Using Partially Stale Materialized Views..........cccccooiiriiiiiiiiciiiinnnan 18-52

Cursor Sharing and Bind Variables.............ccccooiiii 18-54
Handling Expressions in QuUery REWTIte..........ccccocouvviiiiiriiiiiriccre s 18-55
Advanced Query Rewrite Using Equivalences ..o 18-56
Creating Result Cache Materialized Views with Equivalences...............ccccocooiiiinii, 18-58
Verifying that Query Rewrite has Occurred.............ccoviiiiiiiie, 18-60
Using EXPLAIN PLAN with Query ReWTite.......cooouoiiiiiiiiiiccc e, 18-60
Using the EXPLAIN_REWRITE Procedure with Query Rewriteccccccovvvivnininininnncnnn 18-61
DBMS_MVIEW.EXPLAIN_REWRITE Syntax........ccccccoeueuminimisinieinisiciicececeians 18-61

Using REWRITE_TABLEccoooiiiiiiiic s 18-62

USING @ VAITAY ...cooviiiiiiiiiiciieietct et 18-63
EXPLAIN_REWRITE Benefit StatiStiCS...ccoveeeerieieeeeeeeeeeeeeeeeeeeeeeeeeeeereeseeneeeseeeeessneeesennens 18-65
Support for Query Text Larger than 32KB in EXPLAIN_REWRITE............................. 18-65
EXPLAIN_REWRITE and Multiple Materialized Viewsc.ccccccooiiiiiiiiiiincnes 18-65
EXPLAIN_REWRITE OUEPUL.....coiviiiiiiiiiciicii s 18-66

Design Considerations for Improving Query Rewrite Capabilities............cccooovvriiiinnnn. 18-67
Query Rewrite Considerations: CONStraintscccoueerueieiiiiccieiicceeccec 18-67
Query Rewrite Considerations: DIMenSions...........coovuevverrerinirininineini e 18-67
Query Rewrite Considerations: Outer JOINS.cccccuiiiiieieiiiiciccc 18-68
Query Rewrite Considerations: Text Match...........cccoooiiii 18-68
Query Rewrite Considerations: AGEregatesccccccieevririiirireniniierreeeseseeeeeee s 18-68
Query Rewrite Considerations: Grouping Conditions..........cccceeiecieiiiiciciniiceecei 18-68
Query Rewrite Considerations: Expression Matching ... 18-68
Query Rewrite Considerations: Date FOIdINg..........ccccouvvviriininiiinininiiiiccccccccccccennes 18-69
Query Rewrite Considerations: Statisticscoeireieiiiiiiiiiiccc e, 18-69
Query Rewrite Considerations: HINtsccooeueiiiiiiiiiiiii 18-69
REWRITE and NOREWRITE Hintsc.cccoeiiiiiiiiiiiiiiieeici s 18-69
REWRITE_OR_ERROR HiNt....cooiuiiiieiiiciiciiiecc s 18-70
Multiple Materialized View Rewrite Hints.........ccccooovoiiiiiiiiii 18-70
EXPAND_GSET_TO_UNION Hintcovoiiiiiiiiiiiiiiiciiceci s 18-70

19 Schema Modeling Techniques

Schemas in Data War€hOuSesoocvveieiiiieiiiieeceeeeee ettt s e ene s ens 19-1
Third NOrmal FOIM........coociiiiiieieeicieceeesee ettt ettt e st sae s e eaessa e se e st essaessesseeseensesssensenses 19-1
Optimizing Third Normal Form QUETIEscccccceiuiiiiiiiiiniiniiiiiiiinnicnicccces 19-2

1] Tl o =] o4 TP 19-2
SNOWILAKE SCREIMASccuieiieiieiiceecie ettt ettt et e et e sre e b e s re e aesbeessesssessesseessesseessesssessensens 19-3
Optimizing Star QUETIes. ..o 19-4
TUNING Star QUETIEScvviviiiiiiiii s 19-4
Using Star Transformation ..o 19-4
Star Transformation with a Bitmap IndeX.........cccccceeuiiiiiiiiiiniiiiiicccce, 19-5
Execution Plan for a Star Transformation with a Bitmap Indexc.cccccecevvvvnnnncne. 19-6

Star Transformation with a Bitmap Join IndeX..........ccccceeiiiiiiniiiiiiiie 19-7
Execution Plan for a Star Transformation with a Bitmap Join Indexccccccoeevennnne 19-7

How Oracle Chooses to Use Star Transformationceceevevveieieenenesesieeeeeeeesnsnnens 19-8

Star Transformation REStIICtIONScccverirriiriieierieieceeeee et eee 19-8

xiii

20 SAQL for Aggregation in Data Warehouses

21

Xiv

Overview of SQL for Aggregation in Data Warehouses.................cccccooiiiiiiiiiiiiiiin, 20-1
Analyzing Across Multiple DIMeNSions.........c.cccoceueuiuiiiiiiciiieeeecceeeeeeeeeeeeeeeeeeeees 20-2
Optimized Performarnce ... 20-3
AN Aggregate SCENATIO.......cccoeueiiiiiiieiieiee s 20-4
Interpreting NULLS in EXamples.........ccocoiiiiiiiiiiiiciccceeeeeeeeeeeeeie e 20-4

ROLLUP Extension to GROUP BY ..o 20-5
When t0 Use ROLLUP.........cccoviiiiiiiiiiinise s 20-5
ROLLUP SYNEAX ..cuciiiiiiiiiiiiiiiiiiic s 20-5
Partial ROIIUPcoviuiiiiiiiiciciccc s 20-6

CUBE Extension to0 GROUP BYcccoiiiiiiiiiiicccc st 20-7
When to Use CUBEcooiiiiii s 20-7
CUBE SYNEAX ..ttt ettt 20-8
Partial CUBEccooiiiiiiic s 20-8
Calculating Subtotals Without CUBE ... 20-9

GROUPING FUNCHIOMS.coviiiiiiiniiiiciceic ettt sse s seaenas 20-10
GROUPING FUNCHOMN ...ttt 20-10
When to Use GROUPING.........cocouiiiiniiiiiiiesrs s 20-11
GROUPING_ID FUNCHON «.cevvieeeeee ettt eeae e et e e e eeaaesseaaessenaessennsessnresesseessnnes 20-12
GROUP_ID FUNCHOM ...t 20-13

GROUPING SETS EXPI@SSION.......coiuiiiiiiiiiiiiieiteeetetsteee ettt 20-13
GROUPING SETS SYIUAX .vvviririiiiniiiiiiiissscsssss s ssssssssssssssssssnes 20-14

Composite COIUMIS ... 20-15

Concatenated GIOUPINGSccccoiviiiiiiiiiiii e 20-17
Concatenated Groupings and Hierarchical Data Cubesc.cccooviiiiiiiiicniiie, 20-18

Considerations when Using Aggregationcccoociiiiiiiiiiiiicccccnas 20-20
Hierarchy Handling in ROLLUP and CUBEccccooiiiiiiiiiiiiicccccecccececenenes 20-20
Column Capacity in ROLLUP and CUBEcccooooiiiiicc i 20-21
HAVING Clause Used with GROUP BY EXtensions...........ccccccvvvivininininininninninniiinns 20-21
ORDER BY Clause Used with GROUP BY EXtensions..........cccccceevviiinriiinniiicceiincenennn, 20-21
Using Other Aggregate Functions with ROLLUP and CUBE..........c.ccccoiiiiiiiiie, 20-21

Computation Using the WITH Clause ... 20-21

Working with Hierarchical Cubes in SQL ..o 20-22
Specifying Hierarchical Cubes in SQL.........cccccoviiiiiiniiiiiiicns 20-22
Querying Hierarchical Cubes in SQL..........ccccoiiiiiiiiiiiiiiiicccccane 20-22

SQL for Creating Materialized Views to Store Hierarchical Cubescccccvvrenennce. 20-24
Examples of Hierarchical Cube Materialized Viewsccccocovviiiiinnnnnnnnnn, 20-24

SQL for Analysis and Reporting

Overview of SQL for Analysis and Reportingcccooeiiiiiiiiiiic 21-1
Ranking, Windowing, and Reporting Functions...................ccoooiiiiiin, 21-3
RANKING ...viiiiiiiii s 21-3
RANK and DENSE_RANK FUNCHONS ...ccouviiiiieeceieeeeee ettt esaes s saeessneeeenns 21-4

Bottom IN RanKINgcccoiiiiiiiiiiiiiiiiiiiiiccic s 21-8

CUME _DIST FUNCHON . ..ceiiieeeie ettt eeteeeeeseateeesesesseeeessssssseesssssssseesssssnseeesssssnres 21-8
PERCENT_RANK FUNCHOIcvoviiiiiiiiiiiiiiciicic s 21-9

NTILE FUNCEON.c..ciitiiiiiiiciicnenee ettt s s 21-9

ROW_NUMBER FUNCHOMN ...cvevtveiiiiieiiieiiieiitentieeece ettt sae e seene 21-10

WINAOWINE ..o 21-11
Treatment of NULLSs as Input to Window Functions.............cccoeoiioiiiiiinnincncenns 21-12
Windowing Functions with Logical Offset..........c.cccooiiiiie 21-12
Centered Aggregate FUNCHONcoooiiiiiiii 21-13
Windowing Aggregate Functions in the Presence of Duplicatesccccccceeueuiuennnne 21-14
Varying Window Size for Each ROW ..o 21-15
Windowing Aggregate Functions with Physical Offsetscccccoooiiiiiii 21-15

REPOTHING ..ot 21-16
RATIO_TO_REPORT FUNCHOMN. ..ot 21-17

LAG/LEAD. ...ttt 21-18
LAG/LEAD SYNEAX ...ovuriiiiiiiiiiiiiiiiiiise s 21-18

FIRST_VALUE, LAST_VALUE, and NTH_VALUE Functionscccecoecvuvuiivinninnnnnnnn. 21-19
FIRST_VALUE and LAST_VALUE Functionsccccceceevininiiiniiiiiiccnnes 21-20
NTH_VALUE FUNCHON ... octttiet ittt ettt e eeeaateeesessasseeessssssaesssssnsseesssssssessssssnnes 21-20

Advanced Aggregates for Analysis...........ccccocoeiiiiiiiiiiiii 21-21

LISTAGG FUNCHON ...t 21-22
LISTAGG as Ag@regate.......ccocouviiiiiiiiiiiiiiiicc s 21-22
LISTAGG as Reporting Aggregate.........cccoueueieieiiiiciiiiicie s 21-22

FIRST /LAST FUNCHONS ..ot 21-23
FIRST/LAST As Regular Ag@regatescooueiiiiiiiiiiciiiecceceieeneneeieneenenenes 21-23
FIRST/LAST As Reporting Aggregatescoceeirieieiiiiieieisccc s 21-24

Inverse Percentile ... 21-24
Normal Aggregate SYNTAXcccccceiuiiieiiiiiicireeeeeeeee s 21-25
Inverse Percentile Example Basisccccccovveiiiiiiiiiiiiiiiiii 21-25
As Reporting Aggregates. ...t 21-26
ReStIICHONS. ..ottt 21-27

Hypothetical RANK ..o 21-27

Linear RegIeSSION.......ccocouiiiiiiiiiiiiieiee s 21-29
REGR_COUNT FUNCHON c.cttvvieeeeeeeeiee ettt ettt eee ettt e eeseaaeeeessssnsaseessssnssseessssssnssesssssnes 21-29
REGR_AVGY and REGR_AVGX FUNCHONScoovviiiivieieeeeceeeeeeeeeeeee e 21-29
REGR_SLOPE and REGR_INTERCEPT FUnctions...........ccccoeuvininiiininiiniiiiicciicnnes 21-29
REGR_R2 FUNCHON . ttttieeeeeiiee ettt ettt ettt e e e e e eatteseessassteessssssaeesssssnnseesssssnssssessssnnes 21-29
REGR_SXX, REGR_SYY, and REGR_SXY FUNCHONSccovvvvveeeiieiiiieeeee e 21-29
Linear Regression Statistics EXamples..........cccccceciiiininiiiiinniiiiiniinnncnnneaes 21-30
Sample Linear Regression Calculationccccccceciiniiiiiniiniecccceeeesceees 21-30

Statistical AGEIregates ... 21-30
Descriptive StatistiCs.......oooiiiiiiiiiiiiccc e 21-31
Hypothesis Testing - Parametric TEStScccccoeueuiuiiiiiiiiniiiiiircccccreereeeeenes 21-31
Crosstab StatiStiCsccoviiiiiiiiiciiiii 21-31
Hypothesis Testing - Non-Parametric Testsccccoeriviiveieriiiicniiicceecceees 21-31
Non-Parametric Correlation..........ccoooueiiiiiiiiniiiic s 21-32

User-Defined Aggregates..........cooceiiiiiieiiiiiiiciieccie e 21-32

Pivoting Operations.............ccocoeiiiiiiiiiiii e 21-33

EXample: PIVOHNG ...c.ovuiiiiiiiiiiiccicrce st 21-33

Pivoting on Multiple COIUMNS.........c.coiiiiiiiic e 21-34

Pivoting: Multiple Ag@regatescccccoviiiiiviiiiiiininiiiiii e 21-34

XV

Distinguishing PIVOT-Generated Nulls from Nulls in Source Datacccooovirirnnnnnn. 21-35

Unpivoting Operationscccceuiieiiiiiiiiiii s 21-35
Wildcard and Subquery Pivoting with XML Operationsc.ccccccevcuecuceieierecieueiecrenennnne 21-36
Data Densification for Reporting.............cccocoovviiiiiiiccen 21-37
Partition JOIn SYNtaXccocciiiiiiiiiiiei 21-37
Sample Of SParse Data.......c.cccvueuiiiiiiiiriiiiicrecr e 21-38
FIlng Gaps in Data ..o 21-38
Filling Gaps in TWo DIMenSions..........ccocueiiieiiiiiicieceie e 21-39
Filling Gaps in an INventory Table ... 21-41
Computing Data Values to Fill Gapscccccocevuiiiiiiiiiiiiiiiiciicccccccs 21-42
Time Series Calculations on Densified Data..............ccoooooi 21-43
Period-to-Period Comparison for One Time Level: Exampleccccoeoiiiiiinciinncnne. 21-44
Period-to-Period Comparison for Multiple Time Levels: Example.........cccccccoovinininnnnnnn 21-45
Creating a Custom Member in a Dimension: Example..........ccccoooiii, 21-50
Miscellaneous Analysis and Reporting Capabilities............cccccooviiiniiie, 21-51
WIDTH_BUCKET FUNCHON.ciuiiiiiiiiiiiiiiiiincrscsesssss s 21-51
WIDTH_BUCKET SYNEAXiiiimiiiiiiiiiiiiiniiiiiciniicessie e ssecssssssssesessaenns 21-51

Linear ALGEDTIaccccccuiuiiiuiiiiiiieicieiciceee e 21-53
CASE EXPIESSIONSvuvviiiiiiiiiictciii et asaeni 21-55
Creating HiStOZIAIMScouiiiiiiiiiiiiiic s 21-56
Frequent ItemSetsccoviiiiiiiiiiii e 21-57

22 SQAL for Modeling

Overview of SQL Modeling ... 22-1
How Data is Processed in a SQL MOdElcc.ooveiirieiieieieceeie ettt eve e se e eenas 22-3
Why Use SQL MOELNEG? ... 22-3
SQL Modeling Capabilities..........cccoeeuiuiiuiiiiiiiiriiicireeerireereee e 22-4

Basic Topics in SQL Modeling ... s 22-7
BaASE SCREIMAc.viciiiiiciiieceee ettt ettt be e e sbeesa e be et e be e st e teerseereeraeereenaeereas 22-7
MODEL Clause SYNEAX......cucueueumimeieieieieieieieieieieieieeeieieiereseseeeeesesesesese e sesesesesesessaesesesesssssesesssseseses 22-8
Keywords in SQL MOAEINEcoviiiiiieiiii s 22-10

Assigning Values and Null Handling..........c.ccccccoeiiiiniiiiiniccnnecae 22-10
Calculation DefiNItioNccccveiriiriirieieieieieteteteese ettt e ese e s sessesbessessessessessessesens 22-10
Cell REfEIeNCINGcuviiieiicii e 22-11
Symbolic Dimension References.............cccccccoiiiriiiiiiiniiininiiiiiiininnncnnsceees 22-11
Positional Dimension REfereNCeSccceeveeveieieirinesiniesesiesieseteeeeeessessessessessessessesnens 22-11
RULES ..ottt ettt e te e s e b e e s sesseeseeeseessesseessesseesseseessanseessaseenes 22-12
Single Cell REfEIeNCESccccucuiiiiiiiiiiiiiiiiiiiicir e 22-12
Multi-Cell References on the Right Side........cccccoooeiiiiiiiiiiicccreee 22-12
Multi-Cell References on the Left Side........c.coveieiiininiiiiiicieieieeeeeeee e ereenns 22-13
Use Of the CV FUNCHONoceiiieeiiieeee ettt ettt ettt ve s re s reennas 22-13
Use of the ANY WILACArdccccveiririniiniiesiesieieieieeeee e ee e e e s ssessesaessessessessesessassensens 22-14
INested Cell REfEIEINCES.ccuecuieiieeeeieeeeieeeeteetete ettt e ste et e saesreebessesbessaeseessesseessassenseas 22-14
Order of Evaluation Of RULES........cciciiiiieiiiiceceeteeeectee ettt et e 22-14
Global and Local Keywords for RUlesccccccccciiiiiiiniiicrecreeceeeeeese s 22-15
UPDATE, UPSERT, and UPSERT ALL BERaVIOrccccceciiiriirieieieieeeieeeeeeeie et evseenns 22-16
UPDATE BERAVIOTccviiiicieeiiceeeieeeeteett ettt ettt et sveesaesteesaeetaebeeseeaseesaesesasenseesnas 22-16

XVi

UPSERT BERAVIOT «...cveieiiieiiiciniciriciricerictetcteesteee ettt e 22-16

UPSERT ALL BERAVIOL ..ot 22-17
Treatment of NULLs and Missing Cellsc.ccccccciuiiiiiiiniiiiniiceereeereeeece s 22-18
Distinguishing Missing Cells from NULLS.........ccccoooeiiiiiiiiice 22-19

Use Defaults for Missing Cells and NULLScccccooiiiiiiiiiicecc 22-19

Using NULLs in a Cell REference ..o 22-20
Reference MOdels ..o 22-20
Advanced Topics in SQL Modeling ..o 22-23
FOR LOOPS.....ciiiiiiiiiiiiiiiiiici e 22-23
Evaluation of Formulas with FOR LOOPS.......cccccccoviiininininiiiiiies 22-26
Iterative MOdelSs........cccvuiiiiiiiiiiiii 22-27
Rule Dependency in AUTOMATIC ORDER Models ... 22-29
Ordered RUIES..........c.coviiiiiiiiiiii 22-30
ANalytic FUNCHONScuviiiic 22-31
Unique Dimensions Versus Unique Single References............ccooceeoiiiniiiiiinicciinnccnne. 22-32
Rules and Restrictions when Using SQL for Modeling............ccccoovvriiininininininicineine. 22-33
Performance Considerations with SQL Modelingcccocooiiiiiiiiiiiii, 22-35
Parallel EXeCULION........coiviiiiiiiiiiic s 22-35
Aggregate ComMPULAtioN.........c.coiiiiiiii 22-36
Using EXPLAIN PLAN to Understand Model Queries...........c.cccooeeieiiiciiiniiiceccce 22-37
Using ORDERED FAST: EXample ... 22-37

Using ORDERED: EXample.........cccooiiiriiiiiiieiic s 22-37

Using ACYCLIC FAST: EXaMPIecccoiuiiiiniiiiiiiiiciiiice e 22-38

Using ACYCLIC: EXQAMPLE ..ot 22-38

Using CYCLIC: EXaMPIeouviviiiiiiieii s 22-38
Examples of SQL MOdelingccccoiiiiiiiiiiiiiiiicc e 22-38

23 Advanced Business Intelligence Queries

Examples of Business Intelligence Queriesccooiiiiiiiiiccc 23-1

Glossary

Index

xvii

xviii

Audience

Preface

This preface contains these topics:
= Audience

= Documentation Accessibility
= Related Documents

s Conventions

This guide is intended for database administrators, system administrators, and
database application developers who design, maintain, and use data warehouses.

To use this document, you need to be familiar with relational database concepts, basic
Oracle server concepts, and the operating system environment under which you are
running Oracle.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http: //www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Xix

Deaf/Hard of Hearing Access to Oracle Support Services

To reach Oracle Support Services, use a telecommunications relay service (TRS) to call
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle
technical issues and provide customer support according to the Oracle service request
process. Information about TRS is available at
http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone
numbers is available at http: //www. fcc.gov/cgb/dro/trsphonebk.html.

Related Documents

Many of the examples in this book use the sample schemas of the seed database, which
is installed by default when you install Oracle. Refer to Oracle Database Sample Schemas
for information on how these schemas were created and how you can use them
yourself.

Note that this book is meant as a supplement to standard texts about data
warehousing. This book focuses on Oracle-specific material and does not reproduce in
detail material of a general nature. For additional information, see:

s The Data Warehouse Toolkit by Ralph Kimball (John Wiley and Sons, 1996)
s Building the Data Warehouse by William Inmon (John Wiley and Sons, 1996)

Conventions

XX

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

What's New in Oracle Database?

This section describes the new features of Oracle Database 11g Release 2 (11.2) and
provides pointers to additional information. New features information from previous
releases is also retained to help those users migrating to the current release.

The following section describes new features in Oracle Database:
s Oracle Database 11g Release 2 (11.2) New Features in Data Warehousing
s Oracle Database 11g Release 1 (11.1) New Features in Data Warehousing

Oracle Database 11g Release 2 (11.2) New Features in Data
Warehousing

= Analytic Functions

New SQL analytic functions have been introduced that enable you to list (or
concatenate) measure values within a group (LISTAGG). Another new function
(NTH_VALUE) enables you to retrieve an arbitrary (in other words, nth) record in a
window. Finally, the existing functions LAG and LEAD now have been improved
with the addition of the IGNORE NULLS option.

See Also: Chapter 21, "SQL for Analysis and Reporting" for more
information

» Preprocessing of Files from External Tables

You can now specify a program to be executed that will process files and enable
Oracle Database to use the output. This preprocessing of files enables you to load
large amounts of compressed data without first uncompressing it on a disk.

See Also: Chapter 14, "Loading and Transformation" for more
information

m Materialized View Refresh Enhancements

Materialized view logs can now be purged outside the refresh process, thus
improving performance. An additional performance improvement is with
materialized views that contain aggregates, joins, or both. If you use a WITH
COMMIT SCN clause, materialized view log processing can be optimized, thus
speeding up the refresh process.

XXi

See Also: Chapter 8, "Basic Materialized Views" and Chapter 15,
"Maintaining the Data Warehouse" for more information

Oracle Database 11g Release 1 (11.1) New Features in Data

Warehousing

XXii

Pivot and Unpivot Operators

The PIVOT operator makes it easy to create aggregated cross-tabular output that
condenses many rows into a compact result set useful for reports. For instance,
input data holding sales of one month in each row can be pivoted into output
holding twelve months in each row, with each month in its own column. By
combining multiple input rows into each output row, PIVOT also enables
inter-row comparison without a table self-join. The UNPIVOT operator reshapes
data into a format useful for further relational operations. For example, if a source
data set presents twelve months of sales values in each row, UNPIVOT can reshape
each source row into twelve output rows, each holding one month of sales data.
The unpivoted results are in a more normalized relational form than the source
data, and they can be manipulated with simpler and more efficient SQL.

See Also: Chapter 20, "SQL for Aggregation in Data Warehouses"
for more information

Partition Advisor

The SQL Access Advisor has been enhanced to include partition advice. It
recommends the right strategy to partition tables, indexes, and materialized views
to get best performance from an application.

See Also: Chapter 5, "Partitioning in Data Warehouses" for more
information

Change Data Capture (CDC) Enhancements

CDC is now aware of direct-path load operations and implicit data changes as the
result of partition-maintenance operations. Users can now turn synchronous CDC
on and off as needed. Also, the flexibility of purging change data from change
tables has been improved, so you can specify a date range for which data should
be purged.

Another improvement is that it is easier to maintain a subscription window to
change data. You now have control over the definition of the change subscription,
so the window can be moved forward and backward.

See Also: Chapter 16, "Change Data Capture" for more information

Query Rewrite Enhancements

Query rewrite has been enhanced to support queries containing inline views. Prior
to this release, queries containing inline views could rewrite only if there was an
exact text match with the inline views in the materialized views. Because inline
views no longer need to textually match between the query and the materialized
view, a larger number of queries with inline views can be rewritten. Another
significant query rewrite improvement is the ability to rewrite queries that
reference remote tables.

See Also: Chapter 17, "Basic Query Rewrite" for more information

Refresh Enhancements

Refresh has been enhanced to support automatic index creation for UNION ALL
materialized views, the use of query rewrite during a materialized view's atomic
refresh, and materialized view refresh with set operators. Also, partition change
tracking refresh of UNION ALL materialized views is now possible. Finally, catalog
views have been enhanced to contain information on the staleness of partitioned
materialized views. These improvements will lead to faster refresh performance.

See Also: Chapter 15, "Maintaining the Data Warehouse" for more
information

Oracle OLAP Option Data Warehousing Features

The OLAP Option of the Oracle Database has been enhanced with several features
designed to make OLAP cubes attractive alternatives to tables for managing and
querying aggregate data in the data warehouse. These include:

- Further integration of cubes into the SQL query engine. Advancements
include integration of cubes with the Oracle query optimizer and a cube row
source. These features dramatically increase the efficiency of SQL queries that
select from OLAP cubes and dimensions by pushing joins directly into the
Oracle Database's multidimensional engine, allowing efficient joins between
tables and cubes and by improving overall row /second throughput when
selecting from cubes.

- Automatic query rewrite to cube organized materialized views.
Cube-organized materialized views access data from OLAP cubes rather than
tables. Like table-based materialized views, application can write queries to
detail tables or views and let the database automatically rewrite the query to
pre-aggregated data in the cube.

- Database-managed automatic refresh of cubes. In this release, cubes can be
refreshed using the DBMS_MVIEW.REFRESH program, just like table-based
materialized views. Cubes provide excellent support for FAST (incremental)
refresh.

— Cost-based aggregation. In many situations, cubes are much more efficient at
managing aggregate data as compared to tables. Cost-based aggregation
improves upon these advantages by improving the efficiency of
pre-aggregating and querying aggregate data, and by simplifying the process
of managing aggregate data.

Database administrators who support dimensionally modeled data sets (for

example, star/snowflake schema) for query by business intelligence tools and

applications should consider using OLAP cubes as a summary management
solution because they may offer significant performance advantages.

xXiii

XXiv

Part |

Concepts

This section introduces basic data warehousing concepts.
It contains the following chapter:

» Chapter 1, "Data Warehousing Concepts"

1

Data Warehousing Concepts

This chapter provides an overview of the Oracle data warehousing implementation. It
includes:

s Whatis a Data Warehouse?
s Data Warehouse Architectures
s Extracting Information from a Data Warehouse

Note that this book is meant as a supplement to standard texts about data
warehousing. This book focuses on Oracle-specific material and does not reproduce in
detail material of a general nature. Two standard texts are:

s The Data Warehouse Toolkit by Ralph Kimball (John Wiley and Sons, 1996)
s Building the Data Warehouse by William Inmon (John Wiley and Sons, 1996)

What is a Data Warehouse?

A data warehouse is a relational database that is designed for query and analysis
rather than for transaction processing. It usually contains historical data derived from
transaction data, but can include data from other sources. Data warehouses separate
analysis workload from transaction workload and enable an organization to
consolidate data from several sources. This helps in:

= Maintaining historical records

= Analyzing the data to gain a better understanding of the business and to improve
the business.

In addition to a relational database, a data warehouse environment can include an
extraction, transportation, transformation, and loading (ETL) solution, statistical
analysis, reporting, data mining capabilities, client analysis tools, and other
applications that manage the process of gathering data, transforming it into useful,
actionable information, and delivering it to business users.

See Also: Chapter 11, "Overview of Extraction, Transformation,
and Loading"

A common way of introducing data warehousing is to refer to the characteristics of a
data warehouse as set forth by William Inmon:

= Subject Oriented

= Integrated

s Nonvolatile

Data Warehousing Concepts 1-1

What is a Data Warehouse?

s Time Variant

Subject Oriented

Integrated

Nonvolatile

Time Variant

Data warehouses are designed to help you analyze data. For example, to learn more
about your company's sales data, you can build a data warehouse that concentrates on
sales. Using this data warehouse, you can answer questions such as "Who was our best
customer for this item last year?" or "Who is likely to be our best customer next year?"
This ability to define a data warehouse by subject matter, sales in this case, makes the
data warehouse subject oriented.

Integration is closely related to subject orientation. Data warehouses must put data
from disparate sources into a consistent format. They must resolve such problems as
naming conflicts and inconsistencies among units of measure. When they achieve this,
they are said to be integrated.

Nonvolatile means that, once entered into the data warehouse, data should not
change. This is logical because the purpose of a data warehouse is to enable you to
analyze what has occurred.

A data warehouse's focus on change over time is what is meant by the term time
variant. In order to discover trends and identify hidden patterns and relationships in
business, analysts need large amounts of data. This is very much in contrast to online
transaction processing (OLTP) systems, where performance requirements demand
that historical data be moved to an archive.

Contrasting OLTP and Data Warehousing Environments

Figure 1-1 illustrates key differences between an OLTP system and a data warehouse.

Figure 1-1 Contrasting OLTP and Data Warehousing Environments

OLTP Data Warehouse

Complex data

structures Multidimensional
(3NF databases) data structures
Few Indexes Many
Many Joins Some
Normalized Duplicated Denormalized
DBMS Data DBMS
Rare Derived Data Common
and Aggregates

1-2 Oracle Database Data Warehousing Guide

Data Warehouse Architectures

One major difference between the types of system is that data warehouses are not
usually in third normal form (3NF), a type of data normalization common in OLTP
environments.

Data warehouses and OLTP systems have very different requirements. Here are some
examples of differences between typical data warehouses and OLTP systems:

s Workload

Data warehouses are designed to accommodate ad hoc queries and data analysis.
You might not know the workload of your data warehouse in advance, so a data
warehouse should be optimized to perform well for a wide variety of possible
query and analytical operations.

OLTP systems support only predefined operations. Your applications might be
specifically tuned or designed to support only these operations.

s Data modifications

A data warehouse is updated on a regular basis by the ETL process (run nightly or
weekly) using bulk data modification techniques. The end users of a data
warehouse do not directly update the data warehouse except when using
analytical tools, such as data mining, to make predictions with associated
probabilities, assign customers to market segments, and develop customer
profiles.

In OLTP systems, end users routinely issue individual data modification
statements to the database. The OLTP database is always up to date, and reflects
the current state of each business transaction.

= Schema design

Data warehouses often use denormalized or partially denormalized schemas (such
as a star schema) to optimize query and analytical performance.

OLTP systems often use fully normalized schemas to optimize
update/insert/delete performance, and to guarantee data consistency.

s Typical operations

A typical data warehouse query scans thousands or millions of rows. For example,
"Find the total sales for all customers last month."

A typical OLTP operation accesses only a handful of records. For example,
"Retrieve the current order for this customer."

s Historical data

Data warehouses usually store many months or years of data. This is to support
historical analysis and reporting.

OLTP systems usually store data from only a few weeks or months. The OLTP
system stores only historical data as needed to successfully meet the requirements
of the current transaction.

Data Warehouse Architectures

Data warehouses and their architectures vary depending upon the specifics of an
organization's situation. Three common architectures are:

s Data Warehouse Architecture: Basic

» Data Warehouse Architecture: with a Staging Area

Data Warehousing Concepts 1-3

Data Warehouse Architectures

s Data Warehouse Architecture: with a Staging Area and Data Marts

Data Warehouse Architecture: Basic

Figure 1-2 shows a simple architecture for a data warehouse. End users directly access
data derived from several source systems through the data warehouse.

Figure 1-2 Architecture of a Data Warehouse

Data Sources Warehouse Users

Operational
System

—F—

d—0
Metadata

Summary
Data

—

Raw Data

Operational Reporting
System
—
| =————]
Flat Files Mining

In Figure 1-2, the metadata and raw data of a traditional OLTP system is present, as is
an additional type of data, summary data. Summaries are very valuable in data
warehouses because they pre-compute long operations in advance. For example, a
typical data warehouse query is to retrieve something such as August sales. A
summary in an Oracle database is called a materialized view.

Data Warehouse Architecture: with a Staging Area

You need to clean and process your operational data before putting it into the
warehouse, as shown in Figure 1-3. You can do this programmatically, although most
data warehouses use a staging area instead. A staging area simplifies building
summaries and general warehouse management. Figure 1-3 illustrates this typical
architecture.

1-4 Oracle Database Data Warehousing Guide

Data Warehouse Architectures

Figure 1-3 Architecture of a Data Warehouse with a Staging Area

Data Staging
Sources Area Warehouse Users

Operational

System Analysis

3

Operational
System

—————

Flat Files

Data Warehouse Architecture: with a Staging Area and Data Marts

Although the architecture in Figure 1-3 is quite common, you may want to customize
your warehouse's architecture for different groups within your organization. You can
do this by adding data marts, which are systems designed for a particular line of
business. Figure 14 illustrates an example where purchasing, sales, and inventories
are separated. In this example, a financial analyst might want to analyze historical data

for purchases and sales or mine historical data to make predictions about customer
behavior.

Figure 1-4 Architecture of a Data Warehouse with a Staging Area and Data Marts

Data Staging Data
Sources Area Warehouse Marts Users
8
Operational Purchasing Analysis
System
Summary |Raw Data
Data
Operational Sales
System

— -

Flat Files Inventory Mining

Note: Data marts are an important part of many data warehouses,
but they are not the focus of this book.

Data Warehousing Concepts 1-5

Extracting Information from a Data Warehouse

Extracting Information from a Data Warehouse

OLAP

You can extract information from the masses of data stored in a data warehouse by
analyzing the data. The Oracle Database provides several ways to analyze data:

= A wide array of statistical functions, including descriptive statistics, hypothesis
testing, correlations analysis, test for distribution fit, cross tabs with Chi-square
statistics, and analysis of variance (ANOVA); these functions are described in the
Oracle Database SQL Language Reference.

= OLAP
s Data Mining

Oracle Database offers the industry's first and only embedded OLAP server. Oracle
OLAP provides native multidimensional storage and speed-of-thought response times
when analyzing data across multiple dimensions. The database provides rich support
for analytics such as time series calculations, forecasting, advanced aggregation with
additive and non additive operators, and allocation operators. These capabilities make
the Oracle database a complete analytical platform, capable of supporting the entire
spectrum of business intelligence and advanced analytical applications.

Oracle OLAP uses a multidimensional data model to perform complex statistical,
mathematical, and financial analysis of historical data in real time. Oracle OLAP is
fully integrated in the database, so that you can use standard SQL administrative,
querying, and reporting tools.

For more information regarding OLAP, see Oracle OLAP User’s Guide.

Full Integration of Multidimensional Technology

By integrating multidimensional objects and analytics into the database, Oracle
provides the best of both worlds: the power of multidimensional analysis along with
the reliability, availability, security, and scalability of the Oracle database.

Oracle OLAP is fully integrated into Oracle Database. At a technical level, this means:
s The OLAP engine runs within the kernel of Oracle Database.

= Dimensional objects are stored in Oracle Database in their native
multidimensional format.

» Cubes and other dimensional objects are first class data objects represented in the
Oracle data dictionary.

= Data security is administered in the standard way, by granting and revoking
privileges to Oracle Database users and roles.

= Applications can query dimensional objects using SQL.

The benefits to your organization are significant. Oracle OLAP offers the power of
simplicity. One database, standard administration and security, standard interfaces
and development tools.

Ease of Application Development

Oracle OLAP makes it easy to enrich your database and your applications with
interesting analytic content. Native SQL access to Oracle multidimensional objects and
calculations greatly eases the task of developing dashboards, reports, business
intelligence (BI) and analytical applications of any type compared to systems that offer

1-6 Oracle Database Data Warehousing Guide

Extracting Information from a Data Warehouse

proprietary interfaces. Moreover, SQL access means that the power of Oracle OLAP
analytics can be used by any database application, not just by the traditional limited
collection of OLAP applications.

Ease of Administration

Because Oracle OLAP is completely embedded in the Oracle database, there is no
administration learning curve as is typically associated with standalone OLAP servers.
You can leverage your existing DBA staff, rather than invest in specialized
administration skills.

One major administrative advantage of Oracle's embedded OLAP technology is
automated cube maintenance. With standalone OLAP servers, the burden of
refreshing the cube is left entirely to the administrator. This can be a complex and
potentially error-prone job. The administrator must create procedures to extract the
changed data from the relational source, move the data from the source system to the
system running the standalone OLAP server, load and rebuild the cube. The DBA
must take responsibility for the security of the deltas (changed values) during this
process as well.

With Oracle OLAP, in contrast, cube refresh is handled entirely by the Oracle
database. The database tracks the staleness of the dimensional objects, automatically
keeps track of the deltas in the source tables, and automatically applies only the
changed values during the refresh process. The DBA simply schedules the refresh at
appropriate intervals, and Oracle Database takes care of everything else.

Security

With Oracle OLAP, standard Oracle Database security features are used to secure your
multidimensional data.

In contrast, with a standalone OLAP server, administrators must manage security
twice: once on the relational source system and again on the OLAP server system.
Additionally, they must manage the security of data in transit from the relational
system to the standalone OLAP system.

Unmatched Performance and Scalability

Business intelligence and analytical applications are dominated by actions such as
drilling up and down hierarchies and comparing aggregate values such as
period-over-period, share of parent, projections onto future time periods, and a
myriad of similar calculations. Often these actions are essentially random across the
entire space of potential hierarchical aggregations. Because Oracle OLAP
pre-computes or efficiently computes on the fly all aggregates in the defined
multidimensional space, it delivers unmatched performance for typical business
intelligence applications.

Oracle OLAP queries take advantage of Oracle shared cursors, dramatically reducing
memory requirements and increasing performance.

When Oracle Database is installed with Real Application Clusters (RAC), OLAP
applications receive the same benefits in performance, scalability, fail over, and load
balancing as any other application.

Reduced Costs

All these features add up to reduced costs. Administrative costs are reduced because
existing personnel skills can be leveraged. Moreover, the Oracle database can manage
the refresh of dimensional objects, a complex task left to administrators in other
systems. Standard security reduces administration costs as well. Application

Data Warehousing Concepts 1-7

Extracting Information from a Data Warehouse

Data Mining

development costs are reduced because the availability of a large pool of application
developers who are SQL knowledgeable, and a large collection of SQL-based
development tools means applications can be developed and deployed more quickly.
Any SQL-based development tool can take advantage of Oracle OLAP. Hardware
costs are reduced by Oracle OLAP's efficient management of aggregations, use of
shared cursors, and Oracle RAC, which enables highly scalable systems to be built
from low-cost commodity components.

Querying Dimensional Objects

Oracle OLAP adds power to your SQL applications by providing extensive analytic
content and fast query response times. A SQL query interface enables any application
to query cubes and dimensions without any knowledge of OLAP.

The OLAP option automatically generates a set of relational views on cubes,
dimensions, and hierarchies. SQL applications query these views to display the
information-rich contents of these objects to analysts and decision makers. You can
also create custom views that comply with the structure expected by your
applications, using the system-generated views like base tables.

Analysts can choose any SQL query and analysis tool for selecting, viewing, and
analyzing the data You can use your favorite tool or application, or use one of the tools
supplied with Oracle Database, such as Oracle Application Express and Business
Intelligence Publisher.

Efficient Storage and Uniform Availability of Summary Data

Cube materialized views bring the fast update and fast query capabilities of the OLAP
option to applications that query detail relational tables, as well as to applications that
query cubes directly.

A single cube materialized view can replace many of the relational materialized views
of summaries on a fact table, providing uniform response time to all summary data
through query rewrite. Applications experience excellent query performance.

Cube materialized views are cubes that have been enhanced to use the automatic
refresh and query rewrite features of Oracle Database. Summary data is generated and
stored in a cube, and query rewrite automatically redirects queries to the cube
materialized views.

Many of the same data dictionary views and PL/SQL packages that support relational
materialized views also support cube materialized views. Moreover, a group of
PL/SQL subprograms in DBMS_CUBE supports the rapid deployment of cube
materialized views from existing relational materialized views.

Tools for Creating and Managing Dimensional Objects

Analytic Workspace Manager is the primary tool for creating, developing, and
managing dimensional objects in Oracle Database.

Oracle OLAP is contained in the database and its resources are managed using the
same tools, such as Oracle Enterprise Manager Database Control, Automatic
Workload Repository, and Automatic Database Diagnostic Monitor.

Data mining uses large quantities of data to create models. These models can provide
insights that are revealing, significant, and valuable. For example, data mining can be
used to:

1-8 Oracle Database Data Warehousing Guide

Extracting Information from a Data Warehouse

= Predict those customers likely to change service providers.
= Discover the factors involved with a disease.
s Identify fraudulent behavior.

Data mining solves many kinds of business problems. For example, data mining can
be used to predict customers likely to attrite.

Oracle Data Mining performs data mining in the Oracle Database. Oracle Data Mining
does not require data movement between the database and an external mining server,
thereby eliminating redundancy, improving efficient data storage and processing,
ensuring that up-to-date data is used, and maintaining data security.

For detailed information about Oracle Data Mining, see Oracle Data Mining Concepts.

Oracle Data Mining Functionality

Oracle Data Mining supports the major data mining functions. There is at least one
algorithm for each data mining function.

Oracle Data Mining supports the following data mining functions:

s Classification: Grouping items into discrete classes and predicting which class an
item belongs to; classification algorithms are Decision Tree, Naive Bayes,
Generalized Linear Models (Binary Logistic Regression), and Support Vector
Machines.

= Regression: Approximating and predicting continuous numerical values; the
algorithms for regression are Support Vector Machines and Generalized Linear
Models (Multivariate Linear Regression).

= Anomaly Detection: Detecting anomalous cases, such as fraud and intrusions; the
algorithm for anomaly detection is one-class Support Vector Machines.

= Attribute Importance: Identifying the attributes that have the strongest
relationships with the target attribute (for example, customers likely to churn); the
algorithm for attribute importance is Minimum Descriptor Length.

s Clustering: Finding natural groupings in the data that are often used for
identifying customer segments; the algorithms for clustering are k-Means and
O-Cluster.

= Associations: Analyzing "market baskets", items that are likely to be purchased
together; the algorithm for associations is a priori.

» Feature Extraction: Creating new attributes (features) as a combination of the
original attributes; the algorithm for feature extraction is Non-Negative Matrix
Factorization.

In addition to mining structured data, Oracle Data Mining permits mining of text data
(such as police reports, customer comments, or physician's notes) or spatial data.

Oracle Data Mining Interfaces

Oracle Data Mining APIs provide extensive support for building applications that
automate the extraction and dissemination of data mining insights.

Data mining activities such as model building, testing, and scoring are accomplished
through a PL/SQL AP], a Java API, and SQL Data Mining functions. The Java APl is
compliant with the data mining standard JSR 73. The Java API and the PL/SQL API

are fully interoperable.

Data Warehousing Concepts 1-9

Extracting Information from a Data Warehouse

Oracle Data Mining allows the creation of a supermodel, that is, a model that contains
the instructions for its own data preparation. The embedded data preparation can be
implemented automatically and/or manually. Embedded Data Preparation supports
user-specified data transformations; Automatic Data Preparation supports
algorithm-required data preparation, such as binning, normalization, and outlier
treatment.

SQL Data Mining functions support the scoring of classification, regression, clustering,
and feature extraction models. Within the context of standard SQL statements,
pre-created models can be applied to new data and the results returned for further
processing, just like any other SQL query.

Predictive Analytics automates the process of data mining. Without user intervention,
Predictive Analytics routines manage data preparation, algorithm selection, model
building, and model scoring so that the user can benefit from data mining without
having to be a data mining expert.

Oracle Data Miner is the graphical user interface for Oracle Data Mining. Oracle Data
Miner guides you through the data preparation, data mining, model evaluation, and
model scoring process. For more information about the Oracle Data Mining interfaces,
sen Oracle Data Mining Concepts.

1-10 Oracle Database Data Warehousing Guide

Part li

Logical Design

This section deals with the issues in logical design in a data warehouse.
It contains the following chapter:

= Chapter 2, "Logical Design in Data Warehouses"

2

Logical Design in Data Warehouses

This chapter explains how to create a logical design for a data warehousing
environment and includes the following topics:

= Logical Versus Physical Design in Data Warehouses
= Creating a Logical Design
= Data Warehousing Schemas

= Data Warehousing Objects

Logical Versus Physical Design in Data Warehouses

Your organization has decided to build a data warehouse. You have defined the
business requirements and agreed upon the scope of your application, and created a
conceptual design. Now you need to translate your requirements into a system
deliverable. To do so, you create the logical and physical design for the data
warehouse. You then define:

» The specific data content

= Relationships within and between groups of data

s The system environment supporting your data warehouse
s The data transformations required

s The frequency with which data is refreshed

The logical design is more conceptual and abstract than the physical design. In the
logical design, you look at the logical relationships among the objects. In the physical
design, you look at the most effective way of storing and retrieving the objects as well
as handling them from a transportation and backup/recovery perspective.

Orient your design toward the needs of the end users. End users typically want to
perform analysis and look at aggregated data, rather than at individual transactions.
However, end users might not know what they need until they see it. In addition, a
well-planned design allows for growth and changes as the needs of users change and
evolve.

By beginning with the logical design, you focus on the information requirements and
save the implementation details for later.

Logical Design in Data Warehouses 2-1

Creating a Logical Design

Creating a Logical Design

A logical design is conceptual and abstract. You do not deal with the physical
implementation details yet. You deal only with defining the types of information that
you need.

One technique you can use to model your organization's logical information
requirements is entity-relationship modeling. Entity-relationship modeling involves
identifying the things of importance (entities), the properties of these things
(attributes), and how they are related to one another (relationships).

The process of logical design involves arranging data into a series of logical
relationships called entities and attributes. An entity represents a chunk of
information. In relational databases, an entity often maps to a table. An attribute is a
component of an entity that helps define the uniqueness of the entity. In relational
databases, an attribute maps to a column.

To be sure that your data is consistent, you need to use unique identifiers. A unique
identifier is something you add to tables so that you can differentiate between the
same item when it appears in different places. In a physical design, this is usually a
primary key.

While entity-relationship diagramming has traditionally been associated with highly
normalized models such as OLTP applications, the technique is still useful for data
warehouse design in the form of dimensional modeling. In dimensional modeling,
instead of seeking to discover atomic units of information (such as entities and
attributes) and all of the relationships between them, you identify which information
belongs to a central fact table and which information belongs to its associated
dimension tables. You identify business subjects or fields of data, define relationships
between business subjects, and name the attributes for each subject.

See Also: Chapter 10, "Dimensions" for further information
regarding dimensions

Your logical design should result in (1) a set of entities and attributes corresponding to
fact tables and dimension tables and (2) a model of operational data from your source
into subject-oriented information in your target data warehouse schema.

You can create the logical design using a pen and paper, or you can use a design tool
such as Oracle Warehouse Builder (specifically designed to support modeling the ETL
process).

See Also: Oracle Warehouse Builder documentation set

Data Warehousing Schemas

A schema is a collection of database objects, including tables, views, indexes, and
synonyms. You can arrange schema objects in the schema models designed for data
warehousing in a variety of ways. Most data warehouses use a dimensional model.

The model of your source data and the requirements of your users help you design the
data warehouse schema. You can sometimes get the source model from your
company's enterprise data model and reverse-engineer the logical data model for the
data warehouse from this. The physical implementation of the logical data warehouse
model may require some changes to adapt it to your system parameters—size of
computer, number of users, storage capacity, type of network, and software.

2-2 Oracle Database Data Warehousing Guide

Data Warehousing Objects

Star Schemas

The star schema is the simplest data warehouse schema. It is called a star schema
because the diagram resembles a star, with points radiating from a center. The center
of the star consists of one or more fact tables and the points of the star are the
dimension tables, as shown in Figure 2-1.

Figure 2-1 Star Schema

products times

sales
(amount_sold,
quantity_sold)

Fact Table
customers channels

Dimension Table Dimension Table

The most natural way to model a data warehouse is as a star schema, where only one
join establishes the relationship between the fact table and any one of the dimension
tables.

A star schema optimizes performance by keeping queries simple and providing fast
response time. All the information about each level is stored in one row.

Other Data Warehousing Schemas

Some schemas in data warehousing environments use third normal form rather than
star schemas. Another schema that is sometimes useful is the snowflake schema,
which is a star schema with normalized dimensions in a tree structure. Another
alternative is provided by OLAP, which supports dimensional data types such as
cubes and dimensions within Oracle Database.

See Also: Chapter 19, "Schema Modeling Techniques" for further
information regarding star and snowflake schemas in data
warehouses, Oracle Database Concepts for further conceptual
material, Oracle OLAP User’s Guide for more information regarding
OLAP schemas

Data Warehousing Objects

Fact tables and dimension tables are the two types of objects commonly used in
dimensional data warehouse schemas.

Fact tables are the large tables in your data warehouse schema that store business
measurements. Fact tables typically contain facts and foreign keys to the dimension
tables. Fact tables represent data, usually numeric and additive, that can be analyzed
and examined. Examples include sales, cost, and profit.

Dimension tables, also known as lookup or reference tables, contain the relatively
static data in the data warehouse. Dimension tables store the information you
normally use to contain queries. Dimension tables are usually textual and descriptive
and you can use them as the row headers of the result set. Examples are customers
or products.

Logical Design in Data Warehouses 2-3

Data Warehousing Objects

Data Warehousing Objects: Fact Tables

A fact table typically has two types of columns: those that contain numeric facts (often
called measurements), and those that are foreign keys to dimension tables. A fact table
contains either detail-level facts or facts that have been aggregated. Fact tables that
contain aggregated facts are often called summary tables. A fact table usually contains
facts with the same level of aggregation. Though most facts are additive, they can also
be semi-additive or non-additive. Additive facts can be aggregated by simple
arithmetical addition. A common example of this is sales. Non-additive facts cannot be
added at all. An example of this is averages. Semi-additive facts can be aggregated
along some of the dimensions and not along others. An example of this is inventory
levels, where you cannot tell what a level means simply by looking at it.

Requirements of Fact Tables

You must define a fact table for each star schema. From a modeling standpoint, the
primary key of the fact table is usually a composite key that is made up of all of its
foreign keys.

Data Warehousing Objects: Dimension Tables

A dimension is a structure, often composed of one or more hierarchies, that
categorizes data. Dimensional attributes help to describe the dimensional value. They
are normally descriptive, textual values. Several distinct dimensions, combined with
facts, enable you to answer business questions. Commonly used dimensions are
customers, products, and time.

Dimension data is typically collected at the lowest level of detail and then aggregated
into higher level totals that are more useful for analysis. These natural rollups or
aggregations within a dimension table are called hierarchies.

Hierarchies

Hierarchies are logical structures that use ordered levels as a means of organizing
data. A hierarchy can be used to define data aggregation. For example, in a time
dimension, a hierarchy might aggregate data from the month level to the quarter level
to the year level. A hierarchy can also be used to define a navigational drill path and to
establish a family structure.

Within a hierarchy, each level is logically connected to the levels above and below it.
Data values at lower levels aggregate into the data values at higher levels. A
dimension can be composed of more than one hierarchy. For example, in the product
dimension, there might be two hierarchies—one for product categories and one for
product suppliers.

Dimension hierarchies also group levels from general to granular. Query tools use
hierarchies to enable you to drill down into your data to view different levels of
granularity. This is one of the key benefits of a data warehouse.

When designing hierarchies, you must consider the relationships in business
structures. For example, a divisional multilevel sales organization.

Hierarchies impose a family structure on dimension values. For a particular level
value, a value at the next higher level is its parent, and values at the next lower level
are its children. These familial relationships enable analysts to access data quickly.

Levels A level represents a position in a hierarchy. For example, a time dimension
might have a hierarchy that represents data at the month, quarter, and year levels.

2-4 Oracle Database Data Warehousing Guide

Data Warehousing Objects

Levels range from general to specific, with the root level as the highest or most general
level. The levels in a dimension are organized into one or more hierarchies.

Level Relationships Level relationships specify top-to-bottom ordering of levels from
most general (the root) to most specific information. They define the parent-child
relationship between the levels in a hierarchy.

Hierarchies are also essential components in enabling more complex rewrites. For
example, the database can aggregate an existing sales revenue on a quarterly base to a
yearly aggregation when the dimensional dependencies between quarter and year are
known.

Typical Dimension Hierarchy
Figure 2-2 illustrates a dimension hierarchy based on customers.

Figure 2-2 Typical Levels in a Dimension Hierarchy

region
1

subregion

country_name

customer

See Also: Chapter 10, "Dimensions" and Chapter 17, "Basic Query
Rewrite" for further information regarding hierarchies

Data Warehousing Objects: Unique Identifiers

Unique identifiers are specified for one distinct record in a dimension table. Artificial
unique identifiers are often used to avoid the potential problem of unique identifiers
changing. Unique identifiers are represented with the # character. For example,
#customer_id.

Data Warehousing Objects: Relationships

Relationships guarantee business integrity. An example is that if a business sells
something, there is obviously a customer and a product. Designing a relationship
between the sales information in the fact table and the dimension tables products and
customers enforces the business rules in databases.

Example of Data Warehousing Objects and Their Relationships

Figure 2-3 illustrates a common example of a sales fact table and dimension tables
customers, products, promotions, times, and channels.

Logical Design in Data Warehouses 2-5

Data Warehousing Objects

Figure 2-3 Typical Data Warehousing Objects

products
#prod_id

Relationship

Fact Table

sales
cust_id
prod_id

customers
#cust_id
cust_last_name
cust_city
cust_state_provinc

— Hierarchy

o)

times

Dimension Table

promotions

channels

Dimension Table

2-6 Oracle Database Data Warehousing Guide

Dimension Table

Part lli

Physical Design

This section deals with the physical design of a data warehouse.

It contains the following chapters:

Chapter 3, "Physical Design in Data Warehouses"

Chapter 4, "Hardware and I/O Considerations in Data Warehouses"
Chapter 5, "Partitioning in Data Warehouses"

Chapter 6, "Indexes"

Chapter 7, "Integrity Constraints"

Chapter 8, "Basic Materialized Views"

Chapter 9, "Advanced Materialized Views"

Chapter 10, "Dimensions"

3

Physical Design in Data Warehouses

This chapter describes the physical design of a data warehousing environment, and
includes the following topics:

= Moving from Logical to Physical Design
= Physical Design

Moving from Logical to Physical Design

Logical design is what you draw with a pen and paper or design with Oracle
Warehouse Builder or Oracle Designer before building your data warehouse. Physical
design is the creation of the database with SQL statements.

During the physical design process, you convert the data gathered during the logical
design phase into a description of the physical database structure. Physical design
decisions are mainly driven by query performance and database maintenance aspects.
For example, choosing a partitioning strategy that meets common query requirements
enables Oracle Database to take advantage of partition pruning, a way of narrowing a
search before performing it.

See Also:

» Chapter 5, "Partitioning in Data Warehouses" for further
information regarding partitioning

» Oracle Database Concepts for further conceptual material
regarding all design matters

Physical Design

During the logical design phase, you defined a model for your data warehouse
consisting of entities, attributes, and relationships. The entities are linked together
using relationships. Attributes are used to describe the entities. The unique identifier
(UID) distinguishes between one instance of an entity and another.

Figure 3-1 illustrates a graphical way of distinguishing between logical and physical
designs.

Physical Design in Data Warehouses 3-1

Physical Design

Figure 3—-1 Logical Design Compared with Physical Design

Logical Physical (as Tablespaces)
] I [
Entities Tables Indexes
| —— [[
) . Integrity Materialized
Relationships Constraints Views
- Primary Key
[- Foreign Key | ——
- Not Null
Attributes Dimensions
| —_— |
[Columns
Unique I}
Identifiers

During the physical design process, you translate the expected schemas into actual
database structures. At this time, you must map:

= Entities to tables

= Relationships to foreign key constraints

= Attributes to columns

= Primary unique identifiers to primary key constraints

= Unique identifiers to unique key constraints

Physical Design Structures

Tablespaces

Once you have converted your logical design to a physical one, you will need to create
some or all of the following structures:

= Tablespaces

= Tables and Partitioned Tables
n Views

» Integrity Constraints

s Dimensions

Some of these structures require disk space. Others exist only in the data dictionary.
Additionally, the following structures may be created for performance improvement:

s Indexes and Partitioned Indexes

m Materialized Views

A tablespace consists of one or more datafiles, which are physical structures within the
operating system you are using. A datafile is associated with only one tablespace.
From a design perspective, tablespaces are containers for physical design structures.

Tablespaces need to be separated by differences. For example, tables should be
separated from their indexes and small tables should be separated from large tables.

3-2 Oracle Database Data Warehousing Guide

Physical Design

Tablespaces should also represent logical business units if possible. Because a
tablespace is the coarsest granularity for backup and recovery or the transportable
tablespaces mechanism, the logical business design affects availability and
maintenance operations.

You can now use ultralarge data files, a significant improvement in very large
databases.

See Also: Chapter 4, "Hardware and I/O Considerations in Data
Warehouses" for information regarding tablespaces

Tables and Partitioned Tables

Views

Tables are the basic unit of data storage. They are the container for the expected
amount of raw data in your data warehouse.

Using partitioned tables instead of nonpartitioned ones addresses the key problem of
supporting very large data volumes by allowing you to divide them into smaller and
more manageable pieces. The main design criterion for partitioning is manageability,
though you will also see performance benefits in most cases because of partition
pruning or intelligent parallel processing. For example, you might choose a
partitioning strategy based on a sales transaction date and a monthly granularity. If
you have four years' worth of data, you can delete a month's data as it becomes older
than four years with a single, fast DDL statement and load new data while only
affecting 1/48th of the complete table. Business questions regarding the last quarter
will only affect three months, which is equivalent to three partitions, or 3/48ths of the
total volume.

Partitioning large tables improves performance because each partitioned piece is more
manageable. Typically, you partition based on transaction dates in a data warehouse.
For example, each month, one month's worth of data can be assigned its own partition.

Table Compression
You can save disk space, increase memory efficiency, and improve query performance
by compressing heap-organized tables. This often leads to better scalability and query
performance. You can enable compression at the tablespace, table, or partition level. A
typical type of heap-organized table you should consider for table compression is
partitioned tables. Although compressed tables or partitions are updatable, there is
some overhead in updating these tables, and high update activity may work against
compression by causing some space to be wasted.

See Also:

s Oracle Database VLDB and Partitioning Guide

» Chapter 15, "Maintaining the Data Warehouse"

s Oracle Database Administrator’s Guide

» Oracle Database Concepts

A view is a tailored presentation of the data contained in one or more tables or other
views. A view takes the output of a query and treats it as a table. Views do not require
any space in the database.

See Also: Oracle Database Concepts

Physical Design in Data Warehouses 3-3

Physical Design

Integrity Constraints

Integrity constraints are used to enforce business rules associated with your database
and to prevent having invalid information in the tables. Integrity constraints in data
warehousing differ from constraints in OLTP environments. In OLTP environments,
they primarily prevent the insertion of invalid data into a record, which is not a big
problem in data warehousing environments because accuracy has already been
guaranteed. In data warehousing environments, constraints are only used for query
rewrite. NOT NULL constraints are particularly common in data warehouses. Under
some specific circumstances, constraints need space in the database. These constraints
are in the form of the underlying unique index.

See Also: Chapter 7, "Integrity Constraints"

Indexes and Partitioned Indexes

Indexes are optional structures associated with tables or clusters. In addition to the
classical B-tree indexes, bitmap indexes are very common in data warehousing
environments. Bitmap indexes are optimized index structures for set-oriented
operations. Additionally, they are necessary for some optimized data access methods
such as star transformations.

Indexes are just like tables in that you can partition them, although the partitioning
strategy is not dependent upon the table structure. Partitioning indexes makes it easier
to manage the data warehouse during refresh and improves query performance.

See Also: Chapter 6, "Indexes" and Chapter 15, "Maintaining the
Data Warehouse"

Materialized Views

Materialized views are query results that have been stored in advance so long-running
calculations are not necessary when you actually execute your SQL statements. From a
physical design point of view, materialized views resemble tables or partitioned tables
and behave like indexes in that they are used transparently and improve performance.

See Also: Chapter 8, "Basic Materialized Views"

Dimensions

A dimension is a schema object that defines hierarchical relationships between
columns or column sets. A hierarchical relationship is a functional dependency from
one level of a hierarchy to the next one. A dimension is a container of logical
relationships and does not require any space in the database. A typical dimension is
city, state (or province), region, and country.

See Also: Chapter 10, "Dimensions"

3-4 Oracle Database Data Warehousing Guide

4

Hardware and I/O Considerations in Data
Warehouses

This chapter explains some of the hardware and I/O issues in a data warehousing
environment and includes the following topics:

s Overview of Hardware and I/O Considerations in Data Warehouses

m Storage Management

Overview of Hardware and /0 Considerations in Data Warehouses

1/0 performance should always be a key consideration for data warehouse designers
and administrators. The typical workload in a data warehouse is especially I/O
intensive, with operations such as large data loads and index builds, creation of
materialized views, and queries over large volumes of data. The underlying I/O
system for a data warehouse should be designed to meet these heavy requirements.

In fact, one of the leading causes of performance issues in a data warehouse is poor
I/0 configuration. Database administrators who have previously managed other
systems will likely need to pay more careful attention to the I/O configuration for a
data warehouse than they may have previously done for other environments.

This chapter provides the following five high-level guidelines for data-warehouse I/O
configurations:

= Configure I/O for Bandwidth not Capacity

» Stripe Far and Wide

= Use Redundancy

» Test the I/O System Before Building the Database
s Plan for Growth

The I/0O configuration used by a data warehouse will depend on the characteristics of
the specific storage and server capabilities, so the material in this chapter is only
intended to provide guidelines for designing and tuning an I/O system.

See Also: Oracle Database Performance Tuning Guide for additional
information on I/O configurations and tuning

Configure 1/0 for Bandwidth not Capacity

Storage configurations for a data warehouse should be chosen based on the I/0
bandwidth that they can provide, and not necessarily on their overall storage capacity.
Buying storage based solely on capacity has the potential for making a mistake,

Hardware and I/O Considerations in Data Warehouses 4-1

Overview of Hardware and I/O Considerations in Data Warehouses

especially for systems less than 500GB is total size. The capacity of individual disk
drives is growing faster than the I/O throughput rates provided by those disks,
leading to a situation in which a small number of disks can store a large volume of
data, but cannot provide the same I/O throughput as a larger number of small disks.

As an example, consider a 200GB data mart. Using 72GB drives, this data mart could
be built with as few as six drives in a fully-mirrored environment. However, six drives
might not provide enough I/O bandwidth to handle a medium number of concurrent
users on a 4-CPU server. Thus, even though six drives provide sufficient storage, a
larger number of drives may be required to provide acceptable performance for this
system.

While it may not be practical to estimate the I/O bandwidth that will be required by a
data warehouse before a system is built, it is generally practical with the guidance of
the hardware manufacturer to estimate how much I/O bandwidth a given server can
potentially utilize, and ensure that the selected I/O configuration will be able to
successfully feed the server. There are many variables in sizing the I/O systems, but
one basic rule of thumb is that your data warehouse system should have multiple
disks for each CPU (at least two disks for each CPU at a bare minimum) in order to
achieve optimal performance.

Stripe Far and Wide

The guiding principle in configuring an I/O system for a data warehouse is to
maximize I/O bandwidth by having multiple disks and channels access each database
object. You can do this by striping the datafiles of the Oracle Database. A striped file is
a file distributed across multiple disks. This striping can be managed by software
(such as a logical volume manager), or within the storage hardware. The goal is to
ensure that each tablespace is striped across a large number of disks (ideally, all of the
disks) so that any database object can be accessed with the highest possible I/O
bandwidth.

Use Redundancy

Because data warehouses are often the largest database systems in a company, they
have the most disks and thus are also the most susceptible to the failure of a single
disk. Therefore, disk redundancy is a requirement for data warehouses to protect
against a hardware failure. Like disk-striping, redundancy can be achieved in many
ways using software or hardware.

A key consideration is that occasionally a balance must be made between redundancy
and performance. For example, a storage system in a RAID-5 configuration may be
less expensive than a RAID-0+1 configuration, but it may not perform as well, either.
Redundancy is necessary for any data warehouse, but the approach to redundancy
may vary depending upon the performance and cost constraints of each data
warehouse.

Test the /O System Before Building the Database

The most important time to examine and tune the I/O system is before the database is
even created. Once the database files are created, it is more difficult to reconfigure the
files. Some logical volume managers may support dynamic reconfiguration of files,
while other storage configurations may require that files be entirely rebuilt in order to
reconfigure their I/O layout. In both cases, considerable system resources must be
devoted to this reconfiguration.

4-2 Oracle Database Data Warehousing Guide

Storage Management

When creating a data warehouse on a new system, the I/O bandwidth should be
tested before creating all of the database datafiles to validate that the expected I/O
levels are being achieved. On most operating systems, this can be done with simple
scripts to measure the performance of reading and writing large test files.

Plan for Growth

A data warehouse designer should plan for future growth of a data warehouse. There
are many approaches to handling the growth in a system, and the key consideration is
to be able to grow the I/O system without compromising on the I/O bandwidth. You
cannot, for example, add four disks to an existing system of 20 disks, and grow the
database by adding a new tablespace striped across only the four new disks. A better
solution would be to add new tablespaces striped across all 24 disks, and over time
also convert the existing tablespaces striped across 20 disks to be striped across all 24
disks.

Storage Management

Two features to consider for managing disks are Oracle Managed Files and Automatic
Storage Management. Without these features, a database administrator must manage
the database files, which, in a data warehouse, can be hundreds or even thousands of
files. Oracle Managed Files simplifies the administration of a database by providing
functionality to automatically create and manage files, so the database administrator
no longer needs to manage each database file. Automatic Storage Management
provides additional functionality for managing not only files but also the disks. With
Automatic Storage Management, the database administrator would administer a small
number of disk groups. Automatic Storage Management handles the tasks of striping
and providing disk redundancy, including rebalancing the database files when new
disks are added to the system.

See Also: Oracle Database Storage Administrator’s Guide for more
details

Hardware and I/O Considerations in Data Warehouses 4-3

Storage Management

4-4 Oracle Database Data Warehousing Guide

O

Partitioning in Data Warehouses

Data warehouses often contain very large tables and require techniques both for
managing these large tables and for providing good query performance across them.
An important tool for achieving this, as well as enhancing data access and improving
overall application performance is partitioning.

Partitioning offers support for very large tables and indexes by letting you decompose
them into smaller and more manageable pieces called partitions. This support is
especially important for applications that access tables and indexes with millions of
rows and many gigabytes of data. Partitioned tables and indexes facilitate
administrative operations by enabling these operations to work on subsets of data. For
example, you can add a new partition, organize an existing partition, or drop a
partition with minimal to zero interruption to a read-only application.

Partitioning can help you tune SQL statements to avoid unnecessary index and table
scans (using partition pruning). It also enables you to improve the performance of
massive join operations when large amounts of data (for example, several million
rows) are joined together by using partition-wise joins. Finally, partitioning data
greatly improves manageability of very large databases and dramatically reduces the
time required for administrative tasks such as backup and restore.

Granularity in a partitioning scheme can be easily changed by splitting or merging
partitions. Thus, if a table's data is skewed to fill some partitions more than others, the
ones that contain more data can be split to achieve a more even distribution.
Partitioning also enables you to swap partitions with a table. By being able to easily
add, remove, or swap a large amount of data quickly, swapping can be used to keep a
large amount of data that is being loaded inaccessible until loading is completed, or
can be used as a way to stage data between different phases of use. Some examples are
current day's transactions or online archives.

A good starting point for considering partitioning strategies is to use the partitioning
advice within the SQL Access Advisor, part of the Tuning Pack. The SQL Access
Adpvisor offers both graphical and command-line interfaces.

See Also:

» Oracle Database Concepts for an introduction to the ideas behind
partitioning

» Oracle Database VLDB and Partitioning Guide for a detailed
examination of how and when to use partitioning

» Oracle Database 2 Day + Performance Tuning Guide for details
regarding the SQL Access Advisor

» Oracle Database Performance Tuning Guide for details regarding
the SQL Access Advisor in command-line mode

Partitioning in Data Warehouses 5-1

5-2 Oracle Database Data Warehousing Guide

6

Indexes

This chapter contains the following topics:

= Using Bitmap Indexes in Data Warehouses
= Using B-Tree Indexes in Data Warehouses
= Using Index Compression

s Choosing Between Local Indexes and Global Indexes

See Also: Oracle Database Concepts for general information
regarding indexing

Using Bitmap Indexes in Data Warehouses

Bitmap indexes are widely used in data warehousing environments. The
environments typically have large amounts of data and ad hoc queries, but a low level
of concurrent DML transactions. For such applications, bitmap indexing provides:

= Reduced response time for large classes of ad hoc queries.
= Reduced storage requirements compared to other indexing techniques.

= Dramatic performance gains even on hardware with a relatively small number of
CPUs or a small amount of memory.

= Efficient maintenance during parallel DML and loads.

Fully indexing a large table with a traditional B-tree index can be prohibitively
expensive in terms of disk space because the indexes can be several times larger than
the data in the table. Bitmap indexes are typically only a fraction of the size of the
indexed data in the table.

An index provides pointers to the rows in a table that contain a given key value. A
regular index stores a list of rowids for each key corresponding to the rows with that
key value. In a bitmap index, a bitmap for each key value replaces a list of rowids.

Each bit in the bitmap corresponds to a possible rowid, and if the bit is set, it means
that the row with the corresponding rowid contains the key value. A mapping
function converts the bit position to an actual rowid, so that the bitmap index provides
the same functionality as a regular index. Bitmap indexes store the bitmaps in a
compressed way. If the number of distinct key values is small, bitmap indexes
compress better and the space saving benefit compared to a B-tree index becomes even
better.

Bitmap indexes are most effective for queries that contain multiple conditions in the
WHERE clause. Rows that satisfy some, but not all, conditions are filtered out before the
table itself is accessed. This improves response time, often dramatically. If you are

Indexes 6-1

Using Bitmap Indexes in Data Warehouses

unsure of which indexes to create, the SQL Access Advisor can generate
recommendations on what to create. As the bitmaps from bitmap indexes can be
combined quickly, it is usually best to use single-column bitmap indexes.

When creating bitmap indexes, you should use NOLOGGING and COMPUTE
STATISTICS. In addition, you should keep in mind that bitmap indexes are usually
easier to destroy and re-create than to maintain.

Benefits for Data Warehousing Applications

Cardinality

Bitmap indexes are primarily intended for data warehousing applications where users
query the data rather than update it. They are not suitable for OLTP applications with
large numbers of concurrent transactions modifying the data.

Parallel query and parallel DML work with bitmap indexes. Bitmap indexing also
supports parallel create indexes and concatenated indexes.

See Also: Chapter 19, "Schema Modeling Techniques" for further
information about using bitmap indexes in data warehousing
environments

The advantages of using bitmap indexes are greatest for columns in which the ratio of
the number of distinct values to the number of rows in the table is small. We refer to
this ratio as the degree of cardinality. A gender column, which has only two distinct
values (male and female), is optimal for a bitmap index. However, data warehouse
administrators also build bitmap indexes on columns with higher cardinalities.

For example, on a table with one million rows, a column with 10,000 distinct values is
a candidate for a bitmap index. A bitmap index on this column can outperform a
B-tree index, particularly when this column is often queried in conjunction with other
indexed columns. In fact, in a typical data warehouse environments, a bitmap index
can be considered for any non-unique column.

B-tree indexes are most effective for high-cardinality data: that is, for data with many
possible values, such as customer_name or phone_number. In a data warehouse,
B-tree indexes should be used only for unique columns or other columns with very
high cardinalities (that is, columns that are almost unique). The majority of indexes in
a data warehouse should be bitmap indexes.

In ad hoc queries and similar situations, bitmap indexes can dramatically improve
query performance. AND and OR conditions in the WHERE clause of a query can be
resolved quickly by performing the corresponding Boolean operations directly on the
bitmaps before converting the resulting bitmap to rowids. If the resulting number of
rows is small, the query can be answered quickly without resorting to a full table scan.

Example 6—1 Bitmap Index

The following shows a portion of a company's customers table.

SELECT cust_id, cust_gender, cust_marital_status, cust_income_level
FROM customers;

CUST_ID C CUST_MARITAL_STATUS CUST_INCOME_LEVEL

70 F D: 70,000 - 89,999
80 F married H: 150,000 - 169,999
90 M single H: 150,000 - 169,999

6-2 Oracle Database Data Warehousing Guide

Using Bitmap Indexes in Data Warehouses

100 F

110 F married
120 M single
130 M

140 M married

170,000 - 189,999
50,000 - 69,999

110,000 - 129,999
190,000 - 249,999
130,000 - 149,999

@Q 49 =m0 H

Because cust_gender, cust_marital_status,and cust_income_level are all
low-cardinality columns (there are only three possible values for marital status, two
possible values for gender, and 12 for income level), bitmap indexes are ideal for these
columns. Do not create a bitmap index on cust_1id because this is a unique column.
Instead, a unique B-tree index on this column provides the most efficient
representation and retrieval.

Table 6-1 illustrates the bitmap index for the cust_gender column in this example. It
consists of two separate bitmaps, one for gender.

Table 6-1 Sample Bitmap Index

gender="M"' gender='F'

cust_1id 70
cust_id 80
cust_id 90
cust_id 100
cust_id 110
cust_id 120

cust_id 130

_ = =, O O = O O
O O O = o= O =

cust_id 140

Each entry (or bit) in the bitmap corresponds to a single row of the customers table.
The value of each bit depends upon the values of the corresponding row in the table.
For example, the bitmap cust_gender="F' contains a one as its first bit because the
gender is F in the first row of the customers table. The bitmap cust_gender='F"
has a zero for its third bit because the gender of the third row is not F.

An analyst investigating demographic trends of the company's customers might ask,
"How many of our married customers have an income level of G or H?" This
corresponds to the following query:

SELECT COUNT(*) FROM customers
WHERE cust_marital_status = 'married’
AND cust_income_level IN ('H: 150,000 - 169,999', 'G: 130,000 - 149,999'");

Bitmap indexes can efficiently process this query by merely counting the number of
ones in the bitmap illustrated in Figure 6-1. The result set will be found by using
bitmap OR merge operations without the necessity of a conversion to rowids. To
identify additional specific customer attributes that satisfy the criteria, use the
resulting bitmap to access the table after a bitmap to rowid conversion.

Indexes 6-3

Using Bitmap Indexes in Data Warehouses

Figure 6—1 Executing a Query Using Bitmap Indexes

status = region = region =

'married’ ‘central’ 'west'

0 0 0 0 0 0
1 1 0 1 1 1
" a0 ¢ or ! = " anp ! - 1
0 0 1 0 1 0
0 1 0 0 1 0
1 1 0 1 1 1

How to Determine Candidates for Using a Bitmap Index

Bitmap indexes should help when either the fact table is queried alone, and there are
predicates on the indexed column, or when the fact table is joined with two or more
dimension tables, and there are indexes on foreign key columns in the fact table, and
predicates on dimension table columns.

A fact table column is a candidate for a bitmap index when the following conditions
are met:

s There are 100 or more rows for each distinct value in the indexed column. When
this limit is met, the bitmap index will be much smaller than a regular index, and
you will be able to create the index much faster than a regular index. An example
would be one million distinct values in a multi-billion row table.

And either of the following are true:
s The indexed column will be restricted in queries (referenced in the WHERE clause).
or

s The indexed column is a foreign key for a dimension table. In this case, such an
index will make star transformation more likely.

Bitmap Indexes and Nulls

Unlike most other types of indexes, bitmap indexes include rows that have NULL
values. Indexing of nulls can be useful for some types of SQL statements, such as
queries with the aggregate function COUNT.

Example 6-2 Bitmap Index
SELECT COUNT (*) FROM customers WHERE cust_marital_status IS NULL;

This query uses a bitmap index on cust_marital_status. Note that this query
would not be able to use a B-tree index, because B-tree indexes do not store the NULL
values.

SELECT COUNT (*) FROM customers;
Any bitmap index can be used for this query because all table rows are indexed,

including those that have NULL data. If nulls were not indexed, the optimizer would
be able to use indexes only on columns with NOT NULL constraints.

6-4 Oracle Database Data Warehousing Guide

Using Bitmap Indexes in Data Warehouses

Bitmap Indexes on Partitioned Tables

You can create bitmap indexes on partitioned tables but they must be local to the
partitioned table—they cannot be global indexes. A partitioned table can only have
global B-tree indexes, partitioned or nonpartitioned. See Oracle Database VLDB and
Partitioning Guide for further information.

Using Bitmap Join Indexes in Data Warehouses

In addition to a bitmap index on a single table, you can create a bitmap join index,
which is a bitmap index for the join of two or more tables. In a bitmap join index, the
bitmap for the table to be indexed is built for values coming from the joined tables. In
a data warehousing environment, the join condition is an equi-inner join between the
primary key column or columns of the dimension tables and the foreign key column
or columns in the fact table.

A bitmap join index can improve the performance by an order of magnitude. By
storing the result of a join, the join can be avoided completely for SQL statements
using a bitmap join index. Furthermore, since it is most likely to have a much smaller
number of distinct values for a bitmap join index compared to a regular bitmap index
on the join column, the bitmaps compress better, yielding to less space consumption
than a regular bitmap index on the join column.

Bitmap join indexes are much more efficient in storage than materialized join views,
an alternative for materializing joins in advance. This is because the materialized join
views do not compress the rowids of the fact tables.

B-tree and bitmap indexes have different maximum column limitations. See Oracle
Database SQL Language Reference for these limitations.

Four Join Models for Bitmap Join Indexes

The most common usage of a bitmap join index is in star model environments, where a
large table is indexed on columns joined by one or several smaller tables. We will refer
to the large table as the fact table and to the smaller tables as dimension tables. The
following section describes the four different join models supported by bitmap join
indexes. See Chapter 19, "Schema Modeling Techniques" for schema modeling
techniques.

Example 6-3 Bitmap Join Index: One Dimension Table Columns Joins One Fact Table

Unlike the example in "Bitmap Index" on page 6-2, where a bitmap index on the
cust_gender column on the customers table was built, we now create a bitmap
join index on the fact table sales for the joined column customers (cust_gender).
Table sales stores cust_id values only:

SELECT time_id, cust_id, amount_sold FROM sales;

TIME_ID CUST_ID AMOUNT_SOLD

01-JAN-98 29700 2291
01-JAN-98 3380 114
01-JAN-98 67830 553
01-JAN-98 179330 0
01-JAN-98 127520 195
01-JAN-98 33030 280

Indexes 6-5

Using Bitmap Indexes in Data Warehouses

To create such a bitmap join index, column customers (cust_gender) has to be
joined with table sales. The join condition is specified as part of the CREATE
statement for the bitmap join index as follows:

CREATE BITMAP INDEX sales_cust_gender_bjix
ON sales(customers.cust_gender)

FROM sales, customers

WHERE sales.cust_id = customers.cust_id
LOCAL NOLOGGING COMPUTE STATISTICS;

The following query shows illustrates the join result that is used to create the bitmaps
that are stored in the bitmap join index:

SELECT sales.time_id, customers.cust_gender, sales.amount_sold
FROM sales, customers
WHERE sales.cust_id = customers.cust_id;

TIME_ID C AMOUNT_SOLD

01-JAN-98 M 2291
01-JAN-98 F 114
01-JAN-98 M 553
01-JAN-98 M 0
01-JAN-98 M 195
01-JAN-98 M 280
01-JAN-98 M 32

Table 6-2 illustrates the bitmap representation for the bitmap join index in this
example.

Table 6-2 Sample Bitmap Join Index

cust_gender='M' cust_gender="F'
sales record 1 1 0
sales record 2 0 1
sales record 3 1 0
sales record 4 1 0
sales record 5 1 0
sales record 6 1 0
sales record 7 1 0

You can create other bitmap join indexes using more than one column or more than
one table, as shown in these examples.

Example 6-4 Bitmap Join Index: Multiple Dimension Columns Join One Fact Table

You can create a bitmap join index on more than one column from a single dimension
table, as in the following example, which uses customers (cust_gender, cust_
marital_status) from the sh schema:

CREATE BITMAP INDEX sales_cust_gender_ms_bjix

ON sales(customers.cust_gender, customers.cust_marital_status)
FROM sales, customers

WHERE sales.cust_id = customers.cust_id

LOCAL NOLOGGING COMPUTE STATISTICS;

6-6 Oracle Database Data Warehousing Guide

Using B-Tree Indexes in Data Warehouses

Example 6-5 Bitmap Join Index: Multiple Dimension Tables Join One Fact Table

You can create a bitmap join index on multiple dimension tables, as in the following,
which uses customers (gender) and products (category):

CREATE BITMAP INDEX sales_c_gender_p_cat_bjix

ON sales(customers.cust_gender, products.prod_category)
FROM sales, customers, products

WHERE sales.cust_id = customers.cust_id

AND sales.prod_id = products.prod_id

LOCAL NOLOGGING COMPUTE STATISTICS;

Example 6-6 Bitmap Join Index: Snowflake Schema

You can create a bitmap join index on more than one table, in which the indexed
column is joined to the indexed table by using another table. For example, you can
build an index on countries.country_name, even though the countries table is
not joined directly to the sales table. Instead, the countries table is joined to the
customers table, which is joined to the sales table. This type of schema is
commonly called a snowflake schema.

CREATE BITMAP INDEX sales_co_country_name_bjix
ON sales(countries.country_name)
FROM sales, customers, countries
WHERE sales.cust_id = customers.cust_id
AND customers.country_id = countries.country_id
LOCAL NOLOGGING COMPUTE STATISTICS;

Bitmap Join Index Restrictions and Requirements

Join results must be stored, therefore, bitmap join indexes have the following
restrictions:

= Parallel DML is only supported on the fact table. Parallel DML on one of the
participating dimension tables will mark the index as unusable.

= Only one table can be updated concurrently by different transactions when using
the bitmap join index.

= No table can appear twice in the join.
= You cannot create a bitmap join index on a temporary table.
s The columns in the index must all be columns of the dimension tables.

= The dimension table join columns must be either primary key columns or have
unique constraints.

s The dimension table column(s) participating the join with the fact table must be
either the primary key column(s) or with the unique constraint.

» If a dimension table has composite primary key, each column in the primary key
must be part of the join.

» The restrictions for creating a regular bitmap index also apply to a bitmap join
index. For example, you cannot create a bitmap index with the UNIQUE attribute.
See Oracle Database SQL Language Reference for other restrictions.

Using B-Tree Indexes in Data Warehouses

A B-tree index is organized like an upside-down tree. The bottom level of the index
holds the actual data values and pointers to the corresponding rows, much as the
index in a book has a page number associated with each index entry.

Indexes 6-7

Using Index Compression

In general, use B-tree indexes when you know that your typical query refers to the
indexed column and retrieves a few rows. In these queries, it is faster to find the rows
by looking at the index. However, using the book index analogy, if you plan to look at
every single topic in a book, you might not want to look in the index for the topic and
then look up the page. It might be faster to read through every chapter in the book.
Similarly, if you are retrieving most of the rows in a table, it might not make sense to
look up the index to find the table rows. Instead, you might want to read or scan the
table.

B-tree indexes are most commonly used in a data warehouse to enforce unique keys.
In many cases, it may not even be necessary to index these columns in a data
warehouse, because the uniqueness was enforced as part of the preceding ETL
processing, and because typical data warehouse queries may not work better with
such indexes. B-tree indexes are more common in environments using third normal
form schemas. In general, bitmap indexes should be more common than B-tree indexes
in most data warehouse environments.

B-tree and bitmap indexes have different maximum column limitations. See Oracle
Database SQL Language Reference for these limitations.

Using Index Compression

Bitmap indexes are always stored in a patented, compressed manner without the need
of any user intervention. B-tree indexes, however, can be stored specifically in a
compressed manner to enable huge space savings, storing more keys in each index
block, which also leads to less I/O and better performance.

Key compression lets you compress a B-tree index, which reduces the storage
overhead of repeated values. In the case of a nonunique index, all index columns can
be stored in a compressed format, whereas in the case of a unique index, at least one
index column has to be stored uncompressed.

Generally, keys in an index have two pieces, a grouping piece and a unique piece. If
the key is not defined to have a unique piece, Oracle provides one in the form of a
rowid appended to the grouping piece. Key compression is a method of breaking off
the grouping piece and storing it so it can be shared by multiple unique pieces. The
cardinality of the chosen columns to be compressed determines the compression ratio
that can be achieved. So, for example, if a unique index that consists of five columns
provides the uniqueness mostly by the last two columns, it is most optimal to choose
the three leading columns to be stored compressed. If you choose to compress four
columns, the repetitiveness will be almost gone, and the compression ratio will be
worse.

Although key compression reduces the storage requirements of an index, it can
increase the CPU time required to reconstruct the key column values during an index
scan. It also incurs some additional storage overhead, because every prefix entry has
an overhead of four bytes associated with it.

Choosing Between Local Indexes and Global Indexes

B-tree indexes on partitioned tables can be global or local. With Oracle8i and earlier
releases, Oracle recommended that global indexes not be used in data warehouse
environments because a partition DDL statement (for example, ALTER TABLE ... DROP
PARTITION) would invalidate the entire index, and rebuilding the index is expensive.
Since Oracle Database 10g, global indexes can be maintained without Oracle marking
them as unusable after DDL. This enhancement makes global indexes more effective
for data warehouse environments.

6-8 Oracle Database Data Warehousing Guide

Choosing Between Local Indexes and Global Indexes

However, local indexes will be more common than global indexes. Global indexes
should be used when there is a specific requirement which cannot be met by local
indexes (for example, a unique index on a non-partitioning key, or a performance
requirement).

Bitmap indexes on partitioned tables are always local.

Indexes 6-9

Choosing Between Local Indexes and Global Indexes

6-10 Oracle Database Data Warehousing Guide

7

Integrity Constraints

This chapter describes integrity constraints. It contains the following topics:

Why Integrity Constraints are Useful in a Data Warehouse
Overview of Constraint States

Typical Data Warehouse Integrity Constraints

Why Integrity Constraints are Useful in a Data Warehouse

Integrity constraints provide a mechanism for ensuring that data conforms to
guidelines specified by the database administrator. The most common types of
constraints include:

UNIQUE constraints

To ensure that a given column is unique
NOT NULL constraints

To ensure that no null values are allowed
FOREIGN KEY constraints

To ensure that two keys share a primary key to foreign key relationship

Constraints can be used for these purposes in a data warehouse:

Data cleanliness

Constraints verify that the data in the data warehouse conforms to a basic level of
data consistency and correctness, preventing the introduction of dirty data.
Query optimization

The Oracle Database utilizes constraints when optimizing SQL queries. Although
constraints can be useful in many aspects of query optimization, constraints are
particularly important for query rewrite of materialized views.

Unlike data in many relational database environments, data in a data warehouse is
typically added or modified under controlled circumstances during the extraction,
transformation, and loading (ETL) process. Multiple users normally do not update the
data warehouse directly, as they do in an OLTP system.

See Also: Chapter 11, "Overview of Extraction, Transformation,
and Loading"

Integrity Constraints 7-1

Overview of Constraint States

Overview of Constraint States

To understand how best to use constraints in a data warehouse, you should first
understand the basic purposes of constraints. Some of these purposes are:

Enforcement

In order to use a constraint for enforcement, the constraint must be in the ENABLE
state. An enabled constraint ensures that all data modifications upon a given table
(or tables) satisfy the conditions of the constraints. Data modification operations
which produce data that violates the constraint fail with a constraint violation
error.

Validation

To use a constraint for validation, the constraint must be in the VALIDATE state. If
the constraint is validated, then all data that currently resides in the table satisfies
the constraint.

Note that validation is independent of enforcement. Although the typical
constraint in an operational system is both enabled and validated, any constraint
could be validated but not enabled or vice versa (enabled but not validated). These
latter two cases are useful for data warehouses.

Belief

In some cases, you will know that the conditions for a given constraint are true, so
you do not need to validate or enforce the constraint. However, you may wish for
the constraint to be present anyway to improve query optimization and
performance. When you use a constraint in this way, it is called a belief or RELY
constraint, and the constraint must be in the RELY state. The RELY state provides
you with a mechanism for telling Oracle that a given constraint is believed to be
true.

Note that the RELY state only affects constraints that have not been validated.

Typical Data Warehouse Integrity Constraints

This section assumes that you are familiar with the typical use of constraints. That is,
constraints that are both enabled and validated. For data warehousing, many users
have discovered that such constraints may be prohibitively costly to build and
maintain. The topics discussed are:

UNIQUE Constraints in a Data Warehouse
FOREIGN KEY Constraints in a Data Warehouse
RELY Constraints

NOT NULL Constraints

Integrity Constraints and Parallelism

Integrity Constraints and Partitioning

View Constraints

UNIQUE Constraints in a Data Warehouse

A UNIQUE constraint is typically enforced using a UNIQUE index. However, in a data
warehouse whose tables can be extremely large, creating a unique index can be costly
both in processing time and in disk space.

7-2 Oracle Database Data Warehousing Guide

Typical Data Warehouse Integrity Constraints

Suppose that a data warehouse contains a table sales, which includes a column
sales_id. sales_id uniquely identifies a single sales transaction, and the data
warehouse administrator must ensure that this column is unique within the data
warehouse.

One way to create the constraint is as follows:

ALTER TABLE sales ADD CONSTRAINT sales_uk
UNIQUE (prod_id, cust_id, promo_id, channel_id, time_id);

By default, this constraint is both enabled and validated. Oracle implicitly creates a
unique index on sales_1id to support this constraint. However, this index can be
problematic in a data warehouse for three reasons:

= The unique index can be very large, because the sales table can easily have
millions or even billions of rows.

s The unique index is rarely used for query execution. Most data warehousing
queries do not have predicates on unique keys, so creating this index will
probably not improve performance.

» If sales is partitioned along a column other than sales_id, the unique index
must be global. This can detrimentally affect all maintenance operations on the
sales table.

A unique index is required for unique constraints to ensure that each individual row
modified in the sales table satisfies the UNIQUE constraint.

For data warehousing tables, an alternative mechanism for unique constraints is
illustrated in the following statement:

ALTER TABLE sales ADD CONSTRAINT sales_uk
UNIQUE (prod_id, cust_id, promo_id, channel_id, time_id) DISABLE VALIDATE;

This statement creates a unique constraint, but, because the constraint is disabled, a
unique index is not required. This approach can be advantageous for many data
warehousing environments because the constraint now ensures uniqueness without
the cost of a unique index.

However, there are trade-offs for the data warehouse administrator to consider with
DISABLE VALIDATE constraints. Because this constraint is disabled, no DML
statements that modify the unique column are permitted against the sales table. You
can use one of two strategies for modifying this table in the presence of a constraint:

s Use DDL to add data to this table (such as exchanging partitions). See the example
in Chapter 15, "Maintaining the Data Warehouse".

= Before modifying this table, drop the constraint. Then, make all necessary data
modifications. Finally, re-create the disabled constraint. Re-creating the constraint
is more efficient than re-creating an enabled constraint. However, this approach
does not guarantee that data added to the sales table while the constraint has
been dropped is unique.

FOREIGN KEY Constraints in a Data Warehouse

In a star schema data warehouse, FOREIGN KEY constraints validate the relationship
between the fact table and the dimension tables. A sample constraint might be:

ALTER TABLE sales ADD CONSTRAINT sales_time_fk
FOREIGN KEY (time_id) REFERENCES times (time_id)
ENABLE VALIDATE;

Integrity Constraints 7-3

Typical Data Warehouse Integrity Constraints

However, in some situations, you may choose to use a different state for the FOREIGN
KEY constraints, in particular, the ENABLE NOVALIDATE state. A data warehouse
administrator might use an ENABLE NOVALIDATE constraint when either:

s The tables contain data that currently disobeys the constraint, but the data
warehouse administrator wishes to create a constraint for future enforcement.

= Anenforced constraint is required immediately.

Suppose that the data warehouse loaded new data into the fact tables every day, but
refreshed the dimension tables only on the weekend. During the week, the dimension
tables and fact tables may in fact disobey the FOREIGN KEY constraints. Nevertheless,
the data warehouse administrator might wish to maintain the enforcement of this
constraint to prevent any changes that might affect the FOREIGN KEY constraint
outside of the ETL process. Thus, you can create the FOREIGN KEY constraints every
night, after performing the ETL process, as shown in the following:

ALTER TABLE sales ADD CONSTRAINT sales_time_fk
FOREIGN KEY (time_id) REFERENCES times (time_id)
ENABLE NOVALIDATE;

ENABLE NOVALIDATE can quickly create an enforced constraint, even when the
constraint is believed to be true. Suppose that the ETL process verifies that a FOREIGN
KEY constraint is true. Rather than have the database re-verify this FOREIGN KEY
constraint, which would require time and database resources, the data warehouse
administrator could instead create a FOREIGN KEY constraint using ENABLE
NOVALIDATE.

RELY Constraints

The ETL process commonly verifies that certain constraints are true. For example, it
can validate all of the foreign keys in the data coming into the fact table. This means
that you can trust it to provide clean data, instead of implementing constraints in the
data warehouse. You create a RELY constraint as follows:

ALTER TABLE sales ADD CONSTRAINT sales_time_fk
FOREIGN KEY (time_id) REFERENCES times (time_id)
RELY DISABLE NOVALIDATE;

This statement assumes that the primary key is in the RELY state. RELY constraints,
even though they are not used for data validation, can:

= Enable more sophisticated query rewrites for materialized views. See Chapter 17,
"Basic Query Rewrite" for further details.

= Enable other data warehousing tools to retrieve information regarding constraints
directly from the Oracle data dictionary.

Creating a RELY constraint is inexpensive and does not impose any overhead during
DML or load. Because the constraint is not being validated, no data processing is
necessary to create it.

NOT NULL Constraints

When using query rewrite, you should consider whether NOT NULL constraints are
required. The primary situation where you will need to use them is for join back query
rewrite. See Chapter 18, "Advanced Query Rewrite" for further information regarding
NOT NULL constraints when using query rewrite.

7-4 Oracle Database Data Warehousing Guide

Typical Data Warehouse Integrity Constraints

Integrity Constraints and Parallelism

All constraints can be validated in parallel. When validating constraints on very large
tables, parallelism is often necessary to meet performance goals. The degree of
parallelism for a given constraint operation is determined by the default degree of
parallelism of the underlying table.

Integrity Constraints and Partitioning

You can create and maintain constraints before you partition the data. Later chapters
discuss the significance of partitioning for data warehousing. Partitioning can improve
constraint management just as it does to management of many other operations. For
example, Chapter 15, "Maintaining the Data Warehouse" provides a scenario creating
UNIQUE and FOREIGN KEY constraints on a separate staging table, and these
constraints are maintained during the EXCHANGE PARTITION statement.

View Constraints

You can create constraints on views. The only type of constraint supported on a view
is a RELY constraint.

This type of constraint is useful when queries typically access views instead of base
tables, and the database administrator thus needs to define the data relationships
between views rather than tables.

See Also: Chapter 8, "Basic Materialized Views" and Chapter 17,
"Basic Query Rewrite"

Integrity Constraints 7-5

Typical Data Warehouse Integrity Constraints

7-6 Oracle Database Data Warehousing Guide

8

Basic Materialized Views

This chapter describes the use of materialized views. It contains the following topics:
s Overview of Data Warehousing with Materialized Views

= Types of Materialized Views

s Creating Materialized Views

= Registering Existing Materialized Views

s Choosing Indexes for Materialized Views

= Dropping Materialized Views

= Analyzing Materialized View Capabilities

Overview of Data Warehousing with Materialized Views

Typically, data flows from one or more online transaction processing (OLTP) database
into a data warehouse on a monthly, weekly, or daily basis. The data is normally
processed in a staging file before being added to the data warehouse. Data
warehouses commonly range in size from tens of gigabytes to a few terabytes. Usually,
the vast majority of the data is stored in a few very large fact tables.

One technique employed in data warehouses to improve performance is the creation
of summaries. Summaries are special types of aggregate views that improve query
execution times by precalculating expensive joins and aggregation operations prior to
execution and storing the results in a table in the database. For example, you can
create a summary table to contain the sums of sales by region and by product.

The summaries or aggregates that are referred to in this book and in literature on data
warehousing are created in Oracle Database using a schema object called a
materialized view. Materialized views can perform a number of roles, such as
improving query performance or providing replicated data.

In the past, organizations using summaries spent a significant amount of time and
effort creating summaries manually, identifying which summaries to create, indexing
the summaries, updating them, and advising their users on which ones to use. The
introduction of summary management eased the workload of the database
administrator and meant the user no longer needed to be aware of the summaries that
had been defined. The database administrator creates one or more materialized views,
which are the equivalent of a summary. The end user queries the tables and views at
the detail data level. The query rewrite mechanism in the Oracle server automatically
rewrites the SQL query to use the summary tables. This mechanism reduces response
time for returning results from the query. Materialized views within the data
warehouse are transparent to the end user or to the database application.

Basic Materialized Views 8-1

Overview of Data Warehousing with Materialized Views

Although materialized views are usually accessed through the query rewrite
mechanism, an end user or database application can construct queries that directly
access the materialized views. However, serious consideration should be given to
whether users should be allowed to do this because any change to the materialized
views will affect the queries that reference them.

Materialized Views for Data Warehouses

In data warehouses, you can use materialized views to precompute and store
aggregated data such as the sum of sales. Materialized views in these environments
are often referred to as summaries, because they store summarized data. They can also
be used to precompute joins with or without aggregations. A materialized view
eliminates the overhead associated with expensive joins and aggregations for a large
or important class of queries.

Materialized Views for Distributed Computing

In distributed environments, you can use materialized views to replicate data at
distributed sites and to synchronize updates done at those sites with conflict
resolution methods. These replica materialized views provide local access to data that
otherwise would have to be accessed from remote sites. Materialized views are also
useful in remote data marts. See Oracle Database Advanced Replication and Oracle
Database Heterogeneous Connectivity Administrator’s Guide for details on distributed and
mobile computing.

Materialized Views for Mobile Computing

You can also use materialized views to download a subset of data from central servers
to mobile clients, with periodic refreshes and updates between clients and the central
servers.

This chapter focuses on the use of materialized views in data warehouses. See Oracle
Database Advanced Replication and Oracle Database Heterogeneous Connectivity
Administrator’s Guide for details on distributed and mobile computing.

The Need for Materialized Views

You can use materialized views to increase the speed of queries on very large
databases. Queries to large databases often involve joins between tables, aggregations
such as SUM, or both. These operations are expensive in terms of time and processing
power. The type of materialized view you create determines how the materialized
view is refreshed and used by query rewrite.

Materialized views improve query performance by precalculating expensive join and
aggregation operations on the database prior to execution and storing the results in the
database. The query optimizer automatically recognizes when an existing materialized
view can and should be used to satisfy a request. It then transparently rewrites the
request to use the materialized view. Queries go directly to the materialized view and
not to the underlying detail tables. In general, rewriting queries to use materialized
views rather than detail tables improves response time. Figure 8-1 illustrates how
query rewrite works.

8-2 Oracle Database Data Warehousing Guide

Overview of Data Warehousing with Materialized Views

Figure 8-1 Transparent Query Rewrite

Oracle

Generate Plan

Cuery Results

.
U:

User enters
query

Compare plan cost
v and pick the best

Generate Flan T

When using query rewrite, create materialized views that satisfy the largest number of
queries. For example, if you identify 20 queries that are commonly applied to the
detail or fact tables, then you might be able to satisfy them with five or six well-written
materialized views. A materialized view definition can include any number of
aggregations (SUM, COUNT (x), COUNT (*), COUNT (DISTINCT x), AVG, VARIANCE,
STDDEV, MIN, and MAX). It can also include any number of joins. If you are unsure of
which materialized views to create, Oracle provides the SQL Access Advisor, which is
a set of advisory procedures in the DBMS_ADVISOR package to help in designing and
evaluating materialized views for query rewrite.

If a materialized view is to be used by query rewrite, it must be stored in the same
database as the detail tables on which it relies. A materialized view can be partitioned,
and you can define a materialized view on a partitioned table. You can also define one
or more indexes on the materialized view.

Unlike indexes, materialized views can be accessed directly using a SELECT statement.
However, it is recommended that you try to avoid writing SQL statements that
directly reference the materialized view, because then it is difficult to change them
without affecting the application. Instead, let query rewrite transparently rewrite your
query to use the materialized view.

Note that the techniques shown in this chapter illustrate how to use materialized
views in data warehouses. Materialized views can also be used by Oracle Replication.
See Oracle Database Advanced Replication for further information.

Components of Summary Management

Summary management consists of:
s Mechanisms to define materialized views and dimensions.
s A refresh mechanism to ensure that all materialized views contain the latest data.

= A query rewrite capability to transparently rewrite a query to use a materialized
view.

Basic Materialized Views 8-3

Overview of Data Warehousing with Materialized Views

s The SQL Access Advisor, which recommends materialized views, partitions, and
indexes to create.

= TUNE_MVIEW, which shows you how to make your materialized view fast
refreshable and use general query rewrite.

The use of summary management features imposes no schema restrictions, and can
enable some existing DSS database applications to improve performance without the
need to redesign the database or the application.

Figure 8-2 illustrates the use of summary management in the warehousing cycle. After
the data has been transformed, staged, and loaded into the detail data in the
warehouse, you can invoke the summary management process. First, use the SQL
Access Advisor to plan how you will use materialized views. Then, create materialized
views and design how queries will be rewritten. If you are having problems trying to
get your materialized views to work then use TUNE_MVIEW to obtain an optimized
materialized view.

Figure 8-2 Overview of Summary Management

Operational
Databases Staging
file
Extraction of Data JR—
Incremental . I —
Detail Data Transformations =
Summary
Management
I e —— .
Data Warehouse |
Query ||
N Rewrite |, MDDB
: Data Mart
Incremental
Load and Refresh PErétgr?acrtn

Workload
Statistics

Multidimensional
Analysis Tools

Summary Mgmt Summary Mgmt
Administration Analysis & Tuning

Understanding the summary management process during the earliest stages of data
warehouse design can yield large dividends later in the form of higher performance,
lower summary administration costs, and reduced storage requirements.

8-4 Oracle Database Data Warehousing Guide

Overview of Data Warehousing with Materialized Views

Data Warehousing Terminology

Some basic data warehousing terms are defined as follows:

Dimension tables describe the business entities of an enterprise, represented as
hierarchical, categorical information such as time, departments, locations, and
products. Dimension tables are sometimes called lookup or reference tables.

Dimension tables usually change slowly over time and are not modified on a
periodic schedule. They are used in long-running decision support queries to
aggregate the data returned from the query into appropriate levels of the
dimension hierarchy.

Hierarchies describe the business relationships and common access patterns in the
database. An analysis of the dimensions, combined with an understanding of the
typical work load, can be used to create materialized views. See Chapter 10,
"Dimensions" for more information.

Fact tables describe the business transactions of an enterprise.

The vast majority of data in a data warehouse is stored in a few very large fact
tables that are updated periodically with data from one or more operational OLTP
databases.

Fact tables include facts (also called measures) such as sales, units, and inventory.

- A simple measure is a numeric or character column of one table such as
fact.sales.

- A computed measure is an expression involving measures of one table, for
example, fact.revenues - fact.expenses.

— A multitable measure is a computed measure defined on multiple tables, for
example, fact_a.revenues - fact_b.expenses.

Fact tables also contain one or more foreign keys that organize the business
transactions by the relevant business entities such as time, product, and market. In
most cases, these foreign keys are non-null, form a unique compound key of the
fact table, and each foreign key joins with exactly one row of a dimension table.

A materialized view is a precomputed table comprising aggregated and joined
data from fact and possibly from dimension tables. Among builders of data
warehouses, a materialized view is also known as a summary.

Materialized View Schema Design

Summary management can perform many useful functions, including query rewrite
and materialized view refresh, even if your data warehouse design does not follow
these guidelines. However, you will realize significantly greater query execution
performance and materialized view refresh performance benefits and you will require
fewer materialized views if your schema design complies with these guidelines.

A materialized view definition includes any number of aggregates, as well as any
number of joins. In several ways, a materialized view behaves like an index:

The purpose of a materialized view is to increase query execution performance.

The existence of a materialized view is transparent to SQL applications, so that a
database administrator can create or drop materialized views at any time without
affecting the validity of SQL applications.

A materialized view consumes storage space.

Basic Materialized Views 8-5

Overview of Data Warehousing with Materialized Views

s The contents of the materialized view must be updated when the underlying
detail tables are modified.

Schemas and Dimension Tables

In the case of normalized or partially normalized dimension tables (a dimension that is
stored in more than one table), identify how these tables are joined. Note whether the
joins between the dimension tables can guarantee that each child-side row joins with
one and only one parent-side row. In the case of denormalized dimensions, determine
whether the child-side columns uniquely determine the parent-side (or attribute)
columns. These relationships can be enabled with constraints, using the NOVALIDATE
and RELY options if the relationships represented by the constraints are guaranteed by
other means. Note that if the joins between fact and dimension tables do not support
the parent-child relationship described previously, you still gain significant
performance advantages from defining the dimension with the CREATE DIMENSION
statement. Another alternative, subject to some restrictions, is to use outer joins in the
materialized view definition (that is, in the CREATE MATERIALIZED VIEW statement).

You must not create dimensions in any schema that does not satisfy these
relationships. Incorrect results can be returned from queries otherwise.

Materialized View Schema Design Guidelines

Before starting to define and use the various components of summary management,
you should review your schema design to abide by the following guidelines wherever
possible.

Guidelines 1 and 2 are more important than guideline 3. If your schema design does
not follow guidelines 1 and 2, it does not then matter whether it follows guideline 3.
Guidelines 1, 2, and 3 affect both query rewrite performance and materialized view
refresh performance.

Table 8-1 Schema Design Guidelines

Schema Guideline Description

Guideline 1

Dimensions

Guideline 2

Dimensions

Guideline 3

Dimensions

Guideline 4

Incremental Loads

Dimensions should either be denormalized (each dimension contained in one table) or the joins between
tables in a normalized or partially normalized dimension should guarantee that each child-side row joins
with exactly one parent-side row. The benefits of maintaining this condition are described in "Creating
Dimensions" on page 10-3.

You can enforce this condition by adding FOREIGN KEY and NOT NULL constraints on the child-side join
keys and PRIMARY KEY constraints on the parent-side join keys.

If dimensions are denormalized or partially denormalized, hierarchical integrity must be maintained
between the key columns of the dimension table. Each child key value must uniquely identify its parent
key value, even if the dimension table is denormalized. Hierarchical integrity in a denormalized
dimension can be verified by calling the VALIDATE_DIMENSION procedure of the DBMS_DIMENSION
package.

Fact and dimension tables should similarly guarantee that each fact table row joins with exactly one
dimension table row. This condition must be declared, and optionally enforced, by adding FOREIGN KEY
and NOT NULL constraints on the fact key column(s) and PRIMARY KEY constraints on the dimension key
column(s), or by using outer joins. In a data warehouse, constraints are typically enabled with the
NOVALIDATE and RELY clauses to avoid constraint enforcement performance overhead. See Oracle
Database SQL Language Reference for further details.

Incremental loads of your detail data should be done using the SQL*Loader direct-path option, or any
bulk loader utility that uses Oracle's direct-path interface. This includes INSERT ... AS SELECT with the
APPEND or PARALLEL hints, where the hints cause the direct loader log to be used during the insert. See
Oracle Database SQL Language Reference and "Types of Materialized Views" on page 8-8 for more
information.

8-6 Oracle Database Data Warehousing Guide

Overview of Data Warehousing with Materialized Views

Table 8-1 (Cont.) Schema Design Guidelines

Schema Guideline Description

Guideline 5
Partitions

Guideline 6
Dimensions

Guideline 7

Time Dimensions

Range/composite partition your tables by a monotonically increasing time column if possible (preferably
of type DATE).

After each load and before refreshing your materialized view, use the VALIDATE_DIMENSION procedure
of the DBMS_DIMENSION package to incrementally verify dimensional integrity.

If a time dimension appears in the materialized view as a time column, partition and index the
materialized view in the same manner as you have the fact tables.

If you are concerned with the time required to enable constraints and whether any
constraints might be violated, then use the ENABLE NOVALIDATE with the RELY clause
to turn on constraint checking without validating any of the existing constraints. The
risk with this approach is that incorrect query results could occur if any constraints are
broken. Therefore, as the designer, you must determine how clean the data is and
whether the risk of incorrect results is too great.

Loading Data into Data Warehouses

A popular and efficient way to load data into a data warehouse or data mart is to use
SQL*Loader with the DIRECT or PARALLEL option, Data Pump, or to use another
loader tool that uses the Oracle direct-path APIL. See Oracle Database Utilities for the
restrictions and considerations when using SQL*Loader with the DIRECT or
PARALLEL keywords.

Loading strategies can be classified as one-phase or two-phase. In one-phase loading,
data is loaded directly into the target table, quality assurance tests are performed, and
errors are resolved by performing DML operations prior to refreshing materialized
views. If a large number of deletions are possible, then storage utilization can be
adversely affected, but temporary space requirements and load time are minimized.

In a two-phase loading process:
= Data is first loaded into a temporary table in the warehouse.
= Quality assurance procedures are applied to the data.

= Referential integrity constraints on the target table are disabled, and the local
index in the target partition is marked unusable.

» The data is copied from the temporary area into the appropriate partition of the
target table using INSERT AS SELECT with the PARALLEL or APPEND hint. The
temporary table is then dropped. Alternatively, if the target table is partitioned,
you can create a new (empty) partition in the target table and use ALTER TABLE

EXCHANGE PARTITION to incorporate the temporary table into the target
table. See Oracle Database SQL Language Reference for more information.

= The constraints are enabled, usually with the NOVALIDATE option.

Immediately after loading the detail data and updating the indexes on the detail data,
the database can be opened for operation, if desired. You can disable query rewrite at
the system level by issuing an ALTER SYSTEM SET QUERY_REWRITE_ENABLED =
FALSE statement until all the materialized views are refreshed.

If QUERY_REWRITE_INTEGRITY is set to STALE_TOLERATED, access to the
materialized view can be allowed at the session level to any users who do not require
the materialized views to reflect the data from the latest load by issuing an ALTER
SESSION SET QUERY_REWRITE_ENABLED = TRUE statement. This scenario does not
apply when QUERY_REWRITE_INTEGRITY is either ENFORCED or TRUSTED because

Basic Materialized Views 8-7

Types of Materialized Views

the system ensures in these modes that only materialized views with updated data
participate in a query rewrite.

Overview of Materialized View Management Tasks

The motivation for using materialized views is to improve performance, but the
overhead associated with materialized view management can become a significant
system management problem. When reviewing or evaluating some of the necessary
materialized view management activities, consider some of the following:

s Identifying what materialized views to create initially.
= Indexing the materialized views.

= Ensuring that all materialized views and materialized view indexes are refreshed
properly each time the database is updated.

s Checking which materialized views have been used.

s Determining how effective each materialized view has been on workload
performance.

= Measuring the space being used by materialized views.

s Determining which new materialized views should be created.

s Determining which existing materialized views should be dropped.

= Archiving old detail and materialized view data that is no longer useful.

After the initial effort of creating and populating the data warehouse or data mart, the
major administration overhead is the update process, which involves:

s Periodic extraction of incremental changes from the operational systems.

s Transforming the data.

= Verifying that the incremental changes are correct, consistent, and complete.
= Bulk-loading the data into the warehouse.

= Refreshing indexes and materialized views so that they are consistent with the
detail data.

The update process must generally be performed within a limited period of time
known as the update window. The update window depends on the update frequency
(such as daily or weekly) and the nature of the business. For a daily update frequency,
an update window of two to six hours might be typical.

You need to know your update window for the following activities:
= Loading the detail data

= Updating or rebuilding the indexes on the detail data

s Performing quality assurance tests on the data

= Refreshing the materialized views

s Updating the indexes on the materialized views

Types of Materialized Views

The SELECT clause in the materialized view creation statement defines the data that
the materialized view is to contain. Only a few restrictions limit what can be specified.
Any number of tables can be joined together. Besides tables, other elements such as

8-8 Oracle Database Data Warehousing Guide

Types of Materialized Views

views, inline views (subqueries in the FROM clause of a SELECT statement),
subqueries, and materialized views can all be joined or referenced in the SELECT
clause. You cannot, however, define a materialized view with a subquery in the
SELECT list of the defining query. You can, however, include subqueries elsewhere in
the defining query, such as in the WHERE clause.

The types of materialized views are:
= Materialized Views with Aggregates
= Materialized Views Containing Only Joins

s Nested Materialized Views

Materialized Views with Aggregates

In data warehouses, materialized views normally contain aggregates as shown in
Example 8-1. For fast refresh to be possible, the SELECT list must contain all of the
GROUP BY columns (if present), and there must be a COUNT (*) and a

COUNT (column) on any aggregated columns. Also, materialized view logs must be
present on all tables referenced in the query that defines the materialized view. The
valid aggregate functions are: SUM, COUNT (x), COUNT (*), AVG, VARIANCE, STDDEV,
MIN, and MAX, and the expression to be aggregated can be any SQL value expression.
See "Restrictions on Fast Refresh on Materialized Views with Aggregates” on

page 8-21.

Fast refresh for a materialized view containing joins and aggregates is possible after
any type of DML to the base tables (direct load or conventional INSERT, UPDATE, or
DELETE). It can be defined to be refreshed ON COMMIT or ON DEMAND. A REFRESH ON
COMMIT materialized view will be refreshed automatically when a transaction that
does DML to one of the materialized view's detail tables commits. The time taken to
complete the commit may be slightly longer than usual when this method is chosen.
This is because the refresh operation is performed as part of the commit process.
Therefore, this method may not be suitable if many users are concurrently changing
the tables upon which the materialized view is based.

Here are some examples of materialized views with aggregates. Note that materialized
view logs are only created because this materialized view will be fast refreshed.

Example 8—1 Example 1: Creating a Materialized View

CREATE MATERIALIZED VIEW LOG ON products WITH SEQUENCE, ROWID

(prod_id, prod_name, prod_desc, prod_subcategory, prod_subcategory desc,
prod_category, prod_category_desc, prod_weight_class, prod_unit_of_measure,
prod_pack_size, supplier_id, prod_status, prod_list_price, prod_min_price)
INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW LOG ON sales

WITH SEQUENCE, ROWID

(prod_id, cust_id, time_id, channel_id, promo_id, quantity_sold, amount_sold)
INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW product_sales_mv

PCTFREE 0 TABLESPACE demo

STORAGE (INITIAL 8M)

BUILD IMMEDIATE

REFRESH FAST

ENABLE QUERY REWRITE

AS SELECT p.prod_name, SUM(s.amount_sold) AS dollar_sales,
COUNT (*) AS cnt, COUNT (s.amount_sold) AS cnt_amt

Basic Materialized Views 8-9

Types of Materialized Views

FROM sales s, products p
WHERE s.prod_id = p.prod_id GROUP BY p.prod_name;

This example creates a materialized view product_sales_mv that computes total
number and value of sales for a product. It is derived by joining the tables sales and
products on the column prod_id. The materialized view is populated with data
immediately because the build method is immediate and it is available for use by
query rewrite. In this example, the default refresh method is FAST, which is allowed
because the appropriate materialized view logs have been created on tables products
and sales.

You can achieve better fast refresh performance for local materialized views if you use
a materialized view log that contains a WITH COMMIT SCN clause. An example is the
following:

CREATE MATERIALIZED VIEW LOG ON sales WITH ROWID(prod_id, cust_id, time_id),
COMMIT SCN INCLUDING NEW VALUES;

Example 8-2 Example 2: Creating a Materialized View

CREATE MATERIALIZED VIEW product_sales_mv

PCTFREE 0 TABLESPACE demo

STORAGE (INITIAL 8M)

BUILD DEFERRED

REFRESH COMPLETE ON DEMAND

ENABLE QUERY REWRITE AS

SELECT p.prod_name, SUM(s.amount_sold) AS dollar_sales
FROM sales s, products p WHERE s.prod_id = p.prod_id
GROUP BY p.prod_name;

This example creates a materialized view product_sales_mv that computes the sum
of sales by prod_name. It is derived by joining the tables sales and products on
the column prod_id. The materialized view does not initially contain any data,
because the build method is DEFERRED. A complete refresh is required for the first
refresh of a build deferred materialized view. When it is refreshed and once
populated, this materialized view can be used by query rewrite.

Example 8-3 Example 3: Creating a Materialized View

CREATE MATERIALIZED VIEW LOG ON sales WITH SEQUENCE, ROWID
(prod_id, cust_id, time_id, channel_id, promo_id, quantity_sold, amount_sold)
INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW sum_sales

PARALLEL

BUILD IMMEDIATE

REFRESH FAST ON COMMIT AS

SELECT s.prod_id, s.time_id, COUNT(*) AS count_grp,
SUM(s.amount_sold) AS sum dollar_sales,
COUNT (s.amount_sold) AS count_dollar_sales,
SUM(s.quantity sold) AS sum_quantity_sales,
COUNT (s.quantity_sold) AS count_quantity_sales

FROM sales s

GROUP BY s.prod_id, s.time_id;

This example creates a materialized view that contains aggregates on a single table.
Because the materialized view log has been created with all referenced columns in the
materialized view's defining query, the materialized view is fast refreshable. If DML is
applied against the sales table, then the changes will be reflected in the materialized
view when the commit is issued.

8-10 Oracle Database Data Warehousing Guide

Types of Materialized Views

Requirements for Using Materialized Views with Aggregates

Table 8-2 illustrates the aggregate requirements for materialized views. If aggregate X
is present, aggregate Y is required and aggregate Z is optional.

Table 8-2 Requirements for Materialized Views with Aggregates
X Y z

COUNT (expr) - -
MIN (expr)
MAX (expr)
SUM (expr) COUNT (expr) -

SUM(col), col hasNOT -
NULL constraint

AVG (expr) COUNT (expr) SUM (expr)

STDDEV (expr) COUNT (expr) SUM (expr * expr)
SUM (expr)

VARIANCE (expr) COUNT (expr) SUM (expr * expr)
SUM (expr)

Note that COUNT (*) must always be present to guarantee all types of fast refresh.
Otherwise, you may be limited to fast refresh after inserts only. Oracle recommends
that you include the optional aggregates in column Z in the materialized view in order
to obtain the most efficient and accurate fast refresh of the aggregates.

Materialized Views Containing Only Joins

Some materialized views contain only joins and no aggregates, such as in Example 8-4
on page 8-12, where a materialized view is created that joins the sales table to the
times and customers tables. The advantage of creating this type of materialized
view is that expensive joins will be precalculated.

Fast refresh for a materialized view containing only joins is possible after any type of
DML to the base tables (direct-path or conventional INSERT, UPDATE, or DELETE).

A materialized view containing only joins can be defined to be refreshed ON COMMIT
or ON DEMAND. If it is ON COMMIT, the refresh is performed at commit time of the
transaction that does DML on the materialized view's detail table.

If you specify REFRESH FAST, Oracle performs further verification of the query
definition to ensure that fast refresh can be performed if any of the detail tables
change. These additional checks are:

= A materialized view log must be present for each detail table unless the table
supports PCT. Also, when a materialized view log is required, the ROWID column
must be present in each materialized view log.

» The rowids of all the detail tables must appear in the SELECT list of the
materialized view query definition.

If some of these restrictions are not met, you can create the materialized view as
REFRESH FORCE to take advantage of fast refresh when it is possible. If one of the
tables did not meet all of the criteria, but the other tables did, the materialized view
would still be fast refreshable with respect to the other tables for which all the criteria
are met.

Basic Materialized Views 8-11

Types of Materialized Views

To achieve an optimally efficient refresh, you should ensure that the defining query
does not use an outer join that behaves like an inner join. If the defining query contains
such a join, consider rewriting the defining query to contain an inner join. See
"Restrictions on Fast Refresh on Materialized Views with Joins Only" on page 8-20 for
more information regarding the conditions that cause refresh performance to degrade.

Materialized Join Views FROM Clause Considerations

If the materialized view contains only joins, the ROWID columns for each table (and
each instance of a table that occurs multiple times in the FROM list) must be present in
the SELECT list of the materialized view.

If the materialized view has remote tables in the FROM clause, all tables in the FROM
clause must be located on that same site. Further, ON COMMIT refresh is not supported
for materialized view with remote tables. Except for SCN-based materialized view
logs, materialized view logs must be present on the remote site for each detail table of
the materialized view and ROWID columns must be present in the SELECT list of the
materialized view, as shown in the following example.

Example 8-4 Materialized View Containing Only Joins

CREATE MATERIALIZED VIEW LOG ON sales WITH ROWID;

CREATE MATERIALIZED VIEW LOG ON times WITH ROWID;

CREATE MATERIALIZED VIEW LOG ON customers WITH ROWID;

CREATE MATERIALIZED VIEW detail_sales_mv

PARALLEL BUILD IMMEDIATE

REFRESH FAST AS

SELECT s.rowid "sales_rid", t.rowid "times_rid", c.rowid "customers_rid",
c.cust_id, c.cust_last_name, s.amount_sold, s.quantity sold, s.time_id

FROM sales s, times t, customers c

WHERE s.cust_id = c.cust_id(+) AND s.time_id = t.time_id(+);

Alternatively, if the previous example did not include the columns times_ridand
customers_rid, and if the refresh method was REFRESH FORCE, then this
materialized view would be fast refreshable only if the sales table was updated but not
if the tables times or customers were updated.

CREATE MATERIALIZED VIEW detail_sales_mv

PARALLEL

BUILD IMMEDIATE

REFRESH FORCE AS

SELECT s.rowid "sales_rid", c.cust_id, c.cust_last_name, s.amount_sold,
s.quantity_sold, s.time_id

FROM sales s, times t, customers c

WHERE s.cust_id = c.cust_id(+) AND s.time_id = t.time_id(+);

Nested Materialized Views

A nested materialized view is a materialized view whose definition is based on
another materialized view. A nested materialized view can reference other relations in
the database in addition to referencing materialized views.

Why Use Nested Materialized Views?

In a data warehouse, you typically create many aggregate views on a single join (for
example, rollups along different dimensions). Incrementally maintaining these distinct
materialized aggregate views can take a long time, because the underlying join has to
be performed many times.

8-12 Oracle Database Data Warehousing Guide

Types of Materialized Views

Using nested materialized views, you can create multiple single-table materialized
views based on a joins-only materialized view and the join is performed just once. In
addition, optimizations can be performed for this class of single-table aggregate
materialized view and thus refresh is very efficient.

Example 8-5 Nested Materialized View

You can create a nested materialized view on materialized views, but all parent and
base materialized views must contain joins or aggregates. If the defining queries for a
materialized view do not contain joins or aggregates, it cannot be nested. All the
underlying objects (materialized views or tables) on which the materialized view is
defined must have a materialized view log. All the underlying objects are treated as if
they were tables. In addition, you can use all the existing options for materialized
V1ews.

Using the tables and their columns from the sh sample schema, the following
materialized views illustrate how nested materialized views can be created.

CREATE MATERIALIZED VIEW LOG ON sales WITH ROWID;
CREATE MATERIALIZED VIEW LOG ON customers WITH ROWID;
CREATE MATERIALIZED VIEW LOG ON times WITH ROWID;

/*create materialized view join_sales_cust_time as fast refreshable at
COMMIT time */

CREATE MATERIALIZED VIEW join_sales_cust_time

REFRESH FAST ON COMMIT AS

SELECT c.cust_id, c.cust_last_name, s.amount_sold, t.time_id,
t.day_number_in_week, s.rowid srid, t.rowid trid, c.rowid crid

FROM sales s, customers c, times t

WHERE s.time_id = t.time_id AND s.cust_id = c.cust_id;

To create a nested materialized view on the table join_sales_cust_time, you
would have to create a materialized view log on the table. Because this will be a
single-table aggregate materialized view on join_sales_cust_time, you need to
log all the necessary columns and use the INCLUDING NEW VALUES clause.

/* create materialized view log on join_sales_cust_time */
CREATE MATERIALIZED VIEW LOG ON join_sales_cust_time

WITH ROWID (cust_last_name, day_number_in_week, amount_sold),
INCLUDING NEW VALUES;

/* create the single-table aggregate materialized view sum_sales_cust_time

on join_sales_cust_time as fast refreshable at COMMIT time */

CREATE MATERIALIZED VIEW sum_sales_cust_time

REFRESH FAST ON COMMIT AS

SELECT COUNT(*) cnt_all, SUM(amount_sold) sum_sales, COUNT (amount_sold)
cnt_sales, cust_last_name, day number_in_week

FROM join_sales_cust_time

GROUP BY cust_last_name, day_number_in_week;

Nesting Materialized Views with Joins and Aggregates

Some types of nested materialized views cannot be fast refreshed. Use EXPLAIN_
MVIEW to identify those types of materialized views. You can refresh a tree of nested
materialized views in the appropriate dependency order by specifying the nested =
TRUE parameter with the DBMS_MVIEW.REFRESH parameter. For example, if you call
DBMS_MVIEW.REFRESH ('SUM_SALES_CUST_TIME', nested => TRUE), the
REFRESH procedure will first refresh the join_sales_cust_time materialized
view, and then refresh the sum_sales_cust_time materialized view.

Basic Materialized Views 8-13

Creating Materialized Views

Nested Materialized View Usage Guidelines

You should keep the following in mind when deciding whether to use nested
materialized views:

= If you want to use fast refresh, you should fast refresh all the materialized views
along any chain.

= If you want the highest level materialized view to be fresh with respect to the
detail tables, you need to ensure that all materialized views in a tree are refreshed
in the correct dependency order before refreshing the highest-level. You can
automatically refresh intermediate materialized views in a nested hierarchy using
the nested = TRUE parameter, as described in "Nesting Materialized Views with
Joins and Aggregates" on page 8-13. If you do not specify nested = TRUE and
the materialized views under the highest-level materialized view are stale,
refreshing only the highest-level will succeed, but makes it fresh only with respect
to its underlying materialized view, not the detail tables at the base of the tree.

= When refreshing materialized views, you need to ensure that all materialized
views in a tree are refreshed. If you only refresh the highest-level materialized
view, the materialized views under it will be stale and you must explicitly refresh
them. If you use the REFRESH procedure with the nested parameter value set to
TRUE, only specified materialized views and their child materialized views in the
tree are refreshed, and not their top-level materialized views. Use the REFRESH_
DEPENDENT procedure with the nested parameter value set to TRUE if you want to
ensure that all materialized views in a tree are refreshed.

» Freshness of a materialized view is calculated relative to the objects directly
referenced by the materialized view. When a materialized view references another
materialized view, the freshness of the topmost materialized view is calculated
relative to changes in the materialized view it directly references, not relative to
changes in the tables referenced by the materialized view it references.

Restrictions When Using Nested Materialized Views

You cannot create both a materialized view and a prebuilt materialized view on the
same table. For example, If you have a table costs with a materialized view cost_mv
based on it, you cannot then create a prebuilt materialized view on table costs. The
result would make cost_mv a nested materialized view and this method of
conversion is not supported.

Creating Materialized Views

A materialized view can be created with the CREATE MATERIALIZED VIEW statement
or using Enterprise Manager. Example 86 illustrates creating an materialized view
called cust_sales_mv.

Example 8-6 Creating a Materialized View

CREATE MATERIALIZED VIEW cust_sales_mv

PCTFREE 0 TABLESPACE demo

STORAGE (INITIAL 8M)

PARALLEL

BUILD IMMEDIATE

REFRESH COMPLETE

ENABLE QUERY REWRITE AS

SELECT c.cust_last_name, SUM(amount_sold) AS sum_amount_sold
FROM customers ¢, sales s WHERE s.cust_id = c.cust_id

GROUP BY c.cust_last_name;

8-14 Oracle Database Data Warehousing Guide

Creating Materialized Views

It is not uncommon in a data warehouse to have already created summary or
aggregation tables, and you might not wish to repeat this work by building a new
materialized view. In this case, the table that already exists in the database can be
registered as a prebuilt materialized view. This technique is described in "Registering
Existing Materialized Views" on page 8-26.

Once you have selected the materialized views you want to create, follow these steps
for each materialized view.

1. Design the materialized view. Existing user-defined materialized views do not
require this step. If the materialized view contains many rows, then, if
appropriate, the materialized view should be partitioned (if possible) and should
match the partitioning of the largest or most frequently updated detail or fact table
(if possible). Refresh performance benefits from partitioning, because it can take
advantage of parallel DML capabilities and possible PCT-based refresh.

2. Use the CREATE MATERIALIZED VIEW statement to create and, optionally,
populate the materialized view. If a user-defined materialized view already exists,
then use the ON PREBUILT TABLE clause in the CREATE MATERTALIZED VIEW
statement. Otherwise, use the BUILD IMMEDIATE clause to populate the
materialized view immediately, or the BUILD DEFERRED clause to populate the
materialized view later. A BUILD DEFERRED materialized view is disabled for use
by query rewrite until the first COMPLETE REFRESH, after which it will be
automatically enabled, provided the ENABLE QUERY REWRITE clause has been
specified.

See Also: Oracle Database SQL Language Reference for descriptions
of the SQL statements CREATE MATERIALIZED VIEW, ALTER
MATERIALIZED VIEW, and DROP MATERIALIZED VIEW

Creating Materialized Views with Column Alias Lists

Currently, when a materialized view is created, if its defining query contains
same-name columns in the SELECT list, the name conflicts need to be resolved by
specifying unique aliases for those columns. Otherwise, the CREATE MATERIALIZED
VIEW statement will fail with the error messages of columns ambiguously defined.
However, the standard method of attaching aliases in the SELECT clause for name
resolution restricts the use of the full text match query rewrite and it will occur only
when the text of the materialized view's defining query and the text of user input
query are identical. Thus, if the user specifies select aliases in the materialized view's
defining query while there is no alias in the query, the full text match comparison will
fail. This is particularly a problem for queries from Discoverer, which makes extensive
use of column aliases.

The following is an example of the problem. sales_mv is created with column aliases
in the SELECT clause but the input query Q1 does not have the aliases. The full text
match rewrite will fail. The materialized view is as follows:

CREATE MATERIALIZED VIEW sales_mv

ENABLE QUERY REWRITE AS

SELECT s.time_id sales_tid, c.time_id costs_tid

FROM sales s, products p, costs c

WHERE s.prod_id = p.prod_id AND c.prod_id = p.prod_id AND
p.prod_name IN (SELECT prod_name FROM products);

Input query statement Q1 is as follows:

SELECT s.time_id, c.time_id

Basic Materialized Views 8-15

Creating Materialized Views

FROM sales s, products p, costs c
WHERE s.prod_id = p.prod_id AND c.prod_id = p.prod_id AND
p.prod_name IN (SELECT prod_name FROM products);

Even though the materialized view's defining query is almost identical and logically
equivalent to the user's input query, query rewrite does not happen because of the
failure of full text match that is the only rewrite possibility for some queries (for
example, a subquery in the WHERE clause).

You can add a column alias list to a CREATE MATERIALIZED VIEW statement. The
column alias list explicitly resolves any column name conflict without attaching aliases
in the SELECT clause of the materialized view. The syntax of the materialized view
column alias list is illustrated in the following example:

CREATE MATERIALIZED VIEW sales_mv (sales_tid, costs_tid)

ENABLE QUERY REWRITE AS

SELECT s.time_id, c.time_id

FROM sales s, products p, costs c

WHERE s.prod_id = p.prod_id AND c.prod_id = p.prod_id AND
p.prod_name IN (SELECT prod_name FROM products);

In this example, the defining query of sales_mv now matches exactly with the user
query Q1, so full text match rewrite will take place.

Note that when aliases are specified in both the SELECT clause and the new alias list
clause, the alias list clause supersedes the ones in the SELECT clause.

Naming Materialized Views

The name of a materialized view must conform to standard Oracle naming
conventions. However, if the materialized view is based on a user-defined prebuilt
table, then the name of the materialized view must exactly match that table name.

If you already have a naming convention for tables and indexes, you might consider
extending this naming scheme to the materialized views so that they are easily
identifiable. For example, instead of naming the materialized view sum_of_sales, it
could be called sum_of_sales_mv to denote that this is a materialized view and not
a table or view.

Storage And Table Compression

Unless the materialized view is based on a user-defined prebuilt table, it requires and
occupies storage space inside the database. Therefore, the storage needs for the
materialized view should be specified in terms of the tablespace where it is to reside
and the size of the extents.

If you do not know how much space the materialized view will require, then the
DBMS_MVIEW.ESTIMATE_MVIEW_SIZE package can estimate the number of bytes
required to store this uncompressed materialized view. This information can then
assist the design team in determining the tablespace in which the materialized view
should reside.

You should use table compression with highly redundant data, such as tables with
many foreign keys. This is particularly useful for materialized views created with the
ROLLUP clause. Table compression reduces disk use and memory use (specifically, the
buffer cache), often leading to a better scaleup for read-only operations. Table
compression can also speed up query execution at the expense of update cost.

8-16 Oracle Database Data Warehousing Guide

Creating Materialized Views

See Also:
» Oracle Database VLDB and Partitioning Guide for table
compression

» Oracle Database Administrator’s Guide for table compression

» Oracle Database SQL Language Reference for a complete
description of STORAGE semantics

Build Methods

Two build methods are available for creating the materialized view, as shown in
Table 8-3. If you select BUILD IMMEDIATE, the materialized view definition is added
to the schema objects in the data dictionary, and then the fact or detail tables are
scanned according to the SELECT expression and the results are stored in the
materialized view. Depending on the size of the tables to be scanned, this build
process can take a considerable amount of time.

An alternative approach is to use the BUILD DEFERRED clause, which creates the
materialized view without data, thereby enabling it to be populated at a later date
using the DBMS_MVIEW.REFRESH package described in Chapter 15, "Maintaining the
Data Warehouse".

Table 8-3 Build Methods

Build Method Description

BUILD IMMEDIATE Create the materialized view and then populate it with data.

BUILD DEFERRED Create the materialized view definition but do not populate it with data.

Enabling Query Rewrite

Before creating a materialized view, you can verify what types of query rewrite are
possible by calling the procedure DBMS_MVIEW. EXPLAIN_MVIEW, or use DBMS_
ADVISOR.TUNE_MVIEW to optimize the materialized view so that many types of
query rewrite are possible. Once the materialized view has been created, you can use
DBMS_MVIEW.EXPLAIN_REWRITE to find out if (or why not) it will rewrite a specific

query.
Even though a materialized view is defined, it will not automatically be used by the
query rewrite facility. Even though query rewrite is enabled by default, you also must

specify the ENABLE QUERY REWRITE clause if the materialized view is to be
considered available for rewriting queries.

If this clause is omitted or specified as DISABLE QUERY REWRITE when the
materialized view is created, the materialized view can subsequently be enabled for
query rewrite with the ALTER MATERIALIZED VIEW statement.

If you define a materialized view as BUILD DEFERRED, it is not eligible for query
rewrite until it is populated with data through a complete refresh.

Query Rewrite Restrictions

Query rewrite is not possible with all materialized views. If query rewrite is not
occurring when expected, DBMS_MVIEW. EXPLAIN_REWRITE can help provide
reasons why a specific query is not eligible for rewrite. If this shows that not all types
of query rewrite are possible, use the procedure DBMS_ADVISOR. TUNE_MVIEW to see
if the materialized view can be defined differently so that query rewrite is possible.
Also, check to see if your materialized view satisfies all of the following conditions.

Basic Materialized Views 8-17

Creating Materialized Views

Materialized View Restrictions
You should keep in mind the following restrictions:

s The defining query of the materialized view cannot contain any non-repeatable
expressions (ROWNUM, SYSDATE, non-repeatable PL/SQL functions, and so on).

= The query cannot contain any references to RAW or LONG RAW datatypes or object
REFs.

s If the materialized view was registered as PREBUILT, the precision of the columns
must agree with the precision of the corresponding SELECT expressions unless
overridden by the WITH REDUCED PRECISION clause.

General Query Rewrite Restrictions
You should keep in mind the following restrictions:

= A query can reference both local and remote tables. Such a query can be rewritten
as long as an eligible materialized view referencing the same tables is available
locally.

= Neither the detail tables nor the materialized view can be owned by SYS.

= If a column or expression is present in the GROUP BY clause of the materialized
view, it must also be present in the SELECT list.

= Aggregate functions must occur only as the outermost part of the expression. That
is, aggregates such as AVG (AVG (x)) or AVG (x) + AVG (x) are not allowed.

s CONNECT BY clauses are not allowed.

Refresh Options

When you define a materialized view, you can specify three refresh options: how to
refresh, what type of refresh, and can trusted constraints be used. If unspecified, the
defaults are assumed as ON DEMAND, FORCE, and ENFORCED constraints respectively.

The two refresh execution modes are ON COMMIT and ON DEMAND. Depending on the
materialized view you create, some of the options may not be available. Table 84
describes the refresh modes.

Table 8-4 Refresh Modes

Refresh Mode

Description

ON COMMIT

ON DEMAND

Refresh occurs automatically when a transaction that modified one of the materialized view's detail tables
commits. This can be specified as long as the materialized view is fast refreshable (in other words, not
complex). The ON COMMIT privilege is necessary to use this mode.

Refresh occurs when a user manually executes one of the available refresh procedures contained in the
DBMS_MVIEW package (REFRESH, REFRESH_ALL_MVIEWS, REFRESH_DEPENDENT).

When a materialized view is maintained using the ON COMMIT method, the time
required to complete the commit may be slightly longer than usual. This is because the
refresh operation is performed as part of the commit process. Therefore this method
may not be suitable if many users are concurrently changing the tables upon which the
materialized view is based.

If you anticipate performing insert, update or delete operations on tables referenced
by a materialized view concurrently with the refresh of that materialized view, and
that materialized view includes joins and aggregation, Oracle recommends you use ON
COMMIT fast refresh rather than ON DEMAND fast refresh.

If you think the materialized view did not refresh, check the alert log or trace file.

8-18 Oracle Database Data Warehousing Guide

Creating Materialized Views

If a materialized view fails during refresh at COMMIT time, you must explicitly invoke
the refresh procedure using the DBMS_MVIEW package after addressing the errors
specified in the trace files. Until this is done, the materialized view will no longer be
refreshed automatically at commit time.

You can specify how you want your materialized views to be refreshed from the detail
tables by selecting one of four options: COMPLETE, FAST, FORCE, and NEVER.
Table 8-5 describes the refresh options.

Table 8-5 Refresh Options

Refresh Option

Description

COMPLETE

FAST

FORCE

NEVER

Refreshes by recalculating the materialized view's defining query.

Applies incremental changes to refresh the materialized view using the information logged in the
materialized view logs, or from a SQL*Loader direct-path or a partition maintenance operation.

Applies FAST refresh if possible; otherwise, it applies COMPLETE refresh.

Indicates that the materialized view will not be refreshed with refresh mechanisms.

Whether the fast refresh option is available depends upon the type of materialized
view. You can call the procedure DBMS_MVIEW.EXPLAIN_MVIEW to determine
whether fast refresh is possible.

You can also specify if it is acceptable to use trusted constraints and QUERY_
REWRITE_INTEGRITY = TRUSTED during refresh. Any nonvalidated RELY
constraint is a trusted constraint. For example, nonvalidated foreign key/primary key
relationships, functional dependencies defined in dimensions or a materialized view
in the UNKNOWN state. If query rewrite is enabled during refresh, these can improve the
performance of refresh by enabling more performant query rewrites. Any materialized
view that can use TRUSTED constraints for refresh is left in a state of trusted freshness
(the UNKNOWN state) after refresh.

This is reflected in the column STALENESS in the view USER_MVIEWS. The column
UNKNOWN_TRUSTED_FD in the same view is also set to Y, which means yes.

You can define this property of the materialized view either during create time by
specifying REFRESH USING TRUSTED [ENFORCED] CONSTRAINTS or by using ALTER
MATERIALIZED VIEW DDL.

Table 8-6 Constraints

Constraints to Use

Description

TRUSTED CONSTRAINTS Refresh can use trusted constraints and QUERY_REWRITE_INTEGRITY = TRUSTED during refresh.

This allows use of non-validated RELY constraints and rewrite against materialized views in
UNKNOWN or FRESH state during refresh.

ENFORCED CONSTRAINTS Refresh can use validated constraints and QUERY_REWRITE_INTEGRITY = ENFORCED during

refresh. This allows use of only validated, enforced constraints and rewrite against materialized
views in FRESH state during refresh.

The fast refresh of a materialized view is optimized using the available primary and
foreign key constraints on the join columns. This foreign key/primary key
optimization can significantly improve refresh performance. For example, for a
materialized view that contains a join between a fact table and a dimension table, if
only new rows were inserted into the dimension table with no change to the fact table
since the last refresh, then there will be nothing to refresh for this materialized view.
The reason is that, because of the primary key constraint on the join column(s) of the
dimension table and foreign key constraint on the join column(s) of the fact table, the
new rows inserted into the dimension table will not join with any fact table rows, thus

Basic Materialized Views 8-19

Creating Materialized Views

there is nothing to refresh. Another example of this refresh optimization is when both
the fact and dimension tables have inserts since the last refresh. In this case, Oracle
Database will only perform a join of delta fact table with the dimension table. Without
the foreign key/primary key optimization, two joins during the refresh would be
required, a join of delta fact with the dimension table, plus a join of delta dimension
with an image of the fact table from before the inserts.

Note that this optimized fast refresh using primary and foreign key constraints on the
join columns is available with and without constraint enforcement. In the first case,
primary and foreign key constraints are enforced by the Oracle Database. This,
however, incurs the cost of constraint maintenance. In the second case, the application
guarantees primary and foreign key relationships so the constraints are declared RELY
NOVALIDATE and the materialized view is defined with the REFRESH FAST USING
TRUSTED CONSTRAINTS option.

General Restrictions on Fast Refresh
The defining query of the materialized view is restricted as follows:

s The materialized view must not contain references to non-repeating expressions
like SYSDATE and ROWNUM.

s The materialized view must not contain references to RAW or LONG RAW data types.
= It cannot contain a SELECT list subquery.

s It cannot contain analytic functions (for example, RANK) in the SELECT clause.

= It cannot contain a MODEL clause.

= It cannot contain a HAVING clause with a subquery.

» It cannot contain nested queries that have ANY, ALL, or NOT EXISTS.

» Itcannot containa [START WITH ..] CONNECT BY clause.

= It cannot contain multiple detail tables at different sites.

= ON COMMIT materialized views cannot have remote detail tables.

= Nested materialized views must have a join or aggregate.

Restrictions on Fast Refresh on Materialized Views with Joins Only

Defining queries for materialized views with joins only and no aggregates have the
following restrictions on fast refresh:

= All restrictions from "General Restrictions on Fast Refresh" on page 8-20.
s They cannot have GROUP BY clauses or aggregates.

= Rowids of all the tables in the FROM list must appear in the SELECT list of the
query.

= Materialized view logs must exist with rowids for all the base tables in the FROM
list of the query.

= You cannot create a fast refreshable materialized view from multiple tables with
simple joins that include an object type column in the SELECT statement.

Also, the refresh method you choose will not be optimally efficient if:

s The defining query uses an outer join that behaves like an inner join. If the
defining query contains such a join, consider rewriting the defining query to
contain an inner join.

8-20 Oracle Database Data Warehousing Guide

Creating Materialized Views

The SELECT list of the materialized view contains expressions on columns from
multiple tables.

Restrictions on Fast Refresh on Materialized Views with Aggregates

Defining queries for materialized views with aggregates or joins have the following
restrictions on fast refresh:

All restrictions from "General Restrictions on Fast Refresh" on page 8-20.

Fast refresh is supported for both ON COMMIT and ON DEMAND materialized views,
however the following restrictions apply:

All tables in the materialized view must have materialized view logs, and the
materialized view logs must:

s Contain all columns from the table referenced in the materialized view.
However, none of these columns in the base table can be encrypted.

» Specify with ROWID and INCLUDING NEW VALUES.

» Specify the SEQUENCE clause if the table is expected to have a mix of
inserts/direct-loads, deletes, and updates.

Only SUM, COUNT, AVG, STDDEV, VARIANCE, MIN and MAX are supported for fast
refresh.

COUNT (*) must be specified.

Aggregate functions must occur only as the outermost part of the expression. That
is, aggregates such as AVG (AVG (x)) or AVG (x) + AVG (x) are not allowed.

For each aggregate such as AVG (expr), the corresponding COUNT (expr) must
be present. Oracle recommends that SUM (expr) be specified. See Table 8-2 on
page 8-11 for further details.

If VARIANCE (expr) or STDDEV (expr) is specified, COUNT (expr) and
SUM (expr) must be specified. Oracle recommends that SUM (expr *expr) be
specified. See Table 8-2 on page 8-11 for further details.

The SELECT column in the defining query cannot be a complex expression with
columns from multiple base tables. A possible workaround to this is to use a
nested materialized view.

The SELECT list must contain all GROUP BY columns.

If the materialized view has one of the following, then fast refresh is supported
only on conventional DML inserts and direct loads.

= Materialized views with MIN or MAX aggregates

s Materialized views which have SUM (expr) but no COUNT (expr)
m Materialized views without COUNT (*)

Such a materialized view is called an insert-only materialized view.

A materialized view with MAX or MIN is fast refreshable after delete or mixed DML
statements if it does not have a WHERE clause.

Materialized views with named views or subqueries in the FROM clause can be fast
refreshed provided the views can be completely merged. For information on
which views will merge, refer to the Oracle Database Performance Tuning Guide.

If there are no outer joins, you may have arbitrary selections and joins in the
WHERE clause.

Basic Materialized Views 8-21

Creating Materialized Views

» Materialized aggregate views with outer joins are fast refreshable after
conventional DML and direct loads, provided only the outer table has been
modified. Also, unique constraints must exist on the join columns of the inner join
table. If there are outer joins, all the joins must be connected by ANDs and must use
the equality (=) operator.

s For materialized views with CUBE, ROLLUP, grouping sets, or concatenation of
them, the following restrictions apply:

s The SELECT list should contain grouping distinguisher that can either be a
GROUPING_ID function on all GROUP BY expressions or GROUPING functions
one for each GROUP BY expression. For example, if the GROUP BY clause of the
materialized view is "GROUP BY CUBE (a, b)", then the SELECT list should
contain either "GROUPING_ID(a, b)" or "GROUPING (a) AND
GROUPING (b) " for the materialized view to be fast refreshable.

= GROUP BY should not result in any duplicate groupings. For example, "GROUP
BY a, ROLLUP(a, b)"isnot fast refreshable because it results in duplicate
groupings "(a), (a, b), AND (a)".

Restrictions on Fast Refresh on Materialized Views with UNION ALL

Materialized views with the UNION ALL set operator support the REFRESH FAST
option if the following conditions are satisfied:

s The defining query must have the UNION ALL operator at the top level.

The UNION ALL operator cannot be embedded inside a subquery, with one
exception: The UNION ALL can be in a subquery in the FROM clause provided the
defining query is of the form SELECT * FROM (view or subquery with UNION
ALL) as in the following example:

CREATE VIEW view_with_unionall AS
(SELECT c.rowid crid, c.cust_id, 2 umarker

FROM customers c¢ WHERE c.cust_last_name = 'Smith'
UNION ALL

SELECT c.rowid crid, c.cust_id, 3 umarker

FROM customers ¢ WHERE c.cust_last_name = 'Jones');

CREATE MATERIALIZED VIEW unionall_inside_view_mv
REFRESH FAST ON DEMAND AS
SELECT * FROM view with unionall;

Note that the view view_with_unionall satisfies the requirements for fast
refresh.

s Each query block in the UNION ALL query must satisfy the requirements of a fast
refreshable materialized view with aggregates or a fast refreshable materialized
view with joins.

The appropriate materialized view logs must be created on the tables as required
for the corresponding type of fast refreshable materialized view.

Note that the Oracle Database also allows the special case of a single table
materialized view with joins only provided the ROWID column has been included
in the SELECT list and in the materialized view log. This is shown in the defining
query of the view view_with unionall.

s The SELECT list of each query must include a UNION ALL marker, and the UNION
ALL column must have a distinct constant numeric or string value in each UNION
ALL branch. Further, the marker column must appear in the same ordinal position

8-22 Oracle Database Data Warehousing Guide

Creating Materialized Views

in the SELECT list of each query block. See "UNION ALL Marker" on page 18-46
for more information regarding UNION ALL markers.

= Some features such as outer joins, insert-only aggregate materialized view queries
and remote tables are not supported for materialized views with UNION ALL.

s The compatibility initialization parameter must be set to 9.2.0 or higher to create a
fast refreshable materialized view with UNION ALL.

Achieving Refresh Goals

In addition to the EXPLAIN_MVIEW procedure, which is discussed throughout this
chapter, you can use the DBMS_ADVISOR.TUNE_MVIEW procedure to optimize a
CREATE MATERIALIZED VIEW statement to achieve REFRESH FAST and ENABLE
QUERY REWRITE goals.

Refreshing Nested Materialized Views

A nested materialized view is considered to be fresh as long as its data is synchronized
with the data in its detail tables, even if some of its detail tables could be stale
materialized views.

You can refresh nested materialized views in two ways: DBMS_MVIEW.REFRESH with
the nested flag set to TRUE and REFRESH_DEPENDENT with the nested flag set to
TRUE on the base tables. If you use DBMS_MVIEW.REFRESH, the entire materialized
view chain is refreshed and the coverage starting from the specified materialized view
in top-down fashion. That is, the specified materialized view and all its child
materialized views in the dependency hierarchy are refreshed in order. With DBMS_
MVIEW.REFRESH_DEPENDENT, the entire chain is refreshed from the bottom up. That
is, all the parent materialized views in the dependency hierarchy starting from the
specified table are refreshed in order.

Example 8-7 Example of Refreshing a Nested Materialized View

The following statement shows an example of refreshing a nested materialized view:

DBMS_MVIEW.REFRESH ('SALES_MV,COST_MV', nested => TRUE);

This statement will first refresh all child materialized views of sales_mv and cost_
mv based on the dependency analysis and then refresh the two specified materialized
views.

You can query the STALE_SINCE column in the *_MVIEWS views to find out when a
materialized view became stale.

ORDER BY Clause

An ORDER BY clause is allowed in the CREATE MATERIALIZED VIEW statement. It is
used only during the initial creation of the materialized view. It is not used during a
full refresh or a fast refresh.

To improve the performance of queries against large materialized views, store the
rows in the materialized view in the order specified in the ORDER BY clause. This
initial ordering provides physical clustering of the data. If indexes are built on the
columns by which the materialized view is ordered, accessing the rows of the
materialized view using the index often reduces the time for disk I/O due to the
physical clustering.

The ORDER BY clause is not considered part of the materialized view definition. As a
result, there is no difference in the manner in which Oracle Database detects the

Basic Materialized Views 8-23

Creating Materialized Views

various types of materialized views (for example, materialized join views with no
aggregates). For the same reason, query rewrite is not affected by the ORDER BY clause.
This feature is similar to the CREATE TABLE ... ORDER BY capability.

Materialized View Logs

Materialized view logs are required if you want to use fast refresh, with the exception
of PCT refresh. That is, if a detail table supports PCT for a materialized view, the
materialized view log on that detail table is not required in order to do fast refresh on
that materialized view. As a general rule, though, you should create materialized view
logs if you want to use fast refresh. Materialized view logs are defined using a CREATE
MATERIALIZED VIEW LOG statement on the base table that is to be changed. They are
not created on the materialized view unless there is another materialized view on top
of that materialized view, which is the case with nested materialized views. For fast
refresh of materialized views, the definition of the materialized view logs must
normally specify the ROWID clause. In addition, for aggregate materialized views, it
must also contain every column in the table referenced in the materialized view, the
INCLUDING NEW VALUES clause and the SEQUENCE clause. You can typically achieve
better fast refresh performance of local materialized views containing aggregates or
joins by using a WITH COMMIT SCN clause.

An example of a materialized view log is shown as follows where one is created on the
table sales:

CREATE MATERIALIZED VIEW LOG ON sales WITH ROWID
(prod_id, cust_id, time_id, channel_id, promo_id, quantity_sold, amount_sold)
INCLUDING NEW VALUES;

Alternatively, you could create a commit SCN-based materialized view log as follows:

CREATE MATERIALIZED VIEW LOG ON sales WITH ROWID
(prod_id, cust_id, time_id, channel_id, promo_id, quantity_sold, amount_sold),
COMMIT SCN INCLUDING NEW VALUES;

Oracle recommends that the keyword SEQUENCE be included in your materialized
view log statement unless you are sure that you will never perform a mixed DML
operation (a combination of INSERT, UPDATE, or DELETE operations on multiple
tables). The SEQUENCE column is required in the materialized view log to support fast
refresh with a combination of INSERT, UPDATE, or DELETE statements on multiple
tables. You can, however, add the SEQUENCE number to the materialized view log
after it has been created.

The boundary of a mixed DML operation is determined by whether the materialized
view is ON COMMIT or ON DEMAND.

s For ON COMMIT, the mixed DML statements occur within the same transaction
because the refresh of the materialized view will occur upon commit of this
transaction.

s For ON DEMAND, the mixed DML statements occur between refreshes. The
following example of a materialized view log illustrates where one is created on
the table sales that includes the SEQUENCE keyword:

CREATE MATERIALIZED VIEW LOG ON sales WITH SEQUENCE, ROWID
(prod_id, cust_id, time_id, channel_id, promo_id,
quantity_sold, amount_sold) INCLUDING NEW VALUES;

8-24 Oracle Database Data Warehousing Guide

Creating Materialized Views

Using the FORCE Option with Materialized View Logs

If you specify FORCE and any items specified with the ADD clause have already been
specified for the materialized view log, Oracle does not return an error, but silently
ignores the existing elements and adds to the materialized view log any items that do
not already exist in the log. For example, if you used a filter column such as cust_id
and this column already existed, Oracle Database ignores the redundancy and does
not return an error.

Materialized View Log Purging

Purging materialized view logs can be done during the materialized view refresh
process or deferred until later, thus improving refresh performance time. You can
choose different options for when the purge will occur, using a PURGE clause, as in the
following:

CREATE MATERIALIZED VIEW LOG ON sales
PURGE START WITH sysdate NEXT sysdate+l
WITH ROWID
(prod_id, cust_id, time_id, channel_id, promo_id, quantity_sold, amount_sold)
INCLUDING NEW VALUES;

You can also query USER_MVIEW_LOGS for purge information, as in the following:

SELECT PURGE_DEFERRED, PURGE_INTERVAL, LAST_PURGE_DATE, LAST_PURGE_STATUS
FROM USER_MVIEW_LOGS
WHERE LOG_OWNER "SH" AND MASTER = 'SALES';

In addition to setting the purge when creating a materialized view log, you can also
modify an existing materialized view log by issuing a statement resembling the
following:

ALTER MATERIALIZED VIEW LOG ON sales PURGE IMMEDIATE;

See Oracle Database SQL Language Reference for more information regarding the syntax.

Using Oracle Enterprise Manager

A materialized view can also be created using Enterprise Manager by selecting the
materialized view object type. There is no difference in the information required if this
approach is used.

Using Materialized Views with NLS Parameters

When using certain materialized views, you must ensure that your NLS parameters
are the same as when you created the materialized view. Materialized views with this
restriction are as follows:

= Expressions that may return different values, depending on NLS parameter
settings. For example, (date > "01/02/03")or (rate <= "2.150") are NLS
parameter dependent expressions.

= Equijoins where one side of the join is character data. The result of this equijoin
depends on collation and this can change on a session basis, giving an incorrect
result in the case of query rewrite or an inconsistent materialized view after a
refresh operation.

= Expressions that generate internal conversion to character data in the SELECT list
of a materialized view, or inside an aggregate of a materialized aggregate view.

Basic Materialized Views 8-25

Registering Existing Materialized Views

This restriction does not apply to expressions that involve only numeric data, for
example, a+b where a and b are numeric fields.

Adding Comments to Materialized Views

You can add a comment to a materialized view. For example, the following statement
adds a comment to data dictionary views for the existing materialized view:

COMMENT ON MATERIALIZED VIEW sales_mv IS 'sales materialized view';

To view the comment after the preceding statement execution, the user can query the
catalog views, {USER, DBA} ALL_MVIEW_COMMENTS. For example:

SELECT MVIEW_NAME, COMMENTS
FROM USER_MVIEW_COMMENTS WHERE MVIEW_NAME = 'SALES_MV';

The output will resemble the following:

MVIEW_NAME COMMENTS

SALES_MV sales materialized view

Note: If the compatibility is set to 10.0.1 or higher, COMMENT ON TABLE will not be
allowed for the materialized view container table. The following error message will be
thrown if it is issued.

ORA-12098: cannot comment on the materialized view.

In the case of a prebuilt table, if it has an existing comment, the comment will be
inherited by the materialized view after it has been created. The existing comment will
be prefixed with ' (from table) '. For example, table sales_summary was created
to contain sales summary information. An existing comment 'Sales summary
data' was associated with the table. A materialized view of the same name is created
to use the prebuilt table as its container table. After the materialized view creation, the
comment becomes ' (from table) Sales summary data'.

However, if the prebuilt table, sales_summary, does not have any comment, the
following comment is added: ' Sales summary data'. Then, if we drop the
materialized view, the comment will be passed to the prebuilt table with the comment:
'(from materialized view) Sales summary data'.

Registering Existing Materialized Views

Some data warehouses have implemented materialized views in ordinary user tables.
Although this solution provides the performance benefits of materialized views, it
does not:

= Provide query rewrite to all SQL applications.

= Enable materialized views defined in one application to be transparently accessed
in another application.

= Generally support fast parallel or fast materialized view refresh.

Because of these limitations, and because existing materialized views can be extremely
large and expensive to rebuild, you should register your existing materialized view
tables whenever possible. You can register a user-defined materialized view with the
CREATE MATERIALIZED VIEW ... ON PREBUILT TABLE statement. Once registered, the
materialized view can be used for query rewrites or maintained by one of the refresh
methods, or both.

8-26 Oracle Database Data Warehousing Guide

Registering Existing Materialized Views

The contents of the table must reflect the materialization of the defining query at the
time you register it as a materialized view, and each column in the defining query
must correspond to a column in the table that has a matching datatype. However, you
can specify WITH REDUCED PRECISION to allow the precision of columns in the
defining query to be different from that of the table columns.

The table and the materialized view must have the same name, but the table retains its
identity as a table and can contain columns that are not referenced in the defining
query of the materialized view. These extra columns are known as unmanaged
columns. If rows are inserted during a refresh operation, each unmanaged column of
the row is set to its default value. Therefore, the unmanaged columns cannot have NOT
NULL constraints unless they also have default values.

Materialized views based on prebuilt tables are eligible for selection by query rewrite
provided the parameter QUERY_REWRITE_INTEGRITY is set to STALE_ TOLERATED
or TRUSTED. See Chapter 17, "Basic Query Rewrite" for details about integrity levels.

When you drop a materialized view that was created on a prebuilt table, the table still
exists—only the materialized view is dropped.

The following example illustrates the two steps required to register a user-defined
table. First, the table is created, then the materialized view is defined using exactly the
same name as the table. This materialized view sum_sales_tab_mv is eligible for use
in query rewrite.

CREATE TABLE sum_sales_tab

PCTFREE 0 TABLESPACE demo

STORAGE (INITIAL 8M) AS

SELECT s.prod_id, SUM(amount_sold) AS dollar_sales,
SUM (quantity_sold) AS unit_sales

FROM sales s GROUP BY s.prod_id;

CREATE MATERIALIZED VIEW sum_sales_tab_mv

ON PREBUILT TABLE WITHOUT REDUCED PRECISION

ENABLE QUERY REWRITE AS

SELECT s.prod_id, SUM(amount_sold) AS dollar_sales,
SUM (quantity sold) AS unit_sales

FROM sales s GROUP BY s.prod_id;

You could have compressed this table to save space. See "Storage And Table
Compression" on page 8-16 for details regarding table compression.

In some cases, user-defined materialized views are refreshed on a schedule that is
longer than the update cycle. For example, a monthly materialized view might be
updated only at the end of each month, and the materialized view values always refer
to complete time periods. Reports written directly against these materialized views
implicitly select only data that is not in the current (incomplete) time period. If a
user-defined materialized view already contains a time dimension:

s It should be registered and then fast refreshed each update cycle.
= You can create a view that selects the complete time period of interest.

» The reports should be modified to refer to the view instead of referring directly to
the user-defined materialized view.

If the user-defined materialized view does not contain a time dimension, then:
» Create a new materialized view that does include the time dimension (if possible).

» The view should aggregate over the time column in the new materialized view.

Basic Materialized Views 8-27

Choosing Indexes for Materialized Views

Choosing Indexes for Materialized Views

The two most common operations on a materialized view are query execution and fast
refresh, and each operation has different performance requirements. Query execution
might need to access any subset of the materialized view key columns, and might need
to join and aggregate over a subset of those columns. Consequently, query execution
usually performs best if a single-column bitmap index is defined on each materialized
view key column.

In the case of materialized views containing only joins using fast refresh, Oracle
recommends that indexes be created on the columns that contain the rowids to
improve the performance of the refresh operation.

If a materialized view using aggregates is fast refreshable, then an index appropriate
for the fast refresh procedure is created unless USING NO INDEX is specified in the
CREATE MATERIALIZED VIEW statement.

If the materialized view is partitioned, then, after doing a partition maintenance
operation on the materialized view, the indexes become unusable, and they need to be
rebuilt for fast refresh to work.

See Oracle Database Performance Tuning Guide for information on using the SQL Access
Advisor to determine what indexes are appropriate for your materialized view.

Dropping Materialized Views

Use the DROP MATERIALIZED VIEW statement to drop a materialized view. For
example. the following statement:

DROP MATERIALIZED VIEW sales_sum_mv;

This statement drops the materialized view sales_sum_mv. If the materialized view
was prebuilt on a table, then the table is not dropped, but it can no longer be
maintained with the refresh mechanism or used by query rewrite. Alternatively, you
can drop a materialized view using Oracle Enterprise Manager.

Analyzing Materialized View Capabilities

You can use the DBMS_MVIEW.EXPLAIN_MVIEW procedure to learn what is possible
with a materialized view or potential materialized view. In particular, this procedure
enables you to determine:

= If a materialized view is fast refreshable
= What types of query rewrite you can perform with this materialized view
» Whether PCT refresh is possible

Using this procedure is straightforward. You simply call DBMS_MVIEW.EXPLAIN_
MVIEW, passing in as a single parameter the schema and materialized view name for
an existing materialized view. Alternatively, you can specify the SELECT string for a
potential materialized view or the complete CREATE MATERIALIZED VIEW statement.
The materialized view or potential materialized view is then analyzed and the results
are written into either a table called MV_CAPABILITIES_TABLE, which is the default,
or to an array called MSG_ARRAY.

Note that you must run the ut 1xmv . sql script prior to calling EXPLAIN_MVIEW
except when you are placing the results in MSG_ARRAY. The script is found in the
admin directory. It is to create the MV_CAPABILITIES_TABLE in the current schema.

8-28 Oracle Database Data Warehousing Guide

Analyzing Materialized View Capabilities

An explanation of the various capabilities is in Table 8-7 on page 8-32, and all the
possible messages are listed in Table 8-8 on page 8-33.

Using the DBMS_MVIEW.EXPLAIN_MVIEW Procedure

The EXPLAIN_MVIEW procedure has the following parameters:
s stmt_id

An optional parameter. A client-supplied unique identifier to associate output
rows with specific invocations of EXPLAIN_MVIEW.

[] mv

The name of an existing materialized view or the query definition or the entire
CREATE MATERIALIZED VIEW statement of a potential materialized view you
want to analyze.

s msg-array
The PL/SQL VARRAY that receives the output.

EXPLAIN_MVIEW analyzes the specified materialized view in terms of its refresh and
rewrite capabilities and inserts its results (in the form of multiple rows) into Mv_
CAPABILITIES_TABLE or MSG_ARRAY.

See Also: Oracle Database PL/SQL Packages and Types Reference for
further information about the DBMS_MVIEW package

DBMS_MVIEW.EXPLAIN_MVIEW Declarations

The following PL/SQL declarations that are made for you in the DBMS_MVIEW
package show the order and datatypes of these parameters for explaining an existing
materialized view and a potential materialized view with output to a table and to a
VARRAY.

Explain an existing or potential materialized view with output to MV_
CAPABILITIES_TABLE:

DBMS_MVIEW.EXPLAIN_MVIEW (mv IN VARCHAR2,
stmt_id IN VARCHAR2:= NULL) ;

Explain an existing or potential materialized view with output to a VARRAY:

DBMS_MVIEW.EXPLAIN_MVIEW (mv IN VARCHAR2,
msg_array OUT SYS.ExplainMVArrayType) ;

Using MV_CAPABILITIES_TABLE

One of the simplest ways to use DBMS_MVIEW. EXPLAIN_MVIEW is with the MV_
CAPABILITIES_TABLE, which has the following structure:

CREATE TABLE MV_CAPABILITIES_TABLE
(STATEMENT_ID VARCHAR (30), -- Client-supplied unique statement identifier
MVOWNER VARCHAR (30), -- NULL for SELECT based EXPLAIN_MVIEW
MVNAME VARCHAR (30), -- NULL for SELECT based EXPLAIN_MVIEW
CAPABILITY NAME VARCHAR(30), -- A descriptive name of the particular

-- capability:

-- REWRITE

- Can do at least full text match

-- rewrite

-- REWRITE_PARTIAL_TEXT MATCH

-- Can do at leat full and partial

30
30

Basic Materialized Views 8-29

Analyzing Materialized View Capabilities

-- text match rewrite

-- REWRITE_GENERAL

-- Can do all forms of rewrite

-- REFRESH

-- Can do at least complete refresh
-- REFRESH_FROM_LOG_AFTER_INSERT

-- Can do fast refresh from an mv log
- or change capture table at least
- when update operations are

-- restricted to INSERT

-- REFRESH_FROM_LOG_AFTER_ANY

-- can do fast refresh from an mv log
-- or change capture table after any
-- combination of updates

-- PCT

- Can do Enhanced Update Tracking on
- the table named in the RELATED_NAME
-- column. EUT is needed for fast

-- refresh after partitioned

-- maintenance operations on the table
-- named in the RELATED_NAME column
-- and to do non-stale tolerated

-- rewrite when the mv is partially
- stale with respect to the table

-- named in the RELATED_NAME column.
- EUT can also sometimes enable fast
- refresh of updates to the table

- named in the RELATED NAME column
-- when fast refresh from an mv log
- or change capture table is not

-- possible.

-- See Table 8-7
POSSIBLE CHARACTER(1), -- T = capability is possible

-- F = capability is not possible
RELATED_TEXT VARCHAR (2000), -- Owner.table.column, alias name, and so on

-- related to this message. The specific
-- meaning of this column depends on the
-- NSGNO column. See the documentation for
-- DBMS_MVIEW.EXPLAIN_MVIEW() for details.

RELATED_NUM NUMBER, -- When there is a numeric value
-- associated with a row, it goes here.
MSGNO INTEGER, -- When available, QSM message # explaining
-- why disabled or more details when
-- enabled.
MSGTXT VARCHAR (2000), -- Text associated with MSGNO.
SEQ NUMBER) ; -- Useful in ORDER BY clause when

-- selecting from this table.

You can use the ut1xmv. sgl script found in the admin directory to create Mv_
CAPABILITIES_TABLE.

Example 8-8 DBMS_MVIEW.EXPLAIN_MVIEW

First, create the materialized view. Alternatively, you can use EXPLAIN_MVIEW on a
potential materialized view using its SELECT statement or the complete CREATE
MATERIALIZED VIEW statement.

CREATE MATERIALIZED VIEW cal_month_sales_mv
BUILD IMMEDIATE
REFRESH FORCE

8-30 Oracle Database Data Warehousing Guide

Analyzing Materialized View Capabilities

ENABLE QUERY REWRITE AS

SELECT t.calendar_month desc, SUM(s.amount_sold) AS dollars
FROM sales s, times t WHERE s.time_id = t.time_id

GROUP BY t.calendar_month_desc;

Then, you invoke EXPLAIN_MVIEW with the materialized view to explain. You need to
use the SEQ column in an ORDER BY clause so the rows will display in a logical order.
If a capability is not possible, N will appear in the P column and an explanation in the
MSGTXT column. If a capability is not possible for more than one reason, a row is
displayed for each reason.

EXECUTE DBMS_MVIEW.EXPLAIN_MVIEW ('SH.CAL_MONTH_SALES_MV');

SELECT capability name, possible, SUBSTR(related_text,1,8)
AS rel_text, SUBSTR(msgtxt,1,60) AS msgtxt

FROM MV_CAPABILITIES_TABLE

ORDER BY seq;

CAPABILITY_NAME P REL_TEXT MSGTXT
PCT N
REFRESH_COMPLETE Y
REFRESH_FAST N
REWRITE Y
PCT_TABLE N SALES no partition key or PMARKER in select list
PCT_TABLE N TIMES relation is not a partitioned table
REFRESH_FAST AFTER_INSERT N SH.TIMES mv log must have new values
REFRESH_FAST AFTER_INSERT N SH.TIMES mv log must have ROWID
REFRESH_FAST_AFTER_INSERT N SH.TIMES mv log does not have all necessary columns
REFRESH_FAST_AFTER_INSERT N SH.SALES mv log must have new values
REFRESH_FAST AFTER_INSERT N SH.SALES mv log must have ROWID
REFRESH_FAST_AFTER_INSERT N SH.SALES mv log does not have all necessary columns
REFRESH_FAST AFTER_ONETAB_DML N DOLLARS SUM (expr) without COUNT (expr)
REFRESH_FAST_AFTER_ONETAB_DML N see the reason why
REFRESH_FAST AFTER_INSERT is disabled
REFRESH_FAST AFTER_ONETAB_DML N COUNT (*) is not present in the select list
REFRESH_FAST AFTER_ONETAB_DML N SUM (expr) without COUNT (expr)
REFRESH_FAST_AFTER_ANY_ DML N see the reason why
REFRESH_FAST_AFTER_ONETAB_DML is disabled
REFRESH_FAST_AFTER_ANY_DML N SH.TIMES mv log must have sequence
REFRESH_FAST_AFTER_ANY_DML N SH.SALES mv log must have sequence
REFRESH_PCT N PCT is not possible on any of the detail
tables in the materialized view
REWRITE_FULL_TEXT MATCH Y
REWRITE_PARTIAL_TEXT MATCH Y
REWRITE_GENERAL Y
REWRITE_PCT N PCT is not possible on any detail tables

See Also: Chapter 15, "Maintaining the Data Warehouse" and
Chapter 18, "Advanced Query Rewrite" for further details about
PCT

MV_CAPABILITIES_TABLE.CAPABILITY_NAME Details

Table 8-7 lists explanations for values in the CAPABILITY_ NAME column.

Basic Materialized Views 8-31

Analyzing Materialized View Capabilities

Table 8-7 CAPABILITY_NAME Column Details

CAPABILITY_NAME

Description

PCT

REFRESH_COMPLETE
REFRESH_FAST

REWRITE

PCT_TABLE

PCT TABLE_
REWRITE

REFRESH_FAST_
AFTER_INSERT

REFRESH_FAST_
AFTER_ONETAB_DML

REFRESH FAST
AFTER_ANY_ DML

REFRESH_FAST_PCT

REWRITE_FULL_
TEXT_MATCH

If this capability is possible, Partition Change Tracking (PCT) is possible on at least one
detail relation. If this capability is not possible, PCT is not possible with any detail relation
referenced by the materialized view.

If this capability is possible, complete refresh of the materialized view is possible.
If this capability is possible, fast refresh is possible at least under certain circumstances.

If this capability is possible, at least full text match query rewrite is possible. If this
capability is not possible, no form of query rewrite is possible.

If this capability is possible, it is possible with respect to a particular partitioned table in
the top level FROM list. When possible, PCT applies to the partitioned table named in the
RELATED_TEXT column.

PCT is needed to support fast fresh after partition maintenance operations on the table
named in the RELATED_TEXT column.

PCT may also support fast refresh with regard to updates to the table named in the
RELATED_TEXT column when fast refresh from a materialized view log is not possible.

PCT is also needed to support query rewrite in the presence of partial staleness of the
materialized view with regard to the table named in the RELATED_TEXT column.

When disabled, PCT does not apply to the table named in the RELATED_TEXT column. In
this case, fast refresh is not possible after partition maintenance operations on the table
named in the RELATED_TEXT column. In addition, PCT-based refresh of updates to the
table named in the RELATED_TEXT column is not possible. Finally, query rewrite cannot
be supported in the presence of partial staleness of the materialized view with regard to
the table named in the RELATED_TEXT column.

If this capability is possible, it is possible with respect to a particular partitioned table in
the top level FROM list. When possible, PCT applies to the partitioned table named in the
RELATED_TEXT column.

This capability is needed to support query rewrite against this materialized view in partial
stale state with regard to the table named in the RELATED_TEXT column.

When disabled, query rewrite cannot be supported if this materialized view is in partial
stale state with regard to the table named in the RELATED_TEXT column.

If this capability is possible, fast refresh from a materialized view log is possible at least in
the case where the updates are restricted to INSERT operations; complete refresh is also
possible. If this capability is not possible, no form of fast refresh from a materialized view
log is possible.

If this capability is possible, fast refresh from a materialized view log is possible regardless
of the type of update operation, provided all update operations are performed on a single
table. If this capability is not possible, fast refresh from a materialized view log may not be
possible when the update operations are performed on multiple tables.

If this capability is possible, fast refresh from a materialized view log is possible regardless
of the type of update operation or the number of tables updated. If this capability is not
possible, fast refresh from a materialized view log may not be possible when the update
operations (other than INSERT) affect multiple tables.

If this capability is possible, fast refresh using PCT is possible. Generally, this means that
refresh is possible after partition maintenance operations on those detail tables where PCT
is indicated as possible.

If this capability is possible, full text match query rewrite is possible. If this capability is
not possible, full text match query rewrite is not possible.

8-32 Oracle Database Data Warehousing Guide

Analyzing Materialized View Capabilities

Table 8-7 (Cont.) CAPABILITY_NAME Column Details

CAPABILITY_NAME Description

REWRITE_PARTIAL_
TEXT_MATCH

REWRITE_GENERAL

REWRITE_PCT

rewrite are not possible.

If this capability is possible, at least full and partial text match query rewrite are possible.
If this capability is not possible, at least partial text match query rewrite and general query

If this capability is possible, all query rewrite capabilities are possible, including general

query rewrite and full and partial text match query rewrite. If this capability is not
possible, at least general query rewrite is not possible.

If this capability is possible, query rewrite can use a partially stale materialized view even

in QUERY_REWRITE_INTEGRITY = ENFORCED or TRUSTED modes. When this capability
is not possible, query rewrite can use a partially stale materialized view only in QUERY_
REWRITE_INTEGRITYE=STALE_TOLERATEDInOd&

MV_CAPABILITIES_TABLE Column Details
Table 8-8 lists the semantics for RELATED_TEXT and RELATED_NUM columns.

Table 8-8 MV _CAPABILITIES_TABLE Column Details

MSGNO MSGTXT RELATED_NUM RELATED_TEXT
NULL NULL For PCT capability only:
[owner.] name of the table upon which
PCT is enabled
2066 This statement resulted in an Oracle Oracle error number
error that occurred
2067 No partition key or PMARKER or join [owner.] name of relation for which
dependent expression in SELECT PCT is not supported
list
2068 Relation is not partitioned [owner.] name of relation for which
PCT is not supported
2069 PCT not supported with [owner.] name of relation for which
multicolumn partition key PCT is not supported
2070 PCT not supported with this type of [owner.] name of relation for which
partitioning PCT is not supported
2071 Internal error: undefined PCT The unrecognized [owner.] name of relation for which
failure code numeric PCT failure ~ PCT is not supported
code
2072 Requirements not satisfied for fast
refresh of nested materialized view
2077 Materialized view log is newer than [owner.] table_name of table upon
last full refresh which the materialized view log is
needed
2078 Materialized view log must have [owner.] table_name of table upon
new values which the materialized view log is
needed
2079 Materialized view log must have [owner.] table_name of table upon
ROWID which the materialized view log is
needed
2080 Materialized view log must have [owner.] table_name of table upon

primary key

which the materialized view log is
needed

Basic Materialized Views 8-33

Analyzing Materialized View Capabilities

Table 8-8 (Cont.) MV_CAPABILITIES_TABLE Column Details

MSGNO MSGTXT RELATED_NUM RELATED_TEXT
2081 Materialized view log does not have [owner.] table_name of table upon
all necessary columns which the materialized view log is
needed
2082 Problem with materialized view log [owner.] table_name of table upon
which the materialized view log is
needed
2099 Materialized view references a Offset from the [owner.] name of the table or view in
remote table or view in the FROM list SELECT keyword to question
the table or view in
question
2126 Multiple master sites Name of the first different node, or
NULL if the first different node is local
2129 Join or filter condition(s) are [owner.] name of the table involved
complex with the join or filter condition (or NULL
when not available)
2130 Expression not supported for fast Offset from the The alias name in the SELECT list of the
refresh SELECT keyword to expression in question
the expression in
question
2150 SELECT lists must be identical Offset from the The alias name of the first different
across the UNION operator SELECT keyword to select item in the SELECT list
the first different
select item in the
SELECT list
2182 PCT is enabled through a join [owner.] name of relation for which
dependency PCT_TABLE_REWRITE is not enabled
2183 Expression to enable PCT not in The unrecognized [owner.] name of relation for which
PARTITION BY of analytic function numeric PCT failure = PCT is not enabled
or model code
2184 Expression to enable PCT cannot be [owner.] name of relation for which
rolled up PCT is not enabled
2185 No partition key or PMARKER in the [owner.] name of relation for which
SELECT list PCT_TABLE_REWRITE is not enabled
2186 GROUP OUTER JOIN is present
2187 Materialized view on external table

8-34 Oracle Database Data Warehousing Guide

9

Advanced Materialized Views

This chapter discusses advanced topics in using materialized views. It contains the
following topics:

= Partitioning and Materialized Views

= Materialized Views in Analytic Processing Environments
= Materialized Views and Models

= Invalidating Materialized Views

» Security Issues with Materialized Views

= Altering Materialized Views

Partitioning and Materialized Views

Because of the large volume of data held in a data warehouse, partitioning is an
extremely useful option when designing a database. Partitioning the fact tables
improves scalability, simplifies system administration, and makes it possible to define
local indexes that can be efficiently rebuilt. Partitioning the fact tables also improves
the opportunity of fast refreshing the materialized view because this may enable
Partition Change Tracking (PCT) refresh on the materialized view. Partitioning a
materialized view also has benefits for refresh, because the refresh procedure can then
use parallel DML in more scenarios and PCT-based refresh can use truncate partition
to efficiently maintain the materialized view. See Oracle Database VLDB and Partitioning
Guide for further details about partitioning.

Partition Change Tracking

It is possible and advantageous to track freshness to a finer grain than the entire
materialized view. The ability to identify which rows in a materialized view are
affected by a certain detail table partition, is known as Partition Change Tracking.
When one or more of the detail tables are partitioned, it may be possible to identify the
specific rows in the materialized view that correspond to a modified detail partition(s);
those rows become stale when a partition is modified while all other rows remain
fresh.

You can use PCT to identify which materialized view rows correspond to a particular
partition. PCT is also used to support fast refresh after partition maintenance
operations on detail tables. For instance, if a detail table partition is truncated or
dropped, the affected rows in the materialized view are identified and deleted.

Identifying which materialized view rows are fresh or stale, rather than considering
the entire materialized view as stale, allows query rewrite to use those rows that are

Advanced Materialized Views 9-1

Partitioning and Materialized Views

fresh while in QUERY_REWRITE_INTEGRITY = ENFORCED or TRUSTED modes.
Several views, such as DBA_MVIEW_DETAIL_PARTITION, detail which partitions are
stale or fresh. Oracle does not rewrite against partial stale materialized views if
partition change tracking on the changed table is enabled by the presence of join
dependent expression in the materialized view. See "Join Dependent Expression” on
page 9-3 for more information.

To support PCT, a materialized view must satisfy the following requirements:

= Atleast one of the detail tables referenced by the materialized view must be
partitioned.

= DPartitioned tables must use either range, list or composite partitioning.
s The top level partition key must consist of only a single column.

s The materialized view must contain either the partition key column or a partition
marker or ROWID or join dependent expression of the detail table. See Oracle
Database PL/SQL Packages and Types Reference for details regarding the DBMS_
MVIEW.PMARKER function.

= If you use a GROUP BY clause, the partition key column or the partition marker or
ROWID or join dependent expression must be present in the GROUP BY clause.

s If you use an analytic window function or the MODEL clause, the partition key
column or the partition marker or ROWID or join dependent expression must be
present in their respective PARTITION BY subclauses.

= Data modifications can only occur on the partitioned table. If PCT refresh is being
done for a table which has join dependent expression in the materialized view,
then data modifications should not have occurred in any of the join dependent
tables.

s The COMPATIBILITY initialization parameter must be a minimum of 9.0.0.0.0.

s PCTis not supported for a materialized view that refers to views, remote tables, or
outer joins.

Partition Key

Partition change tracking requires sufficient information in the materialized view to be
able to correlate a detail row in the source partitioned detail table to the corresponding
materialized view row. This can be accomplished by including the detail table
partition key columns in the SELECT list and, if GROUP BY is used, in the GROUP BY
list.

Consider an example of a materialized view storing daily customer sales. The
following example uses the sh sample schema and the three detail tables sales,
products, and times to create the materialized view. sales table is partitioned by
time_id column and products is partitioned by the prod_id column. times is not
a partitioned table.

Example 9-1 Partition Key

The following is an example:

CREATE MATERIALIZED VIEW LOG ON SALES WITH ROWID

(prod_id, time_id, quantity_sold, amount_sold) INCLUDING NEW VALUES;
CREATE MATERIALIZED VIEW LOG ON PRODUCTS WITH ROWID

(prod_id, prod_name, prod_desc) INCLUDING NEW VALUES;
CREATE MATERIALIZED VIEW LOG ON TIMES WITH ROWID

(time_id, calendar_month_name, calendar_year) INCLUDING NEW VALUES;

9-2 Oracle Database Data Warehousing Guide

Partitioning and Materialized Views

CREATE MATERIALIZED VIEW cust_dly_sales_mv

BUILD DEFERRED REFRESH FAST ON DEMAND

ENABLE QUERY REWRITE AS

SELECT s.time_id, p.prod_id, p.prod_name, COUNT(*),
SUM(s.quantity sold), SUM(s.amount_sold),
COUNT (s.quantity sold), COUNT(s.amount_sold)

FROM sales s, products p, times t

WHERE s.time_id = t.time_id AND s.prod_id = p.prod_id

GROUP BY s.time_id, p.prod_id, p.prod_name;

For cust_dly sales_mv, PCT is enabled on both the sales table and products
table because their respective partitioning key columns time_id and prod_id are in
the materialized view.

Join Dependent Expression

An expression consisting of columns from tables directly or indirectly joined through
equijoins to the partitioned detail table on the partitioning key and which is either a
dimensional attribute or a dimension hierarchical parent of the joining key is called a
join dependent expression. The set of tables in the path to detail table are called join
dependent tables. Consider the following:

SELECT s.time_id, t.calendar_month_name
FROM sales s, times t WHERE s.time_id = t.time_id;

In this query, times table is a join dependent table since it is joined to sales table on
the partitioning key column time_id. Moreover, calendar_month_name is a
dimension hierarchical attribute of times.time_id, because calendar_month_
name is an attribute of times.mon_id and times.mon_id is a dimension
hierarchical parent of times. time_id. Hence, the expression calendar_month_
name from times tables is a join dependent expression. Let's consider another
example:

SELECT s.time_id, y.calendar_year_name
FROM sales s, times_d d, times_.m m, times_y vy
WHERE s.time_id = d.time_id AND d.day_id = m.day_id AND m.mon_id = y.mon_id;

Here, times table is denormalized into times_d, times_m and times_y tables. The
expression calendar_year_ name from times_y table is a join dependent
expression and the tables times_d, times_mand times_y are join dependent tables.
This is because times_y table is joined indirectly through times_mand times_d
tables to sales table on its partitioning key column time_id.

This lets users create materialized views containing aggregates on some level higher
than the partitioning key of the detail table. Consider the following example of
materialized view storing monthly customer sales.

Example 9-2 Join Dependent Expression

Assuming the presence of materialized view logs defined earlier, the materialized
view can be created using the following DDL.:

CREATE MATERIALIZED VIEW cust_mth_sales_mv

BUILD DEFERRED REFRESH FAST ON DEMAND

ENABLE QUERY REWRITE AS

SELECT t.calendar_month_name, p.prod_id, p.prod_name, COUNT(*),
SUM(s.quantity_sold), SUM(s.amount_sold),
COUNT (s.quantity_sold), COUNT (s.amount_sold)

FROM sales s, products p, times t

Advanced Materialized Views 9-3

Partitioning and Materialized Views

WHERE s.time_id = t.time_id AND s.prod_id = p.prod_id
GROUP BY t.calendar_month_name, p.prod_id, p.prod_name;

Here, you can correlate a detail table row to its corresponding materialized view row
using the join dependent table times and the relationship that times.calendar_
month_name is a dimensional attribute determined by times. time_id. This enables
partition change tracking on sales table. In addition to this, PCT is enabled on
products table because of presence of its partitioning key column prod_id in the
materialized view.

Partition Marker

The DBMS_MVIEW.PMARKER function is designed to significantly reduce the
cardinality of the materialized view (see Example 9-3 for an example). The function
returns a partition identifier that uniquely identifies the partition for a specified row
within a specified partition table. Therefore, the DBMS_MVIEW.PMARKER function is
used instead of the partition key column in the SELECT and GROUP BY clauses.

Unlike the general case of a PL/SQL function in a materialized view, use of the DBMS_
MVIEW.PMARKER does not prevent rewrite with that materialized view even when the
rewrite mode is QUERY_REWRITE_INTEGRITY = ENFORCED.

As an example of using the PMARKER function, consider calculating a typical number,
such as revenue generated by a product category during a given year. If there were
1000 different products sold each month, it would result in 12,000 rows in the
materialized view.

Example 9-3 Partition Marker

Consider an example of a materialized view storing the yearly sales revenue for each
product category. With approximately hundreds of different products in each product
category, including the partitioning key column prod_id of the products table in
the materialized view would substantially increase the cardinality. Instead, this
materialized view uses the DBMS_MVIEW.PMARKER function, which increases the
cardinality of materialized view by a factor of the number of partitions in the
products table.

CREATE MATERIALIZED VIEW prod_yr_sales_mv

BUILD DEFERRED

REFRESH FAST ON DEMAND

ENABLE QUERY REWRITE AS

SELECT DBMS_MVIEW.PMARKER (p.rowid), p.prod_category, t.calendar_year, COUNT(*),
SUM (s.amount_sold), SUM(s.quantity_sold),
COUNT (s.amount_sold), COUNT(s.quantity_sold)

FROM sales s, products p, times t

WHERE s.time_id = t.time_id AND s.prod_id = p.prod_id

GROUP BY DBMS_MVIEW.PMARKER (p.rowid), p.prod_category, t.calendar_year;

prod_vyr_ sales_mv includes the DBMS_MVIEW. PMARKER function on the products
table in its SELECT list. This enables partition change tracking on products table
with significantly less cardinality impact than grouping by the partition key column
prod_id. In this example, the desired level of aggregation for the prod_yr_sales_
mv is to group by products.prod_category. Using the DBMS_MVIEW. PMARKER
function, the materialized view cardinality is increased only by a factor of the number
of partitions in the products table. This would generally be significantly less than the
cardinality impact of including the partition key columns.

Note that partition change tracking is enabled on sales table because of presence of
join dependent expression calendar_year in the SELECT list.

9-4 Oracle Database Data Warehousing Guide

Partitioning and Materialized Views

Partial Rewrite

A subsequent INSERT statement adds a new row to the sales_part3 partition of
table sales. At this point, because cust_dly_sales_mv has PCT available on table
sales using a partition key, Oracle can identify the stale rows in the materialized
view cust_dly_sales_mv corresponding to sales_part3 partition (The other
rows are unchanged in their freshness state). Query rewrite cannot identify the fresh
portion of materialized views cust_mth_sales_mv and prod_yr_sales_mv
because PCT is available on table sales using join dependent expressions. Query
rewrite can determine the fresh portion of a materialized view on changes to a detail
table only if PCT is available on the detail table using a partition key or partition
marker.

Partitioning a Materialized View

Partitioning a materialized view involves defining the materialized view with the
standard Oracle partitioning clauses, as illustrated in the following example. This
statement creates a materialized view called part_sales_mv, which uses three
partitions, can be fast refreshed, and is eligible for query rewrite:

CREATE MATERIALIZED VIEW part_sales_mv
PARALLEL PARTITION BY RANGE (time_id)
(PARTITION monthl
VALUES LESS THAN (TO_DATE('31-12-1998', 'DD-MM-YYYY'))
PCTFREE 0
STORAGE (INITIAL 8M)
TABLESPACE sfl,
PARTITION month2
VALUES LESS THAN (TO_DATE('31-12-1999', 'DD-MM-YYYY'))
PCTFREE 0
STORAGE (INITIAL 8M)
TABLESPACE sf2,
PARTITION month3
VALUES LESS THAN (TO_DATE('31-12-2000', 'DD-MM-YYYY'))
PCTFREE 0
STORAGE (INITIAL 8M)
TABLESPACE sf3)
BUILD DEFERRED
REFRESH FAST
ENABLE QUERY REWRITE AS
SELECT s.cust_id, s.time_id,
SUM (s.amount_sold) AS sum_dol_sales, SUM(s.quantity_sold) AS sum unit_sales
FROM sales s GROUP BY s.time_id, s.cust_id;

Partitioning a Prebuilt Table

Alternatively, a materialized view can be registered to a partitioned prebuilt table as
illustrated in the following example:

CREATE TABLE part_sales_tab_mv(time_id, cust_id, sum_dollar_sales, sum unit_sale)
PARALLEL PARTITION BY RANGE (time_id)
(PARTITION monthl
VALUES LESS THAN (TO_DATE('31-12-1998', 'DD-MM-YYYY'))
PCTFREE 0
STORAGE (INITIAL 8M)
TABLESPACE sfl,
PARTITION month2
VALUES LESS THAN (TO_DATE('31-12-1999', 'DD-MM-YYYY'))
PCTFREE 0
STORAGE (INITIAL 8M)

Advanced Materialized Views 9-5

Partitioning and Materialized Views

TABLESPACE sf2,
PARTITION month3
VALUES LESS THAN (TO_DATE('31-12-2000', 'DD-MM-YYYY'))
PCTFREE 0
STORAGE (INITIAL 8M)
TABLESPACE sf3) AS
SELECT s.time_id, s.cust_id, SUM(s.amount_sold) AS sum_dollar_sales,
SUM(s.quantity_sold) AS sum_unit_sales
FROM sales s GROUP BY s.time_id, s.cust_id;

CREATE MATERIALIZED VIEW part_sales_tab_mv

ON PREBUILT TABLE

ENABLE QUERY REWRITE AS

SELECT s.time_id, s.cust_id, SUM(s.amount_sold) AS sum_dollar_sales,
SUM(s.quantity_sold) AS sum_unit_sales

FROM sales s GROUP BY s.time_id, s.cust_id;

In this example, the table part_sales_tab_mv has been partitioned over three
months and then the materialized view was registered to use the prebuilt table. This
materialized view is eligible for query rewrite because the ENABLE QUERY REWRITE
clause has been included.

Benefits of Partitioning a Materialized View

When a materialized view is partitioned on the partitioning key column or join
dependent expressions of the detail table, it is more efficient to use a TRUNCATE
PARTITION statement to remove one or more partitions of the materialized view
during refresh and then repopulate the partition with new data. Oracle Database uses
this variant of fast refresh (called PCT refresh) with partition truncation if the
following conditions are satisfied in addition to other conditions described in
"Partition Change Tracking" on page 9-1.

s The materialized view is partitioned on the partitioning key column or join
dependent expressions of the detail table.

s If PCT is enabled using either the partitioning key column or join expressions, the
materialized view should be range or list partitioned.

m PCT refresh is nonatomic.

Rolling Materialized Views

When a data warehouse or data mart contains a time dimension, it is often desirable to
archive the oldest information and then reuse the storage for new information. This is
called the rolling window scenario. If the fact tables or materialized views include a
time dimension and are horizontally partitioned by the time attribute, then
management of rolling materialized views can be reduced to a few fast partition
maintenance operations provided the unit of data that is rolled out equals, or is at least
aligned with, the range partitions.

If you plan to have rolling materialized views in your data warehouse, you should
determine how frequently you plan to perform partition maintenance operations, and
you should plan to partition fact tables and materialized views to reduce the amount
of system administration overhead required when old data is aged out. An additional
consideration is that you might want to use data compression on your infrequently
updated partitions.

You are not restricted to using range partitions. For example, a composite partition
using both a time value and a key value could result in a good partition solution for
your data.

9-6 Oracle Database Data Warehousing Guide

Materialized Views in Analytic Processing Environments

See Chapter 15, "Maintaining the Data Warehouse" for further details regarding
CONSIDER FRESH and for details regarding compression.

Materialized Views in Analytic Processing Environments

Cubes

This section discusses the concepts used by analytic SQL and how relational databases
can handle these types of queries. It also illustrates the best approach for creating
materialized views using a common scenario.

While data warehouse environments typically view data in the form of a star schema,
for analytical SQL queries, data is held in the form of a hierarchical cube. A
hierarchical cube includes the data aggregated along the rollup hierarchy of each of its
dimensions and these aggregations are combined across dimensions. It includes the
typical set of aggregations needed for business intelligence queries.

Example 9-4 Hierarchical Cube

Consider a sales data set with two dimensions, each of which has a 4-level hierarchy:
= Time, which contains (all times), year, quarter, and month.
= Product, which contains (all products), division, brand, and item.

This means there are 16 aggregate groups in the hierarchical cube. This is because the
four levels of time are multiplied by four levels of product to produce the cube.
Table 9-1 shows the four levels of each dimension.

Table 9-1 ROLLUP By Time and Product

ROLLUP By Time ROLLUP By Product
year, quarter, month division, brand, item
year, quarter division, brand

year division

all times all products

Note that as you increase the number of dimensions and levels, the number of groups
to calculate increases dramatically. This example involves 16 groups, but if you were
to add just two more dimensions with the same number of levels, you would have 4 x
4 x 4 x 4 = 256 different groups. Also, consider that a similar increase in groups occurs
if you have multiple hierarchies in your dimensions. For example, the time dimension
might have an additional hierarchy of fiscal month rolling up to fiscal quarter and
then fiscal year. Handling the explosion of groups has historically been the major
challenge in data storage for online analytical processing systems.

Typical online analytical queries slice and dice different parts of the cube comparing
aggregations from one level to aggregation from another level. For instance, a query

might find sales of the grocery division for the month of January, 2002 and compare

them with total sales of the grocery division for all of 2001.

Benefits of Partitioning Materialized Views

Materialized views with multiple aggregate groups will give their best performance
for refresh and query rewrite when partitioned appropriately.

Advanced Materialized Views 9-7

Materialized Views in Analytic Processing Environments

PCT refresh in a rolling window scenario requires partitioning at the top level on some
level from the time dimension. And, partition pruning for queries rewritten against
this materialized view requires partitioning on GROUPING_ID column. Hence, the
most effective partitioning scheme for these materialized views is to use composite
partitioning (range-list on (t ime, GROUPING_ID) columns). By partitioning the
materialized views this way, you enable:

s PCT refresh, thereby improving refresh performance.

s Partition pruning: only relevant aggregate groups will be accessed, thereby greatly
reducing the query processing cost.

If you do not want to use PCT refresh, you can just partition by list on GROUPING_ID
column.

Compressing Materialized Views

You should consider data compression when using highly redundant data, such as
tables with many foreign keys. In particular, materialized views created with the
ROLLUP clause are likely candidates. See Oracle Database SQL Language Reference for
data compression syntax and restrictions and "Storage And Table Compression" on
page 8-16 for details regarding compression.

Materialized Views with Set Operators

Oracle Database provides support for materialized views whose defining query
involves set operators. Materialized views with set operators can now be created
enabled for query rewrite. You can refresh the materialized view using either ON
COMMIT or ON DEMAND refresh.

Fast refresh is supported if the defining query has the UNION ALL operator at the top
level and each query block in the UNION ALL, meets the requirements of a materialized
view with aggregates or materialized view with joins only. Further, the materialized
view must include a constant column (known as a UNION ALL marker) that has a
distinct value in each query block, which, in the following example, is columns 1
marker and 2 marker.

See "Restrictions on Fast Refresh on Materialized Views with UNION ALL" on
page 8-22 for detailed restrictions on fast refresh for materialized views with UNION
ALL.

Examples of Materialized Views Using UNION ALL

The following examples illustrate creation of fast refreshable materialized views
involving UNION ALL.

Example 9-5 Materialized View Using UNION ALL with Two Join Views

To create a UNION ALL materialized view with two join views, the materialized view
logs must have the rowid column and, in the following example, the UNION ALL
marker is the columns, 1 marker and 2 marker.

CREATE MATERIALIZED VIEW LOG ON sales WITH ROWID;
CREATE MATERIALIZED VIEW LOG ON customers WITH ROWID;

CREATE MATERIALIZED VIEW unionall_sales_cust_joins_mv

REFRESH FAST ON COMMIT

ENABLE QUERY REWRITE AS

(SELECT c.rowid crid, s.rowid srid, c.cust_id, s.amount_sold, 1 marker
FROM sales s, customers c

9-8 Oracle Database Data Warehousing Guide

Materialized Views and Models

WHERE s.cust_id = c.cust_id AND c.cust_last_name = 'Smith')

UNION ALL

(SELECT c.rowid crid, s.rowid srid, c.cust_id, s.amount_sold, 2 marker
FROM sales s, customers c

WHERE s.cust_id = c.cust_id AND c.cust_last_name = 'Brown');

Example 9-6 Materialized View Using UNION ALL with Joins and Aggregates

The following example shows a UNION ALL of a materialized view with joins and a
materialized view with aggregates. A couple of things can be noted in this example.
Nulls or constants can be used to ensure that the data types of the corresponding
SELECT list columns match. Also, the UNION ALL marker column can be a string
literal, which is 'Year' umarker, 'Quarter' umarker,or 'Daily' umarker in
the following example:

CREATE MATERIALIZED VIEW LOG ON sales WITH ROWID, SEQUENCE
(amount_sold, time_id)
INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW LOG ON times WITH ROWID, SEQUENCE
(time_id, fiscal_year, fiscal_quarter_number, day_number_in_week)
INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW unionall_sales_mix_mv
REFRESH FAST ON DEMAND AS
(SELECT 'Year' umarker, NULL, NULL, t.fiscal_year,
SUM(s.amount_sold) amt, COUNT (s.amount_sold), COUNT (*)
FROM sales s, times t
WHERE s.time_id = t.time_id
GROUP BY t.fiscal_year)
UNION ALL
(SELECT 'Quarter' umarker, NULL, NULL, t.fiscal_quarter_number,
SUM(s.amount_sold) amt, COUNT (s.amount_sold), COUNT(*)
FROM sales s, times t
WHERE s.time_id = t.time_id and t.fiscal_year = 2001
GROUP BY t.fiscal_gquarter_number)
UNION ALL
(SELECT 'Daily' umarker, s.rowid rid, t.rowid rid2, t.day_number_in_week,
s.amount_sold amt, 1, 1
FROM sales s, times t
WHERE s.time_id = t.time_id
AND t.time_id between '01-Jan-01' AND '0Ol-Dec-31');

Materialized Views and Models

Models, which provide array-based computations in SQL, can be used in materialized
views. Because the MODEL clause calculations can be expensive, you may want to use
two separate materialized views: one for the model calculations and one for the
SELECT ... GROUP BY query. For example, instead of using one, long materialized
view, you could create the following materialized views:

CREATE MATERIALIZED VIEW my_groupby_mv
REFRESH FAST
ENABLE QUERY REWRITE AS
SELECT country_name country, prod_name prod, calendar_ year year,
SUM (amount_sold) sale, COUNT (amount_sold) cnt, COUNT(*) cntstr
FROM sales, times, customers, countries, products
WHERE sales.time_id = times.time_id AND
sales.prod_id = products.prod_id AND
sales.cust_id = customers.cust_id AND

Advanced Materialized Views 9-9

Invalidating Materialized Views

customers.country_id = countries.country_id
GROUP BY country_name, prod_name, calendar_year;

CREATE MATERIALIZED VIEW my_model_mv

ENABLE QUERY REWRITE AS

SELECT country, prod, year, sale, cnt

FROM my_groupby_mv

MODEL PARTITION BY (country) DIMENSION BY (prod, year)
MEASURES (sale s) IGNORE NAV

(s['Shorts', 2000] = 0.2 * AVG(s)[CV(), year BETWEEN 1996 AND 1999],
s['Kids Pajama', 2000] = 0.5 * AVG(s) [CV(), year BETWEEN 1995 AND 1999],
s['Boys Pajama', 2000] = 0.6 * AVG(s)[CV(), year BETWEEN 1994 AND 199917,

<hundreds of other update rules>);

By using two materialized views, you can incrementally maintain the materialized
view my_groupby_mv. The materialized view my_model_mv is on a much smaller
data set because it is built on my_groupby_mv and can be maintained by a complete
refresh.

Materialized views with models can use complete refresh or PCT refresh only, and are
available for partial text query rewrite only.

See Chapter 22, "SQL for Modeling" for further details about model calculations.

Invalidating Materialized Views

Dependencies related to materialized views are automatically maintained to ensure
correct operation. When a materialized view is created, the materialized view depends
on the detail tables referenced in its definition. Any DML operation, such as an
INSERT, or DELETE, UPDATE, or DDL operation on any dependency in the
materialized view will cause it to become invalid. To revalidate a materialized view,
use the ALTER MATERIALIZED VIEW COMPILE statement.

A materialized view is automatically revalidated when it is referenced. In many cases,
the materialized view will be successfully and transparently revalidated. However, if a
column has been dropped in a table referenced by a materialized view or the owner of
the materialized view did not have one of the query rewrite privileges and that
privilege has now been granted to the owner, you should use the following statement
to revalidate the materialized view:

ALTER MATERIALIZED VIEW mview_name COMPILE;

The state of a materialized view can be checked by querying the data dictionary views
USER_MVIEWS or ALL_MVIEWS. The column STALENESS will show one of the values
FRESH, STALE, UNUSABLE, UNKNOWN, UNDEFINED, or NEEDS_COMPILE to indicate
whether the materialized view can be used. The state is maintained automatically.
However, if the staleness of a materialized view is marked as NEEDS_COMPILE, you
could issue an ALTER MATERIALIZED VIEW ... COMPILE statement to validate the
materialized view and get the correct staleness state. If the state of a materialized view
is UNUSABLE, you must perform a complete refresh to bring the materialized view
back to the FRESH state. If the materialized view is based on a prebuilt table that you
never refresh, you will need to drop and re-create the materialized view. The staleness
of remote materialized views is not tracked. Thus, if you use remote materialized
views for rewrite, they are considered to be trusted.

9-10 Oracle Database Data Warehousing Guide

Security Issues with Materialized Views

Security Issues with Materialized Views

To create a materialized view in your own schema, you must have the CREATE
MATERIALIZED VIEW privilege and the SELECT privilege to any tables referenced that
are in another schema. To create a materialized view in another schema, you must
have the CREATE ANY MATERIALIZED VIEW privilege and the owner of the
materialized view needs SELECT privileges to the tables referenced if they are from
another schema. Moreover, if you enable query rewrite on a materialized view that
references tables outside your schema, you must have the GLOBAL QUERY REWRITE
privilege or the QUERY REWRITE object privilege on each table outside your schema.

If the materialized view is on a prebuilt container, the creator, if different from the
owner, must have SELECT WITH GRANT privilege on the container table.

If you continue to get a privilege error while trying to create a materialized view and
you believe that all the required privileges have been granted, then the problem is
most likely due to a privilege not being granted explicitly and trying to inherit the
privilege from a role instead. The owner of the materialized view must have explicitly
been granted SELECT access to the referenced tables if the tables are in a different
schema.

If the materialized view is being created with ON COMMIT REFRESH specified, then the
owner of the materialized view requires an additional privilege if any of the tables in
the defining query are outside the owner's schema. In that case, the owner requires the
ON COMMIT REFRESH system privilege or the ON COMMIT REFRESH object privilege on
each table outside the owner's schema.

Querying Materialized Views with Virtual Private Database (VPD)

For all security concerns, a materialized view serves as a view that happens to be
materialized when you are directly querying the materialized view. When creating a
view or materialized view, the owner must have the necessary permissions to access
the underlying base relations of the view or materialized view that they are creating.
With these permissions, the owner can publish a view or materialized view that other
users can access, assuming they have been granted access to the view or materialized
view.

Using materialized views with Virtual Private Database is similar. When you create a
materialized view, there must not be any VPD policies in effect against the base
relations of the materialized view for the owner of the materialized view. However,
the owner of the materialized view may establish a VPD policy on the new
materialized view. Users who access the materialized view are subject to the VPD
policy on the materialized view. However, they are not additionally subject to the
VPD policies of the underlying base relations of the materialized view, since security
processing of the underlying base relations is performed against the owner of the
materialized view.

Using Query Rewrite with Virtual Private Database

When you access a materialized view using query rewrite, the materialized view
serves as an access structure much like an index. As such, the security implications for
materialized views accessed in this way are much the same as for indexes: all security
checks are performed against the relations specified in the request query. The index or
materialized view is used to speed the performance of accessing the data, not provide
any additional security checks. Thus, the presence of the index or materialized view
presents no additional security checking.

Advanced Materialized Views 9-11

Altering Materialized Views

This holds true when you are accessing a materialized view using query rewrite in the
presence of VPD. The request query is subject to any VPD policies that are present
against the relations specified in the query. Query rewrite may rewrite the query to
use a materialize view instead of accessing the detail relations, but only if it can
guarantee to deliver exactly the same rows as if the rewrite had not occurred.
Specifically, query rewrite must retain and respect any VPD policies against the
relations specified in the request query. However, any VPD policies against the
materialized view itself do not have effect when the materialized view is accessed
using query rewrite. This is because the data is already protected by the VPD policies
against the relations in the request query.

Restrictions with Materialized Views and Virtual Private Database

Query rewrite does not use its full and partial text match modes with request queries
that include relations with active VPD policies, but it does use general rewrite
methods. This is because VPD transparently transforms the request query to affect the
VPD policy. If query rewrite were to perform a text match transformation against a
request query with a VPD policy, the effect would be to negate the VPD policy.

In addition, when you create or refresh a materialized view, the owner of the
materialized view must not have any active VPD policies in effect against the base
relations of the materialized view, or an error is returned. The materialized view
owner must either have no such VPD policies, or any such policy must return NULL.
This is because VPD would transparently modify the defining query of the
materialized view such that the set of rows contained by the materialized view would
not match the set of rows indicated by the materialized view definition.

One way to work around this restriction yet still create a materialized view containing
the desired VPD-specified subset of rows is to create the materialized view in a user
account that has no active VPD policies against the detail relations of the materialized
view. In addition, you can include a predicate in the WHERE clause of the materialized
view that embodies the effect of the VPD policy. When query rewrite attempts to
rewrite a request query that has that VPD policy, it will match up the VPD-generated
predicate on the request query with the predicate you directly specify when you create
the materialized view.

Altering Materialized Views
Six modifications can be made to a materialized view. You can:
s Change its refresh option (FAST/FORCE/COMPLETE/NEVER).
» Change its refresh mode (ON COMMIT/ON DEMAND).
= Recompile it.
= Enable or disable its use for query rewrite.
» Consider it fresh.
= Partition maintenance operations.

All other changes are achieved by dropping and then re-creating the materialized
view.

The COMPILE clause of the ALTER MATERTALIZED VIEW statement can be used when
the materialized view has been invalidated. This compile process is quick, and allows
the materialized view to be used by query rewrite again.

9-12 Oracle Database Data Warehousing Guide

Altering Materialized Views

See Also: Oracle Database SQL Language Reference for further
information about the ALTER MATERIALIZED VIEW statement and
"Invalidating Materialized Views" on page 9-10

Advanced Materialized Views 9-13

Altering Materialized Views

9-14 Oracle Database Data Warehousing Guide

10

Dimensions

This chapter discusses using dimensions in a data warehouse: It contains the following
topics:

= What are Dimensions?

s Creating Dimensions

= Viewing Dimensions

= Using Dimensions with Constraints
= Validating Dimensions

= Altering Dimensions

= Deleting Dimensions

What are Dimensions?

A dimension is a structure that categorizes data in order to enable users to answer
business questions. Commonly used dimensions are customers, products, and time.
For example, each sales channel of a clothing retailer might gather and store data
regarding sales and reclamations of their Cloth assortment. The retail chain
management can build a data warehouse to analyze the sales of its products across all
stores over time and help answer questions such as:

= What is the effect of promoting one product on the sale of a related product that is
not promoted?

= What are the sales of a product before and after a promotion?
» How does a promotion affect the various distribution channels?

The data in the retailer's data warehouse system has two important components:
dimensions and facts. The dimensions are products, customers, promotions, channels,
and time. One approach for identifying your dimensions is to review your reference
tables, such as a product table that contains everything about a product, or a
promotion table containing all information about promotions. The facts are sales (units
sold) and profits. A data warehouse contains facts about the sales of each product at
on a daily basis.

A typical relational implementation for such a data warehouse is a star schema. The
fact information is stored in what is called a fact table, whereas the dimensional
information is stored in dimension tables. In our example, each sales transaction
record is uniquely defined as for each customer, for each product, for each sales
channel, for each promotion, and for each day (time).

Dimensions 10-1

What are Dimensions?

See Also: Chapter 19, "Schema Modeling Techniques" for further
details

In Oracle Database, the dimensional information itself is stored in a dimension table.
In addition, the database object dimension helps to organize and group dimensional
information into hierarchies. This represents natural 1 : n relationships between
columns or column groups (the levels of a hierarchy) that cannot be represented with
constraint conditions. Going up a level in the hierarchy is called rolling up the data
and going down a level in the hierarchy is called drilling down the data. In the retailer
example:

= Within the time dimension, months roll up to quarters, quarters roll up to years,
and years roll up to all years.

= Within the product dimension, products roll up to subcategories, subcategories
roll up to categories, and categories roll up to all products.

= Within the customer dimension, customers roll up to city. Then cities roll up to
state. Then states roll up to country. Then countries roll up to subregion.
Finally, subregions roll up to region, as shown in Figure 10-1.

Figure 10-1 Sample Rollup for a Customer Dimension

region

v

subregion

v

country

v

state

v

city

v

customer

Data analysis typically starts at higher levels in the dimensional hierarchy and
gradually drills down if the situation warrants such analysis.

Dimensions do not have to be defined. However, if your application uses dimensional
modeling, it is worth spending time creating them as it can yield significant benefits,
because they help query rewrite perform more complex types of rewrite. Dimensions
are also beneficial to certain types of materialized view refresh operations and with the
SQL Access Advisor. They are only mandatory if you use the SQL Access Advisor (a
GUI tool for materialized view and index management) without a workload to
recommend which materialized views and indexes to create, drop, or retain.

10-2 Oracle Database Data Warehousing Guide

Creating Dimensions

See Also: Chapter 17, "Basic Query Rewrite" for further details
regarding query rewrite and the Oracle Database Performance Tuning
Guide for further details regarding the SQL Access Advisor

In spite of the benefits of dimensions, you must not create dimensions in any schema
that does not fully satisfy the dimensional relationships described in this chapter.
Incorrect results can be returned from queries otherwise.

Creating Dimensions

Before you can create a dimension object, the dimension tables must exist in the
database possibly containing the dimension data. For example, if you create a
customer dimension, one or more tables must exist that contain the city, state, and
country information. In a star schema data warehouse, these dimension tables already
exist. It is therefore a simple task to identify which ones will be used.

Now you can draw the hierarchies of a dimension as shown in Figure 10-1. For
example, city is a child of state (because you can aggregate city-level data up to
state), and country. This hierarchical information will be stored in the database object
dimension.

In the case of normalized or partially normalized dimension representation (a
dimension that is stored in more than one table), identify how these tables are joined.
Note whether the joins between the dimension tables can guarantee that each
child-side row joins with one and only one parent-side row. In the case of
denormalized dimensions, determine whether the child-side columns uniquely
determine the parent-side (or attribute) columns. If you use constraints to represent
these relationships, they can be enabled with the NOVALIDATE and RELY clauses if the
relationships represented by the constraints are guaranteed by other means.

You may want the capability to skip NULL levels in a dimension. An example of this is
with Puerto Rico. You may want Puerto Rico to be included within a region of North
America, but not include it within the state category. If you want this capability, use
the SKIP WHEN NULL clause. See the sample dimension later in this section for more
information and Oracle Database SQL Language Reference for syntax and restrictions.

You create a dimension using either the CREATE DIMENSION statement or the
Dimension Wizard in Oracle Enterprise Manager. Within the CREATE DIMENSION
statement, use the LEVEL clause to identify the names of the dimension levels.

See Also: Oracle Database SQL Language Reference for a complete
description of the CREATE DIMENSION statement

This customer dimension contains a single hierarchy with a geographical rollup, with
arrows drawn from the child level to the parent level, as shown in Figure 10-1 on
page 10-2.

Each arrow in this graph indicates that for any child there is one and only one parent.
For example, each city must be contained in exactly one state and each state must be
contained in exactly one country. States that belong to more than one country violate
hierarchical integrity. Also, you must use the SKIP WHEN NULL clause if you want to
include cities that do not belong to a state, such as Washington D.C. Hierarchical
integrity is necessary for the correct operation of management functions for
materialized views that include aggregates.

For example, you can declare a dimension products_dim, which contains levels
product, subcategory, and category:

Dimensions 10-3

Creating Dimensions

CREATE DIMENSION products_dim

LEVEL product IS (products.prod_id)
LEVEL subcategory IS (products.prod_subcategory)
LEVEL category IS (products.prod_category)

Each level in the dimension must correspond to one or more columns in a table in the
database. Thus, level product is identified by the column prod_id in the products
table and level subcategory is identified by a column called prod_subcategory in
the same table.

In this example, the database tables are denormalized and all the columns exist in the
same table. However, this is not a prerequisite for creating dimensions. "Using
Normalized Dimension Tables" on page 10-8 shows how to create a dimension
customers_dim that has a normalized schema design using the JOIN KEY clause.

The next step is to declare the relationship between the levels with the HIERARCHY
statement and give that hierarchy a name. A hierarchical relationship is a functional
dependency from one level of a hierarchy to the next level in the hierarchy. Using the
level names defined previously, the CHILD OF relationship denotes that each child's
level value is associated with one and only one parent level value. The following
statement declares a hierarchy prod_rollup and defines the relationship between
products, subcategory, and category:

HIERARCHY prod_rollup

(product CHILD OF
subcategory CHILD OF
category)

In addition to the 1 : n hierarchical relationships, dimensions also include 1: 1
attribute relationships between the hierarchy levels and their dependent, determined
dimension attributes. For example, the dimension times_dim, as defined in Oracle
Database Sample Schemas, has columns fiscal_month_desc, fiscal_month_name,
and days_in_fiscal_month. Their relationship is defined as follows:

LEVEL fis_month IS TIMES.FISCAL_MONTH_DESC

ATTRIBUTE fis_month DETERMINES
(fiscal_month_name, days_in_fiscal_month)

The ATTRIBUTE ... DETERMINES clause relates fis_month to fiscal_month_name
and days_in_fiscal_month. Note that this is a unidirectional determination. It is
only guaranteed, that for a specific fiscal_month, for example, 1999-11, you will
find exactly one matching values for fiscal_month_name, for example, November
and days_in_fiscal_month, for example, 28. You cannot determine a specific
fiscal_month_desc based on the fiscal_month_name, which is November for
every fiscal year.

In this example, suppose a query were issued that queried by fiscal_month_name
instead of fiscal_month_desc. Because this 1 :1 relationship exists between the
attribute and the level, an already aggregated materialized view containing fiscal_
month_desc can be joined back to the dimension information and used to identify the
data.

See Also: Chapter 17, "Basic Query Rewrite" for further details of
using dimensional information

A sample dimension definition follows:

CREATE DIMENSION products_dim
LEVEL product IS (products.prod_id)

10-4 Oracle Database Data Warehousing Guide

Creating Dimensions

LEVEL subcategory IS (products.prod_subcategory) [SKIP WHEN NULL]
LEVEL category IS (products.prod_category)
HIERARCHY prod_rollup (

product CHILD OF

subcategory CHILD OF

category)

ATTRIBUTE product DETERMINES

(products.prod_name, products.prod_desc,

prod_weight_class, prod_unit_of_measure,

prod_pack_size, prod_status, prod_list_price, prod_min_price)
ATTRIBUTE subcategory DETERMINES

(prod_subcategory, prod_subcategory desc)
ATTRIBUTE category DETERMINES

(prod_category, prod_category desc);

Alternatively, the extended_attribute_clause could have been used instead of
the attribute_clause, as shown in the following example:

CREATE DIMENSION products_dim

LEVEL product IS (products.prod_id)
LEVEL subcategory IS (products.prod_subcategory)
LEVEL category IS (products.prod_category)
HIERARCHY prod_rollup (

product CHILD OF

subcategory CHILD OF

category

)

ATTRIBUTE product_info LEVEL product DETERMINES

(products.prod_name, products.prod_desc,

prod_weight_class, prod_unit_of_measure,

prod_pack_size, prod_status, prod_list_price, prod_min_price)
ATTRIBUTE subcategory DETERMINES

(prod_subcategory, prod_subcategory desc)
ATTRIBUTE category DETERMINES

(prod_category, prod_category desc);

The design, creation, and maintenance of dimensions is part of the design, creation,
and maintenance of your data warehouse schema. Once the dimension has been
created, verify that it meets these requirements:

s There must be a 1 :n relationship between a parent and children. A parent can
have one or more children, but a child can have only one parent.

s There mustbe a 1:1 attribute relationship between hierarchy levels and their
dependent dimension attributes. For example, if there is a column fiscal_
month_desc, then a possible attribute relationship would be fiscal_month_
desc to fiscal_month_name. For skip NULL levels, if a row of the relation of a
skip level has a NULL value for the level column, then that row must have a NULL
value for the attribute-relationship column, too.

» If the columns of a parent level and child level are in different relations, then the
connection between them also requires a 1 : n join relationship. Each row of the
child table must join with one and only one row of the parent table unless you use
the SKIP WHEN NULL clause. This relationship is stronger than referential integrity
alone, because it requires that the child join key must be non-null, that referential
integrity must be maintained from the child join key to the parent join key, and
that the parent join key must be unique.

Dimensions 10-5

Creating Dimensions

= You must ensure (using database constraints if necessary) that the columns of each
hierarchy level are non-null unless you use the SKIP WHEN NULL clause and that
hierarchical integrity is maintained.

= An optional join key is a join key that connects the immediate non-skip child (if
such a level exists), CHILDLEV, of a skip level to the nearest non-skip ancestor
(again, if such a level exists), ANCLEV, of the skip level in the hierarchy. Also, this
joinkey is allowed only when CHILDLEV and ANCLEV are defined over different
relations.

= The hierarchies of a dimension can overlap or be disconnected from each other.
However, the columns of a hierarchy level cannot be associated with more than
one dimension.

= Join relationships that form cycles in the dimension graph are not supported. For
example, a hierarchy level cannot be joined to itself either directly or indirectly.

Note: The information stored with a dimension objects is only
declarative. The previously discussed relationships are not
enforced with the creation of a dimension object. You should
validate any dimension definition with the DBMS_
DIMENSION.VALIDATE_DIMENSION procedure, as discussed in
"Validating Dimensions" on page 10-10.

Dropping and Creating Attributes with Columns

You can use the attribute clause in a CREATE DIMENSION statement to specify one or
multiple columns that are uniquely determined by a hierarchy level.

If you use the extended_attribute_clause to create multiple columns
determined by a hierarchy level, you can drop one attribute column without dropping
them all. Alternatively, you can specify an attribute name for each attribute clause
CREATE or ALTER DIMENSION statement so that an attribute name is specified for
each attribute clause where multiple level-to-column relationships can be individually
specified.

The following statement illustrates how you can drop a single column without
dropping all columns:

CREATE DIMENSION products_dim

LEVEL product IS (products.prod_id)
LEVEL subcategory IS (products.prod_subcategory)
LEVEL category IS (products.prod_category)
HIERARCHY prod_rollup (

product CHILD OF

subcategory CHILD OF category)
ATTRIBUTE product DETERMINES
(products.prod_name, products.prod_desc,
prod_weight_class, prod_unit_of_measure,
prod_pack_size,prod_status, prod_list_price, prod_min_price)
ATTRIBUTE subcategory_att DETERMINES
(prod_subcategory, prod_subcategory_desc)
ATTRIBUTE category DETERMINES
(prod_category, prod_category_desc);

ALTER DIMENSION products_dim
DROP ATTRIBUTE subcategory_att LEVEL subcategory COLUMN prod_subcategory;

10-6 Oracle Database Data Warehousing Guide

Creating Dimensions

See Also: Oracle Database SQL Language Reference for a complete
description of the CREATE DIMENSION statement

Multiple Hierarchies

A single dimension definition can contain multiple hierarchies. Suppose our retailer
wants to track the sales of certain items over time. The first step is to define the time
dimension over which sales will be tracked. Figure 10-2 illustrates a dimension
times_dim with two time hierarchies.

Figure 10-2 times_dim Dimension with Two Time Hierarchies

year fis_year
v v

quarter fis_quarter
v v

month fis_month
v

fis_week

v

day

From the illustration, you can construct the hierarchy of the denormalized time_dim
dimension's CREATE DIMENSION statement as follows. The complete CREATE
DIMENSION statement as well as the CREATE TABLE statement are shown in Oracle
Database Sample Schemas.

CREATE DIMENSION times_dim

LEVEL day IS times.time_id

LEVEL month IS times.calendar_month_desc
LEVEL quarter IS times.calendar_guarter_desc
LEVEL year IS times.calendar_year

LEVEL fis_week IS times.week_ending_day
LEVEL fis_month IS times.fiscal _month_desc
LEVEL fis_quarter IS times.fiscal_quarter_desc
LEVEL fis_year IS times.fiscal_year
HIERARCHY cal_rollup (

day CHILD OF

month CHILD OF

quarter CHILD OF

year
)
HIERARCHY fis_rollup (

day CHILD OF

fis_week CHILD OF

fis_month CHILD OF

fis_quarter CHILD OF

fis_year
) <attribute determination clauses>;

Dimensions 10-7

Viewing Dimensions

Using Normalized Dimension Tables

The tables used to define a dimension may be normalized or denormalized and the
individual hierarchies can be normalized or denormalized. If the levels of a hierarchy
come from the same table, it is called a fully denormalized hierarchy. For example,
cal_rollup in the times_dim dimension is a denormalized hierarchy. If levels of a
hierarchy come from different tables, such a hierarchy is either a fully or partially
normalized hierarchy. This section shows how to define a normalized hierarchy.

Suppose the tracking of a customer's location is done by city, state, and country. This
data is stored in the tables customers and countries. The customer dimension
customers_dim is partially normalized because the data entities cust_id and
country_id are taken from different tables. The clause JOIN KEY within the
dimension definition specifies how to join together the levels in the hierarchy. The
dimension statement is partially shown in the following. The complete CREATE
DIMENSION statement as well as the CREATE TABLE statement are shown in Oracle
Database Sample Schemas.

CREATE DIMENSION customers_dim
LEVEL customer IS (customers.cust_id)
LEVEL city IS (customers.cust_city)
LEVEL state IS (customers.cust_state_province)
LEVEL country IS (countries.country_id)
LEVEL subregion IS (countries.country_ subregion)
LEVEL region IS (countries.country_region)
HIERARCHY geog_rollup (

customer CHILD OF
city CHILD OF
state CHILD OF
country CHILD OF
subregion CHILD OF
region

JOIN KEY (customers.country_id) REFERENCES country);

If you use the SKIP WHEN NULL clause, you can use the JOIN KEY clause to link levels
that have a missing level in their hierarchy. For example, the following statement
enables a state level that has been declared as SKIP WHEN NULL to join city and
country:

JOIN KEY (city.country_id) REFERENCES country;

This ensures that the rows at customer and city levels can still be associated with the
rows of country, subregion, and region levels.

Viewing Dimensions
Dimensions can be viewed through one of two methods:
= Using Oracle Enterprise Manager

s Using the DESCRIBE_DIMENSION Procedure

Using Oracle Enterprise Manager

All of the dimensions that exist in the data warehouse can be viewed using Oracle
Enterprise Manager. Select the Dimension object from within the Schema icon to
display all of the dimensions. Select a specific dimension to graphically display its
hierarchy, levels, and any attributes that have been defined.

10-8 Oracle Database Data Warehousing Guide

Using Dimensions with Constraints

Using the DESCRIBE_DIMENSION Procedure

To view the definition of a dimension, use the DESCRIBE_DIMENSION procedure in
the DBMS_DIMENSION package. For example, if a dimension is created in the sh
sample schema with the following statements:

CREATE DIMENSION channels_dim
LEVEL channel IS (channels.channel id)
LEVEL channel_class IS (channels.channel_class)
HIERARCHY channel_rollup (
channel CHILD OF channel_class)
ATTRIBUTE channel DETERMINES (channel_desc)
ATTRIBUTE channel_class DETERMINES (channel_class);

Execute the DESCRIBE_DIMENSION procedure as follows:

SET SERVEROUTPUT ON FORMAT WRAPPED; --to improve the display of info
EXECUTE DBMS_DIMENSION.DESCRIBE_DIMENSION ('SH.CHANNELS_DIM') ;

You then see the following output results:

EXECUTE DBMS_DIMENSION.DESCRIBE_DIMENSION ('SH.CHANNELS_DIM') ;
DIMENSION SH.CHANNELS_DIM
LEVEL CHANNEL IS SH.CHANNELS.CHANNEL_ID
LEVEL CHANNEL_CLASS IS SH.CHANNELS.CHANNEL_CLASS

HIERARCHY CHANNEL_ROLLUP (
CHANNEL CHILD OF
CHANNEL_CLASS)

ATTRIBUTE CHANNEL LEVEL CHANNEL DETERMINES
SH.CHANNELS . CHANNEL_DESC

ATTRIBUTE CHANNEL_CLASS LEVEL CHANNEL_CLASS DETERMINES
SH.CHANNELS . CHANNEL_CLASS

Using Dimensions with Constraints

Constraints play an important role with dimensions. Full referential integrity is
sometimes enabled in data warehouses, but not always. This is because operational
databases normally have full referential integrity and you can ensure that the data
flowing into your data warehouse never violates the already established integrity
rules.

It is recommended that constraints be enabled and, if validation time is a concern, then
the NOVALIDATE clause should be used as follows:

ENABLE NOVALIDATE CONSTRAINT pk_time;
Primary and foreign keys should be implemented also. Referential integrity

constraints and NOT NULL constraints on the fact tables provide information that query
rewrite can use to extend the usefulness of materialized views.

In addition, you should use the RELY clause to inform query rewrite that it can rely
upon the constraints being correct as follows:

ALTER TABLE time MODIFY CONSTRAINT pk_time RELY;

This information is also used for query rewrite. See Chapter 17, "Basic Query Rewrite"
for more information.

If you use the SKIP WHEN NULL clause, at least one of the referenced level columns
should not have NOT NULL constraints.

Dimensions 10-9

Validating Dimensions

Validating Dimensions

The information of a dimension object is declarative only and not enforced by the
database. If the relationships described by the dimensions are incorrect, incorrect
results could occur. Therefore, you should verify the relationships specified by
CREATEDIMENSIQNuﬁngtheDBMS_DIMENSION.VALIDATE_DIMENSION
procedure periodically.

This procedure is easy to use and has only four parameters:
= dimension: the owner and name.

= incremental: set to TRUE to check only the new rows for tables of this
dimension.

s check_nulls:set to TRUE to verify that all columns that are not in the levels
containing a SKIP WHEN NULL clause are not null.

= statement_id: a user-supplied unique identifier to identify the result of each
run of the procedure.

The following example validates the dimension TIME_FN in the sh schema:

@Qutldim.sqgl
EXECUTE DBMS_DIMENSION.VALIDATE DIMENSION ('SH.TIME_FN', FALSE, TRUE,
'my first example');

Before running the VALIDATE_DIMENSION procedure, you need to create a local
table, DIMENSION_EXCEPTIONS, by running the provided script ut1dim. sql. If the
VALIDATE_DIMENSION procedure encounters any errors, they are placed in this table.
Querying this table will identify the exceptions that were found. The following
illustrates a sample:

SELECT * FROM dimension_exceptions
WHERE statement_id = 'my first example';

STATEMENT_ID OWNER TABLE_NAME DIMENSION_NAME RELATIONSHIP BAD_ROWID

my first example SH MONTH TIME_FN FOREIGN KEY AAAAUWAAJAAAARWAAA

However, rather than query this table, it may be better to query the rowid of the
invalid row to retrieve the actual row that has violated the constraint. In this example,
the dimension TIME_FN is checking a table called month. It has found a row that
violates the constraints. Using the rowid, you can see exactly which row in the month
table is causing the problem, as in the following;:

SELECT * FROM month
WHERE rowid IN (SELECT bad_rowid
FROM dimension_exceptions
WHERE statement_id = 'my first example');

MONTH QUARTER FISCAL_QTR YEAR FULL_MONTH_NAME MONTH_NUMB

199903 19981 19981 1998 March 3

Altering Dimensions

You can modify a dimension using the ALTER DIMENSION statement. You can add or
drop a level, hierarchy, or attribute from the dimension using this command.

10-10 Oracle Database Data Warehousing Guide

Deleting Dimensions

Referring to the time dimension in Figure 10-2 on page 10-7, you can remove the
attribute £is_year, drop the hierarchy fis_rollup, or remove the level fiscal_
year. In addition, you can add a new level called £_year as in the following;:

ALTER DIMENSION times_dim DROP ATTRIBUTE fis_year;

ALTER DIMENSION times_dim DROP HIERARCHY fis_rollup;

ALTER DIMENSION times_dim DROP LEVEL fis_year;

ALTER DIMENSION times_dim ADD LEVEL f_vyear IS times.fiscal_year;

If you used the extended_attribute_clause when creating the dimension, you
can drop one attribute column without dropping all attribute columns. This is
illustrated in "Dropping and Creating Attributes with Columns" on page 10-6, which
shows the following statement:

ALTER DIMENSION product_dim
DROP ATTRIBUTE size LEVEL prod_type COLUMN Prod_TypeSize;

If you try to remove anything with further dependencies inside the dimension, Oracle
Database rejects the altering of the dimension. A dimension becomes invalid if you
change any schema object that the dimension is referencing. For example, if the table
on which the dimension is defined is altered, the dimension becomes invalid.

You can modify a dimension by adding a level containing a SKIP WHEN NULL clause,
as in the following statement:

ALTER DIMENSION times_dim
ADD LEVEL f_year IS times.fiscal_year SKIP WHEN NULL;

You cannot, however, modify a level that contains a SKIP WHEN NULL clause. Instead,
you need to drop the level and re-create it.

To check the status of a dimension, view the contents of the column invalid in the
ALL_DIMENSIONS data dictionary view. To revalidate the dimension, use the
COMPILE option as follows:

ALTER DIMENSION times_dim COMPILE;

Dimensions can also be modified or deleted using Oracle Enterprise Manager.

Deleting Dimensions

A dimension is removed using the DROP DIMENSION statement. For example, you
could issue the following statement:

DROP DIMENSION times_dim;

Dimensions 10-11

Deleting Dimensions

10-12 Oracle Database Data Warehousing Guide

Part IV

Managing the Data Warehouse
Environment

This section discusses the tasks necessary for managing a data warehouse.
It contains the following chapters:

» Chapter 11, "Overview of Extraction, Transformation, and Loading"

» Chapter 12, "Extraction in Data Warehouses"

» Chapter 13, "Transportation in Data Warehouses"

» Chapter 14, "Loading and Transformation”

» Chapter 15, "Maintaining the Data Warehouse"

n Chapter 16, "Change Data Capture"

11

Overview of Extraction, Transformation, and
Loading

This chapter discusses the process of extracting, transporting, transforming, and
loading data in a data warehousing environment. It includes the following topics:

s Overview of ETL in Data Warehouses

» ETL Tools for Data Warehouses

Overview of ETL in Data Warehouses

You need to load your data warehouse regularly so that it can serve its purpose of
facilitating business analysis. To do this, data from one or more operational systems
needs to be extracted and copied into the data warehouse. The challenge in data
warehouse environments is to integrate, rearrange and consolidate large volumes of
data over many systems, thereby providing a new unified information base for
business intelligence.

The process of extracting data from source systems and bringing it into the data
warehouse is commonly called ETL, which stands for extraction, transformation, and
loading. Note that ETL refers to a broad process, and not three well-defined steps. The
acronym ETL is perhaps too simplistic, because it omits the transportation phase and
implies that each of the other phases of the process is distinct. Nevertheless, the entire
process is known as ETL.

The methodology and tasks of ETL have been well known for many years, and are not
necessarily unique to data warehouse environments: a wide variety of proprietary
applications and database systems are the IT backbone of any enterprise. Data has to
be shared between applications or systems, trying to integrate them, giving at least
two applications the same picture of the world. This data sharing was mostly
addressed by mechanisms similar to what we now call ETL.

ETL Basics in Data Warehousing

What happens during the ETL process? The following tasks are the main actions in the
process.

Extraction of Data

During extraction, the desired data is identified and extracted from many different
sources, including database systems and applications. Very often, it is not possible to
identify the specific subset of interest, therefore more data than necessary has to be
extracted, so the identification of the relevant data will be done at a later point in time.
Depending on the source system's capabilities (for example, operating system

Overview of Extraction, Transformation, and Loading 11-1

ETL Tools for Data Warehouses

resources), some transformations may take place during this extraction process. The
size of the extracted data varies from hundreds of kilobytes up to gigabytes,
depending on the source system and the business situation. The same is true for the
time delta between two (logically) identical extractions: the time span may vary
between days/hours and minutes to near real-time. Web server log files, for example,
can easily grow to hundreds of megabytes in a very short period of time.

Transportation of Data

After data is extracted, it has to be physically transported to the target system or to an
intermediate system for further processing. Depending on the chosen way of
transportation, some transformations can be done during this process, too. For
example, a SQL statement which directly accesses a remote target through a gateway
can concatenate two columns as part of the SELECT statement.

The emphasis in many of the examples in this section is scalability. Many long-time
users of Oracle Database are experts in programming complex data transformation
logic using PL/SQL. These chapters suggest alternatives for many such data
manipulation operations, with a particular emphasis on implementations that take
advantage of Oracle's new SQL functionality, especially for ETL and the parallel query
infrastructure.

ETL Tools for Data Warehouses

Designing and maintaining the ETL process is often considered one of the most
difficult and resource-intensive portions of a data warehouse project. Many data
warehousing projects use ETL tools to manage this process. Oracle Warehouse
Builder, for example, provides ETL capabilities and takes advantage of inherent
database abilities. Other data warehouse builders create their own ETL tools and
processes, either inside or outside the database.

Besides the support of extraction, transformation, and loading, there are some other
tasks that are important for a successful ETL implementation as part of the daily
operations of the data warehouse and its support for further enhancements. Besides
the support for designing a data warehouse and the data flow, these tasks are typically
addressed by ETL tools such as Oracle Warehouse Builder.

Oracle is not an ETL tool and does not provide a complete solution for ETL. However,
Oracle does provide a rich set of capabilities that can be used by both ETL tools and
customized ETL solutions. Oracle offers techniques for transporting data between
Oracle databases, for transforming large volumes of data, and for quickly loading new
data into a data warehouse.

Daily Operations in Data Warehouses

The successive loads and transformations must be scheduled and processed in a
specific order. Depending on the success or failure of the operation or parts of it, the
result must be tracked and subsequent, alternative processes might be started. The
control of the progress as well as the definition of a business workflow of the
operations are typically addressed by ETL tools such as Oracle Warehouse Builder.

Evolution of the Data Warehouse

As the data warehouse is a living IT system, sources and targets might change. Those
changes must be maintained and tracked through the lifespan of the system without
overwriting or deleting the old ETL process flow information. To build and keep a
level of trust about the information in the warehouse, the process flow of each

11-2 Oracle Database Data Warehousing Guide

ETL Tools for Data Warehouses

individual record in the warehouse can be reconstructed at any point in time in the
future in an ideal case.

Overview of Extraction, Transformation, and Loading 11-3

ETL Tools for Data Warehouses

11-4 Oracle Database Data Warehousing Guide

12

Extraction in Data Warehouses

This chapter discusses extraction, which is the process of taking data from an
operational system and moving it to your data warehouse or staging system. The
chapter discusses:

s Overview of Extraction in Data Warehouses
s Introduction to Extraction Methods in Data Warehouses

= Data Warehousing Extraction Examples

Overview of Extraction in Data Warehouses

Extraction is the operation of extracting data from a source system for further use in a
data warehouse environment. This is the first step of the ETL process. After the
extraction, this data can be transformed and loaded into the data warehouse.

The source systems for a data warehouse are typically transaction processing
applications. For example, one of the source systems for a sales analysis data
warehouse might be an order entry system that records all of the current order
activities.

Designing and creating the extraction process is often one of the most time-consuming
tasks in the ETL process and, indeed, in the entire data warehousing process. The
source systems might be very complex and poorly documented, and thus determining
which data needs to be extracted can be difficult. The data has to be extracted
normally not only once, but several times in a periodic manner to supply all changed
data to the data warehouse and keep it up-to-date. Moreover, the source system
typically cannot be modified, nor can its performance or availability be adjusted, to
accommodate the needs of the data warehouse extraction process.

These are important considerations for extraction and ETL in general. This chapter,
however, focuses on the technical considerations of having different kinds of sources
and extraction methods. It assumes that the data warehouse team has already
identified the data that will be extracted, and discusses common techniques used for
extracting data from source databases.

Designing this process means making decisions about the following two main aspects:
= Which extraction method do I choose?

This influences the source system, the transportation process, and the time needed
for refreshing the warehouse.

s How do I provide the extracted data for further processing?

This influences the transportation method, and the need for cleaning and
transforming the data.

Extraction in Data Warehouses 12-1

Introduction to Extraction Methods in Data Warehouses

Introduction to Extraction Methods in Data Warehouses

The extraction method you should choose is highly dependent on the source system
and also from the business needs in the target data warehouse environment. Very
often, there is no possibility to add additional logic to the source systems to enhance
an incremental extraction of data due to the performance or the increased workload of
these systems. Sometimes even the customer is not allowed to add anything to an
out-of-the-box application system.

Logical Extraction Methods

There are two types of logical extraction:
= Full Extraction

s Incremental Extraction

Full Extraction

The data is extracted completely from the source system. Because this extraction
reflects all the data currently available on the source system, there's no need to keep
track of changes to the data source since the last successful extraction. The source data
will be provided as-is and no additional logical information (for example, timestamps)
is necessary on the source site. An example for a full extraction may be an export file of
a distinct table or a remote SQL statement scanning the complete source table.

Incremental Extraction

At a specific point in time, only the data that has changed since a well-defined event
back in history will be extracted. This event may be the last time of extraction or a
more complex business event like the last booking day of a fiscal period. To identify
this delta change there must be a possibility to identify all the changed information
since this specific time event. This information can be either provided by the source
data itself such as an application column, reflecting the last-changed timestamp or a
change table where an appropriate additional mechanism keeps track of the changes
besides the originating transactions. In most cases, using the latter method means
adding extraction logic to the source system.

Many data warehouses do not use any change-capture techniques as part of the
extraction process. Instead, entire tables from the source systems are extracted to the
data warehouse or staging area, and these tables are compared with a previous extract
from the source system to identify the changed data. This approach may not have
significant impact on the source systems, but it clearly can place a considerable burden
on the data warehouse processes, particularly if the data volumes are large.

Oracle's Change Data Capture (CDC) mechanism can extract and maintain such delta
information. See Chapter 16, "Change Data Capture" for further details about the
Change Data Capture framework.

Physical Extraction Methods

Depending on the chosen logical extraction method and the capabilities and
restrictions on the source side, the extracted data can be physically extracted by two
mechanisms. The data can either be extracted online from the source system or from
an offline structure. Such an offline structure might already exist or it might be
generated by an extraction routine.

There are the following methods of physical extraction:

12-2 Oracle Database Data Warehousing Guide

Introduction to Extraction Methods in Data Warehouses

s Online Extraction

s Offline Extraction

Online Extraction

The data is extracted directly from the source system itself. The extraction process can
connect directly to the source system to access the source tables themselves or to an
intermediate system that stores the data in a preconfigured manner (for example,
snapshot logs or change tables). Note that the intermediate system is not necessarily
physically different from the source system.

With online extractions, you need to consider whether the distributed transactions are
using original source objects or prepared source objects.

Offline Extraction

The data is not extracted directly from the source system but is staged explicitly
outside the original source system. The data already has an existing structure (for
example, redo logs, archive logs or transportable tablespaces) or was created by an
extraction routine.

You should consider the following structures:
= Flat files

Data in a defined, generic format. Additional information about the source object
is necessary for further processing.

= Dump files

Oracle-specific format. Information about the containing objects may or may not
be included, depending on the chosen utility.

= Redo and archive logs
Information is in a special, additional dump file.
» Transportable tablespaces

A powerful way to extract and move large volumes of data between Oracle
databases. A more detailed example of using this feature to extract and transport
data is provided in Chapter 13, "Transportation in Data Warehouses". Oracle
recommends that you use transportable tablespaces whenever possible, because
they can provide considerable advantages in performance and manageability over
other extraction techniques.

See Oracle Database Ultilities for more information on using export/import.

Change Data Capture

An important consideration for extraction is incremental extraction, also called Change
Data Capture. If a data warehouse extracts data from an operational system on a
nightly basis, then the data warehouse requires only the data that has changed since
the last extraction (that is, the data that has been modified in the past 24 hours).
Change Data Capture is also the key-enabling technology for providing near real-time,
or on-time, data warehousing.

When it is possible to efficiently identify and extract only the most recently changed
data, the extraction process (as well as all downstream operations in the ETL process)
can be much more efficient, because it must extract a much smaller volume of data.
Unfortunately, for many source systems, identifying the recently modified data may

Extraction in Data Warehouses 12-3

Introduction to Extraction Methods in Data Warehouses

be difficult or intrusive to the operation of the system. Change Data Capture is
typically the most challenging technical issue in data extraction.

Because change data capture is often desirable as part of the extraction process and it
might not be possible to use the Change Data Capture mechanism, this section
describes several techniques for implementing a self-developed change capture on
Oracle Database source systems:

s Timestamps
s Partitioning
» Triggers

These techniques are based upon the characteristics of the source systems, or may
require modifications to the source systems. Thus, each of these techniques must be
carefully evaluated by the owners of the source system prior to implementation.

Each of these techniques can work in conjunction with the data extraction technique
discussed previously. For example, timestamps can be used whether the data is being
unloaded to a file or accessed through a distributed query. See Chapter 16, "Change
Data Capture" for further details.

Timestamps

The tables in some operational systems have timestamp columns. The timestamp
specifies the time and date that a given row was last modified. If the tables in an
operational system have columns containing timestamps, then the latest data can
easily be identified using the timestamp columns. For example, the following query
might be useful for extracting today's data from an orders table:

SELECT * FROM orders
WHERE TRUNC (CAST (order_date AS date),'dd') =
TO_DATE (SYSDATE, 'dd-mon-yyyy') ;

If the timestamp information is not available in an operational source system, you will
not always be able to modify the system to include timestamps. Such modification
would require, first, modifying the operational system's tables to include a new
timestamp column and then creating a trigger to update the timestamp column
following every operation that modifies a given row.

Partitioning

Some source systems might use range partitioning, such that the source tables are
partitioned along a date key, which allows for easy identification of new data. For
example, if you are extracting from an orders table, and the orders table is
partitioned by week, then it is easy to identify the current week's data.

Triggers

Triggers can be created in operational systems to keep track of recently updated
records. They can then be used in conjunction with timestamp columns to identify the
exact time and date when a given row was last modified. You do this by creating a
trigger on each source table that requires change data capture. Following each DML
statement that is executed on the source table, this trigger updates the timestamp
column with the current time. Thus, the timestamp column provides the exact time
and date when a given row was last modified.

A similar internalized trigger-based technique is used for Oracle materialized view
logs. These logs are used by materialized views to identify changed data, and these

12-4 Oracle Database Data Warehousing Guide

Data Warehousing Extraction Examples

logs are accessible to end users. However, the format of the materialized view logs is
not documented and might change over time.

If you want to use a trigger-based mechanism, use synchronous change data capture.
It is recommended that you use synchronous Change Data Capture for trigger based
change capture, because CDC provides an externalized interface for accessing the
change information and provides a framework for maintaining the distribution of this
information to various clients.

Materialized view logs rely on triggers, but they provide an advantage in that the
creation and maintenance of this change-data system is largely managed by the
database.

However, Oracle recommends the usage of synchronous Change Data Capture for
trigger-based change capture, since CDC provides an externalized interface for
accessing the change information and provides a framework for maintaining the
distribution of this information to various clients

Trigger-based techniques might affect performance on the source systems, and this
impact should be carefully considered prior to implementation on a production source
system.

Data Warehousing Extraction Examples
You can extract data in two ways:
» Extraction Using Data Files

s Extraction Through Distributed Operations

Extraction Using Data Files

Most database systems provide mechanisms for exporting or unloading data from the
internal database format into flat files. Extracts from mainframe systems often use
COBOL programs, but many databases, as well as third-party software vendors,
provide export or unload utilities.

Data extraction does not necessarily mean that entire database structures are unloaded
in flat files. In many cases, it may be appropriate to unload entire database tables or
objects. In other cases, it may be more appropriate to unload only a subset of a given
table such as the changes on the source system since the last extraction or the results of
joining multiple tables together. Different extraction techniques vary in their
capabilities to support these two scenarios.

When the source system is an Oracle database, several alternatives are available for
extracting data into files:

» Extracting into Flat Files Using SQL*Plus

» Extracting into Flat Files Using OCI or Pro*C Programs
= Exporting into Export Files Using the Export Utility

» Extracting into Export Files Using External Tables

Extracting into Flat Files Using SQL*Plus

The most basic technique for extracting data is to execute a SQL query in SQL*Plus
and direct the output of the query to a file. For example, to extract a flat file,
country_city.log, with the pipe sign as delimiter between column values,

Extraction in Data Warehouses 12-5

Data Warehousing Extraction Examples

containing a list of the cities in the US in the tables countries and customers, the
following SQL script could be run:

SET echo off SET pagesize 0 SPOOL country_city.log

SELECT distinct tl.country name ||'|'|| t2.cust_city

FROM countries tl, customers t2 WHERE tl.country id = t2.country_id
AND tl.country name= 'United States of America';

SPOOL off

The exact format of the output file can be specified using SQL*Plus system variables.

This extraction technique offers the advantage of storing the result in a customized
format. Note that, using the external table data pump unload facility, you can also
extract the result of an arbitrary SQL operation. The example previously extracts the
results of a join.

This extraction technique can be parallelized by initiating multiple, concurrent
SQL*Plus sessions, each session running a separate query representing a different
portion of the data to be extracted. For example, suppose that you wish to extract data
from an orders table, and that the orders table has been range partitioned by
month, with partitions orders_jan1998, orders_feb1998, and so on. To extract a
single year of data from the orders table, you could initiate 12 concurrent SQL*Plus
sessions, each extracting a single partition. The SQL script for one such session could
be:

SPOOL order_jan.dat
SELECT * FROM orders PARTITION (orders_janl998);
SPOOL OFF

These 12 SQL*Plus processes would concurrently spool data to 12 separate files. You
can then concatenate them if necessary (using operating system utilities) following the
extraction. If you are planning to use SQL*Loader for loading into the target, these 12
files can be used as is for a parallel load with 12 SQL*Loader sessions. See Chapter 13,
"Transportation in Data Warehouses" for an example.

Even if the orders table is not partitioned, it is still possible to parallelize the
extraction either based on logical or physical criteria. The logical method is based on
logical ranges of column values, for example:

SELECT ... WHERE order_date
BETWEEN TO_DATE('01-JAN-99') AND TO_DATE('31-JAN-99');

The physical method is based on a range of values. By viewing the data dictionary, it is
possible to identify the Oracle Database data blocks that make up the orders table.
Using this information, you could then derive a set of rowid-range queries for
extracting data from the orders table:

SELECT * FROM orders WHERE rowid BETWEEN valuel and valueZ2;

Parallelizing the extraction of complex SQL queries is sometimes possible, although
the process of breaking a single complex query into multiple components can be
challenging. In particular, the coordination of independent processes to guarantee a
globally consistent view can be difficult. Unlike the SQL*Plus approach, using the
external table data pump unload functionality provides transparent parallel
capabilities.

Note that all parallel techniques can use considerably more CPU and I/O resources on
the source system, and the impact on the source system should be evaluated before
parallelizing any extraction technique.

12-6 Oracle Database Data Warehousing Guide

Data Warehousing Extraction Examples

Extracting into Flat Files Using OCI or Pro*C Programs

OCI programs (or other programs using Oracle call interfaces, such as Pro*C
programs), can also be used to extract data. These techniques typically provide
improved performance over the SQL*Plus approach, although they also require
additional programming. Like the SQL*Plus approach, an OCI program can extract the
results of any SQL query. Furthermore, the parallelization techniques described for the
SQL*Plus approach can be readily applied to OCI programs as well.

When using OCI or SQL*Plus for extraction, you need additional information besides
the data itself. At minimum, you need information about the extracted columns. It is
also helpful to know the extraction format, which might be the separator between
distinct columns.

Exporting into Export Files Using the Export Utility

The Export utility allows tables (including data) to be exported into Oracle Database
export files. Unlike the SQL*Plus and OCI approaches, which describe the extraction
of the results of a SQL statement, Export provides a mechanism for extracting database
objects. Thus, Export differs from the previous approaches in several important ways:

» The export files contain metadata as well as data. An export file contains not only
the raw data of a table, but also information on how to re-create the table,
potentially including any indexes, constraints, grants, and other attributes
associated with that table.

= A single export file may contain a subset of a single object, many database objects,
or even an entire schema.

= Export cannot be directly used to export the results of a complex SQL query.
Export can be used only to extract subsets of distinct database objects.

= The output of the Export utility must be processed using the Import utility.

Oracle provides the original Export and Import utilities for backward compatibility
and the data pump export/import infrastructure for high-performant, scalable and
parallel extraction. See Oracle Database Utilities for further details.

Extracting into Export Files Using External Tables

In addition to the Export Utility, you can use external tables to extract the results from
any SELECT operation. The data is stored in the platform independent, Oracle-internal
data pump format and can be processed as regular external table on the target system.
The following example extracts the result of a join operation in parallel into the four
specified files. The only allowed external table type for extracting data is the
Oracle-internal format ORACLE_DATAPUMP.

CREATE DIRECTORY def_dir AS '/net/dlsund48/private/hbaer/WORK/FEATURES/et';

DROP TABLE extract_cust;

CREATE TABLE extract_cust

ORGANIZATION EXTERNAL

(TYPE ORACLE_DATAPUMP DEFAULT DIRECTORY def_ dir ACCESS PARAMETERS

(NOBADFILE NOLOGFILE)

LOCATION ('extract_custl.exp', 'extract_cust2.exp', 'extract_cust3.exp',
'extract_custd.exp'))

PARALLEL 4 REJECT LIMIT UNLIMITED AS

SELECT c.*, co.country name, co.country_ subregion, co.country_ region

FROM customers c, countries co where co.country_id=c.country_ id;

Extraction in Data Warehouses 12-7

Data Warehousing Extraction Examples

The total number of extraction files specified limits the maximum degree of
parallelism for the write operation. Note that the parallelizing of the extraction does
not automatically parallelize the SELECT portion of the statement.

Unlike using any kind of export/import, the metadata for the external table is not part
of the created files when using the external table data pump unload. To extract the
appropriate metadata for the external table, use the DBMS_METADATA package, as
illustrated in the following statement:

SET LONG 2000
SELECT DBMS_METADATA.GET_DDL('TABLE', 'EXTRACT_CUST') FROM DUAL;

Extraction Through Distributed Operations

Using distributed-query technology, one Oracle database can directly query tables
located in various different source systems, such as another Oracle database or a
legacy system connected with the Oracle gateway technology. Specifically, a data
warehouse or staging database can directly access tables and data located in a
connected source system. Gateways are another form of distributed-query technology.
Gateways allow an Oracle database (such as a data warehouse) to access database
tables stored in remote, non-Oracle databases. This is the simplest method for moving
data between two Oracle databases because it combines the extraction and
transformation into a single step, and requires minimal programming. However, this
is not always feasible.

Suppose that you wanted to extract a list of employee names with department names
from a source database and store this data into the data warehouse. Using an Oracle
Net connection and distributed-query technology, this can be achieved using a single
SQL statement:

CREATE TABLE country_city AS SELECT distinct tl.country_name, t2.cust_city
FROM countries@source_db tl, customers@source_db t2

WHERE tl.country_id = t2.country_id

AND tl.country _name='United States of America';

This statement creates a local table in a data mart, country_city, and populates it
with data from the countries and customers tables on the source system.

This technique is ideal for moving small volumes of data. However, the data is
transported from the source system to the data warehouse through a single Oracle Net
connection. Thus, the scalability of this technique is limited. For larger data volumes,
file-based data extraction and transportation techniques are often more scalable and
thus more appropriate.

See Oracle Database Heterogeneous Connectivity Administrator’s Guide and Oracle Database
Concepts for more information on distributed queries.

12-8 Oracle Database Data Warehousing Guide

13

Transportation in Data Warehouses

The following topics provide information about transporting data into a data
warehouse:

» Overview of Transportation in Data Warehouses

s Introduction to Transportation Mechanisms in Data Warehouses

Overview of Transportation in Data Warehouses

Transportation is the operation of moving data from one system to another system. In
a data warehouse environment, the most common requirements for transportation are
in moving data from:

= A source system to a staging database or a data warehouse database
= A staging database to a data warehouse
= A data warehouse to a data mart

Transportation is often one of the simpler portions of the ETL process, and can be
integrated with other portions of the process. For example, as shown in Chapter 12,
"Extraction in Data Warehouses", distributed query technology provides a mechanism
for both extracting and transporting data.

Introduction to Transportation Mechanisms in Data Warehouses
You have three basic choices for transporting data in warehouses:
= Transportation Using Flat Files
s Transportation Through Distributed Operations

» Transportation Using Transportable Tablespaces

Transportation Using Flat Files

The most common method for transporting data is by the transfer of flat files, using
mechanisms such as FTP or other remote file system access protocols. Data is
unloaded or exported from the source system into flat files using techniques discussed
in Chapter 12, "Extraction in Data Warehouses", and is then transported to the target
platform using FTP or similar mechanisms.

Because source systems and data warehouses often use different operating systems
and database systems, using flat files is often the simplest way to exchange data
between heterogeneous systems with minimal transformations. However, even when

Transportation in Data Warehouses 13-1

Introduction to Transportation Mechanisms in Data Warehouses

transporting data between homogeneous systems, flat files are often the most efficient
and most easy-to-manage mechanism for data transfer.

Transportation Through Distributed Operations

Distributed queries, either with or without gateways, can be an effective mechanism
for extracting data. These mechanisms also transport the data directly to the target
systems, thus providing both extraction and transformation in a single step.
Depending on the tolerable impact on time and system resources, these mechanisms
can be well suited for both extraction and transformation.

As opposed to flat file transportation, the success or failure of the transportation is
recognized immediately with the result of the distributed query or transaction. See
Chapter 12, "Extraction in Data Warehouses" for further information.

Transportation Using Transportable Tablespaces

Oracle transportable tablespaces are the fastest way for moving large volumes of data
between two Oracle databases. Previous to the introduction of transportable
tablespaces, the most scalable data transportation mechanisms relied on moving flat
files containing raw data. These mechanisms required that data be unloaded or
exported into files from the source database, Then, after transportation, these files
were loaded or imported into the target database. Transportable tablespaces entirely
bypass the unload and reload steps.

Using transportable tablespaces, Oracle data files (containing table data, indexes, and
almost every other Oracle database object) can be directly transported from one
database to another. Furthermore, like import and export, transportable tablespaces
provide a mechanism for transporting metadata in addition to transporting data.

Transportable tablespaces have some limitations: source and target systems must be
running Oracle8i (or higher), must use the same character set, and, prior to Oracle
Database 10g, must run on the same operating system. For details on how to transport
tablespace between operating systems, see Oracle Database Administrator’s Guide.

The most common applications of transportable tablespaces in data warehouses are in
moving data from a staging database to a data warehouse, or in moving data from a
data warehouse to a data mart.

Transportable Tablespaces Example

Suppose that you have a data warehouse containing sales data, and several data marts
that are refreshed monthly. Also suppose that you are going to move one month of
sales data from the data warehouse to the data mart.

Step 1 Place the Data to be Transported into its own Tablespace

The current month's data must be placed into a separate tablespace in order to be
transported. In this example, you have a tablespace ts_temp_sales, which will hold
a copy of the current month's data. Using the CREATE TABLE ... AS SELECT statement,
the current month's data can be efficiently copied to this tablespace:

CREATE TABLE temp_jan_sales NOLOGGING TABLESPACE ts_temp_sales
AS SELECT * FROM sales
WHERE time_id BETWEEN '31-DEC-1999' AND '01-FEB-2000';

Following this operation, the tablespace ts_temp_sales is set to read-only:

ALTER TABLESPACE ts_temp_sales READ ONLY;

13-2 Oracle Database Data Warehousing Guide

Introduction to Transportation Mechanisms in Data Warehouses

A tablespace cannot be transported unless there are no active transactions modifying
the tablespace. Setting the tablespace to read-only enforces this.

The tablespace ts_temp_sales may be a tablespace that has been especially created
to temporarily store data for use by the transportable tablespace features. Following
"Copy the Datafiles and Export File to the Target System", this tablespace can be set to
read/write, and, if desired, the table temp_jan_sales can be dropped, or the
tablespace can be re-used for other transportations or for other purposes.

In a given transportable tablespace operation, all of the objects in a given tablespace
are transported. Although only one table is being transported in this example, the
tablespace ts_temp_sales could contain multiple tables. For example, perhaps the
data mart is refreshed not only with the new month's worth of sales transactions, but
also with a new copy of the customer table. Both of these tables could be transported
in the same tablespace. Moreover, this tablespace could also contain other database
objects such as indexes, which would also be transported.

Additionally, in a given transportable-tablespace operation, multiple tablespaces can
be transported at the same time. This makes it easier to move very large volumes of
data between databases. Note, however, that the transportable tablespace feature can
only transport a set of tablespaces which contain a complete set of database objects
without dependencies on other tablespaces. For example, an index cannot be
transported without its table, nor can a partition be transported without the rest of the
table. You can use the DBMS_TTS package to check that a tablespace is transportable.

See Also: Oracle Database PL/SQL Packages and Types Reference for
detailed information about the DBMS_TTS package

In this step, we have copied the January sales data into a separate tablespace; however,
in some cases, it may be possible to leverage the transportable tablespace feature
without even moving data to a separate tablespace. If the sales table has been
partitioned by month in the data warehouse and if each partition is in its own
tablespace, then it may be possible to directly transport the tablespace containing the
January data. Suppose the January partition, sales_jan2000, is located in the
tablespace ts_sales_jan2000. Then the tablespace ts_sales_jan2000 could
potentially be transported, rather than creating a temporary copy of the January sales
data in the ts_temp_sales.

However, the same conditions must be satisfied in order to transport the tablespace
ts_sales_jan2000 as are required for the specially created tablespace. First, this
tablespace must be set to READ ONLY. Second, because a single partition of a
partitioned table cannot be transported without the remainder of the partitioned table
also being transported, it is necessary to exchange the January partition into a separate
table (using the ALTER TABLE statement) to transport the January data. The
EXCHANGE operation is very quick, but the January data will no longer be a part of the
underlying sales table, and thus may be unavailable to users until this data is
exchanged back into the sales table after the export of the metadata. The January
data can be exchanged back into the sales table after you complete step 3.

Step 2 Export the Metadata

The Export utility is used to export the metadata describing the objects contained in
the transported tablespace. For our example scenario, the Export command could be:

EXP TRANSPORT_TABLESPACE=y TABLESPACES=ts_temp_sales FILE=jan_sales.dmp
This operation will generate an export file, jan_sales . dmp. The export file will be

small, because it contains only metadata. In this case, the export file will contain
information describing the table temp_jan_sales, such as the column names,

Transportation in Data Warehouses 13-3

Introduction to Transportation Mechanisms in Data Warehouses

column datatype, and all other information that the target Oracle database will need in
order to access the objects in ts_temp_sales.

Step 3 Copy the Datafiles and Export File to the Target System

Copy the data files that make up ts_temp_sales, as well as the export file jan_
sales.dmp to the data mart platform, using any transportation mechanism for flat
files. Once the datafiles have been copied, the tablespace ts_temp_sales can be set
to READ WRITE mode if desired.

Step 4 Import the Metadata

Once the files have been copied to the data mart, the metadata should be imported
into the data mart:

IMP TRANSPORT TABLESPACE=y DATAFILES='/db/tempjan.f'
TABLESPACES=ts_temp_sales FILE=jan_sales.dmp

At this point, the tablespace ts_temp_sales and the table temp_sales_jan are
accessible in the data mart. You can incorporate this new data into the data mart's
tables.

You can insert the data from the temp_sales_jan table into the data mart's sales
table in one of two ways:

INSERT /*+ APPEND */ INTO sales SELECT * FROM temp_sales_jan;

Following this operation, you can delete the temp_sales_jan table (and even the
entire ts_temp_sales tablespace).

Alternatively, if the data mart's sales table is partitioned by month, then the new
transported tablespace and the temp_sales_jan table can become a permanent part
of the data mart. The temp_sales_jan table can become a partition of the data
mart's sales table:

ALTER TABLE sales ADD PARTITION sales_00jan VALUES
LESS THAN (TO_DATE('01-feb-2000', 'dd-mon-yyyy'));
ALTER TABLE sales EXCHANGE PARTITION sales_00jan
WITH TABLE temp_sales_jan INCLUDING INDEXES WITH VALIDATION;

Other Uses of Transportable Tablespaces

The previous example illustrates a typical scenario for transporting data in a data
warehouse. However, transportable tablespaces can be used for many other purposes.
In a data warehousing environment, transportable tablespaces should be viewed as a
utility (much like Import/Export or SQL*Loader), whose purpose is to move large
volumes of data between Oracle databases. When used in conjunction with parallel
data movement operations such as the CREATE TABLE ... AS SELECT and INSERT ...
AS SELECT statements, transportable tablespaces provide an important mechanism for
quickly transporting data for many purposes.

13-4 Oracle Database Data Warehousing Guide

14

Loading and Transformation

This chapter helps you create and manage a data warehouse, and discusses:
» Overview of Loading and Transformation in Data Warehouses

» Loading Mechanisms

s Transformation Mechanisms

s Error Logging and Handling Mechanisms

s Loading and Transformation Scenarios

Overview of Loading and Transformation in Data Warehouses

Data transformations are often the most complex and, in terms of processing time, the
most costly part of the extraction, transformation, and loading (ETL) process. They can
range from simple data conversions to extremely complex data scrubbing techniques.
Many, if not all, data transformations can occur within an Oracle database, although
transformations are often implemented outside of the database (for example, on flat
files) as well.

This chapter introduces techniques for implementing scalable and efficient data
transformations within the Oracle Database. The examples in this chapter are
relatively simple. Real-world data transformations are often considerably more
complex. However, the transformation techniques introduced in this chapter meet the
majority of real-world data transformation requirements, often with more scalability
and less programming than alternative approaches.

This chapter does not seek to illustrate all of the typical transformations that would be
encountered in a data warehouse, but to demonstrate the types of fundamental
technology that can be applied to implement these transformations and to provide
guidance in how to choose the best techniques.

Transformation Flow

From an architectural perspective, you can transform your data in two ways:
= Multistage Data Transformation

= Pipelined Data Transformation

Multistage Data Transformation

The data transformation logic for most data warehouses consists of multiple steps. For
example, in transforming new records to be inserted into a sales table, there may be
separate logical transformation steps to validate each dimension key.

Loading and Transformation 14-1

Overview of Loading and Transformation in Data Warehouses

Figure 14-1 offers a graphical way of looking at the transformation logic.

Figure 14-1 Multistage Data Transformation

Load into staging
table

new_sales_step1
|

Validate customer

> keys (lookup in

customer

i

Flat Files

dimension table)

Table

> || >

new_sales_step2 new_sales_step3

> I

Convert source
product keys

to warehouse
product keys

Table Table

sales

_Ii

Table

Insert into sales
warehouse table

When using Oracle Database as a transformation engine, a common strategy is to
implement each transformation as a separate SQL operation and to create a separate,
temporary staging table (such as the tables new_sales_stepl and new_sales_
step2 in Figure 14-1) to store the incremental results for each step. This
load-then-transform strategy also provides a natural checkpointing scheme to the
entire transformation process, which enables the process to be more easily monitored
and restarted. However, a disadvantage to multistaging is that the space and time
requirements increase.

It may also be possible to combine many simple logical transformations into a single
SQL statement or single PL/SQL procedure. Doing so may provide better
performance than performing each step independently, but it may also introduce
difficulties in modifying, adding, or dropping individual transformations, as well as
recovering from failed transformations.

Pipelined Data Transformation

The ETL process flow can be changed dramatically and the database becomes an
integral part of the ETL solution.

The new functionality renders some of the former necessary process steps obsolete
while some others can be remodeled to enhance the data flow and the data
transformation to become more scalable and non-interruptive. The task shifts from
serial transform-then-load process (with most of the tasks done outside the database)
or load-then-transform process, to an enhanced transform-while-loading.

Oracle offers a wide variety of new capabilities to address all the issues and tasks
relevant in an ETL scenario. It is important to understand that the database offers
toolkit functionality rather than trying to address a one-size-fits-all solution. The
underlying database has to enable the most appropriate ETL process flow for a specific
customer need, and not dictate or constrain it from a technical perspective. Figure 14-2
illustrates the new functionality, which is discussed throughout later sections.

14-2 Oracle Database Data Warehousing Guide

Loading Mechanisms

Figure 14-2 Pipelined Data Transformation

External table Validate customer Convert source
1—=F | keys (lookup in product keys
3 = | > customer | 1o warehouse
—F dimension table) product keys
Flat Files
sales
Insert into sales
= | warehouse table [P —Ii
Table

Loading Mechanisms
You can use the following mechanisms for loading a data warehouse:
» Loading a Data Warehouse with SQL*Loader
= Loading a Data Warehouse with External Tables
= Loading a Data Warehouse with OCI and Direct-Path APIs
s Loading a Data Warehouse with Export/Import

Loading a Data Warehouse with SQL*Loader

Before any data transformations can occur within the database, the raw data must
become accessible for the database. One approach is to load it into the database.
Chapter 13, "Transportation in Data Warehouses", discusses several techniques for
transporting data to an Oracle data warehouse. Perhaps the most common technique
for transporting data is by way of flat files.

SQL*Loader is used to move data from flat files into an Oracle data warehouse.
During this data load, SQL*Loader can also be used to implement basic data
transformations. When using direct-path SQL*Loader, basic data manipulation, such
as datatype conversion and simple NULL handling, can be automatically resolved
during the data load. Most data warehouses use direct-path loading for performance
reasons.

The conventional-path loader provides broader capabilities for data transformation
than a direct-path loader: SQL functions can be applied to any column as those values
are being loaded. This provides a rich capability for transformations during the data
load. However, the conventional-path loader is slower than direct-path loader. For
these reasons, the conventional-path loader should be considered primarily for
loading and transforming smaller amounts of data.

The following is a simple example of a SQL*Loader controlfile to load data into the
sales table of the sh sample schema from an external file sh_sales.dat. The
external flat file sh_sales.dat consists of sales transaction data, aggregated on a
daily level. Not all columns of this external file are loaded into sales. This external
file will also be used as source for loading the second fact table of the sh sample
schema, which is done using an external table:

The following shows the control file (sh_sales.ctl) loading the sales table:

LOAD DATA INFILE sh_sales.dat APPEND INTO TABLE sales

Loading and Transformation 14-3

Loading Mechanisms

FIELDS TERMINATED BY "‘"
(PROD_ID, CUST_ID, TIME_ID, CHANNEL_ID, PROMO_ID, QUANTITY_ SOLD, AMOUNT_SOLD)

It can be loaded with the following command:

$ sqglldr control=sh_sales.ctl direct=true
Username:
Password:

Loading a Data Warehouse with External Tables

Another approach for handling external data sources is using external tables. Oracle's
external table feature enables you to use external data as a virtual table that can be
queried and joined directly and in parallel without requiring the external data to be
first loaded in the database. You can then use SQL, PL/SQL, and Java to access the
external data.

External tables enable the pipelining of the loading phase with the transformation
phase. The transformation process can be merged with the loading process without
any interruption of the data streaming. It is no longer necessary to stage the data
inside the database for further processing inside the database, such as comparison or
transformation. For example, the conversion functionality of a conventional load can
be used for a direct-path INSERT AS SELECT statement in conjunction with the
SELECT from an external table.

The main difference between external tables and regular tables is that externally
organized tables are read-only. No DML operations (UPDATE/INSERT/DELETE) are
possible and no indexes can be created on them.

External tables are mostly compliant with the existing SQL*Loader functionality and
provide superior functionality in most cases. External tables are especially useful for
environments where the complete external source has to be joined with existing
database objects or when the data has to be transformed in a complex manner. For
example, unlike SQL*Loader, you can apply any arbitrary SQL transformation and use
the direct path insert method. In addition, you can specify a program to be executed
(such as zcat) that will process files (such as compressed data files) and enable Oracle
Database to use the output (such as uncompressed data files), which means you can
load large amounts of compressed data without first uncompressing it on a disk.

You can create an external table named sales_transactions_ext, representing
the structure of the complete sales transaction data, represented in the external file
sh_sales.gz. The product department is especially interested in a cost analysis on
product and time. We thus create a fact table named cost in the sh schema. The
operational source data is the same as for the sales fact table. However, because we
are not investigating every dimensional information that is provided, the data in the
cost fact table has a coarser granularity than in the sales fact table, for example, all
different distribution channels are aggregated.

We cannot load the data into the cost fact table without applying the previously
mentioned aggregation of the detailed information, due to the suppression of some of
the dimensions.

The external table framework offers a solution to solve this. Unlike SQL*Loader,
where you would have to load the data before applying the aggregation, you can
combine the loading and transformation within a single SQL DML statement, as
shown in the following. You do not have to stage the data temporarily before inserting
into the target table.

The object directories must already exist, and point to the directory containing the sh_
sales.gz file as well as the directory containing the bad and log files.

14-4 Oracle Database Data Warehousing Guide

Transformation Mechanisms

CREATE TABLE sales_transactions_ext
(PROD_ID NUMBER, CUST_ID NUMBER,
TIME_ID DATE, CHANNEL_ID NUMBER,
PROMO_ID NUMBER, QUANTITY_SOLD NUMBER,
AMOUNT_SOLD NUMBER(10,2), UNIT_COST NUMBER(10,2),
UNIT_PRICE NUMBER(10,2))
ORGANIZATION external (TYPE oracle_loader
DEFAULT DIRECTORY data_file_dir ACCESS PARAMETERS
(RECORDS DELIMITED BY NEWLINE CHARACTERSET US7ASCII
PREPROCESSOR EXECDIR: 'zcat'
BADFILE log_file_dir:'sh_sales.bad_xt'
LOGFILE log_file_dir:'sh_sales.log_xt'

FIELDS TERMINATED BY "|" LDRTRIM
(PROD_ID, CUST_ID,
TIME_ID DATE (10) "YYYY-MM-DD",

CHANNEL_ID, PROMO_ID, QUANTITY_ SOLD, AMOUNT_ SOLD,
UNIT_COST, UNIT_PRICE))
location ('sh_sales.gz')
)REJECT LIMIT UNLIMITED;

The external table can now be used from within the database, accessing some columns
of the external data only, grouping the data, and inserting it into the costs fact table:

INSERT /*+ APPEND */ INTO COSTS

(TIME_ID, PROD_ID, UNIT COST, UNIT_PRICE)

SELECT TIME_ID, PROD_ID, AVG(UNIT_COST), AVG(amount_sold/quantity_sold)
FROM sales_transactions_ext GROUP BY time_id, prod_id;

See Also: Oracle Database SQL Language Reference for a complete
description of external table syntax and restrictions and Oracle
Database Utilities for usage examples

Loading a Data Warehouse with OCI and Direct-Path APIs

OCI and direct-path APIs are frequently used when the transformation and
computation are done outside the database and there is no need for flat file staging.

Loading a Data Warehouse with Export/Import

Export and import are used when the data is inserted as is into the target system. No
complex extractions are possible. See Chapter 12, "Extraction in Data Warehouses" for
further information.

Transformation Mechanisms

You have the following choices for transforming data inside the database:
s Transforming Data Using SQL
s Transforming Data Using PL/SQL

s Transforming Data Using Table Functions

Transforming Data Using SQL

Once data is loaded into the database, data transformations can be executed using SQL
operations. There are four basic techniques for implementing SQL data
transformations:

» CREATE TABLE ... AS SELECT And INSERT /*+APPEND*/ AS SELECT

Loading and Transformation 14-5

Transformation Mechanisms

s Transforming Data Using UPDATE
s Transforming Data Using MERGE
s Transforming Data Using Multitable INSERT

CREATE TABLE ... AS SELECT And INSERT /*+APPEND*/ AS SELECT

The CREATE TABLE ... AS SELECT statement (CTAS) is a powerful tool for
manipulating large sets of data. As shown in the following example, many data
transformations can be expressed in standard SQL, and CTAS provides a mechanism
for efficiently executing a SQL query and storing the results of that query in a new
database table. The INSERT /*+APPEND*/ ... AS SELECT statement offers the same
capabilities with existing database tables.

In a data warehouse environment, CTAS is typically run in parallel using NOLOGGING
mode for best performance.

A simple and common type of data transformation is data substitution. In a data
substitution transformation, some or all of the values of a single column are modified.
For example, our sales table has a channel_id column. This column indicates
whether a given sales transaction was made by a company's own sales force (a direct
sale) or by a distributor (an indirect sale).

You may receive data from multiple source systems for your data warehouse. Suppose
that one of those source systems processes only direct sales, and thus the source
system does not know indirect sales channels. When the data warehouse initially
receives sales data from this system, all sales records have a NULL value for the
sales.channel_id field. These NULL values must be set to the proper key value.
For example, you can do this efficiently using a SQL function as part of the insertion
into the target sales table statement. The structure of source table sales_activity_
direct is as follows:

DESC sales_activity_direct

Name Null? Type

SALES_DATE DATE

PRODUCT_ID NUMBER
CUSTOMER_ID NUMBER
PROMOTION_ID NUMBER
AMOUNT NUMBER
QUANTITY NUMBER

The following SQL statement inserts data from sales_activity_direct into the
sales table of the sample schema, using a SQL function to truncate the sales date
values to the midnight time and assigning a fixed channel ID of 3.

INSERT /*+ APPEND NOLOGGING PARALLEL */

INTO sales SELECT product_id, customer_id, TRUNC (sales_date), 3,
promotion_id, quantity, amount

FROM sales_activity direct;

Transforming Data Using UPDATE

Another technique for implementing a data substitution is to use an UPDATE statement
to modify the sales.channel_id column. An UPDATE will provide the correct
result. However, if the data substitution transformations require that a very large
percentage of the rows (or all of the rows) be modified, then, it may be more efficient
to use a CTAS statement than an UPDATE.

14-6 Oracle Database Data Warehousing Guide

Transformation Mechanisms

Transforming Data Using MERGE

Oracle Database's merge functionality extends SQL, by introducing the SQL keyword
MERGE, in order to provide the ability to update or insert a row conditionally into a
table or out of line single table views. Conditions are specified in the ON clause. This is,
besides pure bulk loading, one of the most common operations in data warehouse
synchronization.

Merge Examples The following discusses various implementations of a merge. The
examples assume that new data for the dimension table products is propagated to the
data warehouse and has to be either inserted or updated. The table products_delta
has the same structure as products.

Example 14-1 Merge Operation Using SQL

MERGE INTO products t USING products_delta s

ON (t.prod_id=s.prod_id)

WHEN MATCHED THEN UPDATE SET
t.prod_list_price=s.prod_list_price, t.prod_min_price=s.prod_min_price

WHEN NOT MATCHED THEN INSERT (prod_id, prod_name, prod_desc, prod_subcategory,
prod_subcategory_desc, prod_category, prod_category_desc, prod_status,
prod_list_price, prod_min_price)

VALUES (s.prod_id, s.prod_name, s.prod_desc, s.prod_subcategory,
s.prod_subcategory_desc, s.prod_category, s.prod_category_desc,
s.prod_status, s.prod_list_price, s.prod_min_price);

Transforming Data Using Multitable INSERT

Many times, external data sources have to be segregated based on logical attributes for
insertion into different target objects. It is also frequent in data warehouse
environments to fan out the same source data into several target objects. Multitable
inserts provide a new SQL statement for these kinds of transformations, where data
can either end up in several or exactly one target, depending on the business
transformation rules. This insertion can be done conditionally based on business rules
or unconditionally.

It offers the benefits of the INSERT ... SELECT statement when multiple tables are
involved as targets. In doing so, it avoids the drawbacks of the two obvious
alternatives. You either had to deal with n independent INSERT ... SELECT
statements, thus processing the same source data n times and increasing the
transformation workload 7 times. Alternatively, you had to choose a procedural
approach with a per-row determination how to handle the insertion. This solution
lacked direct access to high-speed access paths available in SQL.

As with the existing INSERT ... SELECT statement, the new statement can be
parallelized and used with the direct-load mechanism for faster performance.

Example 14-2 Unconditional Insert

The following statement aggregates the transactional sales information, stored in
sales_activity_direct, on a daily basis and inserts into both the sales and the
costs fact table for the current day.

INSERT ALL
INTO sales VALUES (product_id, customer_id, today, 3, promotion_id,
quantity_per_day, amount_per_day)
INTO costs VALUES (product_id, today, promotion_id, 3,
product_cost, product_price)
SELECT TRUNC (s.sales_date) AS today, s.product_id, s.customer_id,
s.promotion_id, SUM(s.amount) AS amount_per_day, SUM(s.quantity)

Loading and Transformation 14-7

Transformation Mechanisms

quantity _per_day, p.prod_min_price*0.8 AS product_cost, p.prod_list_price
AS product_price

FROM sales_activity direct s, products p

WHERE s.product_id = p.prod_id AND TRUNC (sales_date) = TRUNC (SYSDATE)

GROUP BY TRUNC (sales_date), s.product_id, s.customer_id, s.promotion_id,
p.prod_min_price*0.8, p.prod_list_price;

Example 14-3 Conditional ALL Insert

The following statement inserts a row into the sales and costs tables for all sales
transactions with a valid promotion and stores the information about multiple
identical orders of a customer in a separate table cum_sales_activity. Itis possible
two rows will be inserted for some sales transactions, and none for others.

INSERT ALL
WHEN promotion_id IN (SELECT promo_id FROM promotions) THEN
INTO sales VALUES (product_id, customer_id, today, 3, promotion_id,
quantity _per_day, amount_per_day)
INTO costs VALUES (product_id, today, promotion_id, 3,
product_cost, product_price)
WHEN num_of_orders > 1 THEN
INTO cum_sales_activity VALUES (today, product_id, customer_id,
promotion_id, quantity_per_day, amount_per_day, num_of_orders)
SELECT TRUNC (s.sales_date) AS today, s.product_id, s.customer_id,
s.promotion_id, SUM(s.amount) AS amount_per_day, SUM(s.quantity)
quantity per_day, COUNT(*) num_of_orders, p.prod min_price*0.8
AS product_cost, p.prod_list_price AS product_price
FROM sales_activity direct s, products p
WHERE s.product_id = p.prod_id
AND TRUNC (sales_date) = TRUNC (SYSDATE)
GROUP BY TRUNC (sales_date), s.product_id, s.customer_id,
s.promotion_id, p.prod_min_price*0.8, p.prod_list_price;

Example 14-4 Conditional FIRST Insert

The following statement inserts into an appropriate shipping manifest according to the
total quantity and the weight of a product order. An exception is made for high value
orders, which are also sent by express, unless their weight classification is not too
high. All incorrect orders, in this simple example represented as orders without a
quantity, are stored in a separate table. It assumes the existence of appropriate tables
large_freight_shipping, express_shipping, default_shipping, and
incorrect_sales_order

INSERT FIRST WHEN (sum_quantity_ sold > 10 AND prod_weight_class < 5) AND
sum_quantity sold >=1) OR (sum_quantity_sold > 5 AND prod_weight_class > 5) THEN
INTO large_freight_shipping VALUES
(time_id, cust_id, prod_id, prod_weight_class, sum quantity_sold)
WHEN sum_amount_sold > 1000 AND sum_quantity sold >=1 THEN
INTO express_shipping VALUES
(time_id, cust_id, prod_id, prod_weight_class,
sum_amount_sold, sum_quantity_sold)
WHEN (sum_gquantity sold >=1) THEN INTO default_shipping VALUES
(time_id, cust_id, prod_id, sum_quantity_sold)
ELSE INTO incorrect_sales_order VALUES (time_id, cust_id, prod_id)
SELECT s.time_id, s.cust_id, s.prod_id, p.prod_weight_class,
SUM (amount_sold) AS sum_amount_sold,
SUM (quantity_sold) AS sum_quantity_sold
FROM sales s, products p
WHERE s.prod_id = p.prod_id AND s.time_id = TRUNC (SYSDATE)
GROUP BY s.time_id, s.cust_id, s.prod_id, p.prod_weight_class;

14-8 Oracle Database Data Warehousing Guide

Transformation Mechanisms

Example 14-5 Mixed Conditional and Unconditional Insert

The following example inserts new customers into the customers table and stores all
new customers with cust_credit_limit higher then 4500 in an additional,
separate table for further promotions.

INSERT FIRST WHEN cust_credit_limit >= 4500 THEN INTO customers
INTO customers_special VALUES (cust_id, cust_credit_limit)
ELSE INTO customers

SELECT * FROM customers_new;

See Chapter 15, "Maintaining the Data Warehouse" for more information regarding
MERGE operations.

Transforming Data Using PL/SQL

In a data warehouse environment, you can use procedural languages such as PL/SQL
to implement complex transformations in the Oracle Database. Whereas CTAS
operates on entire tables and emphasizes parallelism, PL/SQL provides a row-based
approached and can accommodate very sophisticated transformation rules. For
example, a PL/SQL procedure could open multiple cursors and read data from
multiple source tables, combine this data using complex business rules, and finally
insert the transformed data into one or more target table. It would be difficult or
impossible to express the same sequence of operations using standard SQL statements.

Using a procedural language, a specific transformation (or number of transformation
steps) within a complex ETL processing can be encapsulated, reading data from an
intermediate staging area and generating a new table object as output. A previously
generated transformation input table and a subsequent transformation will consume
the table generated by this specific transformation. Alternatively, these encapsulated
transformation steps within the complete ETL process can be integrated seamlessly,
thus streaming sets of rows between each other without the necessity of intermediate
staging. You can use table functions to implement such behavior.

Transforming Data Using Table Functions

Table functions provide the support for pipelined and parallel execution of
transformations implemented in PL/SQL, C, or Java. Scenarios as mentioned earlier
can be done without requiring the use of intermediate staging tables, which interrupt
the data flow through various transformations steps.

What is a Table Function?

A table function is defined as a function that can produce a set of rows as output.
Additionally, table functions can take a set of rows as input. Prior to Oracle9i, PL/SQL
functions:

s Could not take cursors as input.
s Could not be parallelized or pipelined.

Now, functions are not limited in these ways. Table functions extend database
functionality by allowing:

= Multiple rows to be returned from a function.

= Results of SQL subqueries (that select multiple rows) to be passed directly to
functions.

= Functions take cursors as input.

Loading and Transformation 14-9

Transformation Mechanisms

s Functions can be parallelized.

= Returning result sets incrementally for further processing as soon as they are
created. This is called incremental pipelining

Table functions can be defined in PL/SQL using a native PL/SQL interface, or in Java
or C using the Oracle Data Cartridge Interface (ODCI).

See Also: Oracle Database PL/SQL Language Reference for further
information and Oracle Database Data Cartridge Developer’s Guide

Figure 14-3 illustrates a typical aggregation where you input a set of rows and output
a set of rows, in that case, after performing a SUM operation.

Figure 14-3 Table Function Example

Out
Region | Sum of Sales
Table
Function > g‘g{}% gg
West 10
East 5

The pseudocode for this operation would be similar to:

INSERT INTO Out SELECT * FROM ("Table Function" (SELECT * FROM In));

The table function takes the result of the SELECT on In as input and delivers a set of
records in a different format as output for a direct insertion into Out.

Additionally, a table function can fan out data within the scope of an atomic
transaction. This can be used for many occasions like an efficient logging mechanism
or a fan out for other independent transformations. In such a scenario, a single staging
table will be needed.

Figure 14-4 Pipelined Parallel Transformation with Fanout

Source
Stage Table 1
SR -

The pseudocode for this would be similar to:

INSERT INTO target SELECT * FROM (tf2 (SELECT *
FROM (tfl(SELECT * FROM source))));

This will insert into target and, as part of t£1, into Stage Table 1 within the scope
of an atomic transaction.

INSERT INTO target SELECT * FROM tf3 (SELT * FROM stage_tablel);

14-10 Oracle Database Data Warehousing Guide

Transformation Mechanisms

Example 14-6 Table Functions Fundamentals

The following examples demonstrate the fundamentals of table functions, without the
usage of complex business rules implemented inside those functions. They are chosen
for demonstration purposes only, and are all implemented in PL/SQL.

Table functions return sets of records and can take cursors as input. Besides the sh
sample schema, you have to set up the following database objects before using the
examples:

CREATE TYPE product_t AS OBJECT (

prod_id NUMBER (6)
, prod_name VARCHAR2 (50)
, prod_desc VARCHAR2 (4000)
, prod_subcategory VARCHAR2 (50)
, prod_subcategory_desc VARCHAR2 (2000)
, prod_category VARCHAR2 (50)
, prod_category_desc VARCHAR2 (2000)
, prod_weight_class NUMBER (2)
, prod_unit_of_measure VARCHAR2 (20)
, prod_pack_size VARCHAR2 (30)
, supplier_id NUMBER (6)
, prod_status VARCHAR2 (20)
, prod_list_price NUMBER (8, 2)
, prod_min_price NUMBER (8, 2)
)i
/
CREATE TYPE product_t_table AS TABLE OF product_t;
/
COMMIT;
CREATE OR REPLACE PACKAGE cursor_PKG AS
TYPE product_t_rec IS RECORD (
prod_id NUMBER (6)
, prod_name VARCHAR2 (50)
, prod_desc VARCHAR2 (4000)
, prod_subcategory VARCHAR2 (50)
, prod_subcategory_desc VARCHAR2 (2000)
, prod_category VARCHAR2 (50)
, prod_category_desc VARCHAR2 (2000)
, prod_weight_class NUMBER (2)
, prod_unit_of_measure VARCHAR2 (20)
, prod_pack_size VARCHAR2 (30)
, supplier_id NUMBER (6)
, prod_status VARCHAR2 (20)
, prod_list_price NUMBER (8, 2)
, prod_min_price NUMBER (8,2)) ;

TYPE product_t_rectab IS TABLE OF product_t_rec;
TYPE strong refcur_t IS REF CURSOR RETURN product_t_rec;
TYPE refcur_t IS REF CURSOR;

END;

/

REM artificial help table, used later
CREATE TABLE obsolete_products_errors (prod_id NUMBER, msg VARCHAR2 (2000));

The following example demonstrates a simple filtering; it shows all obsolete products
except the prod_category Electronics. The table function returns the result set as a
set of records and uses a weakly typed REF CURSOR as input.

CREATE OR REPLACE FUNCTION obsolete_products(cur cursor_pkg.refcur_t)

Loading and Transformation 14-11

Transformation Mechanisms

RETURN product_t_table

IS
prod_id NUMBER (6
prod_name VARCHARZ(0);
prod_desc VARCHAR2 (4000) ;
prod_subcategory VARCHAR2 (50) ;
prod_subcategory_desc VARCHAR2 (2000) ;
prod_category VARCHAR2 (50) ;
prod_category_desc VARCHAR2 (2000) ;
prod_weight_class NUMBER (2) ;
prod_unit_of_measure VARCHAR2 (20) ;
prod_pack_size VARCHAR2 (30) ;
supplier_id NUMBER (6) ;
prod_status VARCHAR2 (20) ;
prod_list_price NUMBER (8, 2) ;
prod_min_price NUMBER (8, 2) ;
sales NUMBER:=0;
objset product_t_table := product_t_table();
1 NUMBER := 0;
BEGIN
LOOP
-- Fetch from cursor variable
FETCH cur INTO prod_id, prod_name, prod_desc, prod_subcategory,
prod_subcategory_desc, prod_category, prod_category desc, prod_weight_class,
prod_unit_of_measure, prod_pack_size, supplier_id, prod_status,
prod_list_price, prod_min_price;
EXIT WHEN cur%NOTFOUND; -- exit when last row is fetched
-- Category Electronics is not meant to be obsolete and will be suppressed
IF prod_status='obsolete' AND prod_category != 'Electronics' THEN
-- append to collection
1:=1+41;
objset.extend;
objset (i) :=product_t(prod_id, prod_name, prod_desc, prod_subcategory,
prod_subcategory_desc, prod_category, prod_category desc,
prod_weight_class, prod_unit_of_measure, prod_pack_size, supplier_id,
prod_status, prod_list_price, prod_min_price);
END IF;
END LOOP;
CLOSE cur;
RETURN objset;
END;
/

You can use the table function in a SQL statement to show the results. Here we use

additional SQL functionality for the output:

SELECT DISTINCT UPPER (prod_category),
FROM TABLE (obsolete_products (

prod_status

CURSOR (SELECT prod_id, prod_name, prod_desc, prod_subcategory,
prod_subcategory_desc, prod_category, prod_category_desc, prod_weight_class,
prod_unit_of_measure, prod_pack_size,
supplier_id, prod_status, prod_list_price, prod_min_price

FROM products)));

The following example implements the same filtering than the first one. The main
differences between those two are:

This example uses a strong typed REF CURSOR as input and can be parallelized
based on the objects of the strong typed cursor, as shown in one of the following
examples.

14-12 Oracle Database Data Warehousing Guide

Transformation Mechanisms

= The table function returns the result set incrementally as soon as records are

created.

CREATE OR REPLACE FUNCTION

obsolete_products_pipe(cur cursor_pkg.strong_refcur_t) RETURN product_t_table

PIPELINED

PARALLEL_ENABLE (PARTITION cur BY ANY) IS
prod_id NUMBER (6) ;
prod_name VARCHAR2 (50) ;
prod_desc VARCHAR2 (4000) ;
prod_subcategory VARCHAR2 (50) ;
prod_subcategory_desc VARCHAR2 (2000) ;
prod_category VARCHAR?2 (50) ;
prod_category_desc VARCHAR2 (2000) ;
prod_weight_class NUMBER (2) ;
prod_unit_of_measure VARCHAR2 (20);
prod_pack_size VARCHAR2 (30) ;
supplier_id NUMBER (6) ;
prod_status VARCHAR2 (20) ;
prod_list_price NUMBER (8,2) ;
prod_min_price NUMBER (8, 2) ;

sales NUMBER:=0;
BEGIN
LOOP
-- Fetch from cursor variable
FETCH cur INTO prod_id, prod_name, prod_desc, prod_subcategory,
prod_subcategory_desc, prod_category, prod_category_desc,
prod_weight_class, prod_unit_of_measure, prod_pack_size, supplier_id,
prod_status, prod_list_price, prod_min_price;
EXIT WHEN cur%NOTFOUND; -- exit when last row is fetched
IF prod_status='obsolete' AND prod_category !='Electronics' THEN
PIPE ROW (product_t(prod_id, prod_name, prod_desc, prod_subcategory,
prod_subcategory_desc, prod_category, prod_category desc, prod_weight_class,
prod_unit_of_measure, prod_pack_size, supplier_id, prod_status,
prod_list_price, prod_min_price));

END IF;
END LOOP;
CLOSE cur;
RETURN;
END;
/

You can use the table function as follows:

SELECT DISTINCT prod_category,
DECODE (prod_status,
FROM TABLE (obsolete_products_pipe(
CURSOR (SELECT prod_id, prod_name, prod_desc, prod_subcategory,
prod_subcategory_desc, prod_category, prod_category_desc,
prod_weight_class, prod_unit_of_measure, prod_pack_size,
supplier_id, prod_status, prod_list_price, prod_min_price
FROM products)));

'obsolete', 'NO LONGER AVAILABLE', 'N/A'")

We now change the degree of parallelism for the input table products and issue the

same statement again:

ALTER TABLE products PARALLEL 4;

The session statistics show that the statement has been parallelized:

SELECT * FROM VS$PQ_SESSTAT WHERE statistic='Queries Parallelized';

Loading and Transformation 14-13

Transformation Mechanisms

STATISTIC

LAST_QUERY SESSION_TOTAL

Queries Parallelized 1 3
1 row selected.

Table functions are also capable to fanout results into persistent table structures. This
is demonstrated in the next example. The function filters returns all obsolete products
except a those of a specific prod_category (default Electronics), which was set to
status obsolete by error. The result set of the table function consists of all other
obsolete product categories. The detected wrong prod_1id IDs are stored in a separate
table structure obsolete_products_error. Note that if a table function is part of
an autonomous transaction, it must COMMIT or ROLLBACK before each PIPE ROW
statement to avoid an error in the callings subprogram. Its result set consists of all
other obsolete product categories. It furthermore demonstrates how normal variables
can be used in conjunction with table functions:

CREATE OR REPLACE FUNCTION obsolete_products_dml (cur cursor_pkg.strong refcur_t,
prod_cat varchar2 DEFAULT 'Electronics') RETURN product_t_table
PIPELINED
PARALLEL_ENABLE (PARTITION cur BY ANY) IS
PRAGMA AUTONOMOUS_TRANSACTION;

prod_id NUMBER (6
prod_name VARCHARZ(0);
prod_desc VARCHAR2 (4000) ;
prod_subcategory VARCHAR2 (50) ;
prod_subcategory_desc VARCHAR2 (2000) ;
prod_category VARCHAR2 (50) ;
prod_category_desc VARCHAR2 (2000) ;
prod_weight_class NUMBER (2) ;
prod_unit_of_measure VARCHAR2 (20) ;
prod_pack_size VARCHAR2 (30) ;
supplier_id NUMBER (6) ;
prod_status VARCHAR2 (20) ;
prod_list_price NUMBER (8, 2) ;
prod_min_price NUMBER (8, 2) ;
sales NUMBER:=0;
BEGIN

LOOP

-- Fetch from cursor variable
FETCH cur INTO prod_id, prod_name, prod_desc, prod_subcategory,
prod_subcategory_desc, prod_category, prod_category_desc, prod_weight_class,
prod_unit_of_measure, prod_pack_size, supplier_id, prod_status,
prod_list_price, prod_min_price;
EXIT WHEN cur%NOTFOUND; -- exit when last row is fetched
IF prod_status='obsolete' THEN
IF prod_category=prod_cat THEN
INSERT INTO obsolete_products_errors VALUES
(prod_id, 'correction: category '||UPPER(prod_cat)||' still
available');
COMMIT;
ELSE
PIPE ROW (product_t(prod_id, prod_name, prod_desc, prod_subcategory,
prod_subcategory_desc, prod_category, prod_category_desc, prod_weight_class,
prod_unit_of_measure, prod_pack_size, supplier_id, prod_status,
prod_list_price, prod_min_price));
END IF;
END IF;
END LOOP;
CLOSE cur;

14-14 Oracle Database Data Warehousing Guide

Error Logging and Handling Mechanisms

RETURN;
END;
/

The following query shows all obsolete product groups except the prod_category
Electronics, which was wrongly set to status obsolete:

SELECT DISTINCT prod_category, prod_status FROM TABLE (obsolete_products_dml (

CURSOR (SELECT prod_id, prod_name, prod_desc, prod_subcategory,
prod_subcategory_desc, prod_category, prod_category_desc, prod_weight_class,
prod_unit_of_measure, prod_pack_size, supplier_id, prod_status,
prod_list_price, prod_min_price

FROM products)));

As you can see, there are some products of the prod_category Electronics that were
obsoleted by accident:

SELECT DISTINCT msg FROM obsolete_products_errors;

Taking advantage of the second input variable, you can specify a different product
group than Electronics to be considered:

SELECT DISTINCT prod_category, prod_status

FROM TABLE (obsolete_products_dml (

CURSOR (SELECT prod_id, prod_name, prod_desc, prod_subcategory,
prod_subcategory_desc, prod_category, prod_category_desc, prod_weight_class,
prod_unit_of_measure, prod pack_size, supplier_id, prod_status,
prod_list_price, prod_min_price

FROM products), 'Photo'));

Because table functions can be used like a normal table, they can be nested, as shown
in the following;:

SELECT DISTINCT prod_category, prod_status

FROM TABLE (obsolete_products_dml (CURSOR (SELECT *

FROM TABLE (obsolete_products_pipe (CURSOR (SELECT prod_id, prod_name, prod_desc,
prod_subcategory, prod_subcategory desc, prod_category, prod_category_desc,
prod_weight_class, prod_unit_of_measure, prod_pack_size, supplier_id,
prod_status, prod_list_price, prod_min_price

FROM products))))));

The biggest advantage of Oracle Database's ETL is its toolkit functionality, where you
can combine any of the latter discussed functionality to improve and speed up your
ETL processing. For example, you can take an external table as input, join it with an
existing table and use it as input for a parallelized table function to process complex
business logic. This table function can be used as input source for a MERGE operation,
thus streaming the new information for the data warehouse, provided in a flat file
within one single statement through the complete ETL process.

See Oracle Database PL/SQL Language Reference for details about table functions and the
PL/SQL programming. For details about table functions implemented in other
languages, see Oracle Database Data Cartridge Developer’s Guide.

Error Logging and Handling Mechanisms

Having data that is not clean is very common when loading and transforming data,
especially when dealing with data coming from a variety of sources, including
external ones. If this dirty data causes you to abort a long-running load or
transformation operation, a lot of time and resources will be wasted. The following
sections discuss the two main causes of errors and how to address them:

Loading and Transformation 14-15

Error Logging and Handling Mechanisms

s Business Rule Violations

s Data Rule Violations (Data Errors)

Business Rule Violations

Data that is logically not clean violates business rules that are known prior to any data
consumption. Most of the time, handling these kind of errors will be incorporated into
the loading or transformation process. However, in situations where the error
identification for all records would become too expensive and the business rule can be
enforced as a data rule violation, for example, testing hundreds of columns to see if
they are NOT NULL, programmers often choose to handle even known possible logical
error cases more generically. An example of this is shown in "Data Error Scenarios" on
page 14-20.

Incorporating logical rules can be as easy as applying filter conditions on the data
input stream or as complex as feeding the dirty data into a different transformation
workflow. Some examples are as follows:

= Filtering of logical data errors using SQL. Data that does not adhere to certain
conditions will be filtered out prior to being processed.

= Identifying and separating logical data errors. In simple cases, this can be
accomplished using SQL, as shown in Example 14-1, "Merge Operation Using
SQL", or in more complex cases in a procedural approach, as shown in
Example 14-6, "Table Functions Fundamentals".

Data Rule Violations (Data Errors)

Unlike logical errors, data rule violations are not usually anticipated by the load or
transformation process. Such unexpected data rule violations (also known as data
errors) that are not handled from an operation cause the operation to fail. Data rule
violations are error conditions that happen inside the database and cause a statement
to fail. Examples of this are data type conversion errors or constraint violations.

In the past, SQL did not offer a way to handle data errors on a row level as part of its
bulk processing. The only way to handle data errors inside the database was to use
PL/SQL. Now, however, you can log data errors into a special error table while the
DML operation continues.

The following sections briefly discuss exception handling with PL/SQL and DML
error logging tables.

Handling Data Errors in PL/SQL

The following statement is an example of how error handling can be done using
PL/SQL. Note that you have to use procedural record-level processing to catch any
errors. This statement is a rough equivalent of the statement discussed in "Handling
Data Errors with an Error Logging Table" on page 14-17.

DECLARE
errm number default 0;
BEGIN
FOR crec IN (SELECT product_id, customer_id, TRUNC (sales_date) sd,
promotion_id, quantity, amount
FROM sales_activity direct) loop

BEGIN

INSERT INTO sales VALUES (crec.product_id, crec.customer_id,
crec.sd, 3, crec.promotion_id,

14-16 Oracle Database Data Warehousing Guide

Error Logging and Handling Mechanisms

crec.quantity, crec.amount);

exception
WHEN others then

errm := sqglerrm;

INSERT INTO sales_activity_error

VALUES (errm, crec.product_id, crec.customer_id, crec.sd,
crec.promotion_id, crec.quantity, crec.amount);

END;

END loop;

END;

/

Handling Data Errors with an Error Logging Table

DML error logging extends existing DML functionality by enabling you to specify the
name of an error logging table into which Oracle Database should record errors
encountered during DML operations. This enables you to complete the DML operation
in spite of any errors, and to take corrective action on the erroneous rows at a later
time.

This DML error logging table consists of several mandatory control columns and a set
of user-defined columns that represent either all or a subset of the columns of the
target table of the DML operation using a data type that is capable of storing potential
errors for the target column. For example, you need a VARCHAR?2 data type in the error
logging table to store TO_NUM data type conversion errors for a NUMBER column in the
target table. You should use the DBMS_ERRLOG package to create the DML error
logging tables. See the Oracle Database PL/SQL Packages and Types Reference for more
information about this package and the structure of the logging table.

The column name mapping between the DML target table and an error logging table
determines which columns besides the control columns will be logged for a DML
operation.

The following statement illustrates how to enhance the example in "Transforming
Data Using SQL" on page 14-5 with DML error logging:

INSERT /*+ APPEND PARALLEL */

INTO sales SELECT product_id, customer_id, TRUNC (sales_date), 3,
promotion_id, quantity, amount

FROM sales_activity direct

LOG ERRORS INTO sales_activity_errors('load_20040802"')

REJECT LIMIT UNLIMITED

All data errors will be logged into table sales_activity_errors, identified by the
optional tag 1oad_20040802. The INSERT statement will succeed even in the
presence of data errors. Note that you have to create the DML error logging table prior
to using this statement.

If REJECT LIMIT X had been specified, the statement would have failed with the error
message of error X=1.The error message can be different for different reject limits.
In the case of a failing statement, only the DML statement is rolled back, not the
insertion into the DML error logging table. The error logging table will contain X+1
rows.

A DML error logging table can be in a different schema than the executing user, but
you must fully specify the table name in that case. Optionally, the name of the DML
error logging table can be omitted; Oracle then assumes a default name for the table as
generated by the DBMS_ERRLOG package.

Oracle Database logs the following errors during DML operations:

Loading and Transformation 14-17

Loading and Transformation Scenarios

s Column values that are too large.
s Constraint violations (NOT NULL, unique, referential, and check constraints).
= Errors raised during trigger execution.

s Errors resulting from type conversion between a column in a subquery and the
corresponding column of the table.

s Partition mapping errors.

The following conditions cause the statement to fail and roll back without invoking the
error logging capability:

m Violated deferred constraints.
= Out of space errors.

= Any direct-path INSERT operation (INSERT or MERGE) that raises a unique
constraint or index violation.

= Any UPDATE operation (UPDATE or MERGE) that raises a unique constraint or
index violation.

In addition, you cannot track errors in the error logging table for LONG, LOB, or object
type columns. See Oracle Database SQL Language Reference for more information on
restrictions when using error logging.

DML error logging can be applied to any kind of DML operation. Several examples are
discussed in the following section.

Note that SQL*Loader as an external load utility offers the functionality of logging
data errors as well, but lacks the advantage of the integrated ETL processing inside the
database.

Loading and Transformation Scenarios
The following sections offer examples of typical loading and transformation tasks:
= Key Lookup Scenario
= Business Rule Violation Scenario
» Data Error Scenarios
= Business Rule Violation Scenario

= Pivoting Scenarios

Key Lookup Scenario

A typical transformation is the key lookup. For example, suppose that sales
transaction data has been loaded into a retail data warehouse. Although the data
warehouse's sales table contains a product_id column, the sales transaction data
extracted from the source system contains Uniform Price Codes (UPC) instead of
product IDs. Therefore, it is necessary to transform the UPC codes into product IDs
before the new sales transaction data can be inserted into the sales table.

In order to execute this transformation, a lookup table must relate the product_id
values to the UPC codes. This table might be the product dimension table, or perhaps
another table in the data warehouse that has been created specifically to support this
transformation. For this example, we assume that there is a table named product,
which has a product_id and an upc_code column.

14-18 Oracle Database Data Warehousing Guide

Loading and Transformation Scenarios

This data substitution transformation can be implemented using the following CTAS
statement:

CREATE TABLE temp_sales_step2 NOLOGGING PARALLEL AS SELECT sales_transaction_id,
product.product_id sales_product_id, sales_customer_id, sales_time_id,
sales_channel_id, sales_quantity sold, sales_dollar_amount

FROM temp_sales_stepl, product

WHERE temp_sales_stepl.upc_code = product.upc_code;

This CTAS statement will convert each valid UPC code to a valid product_id value.
If the ETL process has guaranteed that each UPC code is valid, then this statement
alone may be sufficient to implement the entire transformation.

Business Rule Violation Scenario

In the preceding example, if you must also handle new sales data that does not have
valid UPC codes (a logical data error), you can use an additional CTAS statement to
identify the invalid rows:

CREATE TABLE temp_sales_stepl_invalid NOLOGGING PARALLEL AS
SELECT * FROM temp_sales_stepl s
WHERE NOT EXISTS (SELECT 1 FROM product p WHERE p.upc_code=s.upc_code);

This invalid data is now stored in a separate table, temp_sales_stepl_invalid,
and can be handled separately by the ETL process.

Another way to handle invalid data is to modify the original CTAS to use an outer
join, as in the following statement:

CREATE TABLE temp_sales_step2 NOLOGGING PARALLEL AS

SELECT sales_transaction_id, product.product_id sales_product_id,
sales_customer_id, sales_time_id, sales_channel_id, sales_quantity_sold,
sales_dollar_amount

FROM temp_sales_stepl, product

WHERE temp_sales_stepl.upc_code = product.upc_code (+);

Using this outer join, the sales transactions that originally contained invalidated UPC
codes will be assigned a product_id of NULL. These transactions can be handled
later. Alternatively, you could use a multi-table insert, separating the values with a
product_id of NULL into a separate table; this might be a beneficial approach when
the expected error count is relatively small compared to the total data volume. You do
not have to touch the large target table but only a small one for a subsequent
processing.

INSERT /*+ APPEND PARALLEL */ FIRST

WHEN sales_product_id IS NOT NULL THEN
INTO temp_sales_step2
VALUES (sales_transaction_id, sales_product_id,
sales_customer_id, sales_time_id, sales_channel id,
sales_quantity sold, sales_dollar_amount)

ELSE
INTO temp_sales_stepl_invalid
VALUES (sales_transaction_id, sales_product_id,
sales_customer_id, sales_time_id, sales_channel_id,
sales_quantity_sold, sales_dollar_amount)

SELECT sales_transaction_id, product.product_id sales_product_id,
sales_customer_id, sales_time_id, sales_channel id,
sales_quantity_sold, sales_dollar_amount

FROM temp_sales_stepl, product

WHERE temp_sales_stepl.upc_code = product.upc_code (+);

Loading and Transformation 14-19

Loading and Transformation Scenarios

Note that for this solution, the empty tables temp_sales_step2 and temp_sales_
stepl_invalid must already exist.

Additional approaches to handling invalid UPC codes exist. Some data warehouses
may choose to insert null-valued product_id values into their sales table, while
others may not allow any new data from the entire batch to be inserted into the sales
table until all invalid UPC codes have been addressed. The correct approach is
determined by the business requirements of the data warehouse. Irrespective of the
specific requirements, exception handling can be addressed by the same basic SQL
techniques as transformations.

Data Error Scenarios

If the quality of the data is unknown, the example discussed in the preceding section
could be enhanced to handle unexpected data errors, for example, data type
conversion errors, as shown in the following:

INSERT /*+ APPEND PARALLEL */ FIRST

WHEN sales_product_id IS NOT NULL THEN

INTO temp_sales_step2

VALUES (sales_transaction_id, sales_product_id,
sales_customer_id, sales_time_id, sales_channel_id,
sales_quantity sold, sales_dollar_amount)

LOG ERRORS INTO sales_step2_errors('load 20040804")

REJECT LIMIT UNLIMITED

ELSE

INTO temp_sales_stepl_invalid

VALUES (sales_transaction_id, sales_product_id,
sales_customer_id, sales_time_id, sales_channel_id,
sales_quantity sold, sales_dollar_amount)

LOG ERRORS INTO sales_step2_errors('load 20040804")

REJECT LIMIT UNLIMITED

SELECT sales_transaction_id, product.product_id sales_product_id,
sales_customer_id, sales_time_id, sales_channel_id,
sales_quantity sold, sales_dollar_amount

FROM temp_sales_stepl, product

WHERE temp_sales_stepl.upc_code = product.upc_code (+);

This statement will track the logical data error of not having a valid product UPC code
in table temp_sales_stepl_invalid and all other possible errors in a DML error
logging table called sales_step2_errors. Note that an error logging table can be
used for several DML operations.

An alternative to this approach would be to enforce the business rule of having a valid
UPC code on the database level with a NOT NULL constraint. Using an outer join, all
orders not having a valid UPC code would be mapped to a NULL value and then
treated as data errors. This DML error logging capability is used to track these errors
in the following statement:

INSERT /*+ APPEND PARALLEL */

INTO temp_sales_step?2

VALUES (sales_transaction_id, sales_product_id,
sales_customer_id, sales_time_id, sales_channel_id,
sales_quantity sold, sales_dollar_amount)

SELECT sales_transaction_id, product.product_id sales_product_id,
sales_customer_id, sales_time_id, sales_channel_ id,
sales_quantity_sold, sales_dollar_amount

FROM temp_sales_stepl, product

WHERE temp_sales_stepl.upc_code = product.upc_code (+)

LOG ERRORS INTO sales_step2_errors('load 20040804")

14-20 Oracle Database Data Warehousing Guide

Loading and Transformation Scenarios

REJECT LIMIT UNLIMITED;

The error logging table contains all records that would have caused the DML
operation to fail. You can use its content to analyze and correct any error. The content
in the error logging table is preserved for any DML operation, irrespective of the
success of the DML operation itself. Let us assume the following SQL statement failed
because the reject limit was reached:

SQL> INSERT /*+ APPEND NOLOGGING PARALLEL */ INTO sales_overall
2 SELECT * FROM sales_activity direct

3 LOG ERRORS INTO err$_sales_overall ('load_test2')

4 REJECT LIMIT 10;

SELECT * FROM sales_activity_direct
*

ERROR at line 2:
ORA-01722: invalid number

The name of the error logging table, err$_sales_overall, is the default derived by
using the DBMS_ERRLOG package. See Oracle Database PL/SQL Packages and Types
Reference for more information.

The error message raised by Oracle occurs where the first after the error limit is
reached. The next error (number 11) is the one that raised an error. The error message
that is displayed is based on the error that exceeded the limit, so, for example, the
ninth error could be different from the eleventh error.

The target table sales_overall will not show any records being entered (assumed
that the table was empty before), but the error logging table will contain 11 rows
(REJECT LIMIT + 1)

SQL> SELECT COUNT(*) FROM sales_overall;
COUNT (*)

SQL> SELECT COUNT (*) FROM err$_sales_overall;
COUNT (*)

A DML error logging table consists of several fixed control columns that are
mandatory for every error logging table. Besides the Oracle error number, Oracle
enforces storing the error message as well. In many cases, the error message provides
additional information to analyze and resolve the root cause for the data error. The
following SQL output of a DML error logging table shows this difference. Note that
the second output contains the additional information for rows that were rejected due
to NOT NULL violations.

SQL> SELECT DISTINCT ora_err_number$ FROM err$_sales_overall;

ORA_ERR_NUMBER$

SQL> SELECT DISTINCT ora_err_numberS, ora_err_mesgS FROM err$_sales_overall;

ORA_ERR_NUMBERS ORA_ERR_MESGS
1400 ORA-01400: cannot insert NULL into

Loading and Transformation 14-21

Loading and Transformation Scenarios

("SH"."SALES_OVERALL"."CUST_ID")

1400 ORA-01400: cannot insert NULL into
("SH"."SALES_OVERALL"."PROD_ID")

1722 ORA-01722: invalid number

1830 ORA-01830: date format picture ends before
converting entire input string

1847 ORA-01847: day of month must be between 1 and last

day of month

See Oracle Database Administrator’s Guide for a detailed description of control columns.

Pivoting Scenarios

A data warehouse can receive data from many different sources. Some of these source
systems may not be relational databases and may store data in very different formats
from the data warehouse. For example, suppose that you receive a set of sales records
from a nonrelational database having the form:

product_id, customer_id, weekly_ start_date, sales_sun, sales_mon, sales_tue,
sales_wed, sales_thu, sales_fri, sales_sat

The input table looks like the following:

SELECT * FROM sales_input_table;

PRODUCT_ID CUSTOMER_ID WEEKLY_ST SALES_SUN SALES_MON SALES_TUE SALES_WED SALES_THU SALES_FRI SALES_SAT

222 01-0CT-00 100 200 300 400 500 600 700
333 08-0CT-00 200 300 400 500 600 700 800
444 15-0CT-00 300 400 500 600 700 800 900

In your data warehouse, you would want to store the records in a more typical
relational form in a fact table sales of the sh sample schema:

prod_id, cust_id, time_id, amount_sold

Note: A number of constraints on the sales table have been
disabled for purposes of this example, because the example ignores
a number of table columns for the sake of brevity.

Thus, you need to build a transformation such that each record in the input stream
must be converted into seven records for the data warehouse's sales table. This
operation is commonly referred to as pivoting, and Oracle Database offers several
ways to do this.

The result of the previous example will resemble the following:

SELECT prod_id, cust_id, time_id, amount_sold FROM sales;

PROD_ID CUST_ID TIME_ID AMOUNT_SOLD

111 222 01-0CT-00 100
111 222 02-0CT-00 200
111 222 03-0CT-00 300
111 222 04-0CT-00 400
111 222 05-0CT-00 500
111 222 06-0CT-00 600
111 222 07-0CT-00 700
222 333 08-0CT-00 200
222 333 09-0CT-00 300

14-22 Oracle Database Data Warehousing Guide

Loading and Transformation Scenarios

222
222
222
222
222
333
333
333
333
333
333
333

Example 14-7 Pivoting

333
333
333
333
333
444
444
444
444
444
444
444

10-0CT-00
11-0CT-00
12-0CT-00
13-0CT-00
14-0CT-00
15-0CT-00
16-0CT-00
17-0CT-00
18-0CT-00
19-0CT-00
20-0CT-00
21-0CT-00

400
500
600
700
800
300
400
500
600
700
800
900

The following example uses the multitable insert syntax to insert into the demo table
sh.sales some data from an input table with a different structure. The multitable

INSERT statement looks like the following;:

INSERT ALL INTO sales (prod_id, cust_id, time_id, amount_sold)
VALUES (product_id, customer_id, weekly_start_date, sales_sun)
INTO sales (prod_id, cust_id, time_id, amount_sold)
VALUES (product_id, customer_id, weekly_start_date+l, sales_mon)

INTO sales
VALUES
INTO sales

(prod_id, cust_id, time_id, amount_sold)
(product_id, customer_id, weekly start_date+2, sales_tue)
(prod_id, cust_id, time_id, amount_sold)

VALUES (product_id, customer_id, weekly_start_date+3, sales_wed)
INTO sales (prod_id, cust_id, time_id, amount_sold)
VALUES (product_id, customer_id, weekly_start_date+4, sales_thu)

INTO sales
VALUES
INTO sales

(prod_id, cust_id, time_id, amount_sold)
(product_id, customer_id, weekly start_date+5, sales_fri)
(prod_id, cust_id, time_id, amount_sold)

VALUES (product_id, customer_id, weekly_start_date+6, sales_sat)
SELECT product_id, customer_id, weekly start_date, sales_sun,
sales_mon, sales_tue, sales_wed, sales_thu, sales_fri, sales_sat

FROM sales_input_table;

This statement only scans the source table once and then inserts the appropriate data
for each day.

See Also:

"Pivoting Operations" on page 21-33 for more information
regarding pivoting

Oracle Database SQL Language Reference for pivot_clause syntax

Loading and Transformation

14-23

Loading and Transformation Scenarios

14-24 Oracle Database Data Warehousing Guide

15

Maintaining the Data Warehouse

This chapter discusses how to load and refresh a data warehouse, and discusses:
= Using Partitioning to Improve Data Warehouse Refresh

= Optimizing DML Operations During Refresh

= Refreshing Materialized Views

s Using Materialized Views with Partitioned Tables

Using Partitioning to Improve Data Warehouse Refresh

ETL (Extraction, Transformation and Loading) is done on a scheduled basis to reflect
changes made to the original source system. During this step, you physically insert the
new, clean data into the production data warehouse schema, and take all of the other
steps necessary (such as building indexes, validating constraints, taking backups) to
make this new data available to the end users. Once all of this data has been loaded
into the data warehouse, the materialized views have to be updated to reflect the latest
data.

The partitioning scheme of the data warehouse is often crucial in determining the
efficiency of refresh operations in the data warehouse load process. In fact, the load
process is often the primary consideration in choosing the partitioning scheme of data
warehouse tables and indexes.

The partitioning scheme of the largest data warehouse tables (for example, the fact
table in a star schema) should be based upon the loading paradigm of the data
warehouse.

Most data warehouses are loaded with new data on a regular schedule. For example,
every night, week, or month, new data is brought into the data warehouse. The data
being loaded at the end of the week or month typically corresponds to the transactions
for the week or month. In this very common scenario, the data warehouse is being
loaded by time. This suggests that the data warehouse tables should be partitioned on
a date column. In our data warehouse example, suppose the new data is loaded into
the sales table every month. Furthermore, the sales table has been partitioned by
month. These steps show how the load process will proceed to add the data for a new
month (January 2001) to the table sales.

1. Place the new data into a separate table, sales_01_2001. This data can be
directly loaded into sales_01_2001 from outside the data warehouse, or this
data can be the result of previous data transformation operations that have
already occurred in the data warehouse. sales_01_2001 has the exact same
columns, datatypes, and so forth, as the sales table. Gather statistics on the
sales_01_2001 table.

Maintaining the Data Warehouse 15-1

Using Partitioning to Improve Data Warehouse Refresh

2. Create indexes and add constraints on sales_01_2001. Again, the indexes and
constraints on sales_01_2001 should be identical to the indexes and constraints
on sales. Indexes can be built in parallel and should use the NOLOGGING and the
COMPUTE STATISTICS options. For example:

CREATE BITMAP INDEX sales_01_2001_customer_id_bix
ON sales_01_2001 (customer_id)
TABLESPACE sales_idx NOLOGGING PARALLEL 8 COMPUTE STATISTICS;

Apply all constraints to the sales_01_2001 table that are present on the sales
table. This includes referential integrity constraints. A typical constraint would be:

ALTER TABLE sales_01_2001 ADD CONSTRAINT sales_customer_id
REFERENCES customer (customer_id) ENABLE NOVALIDATE;

If the partitioned table sales has a primary or unique key that is enforced with a
global index structure, ensure that the constraint on sales_pk_jan01 is
validated without the creation of an index structure, as in the following:

ALTER TABLE sales_01_2001 ADD CONSTRAINT sales_pk_jan01
PRIMARY KEY (sales_transaction_id) DISABLE VALIDATE;

The creation of the constraint with ENABLE clause would cause the creation of a
unique index, which does not match a local index structure of the partitioned
table. You must not have any index structure built on the nonpartitioned table to
be exchanged for existing global indexes of the partitioned table. The exchange
command would fail.

3. Addthesales_01_2001 table to the sales table.

In order to add this new data to the sales table, we need to do two things. First,
we need to add a new partition to the sales table. We will use the ALTER TABLE
... ADD PARTITION statement. This will add an empty partition to the sales table:

ALTER TABLE sales ADD PARTITION sales_01_2001
VALUES LESS THAN (TO_DATE('01-FEB-2001', 'DD-MON-YYYY'));

Then, we can add our newly created table to this partition using the EXCHANGE
PARTITION operation. This will exchange the new, empty partition with the
newly loaded table.

ALTER TABLE sales EXCHANGE PARTITION sales_01_2001 WITH TABLE sales_01_2001
INCLUDING INDEXES WITHOUT VALIDATION UPDATE GLOBAL INDEXES;

The EXCHANGE operation will preserve the indexes and constraints that were
already present on the sales_01_2001 table. For unique constraints (such as the
unique constraint on sales_transaction_id), you can use the UPDATE
GLOBAL INDEXES clause, as shown previously. This will automatically maintain
your global index structures as part of the partition maintenance operation and
keep them accessible throughout the whole process. If there were only foreign-key
constraints, the exchange operation would be instantaneous.

The benefits of this partitioning technique are significant. First, the new data is loaded
with minimal resource utilization. The new data is loaded into an entirely separate
table, and the index processing and constraint processing are applied only to the new
partition. If the sales table was 50 GB and had 12 partitions, then a new month's
worth of data contains approximately 4 GB. Only the new month's worth of data
needs to be indexed. None of the indexes on the remaining 46 GB of data needs to be
modified at all. This partitioning scheme additionally ensures that the load processing
time is directly proportional to the amount of new data being loaded, not to the total
size of the sales table.

15-2 Oracle Database Data Warehousing Guide

Using Partitioning to Improve Data Warehouse Refresh

Second, the new data is loaded with minimal impact on concurrent queries. All of the
operations associated with data loading are occurring on a separate sales_01_2001
table. Therefore, none of the existing data or indexes of the sales table is affected
during this data refresh process. The sales table and its indexes remain entirely
untouched throughout this refresh process.

Third, in case of the existence of any global indexes, those are incrementally
maintained as part of the exchange command. This maintenance does not affect the
availability of the existing global index structures.

The exchange operation can be viewed as a publishing mechanism. Until the data
warehouse administrator exchanges the sales_01_2001 table into the sales table,
end users cannot see the new data. Once the exchange has occurred, then any end user
query accessing the sales table will immediately be able to see the sales_01_2001
data.

Partitioning is useful not only for adding new data but also for removing and
archiving data. Many data warehouses maintain a rolling window of data. For
example, the data warehouse stores the most recent 36 months of sales data. Justas a
new partition can be added to the sales table (as described earlier), an old partition
can be quickly (and independently) removed from the sales table. These two benefits
(reduced resources utilization and minimal end-user impact) are just as pertinent to
removing a partition as they are to adding a partition.

Removing data from a partitioned table does not necessarily mean that the old data is
physically deleted from the database. There are two alternatives for removing old data
from a partitioned table. First, you can physically delete all data from the database by
dropping the partition containing the old data, thus freeing the allocated space:

ALTER TABLE sales DROP PARTITION sales_01_1998;

Also, you can exchange the old partition with an empty table of the same structure;
this empty table is created equivalent to steps 1 and 2 described in the load process.
Assuming the new empty table stub is named sales_archive_01_1998, the
following SQL statement will empty partition sales_01_1998:

ALTER TABLE sales EXCHANGE PARTITION sales_01_1998
WITH TABLE sales_archive 01_1998 INCLUDING INDEXES WITHOUT VALIDATION
UPDATE GLOBAL INDEXES;

Note that the old data is still existent as the exchanged, nonpartitioned table sales_
archive_ 01 1998.

If the partitioned table was setup in a way that every partition is stored in a separate
tablespace, you can archive (or transport) this table using Oracle Database's
transportable tablespace framework before dropping the actual data (the tablespace).
See "Transportation Using Transportable Tablespaces" on page 15-4 for further details
regarding transportable tablespaces.

In some situations, you might not want to drop the old data immediately, but keep it
as part of the partitioned table; although the data is no longer of main interest, there
are still potential queries accessing this old, read-only data. You can use Oracle's data
compression to minimize the space usage of the old data. We also assume that at least
one compressed partition is already part of the partitioned table. See Chapter 3,
"Physical Design in Data Warehouses" for a generic discussion of table compression
and Oracle Database VLDB and Partitioning Guide for partitioning and table
compression.

Maintaining the Data Warehouse 15-3

Using Partitioning to Improve Data Warehouse Refresh

Refresh Scenarios

A typical scenario might not only need to compress old data, but also to merge several
old partitions to reflect the granularity for a later backup of several merged partitions.
Let us assume that a backup (partition) granularity is on a quarterly base for any
quarter, where the oldest month is more than 36 months behind the most recent
month. In this case, we are therefore compressing and merging sales_01_1998,
sales_02_1998,and sales_03_1998 into a new, compressed partition sales_
gl_1998.

1. Create the new merged partition in parallel in another tablespace. The partition
will be compressed as part of the MERGE operation:

ALTER TABLE sales MERGE PARTITIONS sales_01_1998, sales_02_1998, sales_03_1998
INTO PARTITION sales_gl_1998 TABLESPACE archive_gl_1998
COMPRESS UPDATE GLOBAL INDEXES PARALLEL 4;

2. The partition MERGE operation invalidates the local indexes for the new merged
partition. We therefore have to rebuild them:

ALTER TABLE sales MODIFY PARTITION sales_gl_1998
REBUILD UNUSABLE LOCAL INDEXES;

Alternatively, you can choose to create the new compressed table outside the
partitioned table and exchange it back. The performance and the temporary space
consumption is identical for both methods:

1. Create an intermediate table to hold the new merged information. The following
statement inherits all NOT NULL constraints from the original table by default:

CREATE TABLE sales_gl_1998_out TABLESPACE archive_gl_1998

NOLOGGING COMPRESS PARALLEL 4 AS SELECT * FROM sales

WHERE time_id >= TO_DATE('01-JAN-1998', 'dd-mon-yyyy"')
AND time_id < TO_DATE('01-APR-1998', 'dd-mon-yyyy');

2. Create the equivalent index structure for table sales_gl_1998_out than for the
existing table sales.

3. Prepare the existing table sales for the exchange with the new compressed table
sales_gl_1998_out. Because the table to be exchanged contains data actually
covered in three partitions, we have to create one matching partition, having the
range boundaries we are looking for. You simply have to drop two of the existing
partitions. Note that you have to drop the lower two partitions sales_01_1998
and sales_02_1998; the lower boundary of a range partition is always defined
by the upper (exclusive) boundary of the previous partition:

ALTER TABLE sales DROP PARTITION sales_01_1998;
ALTER TABLE sales DROP PARTITION sales_02_1998;

4. You can now exchange table sales_gl_1998_out with partition sales_03_
1998. Unlike what the name of the partition suggests, its boundaries cover
Q1-1998.

ALTER TABLE sales EXCHANGE PARTITION sales_03_1998
WITH TABLE sales_gl_1998_out INCLUDING INDEXES WITHOUT VALIDATION
UPDATE GLOBAL INDEXES;

Both methods apply to slightly different business scenarios: Using the MERGE
PARTITION approach invalidates the local index structures for the affected partition,
but it keeps all data accessible all the time. Any attempt to access the affected partition
through one of the unusable index structures raises an error. The limited availability

15-4 Oracle Database Data Warehousing Guide

Using Partitioning to Improve Data Warehouse Refresh

time is approximately the time for re-creating the local bitmap index structures. In
most cases, this can be neglected, because this part of the partitioned table should not
be accessed too often.

The CTAS approach, however, minimizes unavailability of any index structures close
to zero, but there is a specific time window, where the partitioned table does not have
all the data, because we dropped two partitions. The limited availability time is
approximately the time for exchanging the table. Depending on the existence and
number of global indexes, this time window varies. Without any existing global
indexes, this time window is a matter of a fraction to few seconds.

These examples are a simplification of the data warehouse rolling window load
scenario. Real-world data warehouse refresh characteristics are always more complex.
However, the advantages of this rolling window approach are not diminished in more
complex scenarios.

Note that before you add single or multiple compressed partitions to a partitioned
table for the first time, all local bitmap indexes must be either dropped or marked
unusable. After the first compressed partition is added, no additional actions are
necessary for all subsequent operations involving compressed partitions. It is
irrelevant how the compressed partitions are added to the partitioned table. See Oracle
Database VLDB and Partitioning Guide and Oracle Database Administrator’s Guide for
further details about partitioning and table compression.

Scenarios for Using Partitioning for Refreshing Data Warehouses

This section contains two typical scenarios where partitioning is used with refresh.

Refresh Scenario 1

Data is loaded daily. However, the data warehouse contains two years of data, so that
partitioning by day might not be desired.

The solution is to partition by week or month (as appropriate). Use INSERT to add the
new data to an existing partition. The INSERT operation only affects a single partition,
so the benefits described previously remain intact. The INSERT operation could occur
while the partition remains a part of the table. Inserts into a single partition can be
parallelized:

INSERT /*+ APPEND*/ INTO sales PARTITION (sales_01_2001)
SELECT * FROM new_sales;

The indexes of this sales partition will be maintained in parallel as well. An
alternative is to use the EXCHANGE operation. You can do this by exchanging the
sales_01_2001 partition of the sales table and then using an INSERT operation.
You might prefer this technique when dropping and rebuilding indexes is more
efficient than maintaining them.

Refresh Scenario 2

New data feeds, although consisting primarily of data for the most recent day, week,
and month, also contain some data from previous time periods.

Solution 1 Use parallel SQL operations (such as CREATE TABLE ... AS SELECT) to
separate the new data from the data in previous time periods. Process the old data
separately using other techniques.

New data feeds are not solely time based. You can also feed new data into a data
warehouse with data from multiple operational systems on a business need basis. For

Maintaining the Data Warehouse 15-5

Optimizing DML Operations During Refresh

example, the sales data from direct channels may come into the data warehouse
separately from the data from indirect channels. For business reasons, it may
furthermore make sense to keep the direct and indirect data in separate partitions.

Solution 2 Oracle supports composite range-list partitioning. The primary partitioning
strategy of the sales table could be range partitioning based on time_id as shown in
the example. However, the subpartitioning is a list based on the channel attribute.
Each subpartition can now be loaded independently of each other (for each distinct
channel) and added in a rolling window operation as discussed before. The
partitioning strategy addresses the business needs in the most optimal manner.

Optimizing DML Operations During Refresh

You can optimize DML performance through the following techniques:
s Implementing an Efficient MERGE Operation
» Maintaining Referential Integrity

s Purging Data

Implementing an Efficient MERGE Operation

Commonly, the data that is extracted from a source system is not simply a list of new
records that needs to be inserted into the data warehouse. Instead, this new data set is
a combination of new records as well as modified records. For example, suppose that
most of data extracted from the OLTP systems will be new sales transactions. These
records will be inserted into the warehouse's sales table, but some records may
reflect modifications of previous transactions, such as returned merchandise or
transactions that were incomplete or incorrect when initially loaded into the data
warehouse. These records require updates to the sales table.

As a typical scenario, suppose that there is a table called new_sales that contains
both inserts and updates that will be applied to the sales table. When designing the
entire data warehouse load process, it was determined that the new_sales table
would contain records with the following semantics:

s Ifagiven sales_transaction_id of arecord in new_sales already exists in
sales, then update the sales table by adding the sales_dollar_amount and
sales_quantity_sold values from the new_sales table to the existing row in
the sales table.

s Otherwise, insert the entire new record from the new_sales table into the sales
table.

This UPDATE-ELSE-INSERT operation is often called a merge. A merge can be
executed using one SQL statement.

Example 15-1 MERGE Operation

MERGE INTO sales s USING new_sales n

ON (s.sales_transaction_id = n.sales_transaction_id)

WHEN MATCHED THEN

UPDATE SET s.sales_quantity_sold = s.sales_quantity_sold + n.sales_quantity sold,
s.sales_dollar_amount = s.sales_dollar_amount + n.sales_dollar_amount

WHEN NOT MATCHED THEN INSERT (sales_transaction_id, sales_quantity_sold,
sales_dollar_amount)

VALUES (n.sales_transcation_id, n.sales_quantity_sold, n.sales_dollar_amount);

15-6 Oracle Database Data Warehousing Guide

Optimizing DML Operations During Refresh

In addition to using the MERGE statement for unconditional UPDATE ELSE INSERT
functionality into a target table, you can also use it to:

= Perform an UPDATE only or INSERT only statement.

= Apply additional WHERE conditions for the UPDATE or INSERT portion of the
MERGE statement.

s The UPDATE operation can even delete rows if a specific condition yields true.

Example 15-2 Omitting the INSERT Clause

In some data warehouse applications, it is not allowed to add new rows to historical
information, but only to update them. It may also happen that you do not want to
update but only insert new information. The following example demonstrates
INSERT-only with UPDATE-only functionality:

MERGE USING Product_Changes S -- Source/Delta table
INTO Products D1 -- Destination table 1
ON (D1.PROD_ID = S.PROD_ID) -- Search/Join condition
WHEN MATCHED THEN UPDATE -- update if join

SET D1.PROD_STATUS = S.PROD_NEW_STATUS

Example 15-3 Omitting the UPDATE Clause

The following statement illustrates an example of omitting an UPDATE:

MERGE USING New_Product S -- Source/Delta table
INTO Products D2 -- Destination table 2
ON (D2.PROD_ID = S.PROD_ID) -- Search/Join condition
WHEN NOT MATCHED THEN -- insert if no join

INSERT (PROD_ID, PROD_STATUS) VALUES (S.PROD_ID, S.PROD_NEW_STATUS)

When the INSERT clause is omitted, Oracle performs a regular join of the source and
the target tables. When the UPDATE clause is omitted, Oracle performs an antijoin of
the source and the target tables. This makes the join between the source and target
table more efficient.

Example 15-4 Skipping the UPDATE Clause

In some situations, you may want to skip the UPDATE operation when merging a given
row into the table. In this case, you can use an optional WHERE clause in the UPDATE
clause of the MERGE. As a result, the UPDATE operation only executes when a given
condition is true. The following statement illustrates an example of skipping the
UPDATE operation:

MERGE

USING Product_Changes S -- Source/Delta table
INTO Products P -- Destination table 1
ON (P.PROD_ID = S.PROD_ID) -- Search/Join condition
WHEN MATCHED THEN

UPDATE -- update if join

SET P.PROD_LIST PRICE = S.PROD_NEW_PRICE

WHERE P.PROD_STATUS <> "OBSOLETE" -- Conditional UPDATE

This shows how the UPDATE operation would be skipped if the condition P. PROD_
STATUS <> "OBSOLETE" is not true. The condition predicate can refer to both the
target and the source table.

Maintaining the Data Warehouse 15-7

Optimizing DML Operations During Refresh

Example 15-5 Conditional Inserts with MERGE Statements

You may want to skip the INSERT operation when merging a given row into the table.
So an optional WHERE clause is added to the INSERT clause of the MERGE. As a result,
the INSERT operation only executes when a given condition is true. The following
statement offers an example:

MERGE USING Product_Changes S -- Source/Delta table
INTO Products P -- Destination table 1
ON (P.PROD_ID = S.PROD_ID) -- Search/Join condition
WHEN MATCHED THEN UPDATE -- update if join

SET P.PROD_LIST PRICE = S.PROD_NEW_PRICE

WHERE P.PROD_STATUS <> "OBSOLETE" -- Conditional

WHEN NOT MATCHED THEN

INSERT (PROD_ID, PROD_STATUS, PROD_LIST PRICE) -- insert if not join
VALUES (S.PROD_ID, S.PROD_NEW_STATUS, S.PROD_NEW_PRICE)

WHERE S.PROD_STATUS <> "OBSOLETE"; -- Conditional INSERT

This example shows that the INSERT operation would be skipped if the condition
S.PROD_STATUS <> "OBSOLETE" is not true, and INSERT will only occur if the
condition is true. The condition predicate can refer to the source table only. The
condition predicate can only refer to the source table.

Example 15-6 Using the DELETE Clause with MERGE Statements

You may want to cleanse tables while populating or updating them. To do this, you
may want to consider using the DELETE clause in a MERGE statement, as in the
following example:

MERGE USING Product_Changes S

INTO Products D ON (D.PROD_ID = S.PROD_ID)

WHEN MATCHED THEN

UPDATE SET D.PROD_LIST_PRICE =S.PROD_NEW_PRICE, D.PROD_STATUS = S.PROD_NEWSTATUS
DELETE WHERE (D.PROD_STATUS = "OBSOLETE")

WHEN NOT MATCHED THEN

INSERT (PROD_ID, PROD_LIST_PRICE, PROD_STATUS)

VALUES (S.PROD_ID, S.PROD_NEW PRICE, S.PROD_NEW_STATUS) ;

Thus when a row is updated in products, Oracle checks the delete condition
D.PROD_STATUS = "OBSOLETE", and deletes the row if the condition yields true.

The DELETE operation is not as same as that of a complete DELETE statement. Only
the rows from the destination of the MERGE can be deleted. The only rows that will be
affected by the DELETE are the ones that are updated by this MERGE statement. Thus,
although a given row of the destination table meets the delete condition, if it does not
join under the ON clause condition, it will not be deleted.

Example 15-7 Unconditional Inserts with MERGE Statements

You may want to insert all of the source rows into a table. In this case, the join between
the source and target table can be avoided. By identifying special constant join
conditions that always result to FALSE, for example, 1=0, such MERGE statements will
be optimized and the join condition will be suppressed.

MERGE USING New_Product S -- Source/Delta table
INTO Products P -- Destination table 1
ON (1 = 0) -- Search/Join condition
WHEN NOT MATCHED THEN -- insert if no join

INSERT (PROD_ID, PROD_STATUS) VALUES (S.PROD_ID, S.PROD_NEW_STATUS)

15-8 Oracle Database Data Warehousing Guide

Optimizing DML Operations During Refresh

Maintaining Referential Integrity

In some data warehousing environments, you might want to insert new data into
tables in order to guarantee referential integrity. For example, a data warehouse may
derive sales from an operational system that retrieves data directly from cash
registers. sales is refreshed nightly. However, the data for the product dimension
table may be derived from a separate operational system. The product dimension
table may only be refreshed once for each week, because the product table changes
relatively slowly. If a new product was introduced on Monday, then it is possible for
that product's product_1id to appear in the sales data of the data warehouse before
that product_id has been inserted into the data warehouses product table.

Although the sales transactions of the new product may be valid, this sales data will
not satisfy the referential integrity constraint between the product dimension table
and the sales fact table. Rather than disallow the new sales transactions, you might
choose to insert the sales transactions into the sales table. However, you might also
wish to maintain the referential integrity relationship between the sales and
product tables. This can be accomplished by inserting new rows into the product
table as placeholders for the unknown products.

As in previous examples, we assume that the new data for the sales table will be
staged in a separate table, new_sales. Using a single INSERT statement (which can
be parallelized), the product table can be altered to reflect the new products:

INSERT INTO product
(SELECT sales_product_id, 'Unknown Product Name', NULL, NULL ...
FROM new_sales WHERE sales_product_id NOT IN
(SELECT product_id FROM product));

Purging Data
Occasionally, it is necessary to remove large amounts of data from a data warehouse.

A very common scenario is the rolling window discussed previously, in which older
data is rolled out of the data warehouse to make room for new data.

However, sometimes other data might need to be removed from a data warehouse.
Suppose that a retail company has previously sold products from XYz Software, and
that XYZ Software has subsequently gone out of business. The business users of the
warehouse may decide that they are no longer interested in seeing any data related to
XYZ Software, so this data should be deleted.

One approach to removing a large volume of data is to use parallel delete as shown in
the following statement:

DELETE FROM sales WHERE sales_product_id IN (SELECT product_id
FROM product WHERE product_category = 'XYZ Software');

This SQL statement will spawn one parallel process for each partition. This approach
will be much more efficient than a serial DELETE statement, and none of the data in
the sales table will need to be moved. However, this approach also has some
disadvantages. When removing a large percentage of rows, the DELETE statement will
leave many empty row-slots in the existing partitions. If new data is being loaded
using a rolling window technique (or is being loaded using direct-path INSERT or
load), then this storage space will not be reclaimed. Moreover, even though the
DELETE statement is parallelized, there might be more efficient methods. An
alternative method is to re-create the entire sales table, keeping the data for all
product categories except XYZ Software.

CREATE TABLE sales2 AS SELECT * FROM sales, product
WHERE sales.sales_product_id = product.product_id

Maintaining the Data Warehouse 15-9

Refreshing Materialized Views

AND product_category <> 'XYZ Software'

NOLOGGING PARALLEL (DEGREE 8)

#PARTITION ... ; #create indexes, constraints, and so on
DROP TABLE SALES;

RENAME SALES2 TO SALES;

This approach may be more efficient than a parallel delete. However, it is also costly in
terms of the amount of disk space, because the sales table must effectively be
instantiated twice.

An alternative method to utilize less space is to re-create the sales table one partition
at a time:

CREATE TABLE sales_temp AS SELECT * FROM sales WHERE 1=0;

INSERT INTO sales_temp PARTITION (sales_99jan)

SELECT * FROM sales, product

WHERE sales.sales_product_id = product.product_id

AND product_category <> 'XYZ Software';

<create appropriate indexes and constraints on sales_temp>

ALTER TABLE sales EXCHANGE PARTITION sales_99jan WITH TABLE sales_temp;

Continue this process for each partition in the sales table.

Refreshing Materialized Views

When creating a materialized view, you have the option of specifying whether the
refresh occurs ON DEMAND or ON COMMIT. In the case of ON COMMIT, the materialized
view is changed every time a transaction commits, thus ensuring that the materialized
view always contains the latest data. Alternatively, you can control the time when
refresh of the materialized views occurs by specifying ON DEMAND. In this case, the
materialized view can only be refreshed by calling one of the procedures in the DBMS_
MVIEW package.

DBMS_MVIEW provides three different types of refresh operations.
= DBMS_MVIEW.REFRESH
Refresh one or more materialized views.
= DBMS_MVIEW.REFRESH_ALL_MVIEWS
Refresh all materialized views.
= DBMS_MVIEW.REFRESH_DEPENDENT

Refresh all materialized views that depend on a specified master table or
materialized view or list of master tables or materialized views.

See Also: "Manual Refresh Using the DBMS_MVIEW Package"
on page 15-12 for more information about this package

Performing a refresh operation requires temporary space to rebuild the indexes and
can require additional space for performing the refresh operation itself. Some sites
might prefer not to refresh all of their materialized views at the same time: as soon as
some underlying detail data has been updated, all materialized views using this data
will become stale. Therefore, if you defer refreshing your materialized views, you can
either rely on your chosen rewrite integrity level to determine whether or not a stale
materialized view can be used for query rewrite, or you can temporarily disable query
rewrite with an ALTER SYSTEM SET QUERY_REWRITE_ENABLED = FALSE
statement. After refreshing the materialized views, you can re-enable query rewrite as
the default for all sessions in the current database instance by specifying ALTER

15-10 Oracle Database Data Warehousing Guide

Refreshing Materialized Views

SYSTEM SET QUERY_REWRITE_ENABLED as TRUE. Refreshing a materialized view
automatically updates all of its indexes. In the case of full refresh, this requires
temporary sort space to rebuild all indexes during refresh. This is because the full
refresh truncates or deletes the table before inserting the new full data volume. If
insufficient temporary space is available to rebuild the indexes, then you must
explicitly drop each index or mark it UNUSABLE prior to performing the refresh
operation.

If you anticipate performing insert, update or delete operations on tables referenced
by a materialized view concurrently with the refresh of that materialized view, and
that materialized view includes joins and aggregation, Oracle recommends you use ON
COMMIT fast refresh rather than ON DEMAND fast refresh.

See Also: Oracle OLAP User’s Guide for information regarding the
refresh of cube organized materialized views

Complete Refresh

Fast Refresh

A complete refresh occurs when the materialized view is initially defined as BUILD
IMMEDIATE, unless the materialized view references a prebuilt table. For materialized
views using BUILD DEFERRED, a complete refresh must be requested before it can be
used for the first time. A complete refresh may be requested at any time during the life
of any materialized view. The refresh involves reading the detail tables to compute the
results for the materialized view. This can be a very time-consuming process,
especially if there are huge amounts of data to be read and processed. Therefore, you
should always consider the time required to process a complete refresh before
requesting it.

There are, however, cases when the only refresh method available for an already built
materialized view is complete refresh because the materialized view does not satisfy
the conditions specified in the following section for a fast refresh.

Most data warehouses have periodic incremental updates to their detail data. As
described in "Materialized View Schema Design" on page 8-5, you can use the
SQL*Loader or any bulk load utility to perform incremental loads of detail data. Fast
refresh of your materialized views is usually efficient, because instead of having to
recompute the entire materialized view, the changes are applied to the existing data.
Thus, processing only the changes can result in a very fast refresh time.

Partition Change Tracking (PCT) Refresh

When there have been some partition maintenance operations on the detail tables, this
is the only method of fast refresh that can be used. PCT-based refresh on a
materialized view is enabled only if all the conditions described in "Partition Change
Tracking" on page 9-1 are satisfied.

In the absence of partition maintenance operations on detail tables, when you request
a FAST method (method => 'F') of refresh through procedures in DBMS_MVIEW
package, Oracle will use a heuristic rule to try log-based rule fast refresh before
choosing PCT refresh. Similarly, when you request a FORCE method (method =>

' ? '), Oracle will choose the refresh method based on the following attempt order:
log-based fast refresh, PCT refresh, and complete refresh. Alternatively, you can
request the PCT method (method => 'P'), and Oracle will use the PCT method
provided all PCT requirements are satisfied.

Maintaining the Data Warehouse 15-11

Refreshing Materialized Views

Oracle can use TRUNCATE PARTITION on a materialized view if it satisfies the
conditions in "Benefits of Partitioning a Materialized View" on page 9-6 and hence,
make the PCT refresh process more efficient.

ON COMMIT Refresh

A materialized view can be refreshed automatically using the ON COMMIT method.
Therefore, whenever a transaction commits which has updated the tables on which a
materialized view is defined, those changes will be automatically reflected in the
materialized view. The advantage of using this approach is you never have to
remember to refresh the materialized view. The only disadvantage is the time required
to complete the commit will be slightly longer because of the extra processing
involved. However, in a data warehouse, this should not be an issue because there is
unlikely to be concurrent processes trying to update the same table.

Manual Refresh Using the DBMS_MVIEW Package

When a materialized view is refreshed ON DEMAND, one of four refresh methods can be
specified as shown in the following table. You can define a default option during the
creation of the materialized view. Table 15-1 details the refresh options.

Table 15-1 ON DEMAND Refresh Methods

Refresh Option Parameter Description

COMPLETE C
FAST F
FAST_PCT P
FORCE ?

Refreshes by recalculating the defining query of the materialized view.

Refreshes by incrementally applying changes to the materialized view.

For local materialized views, it chooses the refresh method which is estimated by optimizer to
be most efficient. The refresh methods considered are log-based FAST and FAST_PCT.

Refreshes by recomputing the rows in the materialized view affected by changed partitions in
the detail tables.

Attempts a fast refresh. If that is not possible, it does a complete refresh.

For local materialized views, it chooses the refresh method which is estimated by optimizer to
be most efficient. The refresh methods considered are log based FAST, FAST_PCT, and
COMPLETE.

Three refresh procedures are available in the DBMS_MVIEW package for performing ON
DEMAND refresh. Each has its own unique set of parameters.

See Also: Oracle Database PL/SQL Packages and Types Reference for
detailed information about the DBMS_MVIEW package and Oracle
Database Advanced Replication for information showing how to use it
in a replication environment

Refresh Specific Materialized Views with REFRESH

Use the DBMS_MVIEW.REFRESH procedure to refresh one or more materialized views.
Some parameters are used only for replication, so they are not mentioned here. The
required parameters to use this procedure are:

s The comma-delimited list of materialized views to refresh
n The refresh method: F-Fast, P-Fast_PCT, ?-Force, C-Complete
= The rollback segment to use

= Refresh after errors (TRUE or FALSE)

15-12 Oracle Database Data Warehousing Guide

Refreshing Materialized Views

A Boolean parameter. If set to TRUE, the number_of_failures output
parameter will be set to the number of refreshes that failed, and a generic error
message will indicate that failures occurred. The alert log for the instance will give
details of refresh errors. If set to FALSE, the default, then refresh will stop after it
encounters the first error, and any remaining materialized views in the list will not
be refreshed.

s The following four parameters are used by the replication process. For warehouse
refresh, set them to FALSE, 0,0, 0.

= Atomic refresh (TRUE or FALSE)

If set to TRUE, then all refreshes are done in one transaction. If set to FALSE, then
the refresh of each specified materialized view is done in a separate transaction. If
set to FALSE, Oracle can optimize refresh by using parallel DML and truncate
DDL on a materialized views. When a materialized view is refreshed in atomic
mode, it is eligible for query rewrite if the rewrite integrity mode is set to stale_
tolerated.

For example, to perform a fast refresh on the materialized view cal_month_sales_
mv, the DBMS_MVIEW package would be called as follows:

DBMS_MVIEW.REFRESH('CAL_MONTH_SALES MV', 'F', '', TRUE, FALSE, 0,0,0, FALSE);

Multiple materialized views can be refreshed at the same time, and they do not all
have to use the same refresh method. To give them different refresh methods, specify
multiple method codes in the same order as the list of materialized views (without
commas). For example, the following specifies that cal_month_sales_mv be
completely refreshed and fweek_pscat_sales_mv receive a fast refresh:

DBMS_MVIEW.REFRESH ('CAL_MONTH_SALES_MV, FWEEK_PSCAT_SALES_MV', 'CF', '',
TRUE, FALSE, 0,0,0, FALSE);

If the refresh method is not specified, the default refresh method as specified in the
materialized view definition will be used.

Refresh All Materialized Views with REFRESH_ALL_MVIEWS

An alternative to specifying the materialized views to refresh is to use the procedure
DBMS_MVIEW.REFRESH_ALL_MVIEWS. This procedure refreshes all materialized
views. If any of the materialized views fails to refresh, then the number of failures is
reported.

The parameters for this procedure are:

s The number of failures (this is an OUT variable)

» The refresh method: F-Fast, P-Fast_PCT, ?-Force, C-Complete
» Refresh after errors (TRUE or FALSE)

A Boolean parameter. If set to TRUE, the number_of_failures output
parameter will be set to the number of refreshes that failed, and a generic error
message will indicate that failures occurred. The alert log for the instance will give
details of refresh errors. If set to FALSE, the default, then refresh will stop after it
encounters the first error, and any remaining materialized views in the list will not
be refreshed.

= Atomic refresh (TRUE or FALSE)

If set to TRUE, then all refreshes are done in one transaction. If set to FALSE, then
the refresh of each specified materialized view is done in a separate transaction. If

Maintaining the Data Warehouse 15-13

Refreshing Materialized Views

set to FALSE, Oracle can optimize refresh by using parallel DML and truncate
DDL on a materialized views. When a materialized view is refreshed in atomic
mode, it is eligible for query rewrite if the rewrite integrity mode is set to stale_
tolerated.

An example of refreshing all materialized views is the following:

DBMS_MVIEW.REFRESH ALL_MVIEWS (failures,'C','', TRUE, FALSE);

Refresh Dependent Materialized Views with REFRESH_DEPENDENT

The third procedure, DBMS_MVIEW.REFRESH_DEPENDENT, refreshes only those
materialized views that depend on a specific table or list of tables. For example,
suppose the changes have been received for the orders table but not for customer
payments. The refresh dependent procedure can be called to refresh only those
materialized views that reference the orders table.

The parameters for this procedure are:

s The number of failures (this is an OQUT variable)

= The dependent table

» The refresh method: F-Fast, P-Fast_PCT, ?-Force, C-Complete
s The rollback segment to use

» Refresh after errors (TRUE or FALSE)

A Boolean parameter. If set to TRUE, the number_of_failures output
parameter will be set to the number of refreshes that failed, and a generic error
message will indicate that failures occurred. The alert log for the instance will give
details of refresh errors. If set to FALSE, the default, then refresh will stop after it
encounters the first error, and any remaining materialized views in the list will not
be refreshed.

s Atomic refresh (TRUE or FALSE)

If set to TRUE, then all refreshes are done in one transaction. If set to FALSE, then
the refresh of each specified materialized view is done in a separate transaction. If
set to FALSE, Oracle can optimize refresh by using parallel DML and truncate
DDL on a materialized views. When a materialized view is refreshed in atomic
mode, it is eligible for query rewrite if the rewrite integrity mode is set to stale_
tolerated.

s Whether it is nested or not

If set to TRUE, refresh all the dependent materialized views of the specified set of
tables based on a dependency order to ensure the materialized views are truly
fresh with respect to the underlying base tables.

To perform a full refresh on all materialized views that reference the customers
table, specify:

DBMS_MVIEW.REFRESH DEPENDENT (failures, 'CUSTOMERS', 'C', '', FALSE, FALSE);

Using Job Queues for Refresh

Job queues can be used to refresh multiple materialized views in parallel. If queues are
not available, fast refresh will sequentially refresh each view in the foreground
process. To make queues available, you must set the JOB_QUEUE_PROCESSES
parameter. This parameter defines the number of background job queue processes and
determines how many materialized views can be refreshed concurrently. Oracle tries

15-14 Oracle Database Data Warehousing Guide

Refreshing Materialized Views

to balance the number of concurrent refreshes with the degree of parallelism of each
refresh. The order in which the materialized views are refreshed is determined by
dependencies imposed by nested materialized views and potential for efficient refresh
by using query rewrite against other materialized views (See "Scheduling Refresh" on
page 15-18 for details). This parameter is only effective when atomic_refreshis set
to FALSE.

If the process that is executing DBMS_MVIEW . REFRESH is interrupted or the instance is
shut down, any refresh jobs that were executing in job queue processes will be
requeued and will continue running. To remove these jobs, use the DBMS_
JOB.REMOVE procedure.

When Fast Refresh is Possible

Not all materialized views may be fast refreshable. Therefore, use the package DBMS_
MVIEW.EXPLAIN_ MVIEW to determine what refresh methods are available for a
materialized view. See Chapter 8, "Basic Materialized Views" for further information
about the DBMS_MVIEW package.

If you are not sure how to make a materialized view fast refreshable, you can use the
DBMS_ADVISOR.TUNE_MVIEW procedure, which will provide a script containing the
statements required to create a fast refreshable materialized view. See the Oracle
Database Performance Tuning Guide for more information.

Recommended Initialization Parameters for Parallelism

The following initialization parameters need to be set properly for parallelism to be
effective:

= PARALLEL_MAX_ SERVERS should be set high enough to take care of parallelism.
You need to consider the number of slaves needed for the refresh statement. For
example, with a degree of parallelism of eight, you need 16 slave processes.

s PGA_AGGREGATE_TARGET should be set for the instance to manage the memory
usage for sorts and joins automatically. If the memory parameters are set
manually, SORT_AREA_SIZE should be less than HASH_AREA_SIZE.

= OPTIMIZER MODE should equal all_rows.
Remember to analyze all tables and indexes for better optimization.

See the parallel execution chapter in Oracle Database VLDB and Partitioning Guide for
further information.

Monitoring a Refresh

While a job is running, you can query the V$SESSION_LONGOPS view to tell you the
progress of each materialized view being refreshed.

SELECT * FROM VS$SESSION_LONGOPS;

To look at the progress of which jobs are on which queue, use:

SELECT * FROM DBA_JOBS_RUNNING;

Checking the Status of a Materialized View

Three views are provided for checking the status of a materialized view: DBA_MVEIWS,
ALL_MVIEWS, and USER_MVIEWS. To check if a materialized view is fresh or stale,
issue the following statement:

Maintaining the Data Warehouse 15-15

Refreshing Materialized Views

SELECT MVIEW_NAME, STALENESS, LAST_REFRESH_TYPE, COMPILE_STATE
FROM USER_MVIEWS ORDER BY MVIEW_NAME;

MVIEW_NAME STALENESS LAST_REF COMPILE_STATE
CUST_MTH_SALES_MV NEEDS_COMPILE FAST NEEDS_COMPILE
PROD_YR_SALES_MV FRESH FAST VALID

If the compile_state column shows NEEDS COMPILE, the other displayed column
values cannot be trusted as reflecting the true status. To revalidate the materialized
view, issue the following statement:

ALTER MATERIALIZED VIEW [materialized_view_name] COMPILE;

Then reissue the SELECT statement.

Viewing Partition Freshness

Several views are available that enable you to verify the status of base table partitions
and determine which ranges of materialized view data are fresh and which are stale.
The views are as follows:

L] * _USER_MVIEWS

To determine Partition Change Tracking (PCT) information for the materialized
view.

L] * _USER_MVIEW_DETAIL_RELATIONS

To display partition information for the detail table a materialized view is based
on.

u * _USER_MVIEW_DETAIL_PARTITION
To determine which partitions are fresh.

u *_USER_MVIEW_DETAIL_SUBPARTITION
To determine which subpartitions are fresh.

The use of these views is illustrated in the following examples. Figure 15-1 illustrates a
range-list partitioned table and a materialized view based on it. The partitions are P1,
P2, P3, and P4, while the subpartitions are SP1, SP2, and SP3.

Figure 15-1 Determining PCT Freshness

MV1

SP1 SP2 SP3 _ .-
P1 -

P2
P3
P4 - -

Examples of Using Views to Determine Freshness This section illustrates examples of
determining the PCT and freshness information for materialized views and their detail
tables.

15-16 Oracle Database Data Warehousing Guide

Refreshing Materialized Views

Example 15-8 Verifying the PCT Status of a Materialized View

Query USER_MVIEWS to access PCT information about the materialized view, as
shown in the following:

SELECT MVIEW_NAME, NUM_PCT TABLES, NUM_FRESH_PCT REGIONS,
NUM_STALE_PCT_REGIONS

FROM USER_MVIEWS

WHERE MVIEW_NAME = MV1;

MVIEW_NAME NUM_PCT TABLES NUM_FRESH PCT REGIONS NUM_STALE_PCT REGIONS

Example 15-9 Verifying the PCT Status in a Materialized View's Detail Table

Query USER_MVIEW DETAIL_RELATIONS to access PCT detail table information, as
shown in the following:

SELECT MVIEW_NAME, DETAILOBJ_NAME, DETAILOBJ_PCT,
NUM_FRESH_PCT_PARTITIONS, NUM_STALE_PCT_PARTITIONS

FROM USER_MVIEW_DETAIL_RELATIONS

WHERE MVIEW_NAME = MV1;

MVIEW_NAME DETAILOBJ_NAME DETAIL_OBJ_PCT NUM_FRESH_PCT_PARTITIONS NUM_STALE_PCT_PARTITIONS

Example 15-10 Verifying Which Partitions are Fresh

Query USER_MVIEW DETAIL_PARTITION to access PCT freshness information for
partitions, as shown in the following:

SELECT MVIEW_NAME, DETAILOBJ_NAME, DETAIL_PARTITION_NAME,
DETAIL_PARTITION_POSITION, FRESHNESS

FROM USER_MVIEW_DETAIL_PARTITION

WHERE MVIEW_NAME = MV1;

MVIEW_NAME DETAILOBJ_NAME DETAIL_PARTITION_NAME DETAIL_PARTITION_POSITION FRESHNESS

MVl T1 Pl 1 FRESH
MV1 T1 P2 2 FRESH
MV1 T1 P3 3 STALE
MV1 T1 P4 4 FRESH

Example 15-11 Verifying Which Subpatrtitions are Fresh

Query USER_MVIEW_DETAIL_SUBPARTITION to access PCT freshness information
for subpartitions, as shown in the following;:

SELECT MVIEW_NAME, DETAILOBJ_NAME, DETAIL_PARTITION_NAME, DETAIL_SUBPARTITION_NAME,
DETAIL_SUBPARTITION_POSITION, FRESHNESS

FROM USER_MVIEW_DETAIL_SUBPARTITION

WHERE MVIEW_NAME = MV1;

MVIEW_NAME DETAILOBJ DETAIL_PARTITION DETAIL_SUBPARTITION_NAME DETAIL_SUBPARTITION_POS FRESHNESS

MV1 T1 Pl SpP1l 1 FRESH
MVl T1 Pl SP2 1 FRESH
MVl T1 Pl SP3 1 FRESH
MVl T1 P2 SP1 1 FRESH
MV1 T1 P2 SP2 1 FRESH
MV1 T1 P2 SP3 1 FRESH

Maintaining the Data Warehouse 15-17

Refreshing Materialized Views

MVl T1 P3 SP1 1 STALE
MV1 T1 P3 SP2 1 STALE
MV1 T1 P3 SP3 1 STALE
MV1 T1 P4 SpP1l 1 FRESH
MV1 T1 P4 SP2 1 FRESH
MVl T1 P4 SP3 1 FRESH

Scheduling Refresh

Very often you will have multiple materialized views in the database. Some of these
can be computed by rewriting against others. This is very common in data
warehousing environment where you may have nested materialized views or
materialized views at different levels of some hierarchy.

In such cases, you should create the materialized views as BUILD DEFERRED, and
then issue one of the refresh procedures in DBMS_MVIEW package to refresh all the
materialized views. Oracle Database will compute the dependencies and refresh the
materialized views in the right order. Consider the example of a complete hierarchical
cube described in "Examples of Hierarchical Cube Materialized Views" on page 20-24.
Suppose all the materialized views have been created as BUILD DEFERRED. Creating
the materialized views as BUILD DEFERRED will only create the metadata for all the
materialized views. And, then, you can just call one of the refresh procedures in
DBMS_MVIEW package to refresh all the materialized views in the right order:

DECLARE numerrs PLS_INTEGER;
BEGIN DBMS_MVIEW.REFRESH_DEPENDENT (

number_of_failures => numerrs, list=>'SALES', method => 'C');
DBMS_OUTPUT.PUT_LINE('There were ' || numerrs || ' errors during refresh');
END;
/

The procedure will refresh the materialized views in the order of their dependencies
(first sales_hierarchical_mon_cube_mv, followed by sales_hierarchical_
gtr_cube_mv, then, sales_hierarchical_yr_cube_mv and finally, sales_
hierarchical_all_cube_mv). Each of these materialized views will get rewritten
against the one prior to it in the list).

The same kind of rewrite can also be used while doing PCT refresh. PCT refresh
recomputes rows in a materialized view corresponding to changed rows in the detail
tables. And, if there are other fresh materialized views available at the time of refresh,
it can go directly against them as opposed to going against the detail tables.

Hence, it is always beneficial to pass a list of materialized views to any of the refresh
procedures in DBMS_MVIEW package (irrespective of the method specified) and let the
procedure figure out the order of doing refresh on materialized views.

Tips for Refreshing Materialized Views with Aggregates

15-18

Following are some guidelines for using the refresh mechanism for materialized views
with aggregates.

» For fast refresh, create materialized view logs on all detail tables involved in a
materialized view with the ROWID, SEQUENCE and INCLUDING NEW VALUES
clauses.

Include all columns from the table likely to be used in materialized views in the
materialized view logs.

Fast refresh may be possible even if the SEQUENCE option is omitted from the
materialized view log. If it can be determined that only inserts or deletes will

Oracle Database Data Warehousing Guide

Refreshing Materialized Views

occur on all the detail tables, then the materialized view log does not require the
SEQUENCE clause. However, if updates to multiple tables are likely or required or
if the specific update scenarios are unknown, make sure the SEQUENCE clause is
included.

Use Oracle's bulk loader utility or direct-path INSERT (INSERT with the APPEND
hint for loads).

This is a lot more efficient than conventional insert. During loading, disable all
constraints and re-enable when finished loading. Note that materialized view logs
are required regardless of whether you use direct load or conventional DML.

Try to optimize the sequence of conventional mixed DML operations, direct-path
INSERT and the fast refresh of materialized views. You can use fast refresh with a
mixture of conventional DML and direct loads. Fast refresh can perform
significant optimizations if it finds that only direct loads have occurred, as
illustrated in the following:

1. Direct-path INSERT (SQL*Loader or INSERT /*+ APPEND */)into the
detail table

2. Refresh materialized view
3. Conventional mixed DML
4. Refresh materialized view

You can use fast refresh with conventional mixed DML (INSERT, UPDATE, and
DELETE) to the detail tables. However, fast refresh will be able to perform
significant optimizations in its processing if it detects that only inserts or deletes
have been done to the tables, such as:

= DML INSERT or DELETE to the detail table

= Refresh materialized views

= DML update to the detail table

= Refresh materialized view

Even more optimal is the separation of INSERT and DELETE.

If possible, refresh should be performed after each type of data change (as shown
earlier) rather than issuing only one refresh at the end. If that is not possible,
restrict the conventional DML to the table to inserts only, to get much better
refresh performance. Avoid mixing deletes and direct loads.

Furthermore, for refresh ON COMMIT, Oracle keeps track of the type of DML done
in the committed transaction. Therefore, do not perform direct-path INSERT and
DML to other tables in the same transaction, as Oracle may not be able to optimize
the refresh phase.

For ON COMMIT materialized views, where refreshes automatically occur at the end
of each transaction, it may not be possible to isolate the DML statements, in which
case keeping the transactions short will help. However, if you plan to make
numerous modifications to the detail table, it may be better to perform them in
one transaction, so that refresh of the materialized view will be performed just
once at commit time rather than after each update.

Oracle recommends partitioning the tables because it enables you to use:
= Parallel DML

For large loads or refresh, enabling parallel DML will help shorten the length
of time for the operation.

Maintaining the Data Warehouse 15-19

Refreshing Materialized Views

s Partition Change Tracking (PCT) fast refresh

You can refresh your materialized views fast after partition maintenance
operations on the detail tables. "Partition Change Tracking" on page 9-1 for
details on enabling PCT for materialized views.

= Partitioning the materialized view will also help refresh performance as refresh
can update the materialized view using parallel DML. For example, assume that
the detail tables and materialized view are partitioned and have a parallel clause.
The following sequence would enable Oracle to parallelize the refresh of the
materialized view.

1. Bulk load into the detail table.

2. Enable parallel DML with an ALTER SESSION ENABLE PARALLEL DML
statement.

3. Refresh the materialized view.

s For refresh using DBMS_MVIEW.REFRESH, set the parameter atomic_refreshto
FALSE.

= For COMPLETE refresh, this will TRUNCATE to delete existing rows in the
materialized view, which is faster than a delete.

s For PCT refresh, if the materialized view is partitioned appropriately, this will
use TRUNCATE PARTITION to delete rows in the affected partitions of the
materialized view, which is faster than a delete.

s For FAST or FORCE refresh, if COMPLETE or PCT refresh is chosen, this will be
able to use the TRUNCATE optimizations described earlier.

s When using DBMS_MVIEW.REFRESH with JOB_QUEUES, remember to set atomic
to FALSE. Otherwise, JOB_QUEUES will not get used. Set the number of job queue
processes greater than the number of processors.

If job queues are enabled and there are many materialized views to refresh, it is
faster to refresh all of them in a single command than to call them individually.

= Use REFRESH FORCE to ensure refreshing a materialized view so that it can
definitely be used for query rewrite. The best refresh method will be chosen. If a
fast refresh cannot be done, a complete refresh will be performed.

= Refresh all the materialized views in a single procedure call. This gives Oracle an
opportunity to schedule refresh of all the materialized views in the right order
taking into account dependencies imposed by nested materialized views and
potential for efficient refresh by using query rewrite against other materialized
views.

Tips for Refreshing Materialized Views Without Aggregates

If a materialized view contains joins but no aggregates, then having an index on each
of the join column rowids in the detail table will enhance refresh performance greatly,
because this type of materialized view tends to be much larger than materialized
views containing aggregates. For example, consider the following materialized view:

CREATE MATERIALIZED VIEW detail_fact_mv BUILD IMMEDIATE AS

SELECT s.rowid "sales_rid", t.rowid "times_rid", c.rowid "cust_rid",
c.cust_state_province, t.week_ending day, s.amount_sold

FROM sales s, times t, customers c

WHERE s.time_id = t.time_id AND s.cust_id = c.cust_id;

15-20 Oracle Database Data Warehousing Guide

Refreshing Materialized Views

Indexes should be created on columns sales_rid, times_ridand cust_rid.
Partitioning is highly recommended, as is enabling parallel DML in the session before
invoking refresh, because it will greatly enhance refresh performance.

This type of materialized view can also be fast refreshed if DML is performed on the
detail table. It is recommended that the same procedure be applied to this type of
materialized view as for a single table aggregate. That is, perform one type of change
(direct-path INSERT or DML) and then refresh the materialized view. This is because
Oracle Database can perform significant optimizations if it detects that only one type
of change has been done.

Also, Oracle recommends that the refresh be invoked after each table is loaded, rather
than load all the tables and then perform the refresh.

For refresh ON COMMIT, Oracle keeps track of the type of DML done in the committed
transaction. Oracle therefore recommends that you do not perform direct-path and
conventional DML to other tables in the same transaction because Oracle may not be
able to optimize the refresh phase. For example, the following is not recommended:

1. Direct load new data into the fact table
2. DML into the store table
3. Commit

Also, try not to mix different types of conventional DML statements if possible. This
would again prevent using various optimizations during fast refresh. For example, try
to avoid the following:

1. Insert into the fact table
2. Delete from the fact table
3. Commit

If many updates are needed, try to group them all into one transaction because refresh
will be performed just once at commit time, rather than after each update.

In a data warehousing environment, assuming that the materialized view has a
parallel clause, the following sequence of steps is recommended:

1. Bulk load into the fact table
2. Enable parallel DML
3. An ALTER SESSION ENABLE PARALLEL DML statement

4. Refresh the materialized view

Tips for Refreshing Nested Materialized Views

All underlying objects are treated as ordinary tables when refreshing materialized
views. If the ON COMMIT refresh option is specified, then all the materialized views are
refreshed in the appropriate order at commit time. In other words, Oracle builds a
partially ordered set of materialized views and refreshes them such that, after the
successful completion of the refresh, all the materialized views are fresh. The status of
the materialized views can be checked by querying the appropriate USER_, DBA_, or
ALL_MVIEWS view.

If any of the materialized views are defined as ON DEMAND refresh (irrespective of
whether the refresh method is FAST, FORCE, or COMPLETE), you will need to refresh
them in the correct order (taking into account the dependencies between the
materialized views) because the nested materialized view will be refreshed with
respect to the current contents of the other materialized views (whether fresh or not).

Maintaining the Data Warehouse 15-21

Refreshing Materialized Views

This can be achieved by invoking the refresh procedure against the materialized view
at the top of the nested hierarchy and specifying the nested parameter as TRUE.

If a refresh fails during commit time, the list of materialized views that has not been
refreshed is written to the alert log, and you must manually refresh them along with
all their dependent materialized views.

Use the same DBMS_MVIEW procedures on nested materialized views that you use on
regular materialized views.

These procedures have the following behavior when used with nested materialized
views:

» If REFRESH is applied to a materialized view my_mv that is built on other
materialized views, then my_mv will be refreshed with respect to the current
contents of the other materialized views (that is, the other materialized views will
not be made fresh first) unless you specify nested => TRUE.

» If REFRESH_DEPENDENT is applied to materialized view my_mv, then only
materialized views that directly depend on my_mv will be refreshed (that is, a
materialized view that depends on a materialized view that depends on my_mv
will not be refreshed) unless you specify nested => TRUE.

s IfREFRESH_ALIL_MVIEWS is used, the order in which the materialized views will
be refreshed is guaranteed to respect the dependencies between nested
materialized views.

= GET_MV_DEPENDENCIES provides a list of the immediate (or direct) materialized
view dependencies for an object.

Tips for Fast Refresh with UNION ALL

You can use fast refresh for materialized views that use the UNION ALL operator by
providing a maintenance column in the definition of the materialized view. For
example, a materialized view with a UNION ALL operator can be made fast refreshable
as follows:

CREATE MATERIALIZED VIEW fast_rf_union_all_mv AS

SELECT x.rowid AS rl, y.rowid AS r2, a, b, ¢, 1 AS marker
FROM x, y WHERE x.a = y.b

UNION ALL

SELECT p.rowid, r.rowid, a, c, d, 2 AS marker

FROM p, r WHERE p.a = r.y;

The form of a maintenance marker column, column MARKER in the example, must be
numeric_or_string_ literal AS column_alias, where each UNION ALL
member has a distinct value for numeric_or_string literal.

Tips for Fast Refresh with Commit SCN-Based Materialized View Logs

You can often improve fast refresh performance by ensuring that your materialized
view logs on the base table contain a WITH COMMIT SCN clause, often significantly. By
optimizing materialized view log processing WITH COMMIT SCN, the fast refresh
process can save time. The following example illustrates how to use this clause:

CREATE MATERIALIZED VIEW LOG ON sales WITH ROWID
(prod_id, cust_id, time_id, channel_id, promo_id, quantity_sold, amount_sold),
COMMIT SCN INCLUDING NEW VALUES;

The materialized view refresh will then automatically use the commit SCN-based
materialized view log to save refresh time.

15-22 Oracle Database Data Warehousing Guide

Using Materialized Views with Partitioned Tables

Note that only new materialized view logs can take advantage of COMMIT SCN.
Existing materialized view logs cannot be altered to add COMMIT SCN unless they are
dropped and recreated.

When a materialized view is created on both base tables with timestamp-based
materialized view logs and base tables with commit SCN-based materialized view
logs, an error (ORA-32414) will be raised stating that materialized view logs are not
compatible with each other for fast refresh.

Tips After Refreshing Materialized Views

After you have performed a load or incremental load and rebuilt the detail table
indexes, you need to re-enable integrity constraints (if any) and refresh the
materialized views and materialized view indexes that are derived from that detail
data. In a data warehouse environment, referential integrity constraints are normally
enabled with the NOVALIDATE or RELY options. An important decision to make before
performing a refresh operation is whether the refresh needs to be recoverable. Because
materialized view data is redundant and can always be reconstructed from the detail
tables, it might be preferable to disable logging on the materialized view. To disable
logging and run incremental refresh non-recoverably, use the ALTER MATERIALIZED
VIEW ... NOLOGGING statement prior to refreshing.

If the materialized view is being refreshed using the ON COMMIT method, then,
following refresh operations, consult the alert log alert_SID . log and the trace file
ora_SID number. trc to check that no errors have occurred.

Using Materialized Views with Partitioned Tables

A major maintenance component of a data warehouse is synchronizing (refreshing)
the materialized views when the detail data changes. Partitioning the underlying
detail tables can reduce the amount of time taken to perform the refresh task. This is
possible because partitioning enables refresh to use parallel DML to update the
materialized view. Also, it enables the use of Partition Change Tracking.

Fast Refresh with Partition Change Tracking

In a data warehouse, changes to the detail tables can often entail partition maintenance
operations, such as DROP, EXCHANGE, MERGE, and ADD PARTITION. To maintain the
materialized view after such operations used to require manual maintenance (see also
CONSIDER FRESH) or complete refresh. You now have the option of using an addition
to fast refresh known as Partition Change Tracking (PCT) refresh.

For PCT to be available, the detail tables must be partitioned. The partitioning of the
materialized view itself has no bearing on this feature. If PCT refresh is possible, it will
occur automatically and no user intervention is required in order for it to occur. See
"Partition Change Tracking" on page 9-1 for PCT requirements.

The following examples illustrate the use of this feature. In "PCT Fast Refresh Scenario
1", assume sales is a partitioned table using the time_id column and products is
partitioned by the prod_category column. The table t imes is not a partitioned
table.

PCT Fast Refresh Scenario 1

1. The following materialized view satisfies requirements for PCT.

CREATE MATERIALIZED VIEW cust_mth_sales_mv
BUILD IMMEDIATE

Maintaining the Data Warehouse 15-23

Using Materialized Views with Partitioned Tables

REFRESH FAST ON DEMAND

ENABLE QUERY REWRITE AS

SELECT s.time_id, s.prod_id, SUM(s.quantity_sold), SUM(s.amount_sold),
p.prod_name, t.calendar_month_name, COUNT(*),
COUNT (s.quantity_sold), COUNT (s.amount_sold)

FROM sales s, products p, times t

WHERE s.time_id = t.time_id AND s.prod_id = p.prod_id

GROUP BY t.calendar_month_name, s.prod_id, p.prod_name, s.time_id;

2. You can use the DBMS_MVIEW.EXPLAIN_MVIEW procedure to determine which
tables will allow PCT refresh.

MVNAME CAPABILITY_NAME POSSIBLE RELATED_TEXT MSGTXT
CUST_MTH_SALES_MV PCT Y SALES
CUST_MTH_SALES_MV PCT_TABLE Y SALES
CUST_MTH_SALES MV PCT_TABLE N PRODUCTS no partition key
or PMARKER
in SELECT list
CUST_MTH_SALES_MV PCT_TABLE N TIMES relation is not
partitionedtable

As can be seen from the partial sample output from EXPLAIN_MVIEW, any
partition maintenance operation performed on the sales table will allow PCT fast
refresh. However, PCT is not possible after partition maintenance operations or
updates to the products table as there is insufficient information contained in
cust_mth_sales_mv for PCT refresh to be possible. Note that the times table is
not partitioned and hence can never allow for PCT refresh. Oracle Database will
apply PCT refresh if it can determine that the materialized view has sufficient
information to support PCT for all the updated tables. You can verify which
partitions are fresh and stale with views such as DBA_MVIEWS and DBA_MVIEW_
DETAIL_PARTITION.

See "Analyzing Materialized View Capabilities" on page 8-28 for information on
how to use this procedure and also some details regarding PCT-related views.

3. Suppose at some later point, a SPLIT operation of one partition in the sales table
becomes necessary.

ALTER TABLE SALES
SPLIT PARTITION month3 AT (TO_DATE('05-02-1998', 'DD-MM-YYYY'))
INTO (PARTITION month3_1 TABLESPACE summ,

PARTITION month3 TABLESPACE summ) ;

4. Insertsome data into the sales table.
5. Fastrefresh cust_mth_sales_mv using the DBMS_MVIEW.REFRESH procedure.
EXECUTE DBMS_MVIEW.REFRESH('CUST_MTH_SALES MV', 'F',

'',TRUE, FALSE, 0,0, 0, FALSE) ;

Fast refresh will automatically do a PCT refresh as it is the only fast refresh possible in
this scenario. However, fast refresh will not occur if a partition maintenance operation
occurs when any update has taken place to a table on which PCT is not enabled. This
is shown in "PCT Fast Refresh Scenario 2".

"PCT Fast Refresh Scenario 1" would also be appropriate if the materialized view was
created using the PMARKER clause as illustrated in the following:

CREATE MATERIALIZED VIEW cust_sales_marker mv
BUILD IMMEDIATE
REFRESH FAST ON DEMAND

15-24 Oracle Database Data Warehousing Guide

Using Materialized Views with Partitioned Tables

ENABLE QUERY REWRITE AS

SELECT DBMS_MVIEW.PMARKER (s.rowid) s_marker, SUM(s.quantity_sold),
SUM (s.amount_sold), p.prod_name, t.calendar month_name, COUNT(*),
COUNT (s.quantity_sold), COUNT (s.amount_sold)

FROM sales s, products p, times t

WHERE s.time_id = t.time_id AND s.prod_id = p.prod_id

GROUP BY DBMS_MVIEW.PMARKER (s.rowid),

p.prod_name, t.calendar_month_name;

PCT Fast Refresh Scenario 2

In "PCT Fast Refresh Scenario 2", the first three steps are the same as in "PCT Fast
Refresh Scenario 1" on page 15-23. Then, the SPLIT partition operation to the sales
table is performed, but before the materialized view refresh occurs, records are
inserted into the times table.

1. The same as in "PCT Fast Refresh Scenario 1".
2. The same as in "PCT Fast Refresh Scenario 1".
3. The same as in "PCT Fast Refresh Scenario 1".
4

After issuing the same SPLIT operation, as shown in "PCT Fast Refresh Scenario
1", some data will be inserted into the t imes table.

ALTER TABLE SALES
SPLIT PARTITION month3 AT (TO_DATE('05-02-1998', 'DD-MM-YYYY'))
INTO (PARTIITION month3_1 TABLESPACE summ,

PARTITION month3 TABLESPACE summ) ;

5. Refresh cust_mth_sales_mv.

EXECUTE DBMS_MVIEW.REFRESH('CUST MTH_SALES_MV', 'F',
"', TRUE, FALSE, 0,0, 0,FALSE) ;
ORA-12052: cannot fast refresh materialized view SH.CUST MTH_SALES_MV

The materialized view is not fast refreshable because DML has occurred to a table on
which PCT fast refresh is not possible. To avoid this occurring, Oracle recommends
performing a fast refresh immediately after any partition maintenance operation on
detail tables for which partition tracking fast refresh is available.

If the situation in "PCT Fast Refresh Scenario 2" occurs, there are two possibilities;
perform a complete refresh or switch to the CONSIDER FRESH option outlined in the
following, if suitable. However, it should be noted that CONSIDER FRESH and
partition change tracking fast refresh are not compatible. Once the ALTER
MATERIALIZED VIEW cust_mth_sales_mv CONSIDER FRESH statement has been
issued, PCT refresh will no longer be applied to this materialized view, until a
complete refresh is done. Moreover, you should not use CONSIDER FRESH unless you
have taken manual action to ensure that the materialized view is indeed fresh.

A common situation in a data warehouse is the use of rolling windows of data. In this
case, the detail table and the materialized view may contain say the last 12 months of
data. Every month, new data for a month is added to the table and the oldest month is
deleted (or maybe archived). PCT refresh provides a very efficient mechanism to
maintain the materialized view in this case.

PCT Fast Refresh Scenario 3

1. The new data is usually added to the detail table by adding a new partition and
exchanging it with a table containing the new data.

ALTER TABLE sales ADD PARTITION month _new ...

Maintaining the Data Warehouse 15-25

Using Materialized Views with Partitioned Tables

ALTER TABLE sales EXCHANGE PARTITION month_new month_new_table

2. Next, the oldest partition is dropped or truncated.

ALTER TABLE sales DROP PARTITION month_oldest;

3. Now, if the materialized view satisfies all conditions for PCT refresh.

EXECUTE DBMS_MVIEW.REFRESH('CUST _MTH_SALES_MV', 'F', '', TRUE,
FALSE, 0,0,0,FALSE) ;

Fast refresh will automatically detect that PCT is available and perform a PCT refresh.

Fast Refresh with CONSIDER FRESH

In a data warehouse, you may often wish to accumulate historical information in the
materialized view even though this information is no longer in the detailed tables. In
this case, you could maintain the materialized view using the ALTER MATERIALIZED
VIEW materialized_view_name CONSIDER FRESH statement.

Note that CONSIDER FRESH declares that the contents of the materialized view are
FRESH (in sync with the detail tables). Care must be taken when using this option in
this scenario in conjunction with query rewrite because you may see unexpected
results.

After using CONSIDER FRESH in an historical scenario, you will be able to apply
traditional fast refresh after DML and direct loads to the materialized view, but not
PCT fast refresh. This is because if the detail table partition at one time contained data
that is currently kept in aggregated form in the materialized view, PCT refresh in
attempting to resynchronize the materialized view with that partition could delete
historical data which cannot be recomputed.

Assume the sales table stores the prior year's data and the cust_mth_sales_mv
keeps the prior 10 years of data in aggregated form.

1. Remove old data from a partition in the sales table:
ALTER TABLE sales TRUNCATE PARTITION monthl;
The materialized view is now considered stale and requires a refresh because of

the partition operation. However, as the detail table no longer contains all the data
associated with the partition fast refresh cannot be attempted.

2. Therefore, alter the materialized view to tell Oracle Database to consider it fresh.
ALTER MATERTIALIZED VIEW cust_mth_sales_mv CONSIDER FRESH;
This statement informs Oracle Database that cust_mth_sales_mv is fresh for
your purposes. However, the materialized view now has a status that is neither
known fresh nor known stale. Instead, it is UNKNOWN. If the materialized view has

query rewrite enabled in QUERY_REWRITE_INTEGRITY = stale_tolerated
mode, it will be used for rewrite.

3. Insert datainto sales.
4. Refresh the materialized view.

EXECUTE DBMS_MVIEW.REFRESH('CUST _MTH_SALES_MV', 'F', '', TRUE,
FALSE, 0,0,0,FALSE) ;

Because the fast refresh detects that only INSERT statements occurred against the
sales table it will update the materialized view with the new data. However, the

15-26 Oracle Database Data Warehousing Guide

Using Materialized Views with Partitioned Tables

status of the materialized view will remain UNKNOWN. The only way to return the
materialized view to FRESH status is with a complete refresh which, also will
remove the historical data from the materialized view.

Maintaining the Data Warehouse 15-27

Using Materialized Views with Partitioned Tables

15-28 Oracle Database Data Warehousing Guide

16

Change Data Capture

Change Data Capture efficiently identifies and captures data that has been added to,
updated in, or removed from, Oracle relational tables and makes this change data
available for use by applications or individuals.

This chapter describes Change Data Capture in the following sections:
s Overview of Change Data Capture

s Change Sources and Modes of Change Data Capture

= Change Sets

= Change Tables

» Getting Information About the Change Data Capture Environment
s Preparing to Publish Change Data

s Publishing Change Data

= Subscribing to Change Data

= Managing Published Data

» Considerations for Synchronous Change Data Capture

» Considerations for Asynchronous Change Data Capture

s Implementation and System Configuration

See Oracle Database PL/SQL Packages and Types Reference for reference information
about the Change Data Capture publish and subscribe PL/SQL packages.

Overview of Change Data Capture

Often, data warehousing involves the extraction and transportation of relational data
from one or more production databases into a data warehouse for analysis. Change
Data Capture quickly identifies and processes only the data that has changed and
makes the change data available for further use.

Capturing Change Data Without Change Data Capture

Prior to the introduction of Change Data Capture, there were a number of ways that
users could capture change data, including table differencing and change-value
selection.

Table differencing involves transporting a copy of an entire table from the source
(production) database to the staging database (where the change data is captured),

Change Data Capture 16-1

Overview of Change Data Capture

where an older version of the table already exists. Using the SQL MINUS operator, you
can obtain the inserted and new versions of updated rows with the following query:

SELECT * FROM new_version
MINUS SELECT * FROM old_version;

Moreover, you can obtain the deleted rows and old versions of updated rows with the
following query:

SELECT * FROM old_version
MINUS SELECT * FROM new_version;

However, there are several problems with this method:

= It requires that the new version of the entire table be transported to the staging
database, not just the change data, thereby greatly increasing transport costs.

s The computational cost of performing the two MINUS operations on the staging
database can be very high.

s Table differencing cannot capture data that have reverted to their old values. For
example, suppose the price of a product changes several times between the old
version and the new version of the product's table. If the price in the new version
ends up being the same as the old, table differencing cannot detect that the price
has fluctuated. Moreover, any intermediate price values between the old and new
versions of the product's table cannot be captured using table differencing.

s There is no way to determine which changes were made as part of the same
transaction. For example, suppose a sales manager creates a special discount to
close a deal. The fact that the creation of the discount and the creation of the sale
occurred as part of the same transaction cannot be captured, unless the source
database is specifically designed to do so.

Change-value selection involves capturing the data on the source database by
selecting the new and changed data from the source tables based on the value of a
specific column. For example, suppose the source table has a LAST_UPDATE_DATE
column. To capture changes, you base your selection from the source table on the
LAST UPDATE_DATE column value.

However, there are also several limitations with this method:

s The overhead of capturing the change data must be borne on the source database,
and you must run potentially expensive queries against the source table on the
source database. The need for these queries may force you to add indexes that
would otherwise be unneeded. There is no way to offload this overhead to the
staging database.

s This method is no better at capturing intermediate values than the table
differencing method. If the price in the product's table fluctuates, you will not be
able to capture all the intermediate values, or even tell if the price had changed, if
the ending value is the same as it was the last time that you captured change data.

s This method is also no better than the table differencing method at capturing
which data changes were made together in the same transaction. If you need to
capture information concerning which changes occurred together in the same
transaction, you must include specific designs for this purpose in your source
database.

s The granularity of the change-value column may not be fine enough to uniquely
identify the new and changed rows. For example, suppose the following:

16-2 Oracle Database Data Warehousing Guide

Overview of Change Data Capture

- You capture data changes using change-value selection on a date column such
as LAST_UPDATE_DATE.

— The capture happens at a particular instant in time, 14-FEB-2003 17:10:00.

- Additional updates occur to the table during the same second that you
performed your capture.

When you next capture data changes, you will select rows with a LAST_UPDATE_
DATE strictly after 14-FEB-2003 17:10:00, and thereby miss the changes that
occurred during the remainder of that second.

To use change-value selection, you either have to accept that anomaly, add an
artificial change-value column with the granularity you need, or lock out changes
to the source table during the capture process, thereby further burdening the
performance of the source database.

You have to design your source database in advance with this capture mechanism
in mind - all tables from which you wish to capture change data must have a
change-value column. If you want to build a data warehouse with data sources
from legacy systems, those legacy systems may not supply the necessary
change-value columns you need.

Change Data Capture does not depend on expensive and cumbersome table
differencing or change-value selection mechanisms. Instead, it captures the change
data resulting from INSERT, UPDATE, and DELETE operations made to user tables.
The change data is then stored in a relational table called a change table, and the
change data is made available to applications or individuals in a controlled way.

Capturing Change Data with Change Data Capture

Change Data Capture can capture and publish committed change data in either of the
following modes:

Synchronous

Triggers on the source database allow change data to be captured immediately, as
each SQL statement that performs a data manipulation language (DML) operation
(INSERT, UPDATE, or DELETE) is made. In this mode, change data is captured as
part of the transaction modifying the source table. Synchronous Change Data
Capture is available with Oracle Standard Edition and Enterprise Edition. This
mode is described in detail in "Synchronous Change Data Capture" on page 16-8.

Asynchronous

By taking advantage of the data sent to the redo log files, change data is captured
after a SQL statement that performs a DML operation is committed. In this mode,
change data is not captured as part of the transaction that is modifying the source
table, and therefore has no effect on that transaction.

There are three modes of asynchronous Change Data Capture: HotLog,
Distributed HotLog, and AutoLog. These modes are described in detail in
"Asynchronous Change Data Capture" on page 16-9.

Asynchronous Change Data Capture is built on, and provides a relational
interface to, Oracle Streams. See Oracle Streams Concepts and Administration for
information on Oracle Streams.

The following list describes the advantages of capturing change data with Change
Data Capture:

Completeness

Change Data Capture 16-3

Overview of Change Data Capture

Change Data Capture can capture all effects of INSERT, UPDATE, and DELETE
operations, including data values before and after UPDATE operations.

s Performance

Asynchronous Change Data Capture can be configured to have minimal
performance impact on the source database.

s Interface

Change Data Capture includes the DBMS_CDC_PUBLISH and DBMS_CDC_
SUBSCRIBE packages, which provide easy-to-use publish and subscribe
interfaces.

s Cost

Change Data Capture reduces overhead cost because it simplifies the extraction of
change data from the database and is part of the Oracle Database.

Note that you cannot use any table that uses transparent data encryption as a source
table for synchronous Change Data Capture. Asynchronous Change Data Capture
supports transparent data encryption if both the source and staging databases have
COMPATIBLE set to 11 or higher. Change Data Capture will not encrypt the data in the
change table. A user who wants to encrypt a column in the change table can manually
use an ALTER TABLE statement to encrypt the column in the change table. See Oracle
Streams Concepts and Administration for information on Oracle Streams.

A Change Data Capture system is based on the interaction of publishers and
subscribers to capture and distribute change data, as described in the next section.

Publish and Subscribe Model

Most Change Data Capture systems have one person who captures and publishes
change data; this person is the publisher. There can be multiple applications or
individuals that access the change data; these applications and individuals are the
subscribers. Change Data Capture provides PL/SQL packages to accomplish the
publish and subscribe tasks.

The following sections describe the roles of the publisher and subscriber in detail.
Subsequent sections describe change sources, more about modes of Change Data
Capture, and change tables.

Publisher

The publisher is usually a database administrator (DBA) who creates and maintains
the schema objects that make up the Change Data Capture system. For all modes of
Change Data Capture, except Distributed HotLog, there is typically one publisher on
the staging database. For the Distributed HotLog mode of Change Data Capture there
needs to be a publisher defined on the source and staging databases. The following list
describes the source and staging databases and the objects of interest to Change Data
Capture on each:

s Source database

This is the production database that contains the data of interest. The following
objects of interest to Change Data Capture reside on the source database:

— The source tables

The source tables are the production database tables that contain the data of
interest. They may be all or a subset of the source database tables.

- Redolog files

16-4 Oracle Database Data Warehousing Guide

Overview of Change Data Capture

For asynchronous modes of change data capture, the change data is collected
from either the online or archived redo log files (or both). For asynchronous
AutoLog mode, archived redo log files are copied from the source database to
the staging database.

- Change source

The change source is a logical representation of the source database. The
method for representing the source varies, depending on the mode of Change
Data Capture.

For the asynchronous Distributed HotLog mode of Change Database capture
only, the change source resides on the source database. For the other modes of
Change Data Capture, the change source resides on the staging database.

See "Asynchronous Distributed HotLog Mode" on page 16-10 for details about
the Distributed HotLog change source.

Staging database

This is the database to which the captured change data is applied. Depending on
the capture mode that the publisher uses, the staging database can be the same as,
or different from, the source database. The following Change Data Capture objects
reside on the staging database:

- Change table

A change table is a relational table into which change data for a single source
table is loaded. To subscribers, a change table is known as a publication.

- Change set

A change set is a set of change data that is guaranteed to be transactionally
consistent. It contains one or more change tables.

- Change source

The change source for the following modes of Change Data Capture reside on
the staging database:

* Synchronous - See "Synchronous Change Data Capture” on page 16-8 for
details.

* Asynchronous HotLog - See "Asynchronous HotLog Mode" on page 16-9
for details.

* Asynchronous AutoLog - See "Asynchronous AutoLog Mode" on
page 16-11 for details.

These are the main tasks performed by the publisher:

Determines the source databases and tables from which the subscribers are
interested in viewing change data, and the mode (synchronous or one of the
asynchronous modes) in which to capture the change data.

Uses the Oracle-supplied package, DBMS_CDC_PUBLISH, to set up the system to
capture change data from the source tables of interest.

Allows subscribers to have controlled access to the change data in the change
tables by using the SQL GRANT and REVOKE statements to grant and revoke the
SELECT privilege on change tables for users and roles. (Keep in mind, however,
that subscribers use views, not change tables directly, to access change data.)

Change Data Capture 16-5

Overview of Change Data Capture

In Figure 16-1, the publisher determines that subscribers are interested in viewing
change data from the HQ source database. In particular, subscribers are interested in
change data from the sh.sales and sh.promotions source tables.

The publisher decides to use the asynchronous AutoLog mode of capturing change
data. On the DWW staging database, he creates a change source HQ_SRC, a change set,
SH_SET, and two change tables: sales_ct and promo_ct. The sales_ct change
table contains all the columns from the source table, sh. sales. For the promo_ct
change table, however, the publisher has decided to exclude the PROMO_COST column.

Figure 16-1 Publisher Components in a Change Data Capture System

Source Database: HQ

Change Source

Staging Database: DW

Change Source

HQ_SRC HQ_SRC
Change Set Change Set
SH_SET SH_SET
Source Table: SH.SALES Change Table: sales_ct
PROD_ID PROD_ID
CUST_ID CUST_ID
TIME_ID ’TIME_ID
PROMO_ID PROMO_ID

AMOUNT_SOLD

QUANTITY_SOLD
AMOUNT_SOLD

QUANTITY_SOLD

Source Table: SH.PROMOTIONS

Change Table: promo_ct
PROMO_ID
PROMO_SUBCATAGORY
P+ PROMO_CATEGORY
PROMO_END_DATE
PROMO_BEGIN_DATE

PROMO_ID
PROMO_SUBCATAGORY
PROMO_CATEGORY
PROMO_COST
PROMO_END_DATE
PROMO_BEGIN_DATE

Subscribers

The subscribers are consumers of the published change data. A subscriber performs
the following tasks:

= Uses the Oracle supplied package, DBMS_CDC_SUBSCRIBE, to:

Create subscriptions

A subscription controls access to the change data from one or more source
tables of interest within a single change set. A subscription contains one or
more subscriber views.

A subscriber view is a view that specifies the change data from a specific
publication in a subscription. The subscriber is restricted to seeing change data
that the publisher has published and has granted the subscriber access to use.
See "Subscribing to Change Data" on page 16-43 for more information on
choosing a method for specifying a subscriber view.

Notify Change Data Capture when ready to receive a set of change data

A subscription window defines the time range of rows in a publication that
the subscriber can currently see in subscriber views. The oldest row in the

16-6 Oracle Database Data Warehousing Guide

Overview of Change Data Capture

window is called the low boundary; the newest row in the window is called
the high boundary. Each subscription has its own subscription window that
applies to all of its subscriber views.

- Notify Change Data Capture when finished with a set of change data
= Uses SELECT statements to retrieve change data from the subscriber views.

A subscriber has the privileges of the user account under which the subscriber is
running, plus any additional privileges that have been granted to the subscriber.

In Figure 16-2, the subscriber is interested in a subset of columns that the publisher (in
Figure 16-1) has published. Note that the publications shown in Figure 16-2, are
represented as change tables in Figure 16-1; this reflects the different terminology used
by subscribers and publishers, respectively.

The subscriber creates a subscription, sales_promos_1list and two subscriber
views (spl_sales and spl_promos) on the SH_SET change set on the DW staging
database. Within each subscriber view, the subscriber includes a subset of the columns
that were made available by the publisher. Note that because the publisher did not
create a change table that includes the PROMO_COST column, there is no way for the
subscriber to view change data for that column. The subscriber need not be aware of
the mode of change data capture employed by the publisher.

Figure 16-2 Subscriber Components in a Change Data Capture System

Staging Database: DW

Change Set
SH_SET

Publication on SH.SALES

Subscriber View: spl_sales
PROD_ID

CUST_ID

TIME_ID

PROMO_ID

QUANTITY_SOLD
AMOUNT_SOLD

Subscription: sales_promos_list

Publication on SH.PROMOTIONS

Subscriber View: spl_promos
PROMO_ID
PROMO_SUBCATEGORY
PROMO_CATEGORY

PROMO_END_DATE
PROMO_BEGIN_DATE

Change Data Capture provides the following benefits for subscribers:
s Guarantees that each subscriber sees all the changes

» Keeps track of multiple subscribers and gives each subscriber shared access to
change data

Change Data Capture 16-7

Change Sources and Modes of Change Data Capture

= Handles all the storage management by automatically removing data from change
tables when it is no longer required by any of the subscribers. Keep in mind that
Change Data Capture starts a job in the job queue that runs once every 24 hours
for handling purging. Many things can go wrong with this job (such as if it is
deleted or the schedule is changed), so this automatic processing depends on the
job queue process being up and running and the Change Data Capture job being
there. Also, in logical standby environments, the purge job is not submitted.

Note: Oracle provides the previously listed benefits only when
the subscriber accesses change data through a subscriber view.

Change Sources and Modes of Change Data Capture

Change Data Capture provides synchronous and asynchronous modes for capturing
change data. The following sections summarize how each mode of Change Data
Capture is performed, and the change source associated with each mode of Change
Data Capture.

Synchronous Change Data Capture

The synchronous mode uses triggers on the source database to capture change data. It
has no latency because the change data is captured continuously and in real time on
the source database. The change tables are populated when DML operations on the
source table are committed.

There is a single, predefined synchronous change source, SYNC_SOURCE, that
represents the source database. This is the only synchronous change source. It cannot
be altered or dropped.

While the synchronous mode of Change Data Capture adds overhead to the source
database at capture time, this mode can reduce costs (as compared to attempting to
extract change data using table differencing or change-value section) by simplifying
the extraction of change data.

Change tables for this mode of Change Data Capture must reside locally in the source
database.

Figure 16-3 illustrates the synchronous configuration. Triggers executed after DML
operations occur on the source tables populate the change tables in the change sets
within the SYNC_SOURCE change source.

16-8 Oracle Database Data Warehousing Guide

Change Sources and Modes of Change Data Capture

Figure 16-3 Synchronous Change Data Capture Configuration

Source Database

SYNC_SOURCE

Source Change Source
Database
Transactions Change Set
Source Tables ¢ Change Tables
Table Table
Table Table

—_— | | Trigger Execution —_— | |

>

v

Subscriber
Views

Asynchronous Change Data Capture

The asynchronous modes capture change data from the database redo log files after
changes have been committed to the source database.

The asynchronous modes of Change Data Capture are dependent on the level of
supplemental logging enabled at the source database. Supplemental logging adds redo
logging overhead at the source database, so it must be carefully balanced with the
needs of the applications or individuals using Change Data Capture. See
"Asynchronous Change Data Capture and Supplemental Logging" on page 16-69 for
information on supplemental logging.

The three modes of capturing change data are described in the following sections:
= Asynchronous HotLog Mode

= Asynchronous Distributed HotLog Mode

= Asynchronous AutoLog Mode

Asynchronous HotLog Mode

In the asynchronous HotLog mode, change data is captured from the online redo log
file on the source database. There is a brief latency between the act of committing
source table transactions and the arrival of change data.

There is a single, predefined HotLog change source, HOTLOG_SOURCE, that represents
the current online redo log files of the source database. This is the only HotLog change
source. It cannot be altered or dropped.

Change tables for this mode of Change Data Capture must reside locally in the source
database.

Change Data Capture 16-9

Change Sources and Modes of Change Data Capture

Figure 164 illustrates the asynchronous HotLog configuration. The Logwriter Process
(LGWR) records committed transactions in the online redo log files on the source
database. Change Data Capture uses Oracle Streams processes to automatically
populate the change tables in the change sets within the HOTLOG_SOURCE change
source as newly committed transactions arrive.

Figure 16-4 Asynchronous HotLog Configuration

Source Database

HOTLOG_SOURCE

Source Change Source
Database
Transactions Change Set
Source Tables l Change Tables
TableI | TableI |
Table > Table
)| LGWR
Online | —
Redo| — = Streams Local
Log |0—/|= Capture
Files

v

‘ Subscriber
Views

Asynchronous Distributed HotLog Mode

In the asynchronous Distributed HotLog mode, change data is captured from the
online redo log file on the source database.

There is no predefined Distributed HotLog change source. Unlike other modes of
Change Data Capture, the Distributed HotLog mode splits change data capture
activities and objects across the source and staging database. Change sources are
defined on the source database by the staging database publisher.

A Distributed HotLog change source represents the current online redo log files of the
source database. However, staging database publishers can define multiple
Distributed HotLog change sources, each of which contains change sets on a different
staging database. The source and staging database can be on different hardware
platforms and be running different operating systems, however some restrictions
apply. See "Summary of Supported Distributed HotLog Configurations and
Restrictions" on page 16-72 for information on these restrictions.

Figure 16-5 illustrates the asynchronous Distributed HotLog configuration. The
change source on the source database captures change data from the online redo log
files and uses Streams to propagate it to the change set on the staging database. The
change set on the staging database populates the change tables within the change set.

There are two publishers required for this mode of Change Data Capture, one on the
source database and one on the staging database. The source database publisher
defines a database link on the source database to connect to the staging database as the

16-10 Oracle Database Data Warehousing Guide

Change Sources and Modes of Change Data Capture

staging database publisher. The staging database publisher defines a database link on
the staging database to connect to the source database on the source database
publisher. All publishing operations are performed by the staging database publisher.
See "Performing Asynchronous Distributed HotLog Publishing" on page 16-31 for
details.

Figure 16-5 Asynchronous Distributed HotLog Configuration

Oracle Net
Source Database Staging Database
Source Distributed HotLog
Database Database Link Change Set
Transactions
Source Tables ‘ Change Tables
Table Table |
—_— | — —_ | —
Table Table
—)| LGWR — T
Streams
Propagation
Online | ——
Redo[] —|=
Log |d=—= >
Files —

¢ v
Distributed HotLog ‘ Subscriber
Change Source Database Link Views

Asynchronous AutoLog Mode

In the asynchronous AutoLog mode, change data is captured from a set of redo log
files managed by redo transport services. Redo transport services control the
automated transfer of redo log files from the source database to the staging database.
Using database initialization parameters (described in "Initialization Parameters for
Asynchronous AutoLog Publishing" on page 16-22), the publisher configures redo
transport services to copy the redo log files from the source database system to the
staging database system and to automatically register the redo log files. Asynchronous
AutoLog mode can obtain change data from either the source database online redo log
or from source database archived redo logs. These options are known as asynchronous
AutoLog online and asynchronous AutoLog archive.

With the AutoLog online option, redo transport services is set up to copy redo data
from the online redo log at the source database to the standby redo log at the staging
database. Change sets are populated after individual source database transactions
commit. There can only be one AutoLog online change source on a given staging
database and it can contain only one change set.

With the AutoLog archive option, redo transport services is set up to copy archived
redo logs from the source database to the staging database. Change sets are populated
as new archived redo log files arrive on the staging database. The degree of latency
depends on the frequency of redo log file switches on the source database. The
AutoLog archive option has a higher degree of latency than the AutoLog online
option, but there can be as many AutoLog archive change sources as desired on a
given staging database.

Change Data Capture 16-11

Change Sources and Modes of Change Data Capture

There is no predefined AutoLog change source. The publisher provides information
about the source database to create an AutoLog change source. See "Performing
Asynchronous AutoLog Publishing" on page 16-37 for details.

Figure 16-6 shows a Change Data Capture asynchronous AutoLog online
configuration in which the LGWR process on the source database copies redo data to
both the online redo log file on the source database and to the standby redo log files on
the staging database as specified by the LOG_ARCHIVE_DEST_2 parameter. (Although
the image presents this parameter as LOG_ARCHIVE_DEST_2, the integer value can be
any value between 1 and 10.)

Note that the LGWR process uses Oracle Net to send redo data over the network to the
remote file server (RFS) process. Transmitting redo data to a remote destination
requires uninterrupted connectivity through Oracle Net.

On the staging database, the RFS process writes the redo data to the standby redo log
files. Then, Change Data Capture uses Oracle Streams downstream capture to
populate the change tables in the change sets within the AutoLog change source.

The source database and the staging database must be running on the same hardware,
operating system, and Oracle version.

Figure 16-6 Asynchronous Autolog Online Change Data Capture Configuration

Oracle Net
Source Database Staging Database
Source
Database RFS AutoLog Change Source
Transactions Change Set
Source Tables ‘ Change Tables
Table TableI |
Table -> Table
—— T)| LGWR —— T
v
Online Standby [—
Redo[Redo J— Streams Downstream
Log Log _ Capture
Files Files v
Subscriber
Views

Figure 16-7 shows a typical Change Data Capture asynchronous AutoLog archive
configuration in which, when the redo log file switches on the source database,
archiver processes archive the redo log file on the source database to the destination
specified by the LOG_ARCHIVE_DEST_1 parameter and copy the redo log file to the
staging database as specified by the LOG_ARCHIVE_DEST_2 parameter. (Although the
image presents these parameters as LOG_ARCHIVE_DEST_1 and LOG_ARCHIVE_
DEST_2, the integer value in these parameter strings can be any value between 1 and
10.)

16-12 Oracle Database Data Warehousing Guide

Change Sets

Note that the archiver processes use Oracle Net to send redo data over the network to
the remote file server (RFS) process. Transmitting redo log files to a remote destination
requires uninterrupted connectivity through Oracle Net.

On the staging database, the RFS process writes the redo data to the copied log files.
Then, Change Data Capture uses Oracle Streams downstream capture to populate the
change tables in the change sets within the AutoLog change source.

See Oracle Data Guard Concepts and Administration for more information regarding
Redo Transport Services.

Figure 16-7 Asynchronous AutoLog Archive Change Data Capture Configuration

Oracle Net
Source Database Staging Database
Source
Database AutoLog Change Source
Transactions Change Set
Source Tables ‘ Change Tables
Table Table
_] — > —_—]—1—
Table Table

Streams Downstream

Capture
v
‘ Subscriber
LOG_ARCHIVE_DEST_1 Views
Archived | ——
Log [d—F
Files | —|=

Change Sets

A change set is a logical grouping of change data that is guaranteed to be
transactionally consistent and that can be managed as a unit. A change set is a member
of one (and only one) change source.

Note: Change Data Capture change sources can contain one or more
change sets with the following restrictions:

1. All of the change sets for a Distributed HotLog change source must be on
the same staging database

2. An AutoLog online change source can only contain one change set

Change Data Capture 16-13

Change Tables

When a publisher includes two or more change tables in the same change set,
subscribers can perform join operations across the tables represented within the
change set and be assured of transactional consistency.

Conceptually, a change set shares the same mode as its change source. For example, an
AutoLog change set is a change set contained in an AutoLog change source. Publishers
define change sets using the DBMS_CDC_PUBLISH.CREATE_CHANGE_SET package. In
the case of synchronous Change Data Capture, the publisher can also use a predefined
change set, SYNC_SET. The SYNC_SET change set, however, cannot be altered or
dropped.

To keep the change tables in the change set from growing larger indefinitely,
publishers can purge unneeded change data from change tables at the change set level.
See "Purging Change Tables of Unneeded Data" on page 16-60 for more information
on purging change data.

Valid Combinations of Change Sources and Change Sets

Table 16-1 summarizes the valid combinations of change sources and change sets and
indicates whether each is predefined or publisher-defined. In addition, it indicates
whether the source database represented by the change source is local to or remote
from the staging database, and whether the change source is used for synchronous or
asynchronous Change Data Capture.

Table 16-1 Summary of Change Sources and Change Sets

Source Database

Mode Change Source Represented Associated Change Sets

Synchronous Predefined Local Predefined SYNC_SET and
SYNC_SOURCE publisher-defined

Asynchronous Predefined Local Publisher-defined

HOtLOg HOTLOG_SOURCE

Asynchronous Publisher-defined Remote Publisher-defined. Change sets

Distributed must all be on the same staging

HotLog database

Asynchronous Publisher-defined = Remote Publisher-defined. There can only

AutoLog online be one change set in an AutoLog

online change source
Asynchronous Publisher-defined =~ Remote Publisher-defined
AutoLog archive

Change Tables

A given change table contains the change data resulting from DML operations
performed on a given source table. A change table consists of two things: the change
data itself, which is stored in a database table; and the system metadata necessary to
maintain the change table, which includes control columns.

The publisher specifies the source columns that are to be included in the change table.
Typically, for a change table to contain useful data, the publisher needs to include the
primary key column in the change table along with any other columns of interest to
subscribers. For example, suppose subscribers are interested in changes that occur to
the UNIT_COST and the UNIT_PRICE columns in the sh. costs table. If the publisher
does not include the PROD_ID column in the change table, subscribers will know only
that the unit cost and unit price of some products have changed, but will be unable to
determine for which products these changes have occurred.

16-14 Oracle Database Data Warehousing Guide

Getting Information About the Change Data Capture Environment

There are optional and required control columns. The required control columns are
always included in a change table; the optional ones are included if specified by the
publisher when creating the change table. Control columns are managed by Change
Data Capture. See "Understanding Change Table Control Columns" on page 16-54 and
"Understanding TARGET_COLMAP$ and SOURCE_COLMAP$ Values" on

page 16-56 for detailed information on control columns.

Getting Information About the Change Data Capture Environment

Information about the Change Data Capture environment is provided in the static data
dictionary views described in Table 16-2 and Table 16-3. Table 16-2 lists the views
that are intended for use by publishers; the user must have the SELECT_CATALOG_
ROLE privilege to access the views listed in this table. Table 16-3 lists the views that
are intended for use by subscribers. Table 16-3 includes views with the prefixes ALL
and USER. These prefixes have the following general meanings:

= A view with the ALL prefix allows the user to display all the information
accessible to the user, including information from the current user's schema as
well as information from objects in other schemas, if the current user has access to
those objects by way of grants of privileges or roles.

= A view with the USER prefix allows the user to display all the information from
the schema of the user issuing the query without the use of additional special

privileges or roles.

Note:

To look at all the views (those intended for both the

publisher and the subscriber), a user must have the SELECT_
CATALOG_ROLE privilege.

Table 16-2 Views Intended for Use by Change Data Capture Publishers

View Name

Description

ALL_CHANGE_SOURCES

ALL_CHANGE_
PROPAGATIONS

ALL_CHANGE_
PROPAGATION_SETS

ALL_CHANGE_SETS
ALL_CHANGE_TABLES
DBA_SOURCE_TABLES

DBA_PUBLISHED
COLUMNS

DBA_SUBSCRIPTIONS

DBA_SUBSCRIBED_
TABLES

DBA_SUBSCRIBED_
COLUMNS

Describes existing change sources.

Describes the Oracle Streams propagation associated with a given
Distributed HotLog change source on the source database. This
view is populated on the source database for 11.1 or 11.2 change
sources or on the staging database for 9.2, 10.1 or 10.2 change
sources.

Describes the Oracle Streams propagation associated with a given
Distributed HotLog change set on the staging database. This view is
populated on the source database for 11.1 or 11.2 change sources or
on the staging database for 9.2, 10.1 or 10.2 change sources.

Describes existing change sets.
Describes existing change tables.
Describes all published source tables in the database.

Describes all published columns of source tables in the database.

Describes all subscriptions.

Describes all source tables to which any subscriber has subscribed.

Describes the columns of source tables to which any subscriber has
subscribed.

Change Data Capture 16-15

Preparing to Publish Change Data

Table 16-3 Views Intended for Use by Change Data Capture Subscribers

View Name

Description

ALL_SOURCE_TABLES

USER_SOURCE_TABLES

ALL_PUBLISHED
COLUMNS

USER_PUBLISHED_
COLUMNS

ALL_SUBSCRIPTIONS
USER_SUBSCRIPTIONS

ALL_SUBSCRIBED_
TABLES

USER_SUBSCRIBED_
TABLES

ALL_SUBSCRIBED_
COLUMNS

USER_SUBSCRIBED_
COLUMNS

Describes all public source tables for change tables that are owned
by the current user.

Describes all public source tables for change tables that are owned
by the current user.

Describes all published columns of source tables for change tables
that are owned by the current user.

Describes all published columns of source tables for change tables
that are owned by the current user.

Describes all of the subscriptions created by the current user.
Describes all of the subscriptions created by the current user.

Describes the source tables to which the current user has
subscribed.

Describes the source tables to which the current user has
subscribed.

Describes the columns of source tables to which the current user
has subscribed.

Describes the columns of source tables to which the current user
has subscribed.

See Oracle Database Reference for complete information about these views.

Preparing to Publish Change Data

This section describes the tasks the publisher should perform before starting to publish
change data, information on creating publishers, information on selecting a mode in
which to capture change data, instructions on setting up database links required for
the asynchronous Distributed HotLog mode of Change Data Capture, and instructions
on setting database initialization parameters required by Change Data Capture.

A publisher should do the following before performing the actual steps for publishing:

= Gather requirements from the subscribers.

s Determine which source database contains the relevant source tables.

s Choose the capture mode: synchronous, asynchronous HotLog, asynchronous

Distributed HotLog, or asynchronous AutoLog, as described in "Determining the
Mode in Which to Capture Data" on page 16-18.

Ensure that the source and staging database DBAs have set database initialization
parameters, as described in "Setting Initialization Parameters for Change Data
Capture Publishing" on page 16-19 and "Publishing Change Data" on page 16-25.

Sets up database links from the source database to the staging database and from
the staging database to the source database, as shown in "Performing
Asynchronous Distributed HotLog Publishing" on page 16-31. Be aware that this
requires the source database publisher to know the username and password of the
staging database publisher and the staging database publisher to know the
username and password of the source database publisher.

16-16 Oracle Database Data Warehousing Guide

Preparing to Publish Change Data

Creating a User to Serve As a Publisher

For all modes of Change Database Capture, the staging database DBA creates a user to
serve as a publisher for Change Data Capture. In addition, for the asynchronous
Distributed HotLog mode of Change Data Capture, the source database DBA also
creates a user to serve as a publisher. On the source database, this publisher's only task
is to create a database link from the source database to the staging database.

The SYS and SYSTEM users cannot be used as a Change Data Capture publisher, and a
Change Data Capture publisher should not use the SYSTEM tablespace as its default
tablespace.

The following sections describe how to set up a publisher as required for each mode of
Change Data Capture.

Note: If a publisher is dropped with a SQL DROP USER CASCADE
statement, then all Change Data Capture objects owned by that
publisher are dropped, except those that contain Change Data
Capture objects owned by other publishers.

For example, suppose publisher CDCPUB1 owns the change set
CDCPUB1_SET that contains the change table CDCPUB2 . SALES_CT.
Issuing a DROP USER CASCADE statement to drop CDCPUB1 does not
result in the CDCPUB1_SET change set being dropped. However, after
all of the change tables contained within the change set have been
dropped, any publisher can drop the CDCPUB1_SET change set with
the DBMS_CDC_PUBLISH.DROP_CHANGE SET subprogram.

Granting Privileges and Roles to the Publisher

Regardless of change data capture mode to be used, the staging database publisher
must be granted the privileges and roles in the following list:

s EXECUTE_CATALOG_ROLE privilege

s SELECT_CATALOG_ROLE privilege

= CREATE TABLE and CREATE SESSION privileges
= EXECUTE on the DBMS_CDC_PUBLISH package

For asynchronous HotLog, Distributed HotLog, and AutoLog publishing, the staging
database publisher must be configured as an Oracle Streams administrator and also be
granted the CREATE SEQUENCE privilege, as follows. (See Oracle Streams Concepts and
Administration for information on configuring an Oracle Streams administrator.)

= Begranted the CREATE SEQUENCE privilege
= Be granted the DBA role

= Be the GRANTEE specified in a DBMS_STREAMS_AUTH . GRANT_ADMIN_
PRIVILEGE subprogram issued by the staging database DBA

For asynchronous Distributed HotLog publishing, the source database publisher must
be granted the DBA role and must be the grantee specified in a DBMS_STREAMS_
AUTH.GRANT_ADMIN_PRIVILEGE subprogram.

Creating a Default Tablespace for the Publisher

Oracle recommends that when creating the publisher account on a staging database,
the DBA specify a default tablespace for the publisher; the publisher should use this
tablespace for any change tables he or she creates.

Change Data Capture 16-17

Preparing to Publish Change Data

Password Files and Setting the REMOTE_LOGIN_PASSWORDFILE Parameter

You need to ensure that a password file has been generated. This occurs automatically
when using the Database Configuration Assistant.

See Also:

Oracle Database Administrator’s Guide and "Database

Configuration Assistant Considerations" on page 16-71 for more
information on setting passwords

Determining the Mode in Which to Capture Data

These factors influence the decision on the mode in which to capture change data:

= Whether or not the staging database is remote from the source database

s Tolerance for latency between changes made on the source database and changes
captured by Change Data Capture. Note that latency generally increases from
Synchronous to Asynchronous AutoLog Archive in Table 164

s Performance impact on the source database transactions and overall database

performance

» Whether the source and staging databases will be running on the same hardware,
using the same operating systems, or using the same Oracle database release

Table 16—4 summarizes these factors that influence the mode decision.

Table 16-4 Factors Influencing Choice of Change Data Capture Mode

Location of, Hardware, and

Source Database

Mode Software on Staging Database Capture Mechanism Performance Impact
Synchronous Location must be the same as Change data is automatically =~ Adds overhead to source
the source database and committed as part of the same database transactions to
therefore hardware, operating transaction it reflects. perform change data capture.
system, and Oracle database
release are the same as source
system.
Asynchronous Location must be the same as Change data is captured from Minimal impact on source
HotLog the source database and the current online redo log file. database transactions to

therefore hardware, operating
system, and Oracle database
release are the same as source
system.

Change sets are populated
automatically as new
transactions are committed.

16-18 Oracle Database Data Warehousing Guide

perform supplemental
logging. Additional source
database overhead to perform
change data capture.

Preparing to Publish Change Data

Table 16-4 (Cont.) Factors Influencing Choice of Change Data Capture Mode

Location of, Hardware, and Source Database
Mode Software on Staging Database Capture Mechanism Performance Impact
Asynchronous Location is remote from the Change data is captured from Minimal impact on source
Distributed source database. Hardware, the current online redo log file. database transactions to
HotLog operating system, and Oracle The change set is populated perform supplemental

database release can be different automatically as new logging.

from the source system. committed transactions arrive S head

ome overhead on the source

on the staging database. database is incurred when

mining the online redo log

files.
Asynchronous Location is remote from the Change data is captured from Minimal impact on source
AutoLog source database. Hardware, the standby redo log files. The database transactions to
Online operating system, and Oracle change set is populated perform supplemental
database release are the same as automatically as new logging.
source system. committed transactions arrive Minimal datab
on the staging database. nimal source database
overhead for redo transport
services.
Asynchronous Location is remote from the Change data is captured from Minimal impact on source
AutoLog source database. Hardware, archived redo log files. Change database transactions to
Archive operating system, and Oracle sets are populated perform supplemental
database release are the same as automatically as archived redo logging.
source system. log files arrive on the staging Minimal source database
database.

overhead for redo transport
services.

Setting Initialization Parameters for Change Data Capture Publishing

Initialization parameters must be set on the source or staging database, or both, for
Change Data Capture to succeed. Which parameters to set depend on the mode in
which Change Data Capture is publishing change data, and on whether the
parameters are being set on the source or staging database.

The following sections describe the database initialization parameter settings for each
mode of Change Data Capture. Sometimes the DBA is directed to add a value to a
current setting. (The DBA can use the SQL SHOW PARAMETERS statement to see the
current value of a setting.)

See Oracle Database Reference for general information about these database
initialization parameters and Oracle Streams Concepts and Administration for more
information about the database initialization parameters set for asynchronous
publishing.

Initialization Parameters for Synchronous Publishing
Set the JAVA_POOL_SIZE parameter as follows:

JAVA_POOL_SIZE = 50000000
Initialization Parameters for Asynchronous HotLog Publishing

Table 16-5 lists the source database initialization parameters and their recommended
settings for asynchronous HotLog publishing.

Change Data Capture 16-19

Preparing to Publish Change Data

Table 16-5 Source Database Initialization Parameters for Asynchronous HotLog Publishing

Parameter Recommended Value
COMPATIBLE 11.0
JAVA_POOL_SIZE 50000000

JOB_QUEUE_PROCESSES (current value) + 2

PARALLEL_MAX_SERVERS (current value) + (5 * (the number of change sets planned))

PROCESSES (current value) + (7 * (the number of change sets planned))
SESSIONS (current value) + (2 * (the number of change sets planned))
STREAMS_ POOL_SIZE s If the current value of the STREAMS_POOL_SIZE parameter is 50 MB or greater,

then set this parameter to:
(current value) + ((the number of change sets planned) * (21 MB))

= If the current value of the STREAMS_POOL_SIZE parameter is less than 50 MB,
then set the value of this parameter to:

50 MB + ((the number of change sets planned) * (21 MB))

See Oracle Streams Concepts and Administration for information on how the STREAMS_
POOL_SIZE parameter is applied when changed dynamically.

UNDO_RETENTION 3600

Initialization Parameters for Asynchronous Distributed HotLog Publishing

Table 166 lists the source database initialization parameters and their recommended
settings for asynchronous Distributed HotLog publishing when the source database is
Oracle Database release 10.1.0, 10.2.0, 11.1.0, or 11.2.0.

Table 16-7 lists the source database initialization parameters and their recommended
settings for asynchronous Distributed HotLog publishing when the source database is
Oracle Database release 9.2.

Table 16-8 lists the staging database initialization parameters and their recommended
settings for asynchronous Distributed HotLog publishing. These are the same
regardless of which Oracle database release is being used for the source database.

Table 16-6 Source Database (10.1.0, 10.2.0, 11.1.0, 11.2.0) Initialization Parameters for Asynchronous
Distributed HotLog Publishing

Parameter Recommended Value
COMPATIBLE 11.0, depending on the source Oracle database release
GLOBAL_NAMES TRUE

JOB_QUEUE_PROCESSES (current value) + 2
OPEN_LINKS 4, or the number of Distributed HotLog change sources planned, whichever is greater.
PARALLEL_MAX_SERVERS (current value) + (3 * (the number of change sources planned))

PROCESSES (current value) + (4 * (the number of change sources planned))

16-20 Oracle Database Data Warehousing Guide

Preparing to Publish Change Data

Table 16-6 (Cont.) Source Database (10.1.0, 10.2.0, 11.1.0, 11.2.0) Initialization Parameters for
Asynchronous Distributed HotLog Publishing

Parameter

Recommended Value

SESSIONS

STREAMS_POOL_SIZE

UNDO_RETENTION

(current value) + (the number of change sources planned)

= If the current value of the STREAMS_POOL_SIZE parameter is 50 MB or greater,
then set this parameter to:

(current value) + ((the number of change sources planned) * (20 MB))

s If the current value of the STREAMS_POOL_SIZE parameter is less than 50 MB,
then set the value of this parameter to:

50 MB + ((the number of change sets planned) * (20 MB))

See Oracle Streams Concepts and Administration for information on how the STREAMS_
POOL_SIZE parameter is applied when changed dynamically.

3600

Table 16-7 Source Database (9.2) Initialization Parameters for Asynchronous Distributed HotLog

Publishing

Parameter Recommended Value
COMPATIBLE 9.2.0

GLOBAL_NAMES TRUE

JOB_QUEUE_PROCESSES
LOG_PARALLELISM

LOGMNR_MAX
PERSISTENT_SESSIONS

OPEN_LINKS
PARALLEL_MAX_ SERVERS
PROCESSES

SESSIONS

SHARED_POOL_SIZE

UNDO_RETENTION

(current value) + 2
1

Value equal to the number of change sources planned

4, or the number of Distributed HotLog change sources planned, whichever is greater
(current value) + (3 * (the number of change sources planned))

(current value) + (4 * (the number of change sources planned))

(current value) + (the number of change sources planned)

= If the current value of the SHARED_POOL_SIZE parameter is 50 MB or greater,
then set this parameter to:

(current value) + ((the number of change sources planned) * (20 MB))

s If the current value of the SHARED_ POOL_SIZE parameter is less than 50 MB,
then set the value of this parameter to:

50 MB + ((the number of change sources planned) * (20 MB))
3600

Table 16-8 Staging Database (11.2.0) Initialization Parameters for Asynchronous Distributed HotLog

Publishing

Parameter Recommended Value
COMPATIBLE 11.0

GLOBAL_NAMES TRUE
JAVA_POOL_SIZE 50000000

OPEN_LINKS

4, or the number of Distributed HotLog change sets planned, whichever is greater.

PARALLEL_MAX_SERVERS (current value) + (2 * (the number of change sets planned))

Change Data Capture 16-21

Preparing to Publish Change Data

Table 16-8 (Cont.) Staging Database (11.2.0) Initialization Parameters for Asynchronous Distributed
HotLog Publishing

Parameter Recommended Value

PROCESSES (current value) + (3 * (the number of change sets planned))

SESSIONS (current value) + (the number of change sets planned)

STREAMS_POOL_SIZE = If the current value of the STREAMS_POOL_SIZE parameter is 50 MB or greater,

then set this parameter to:
(current value) + ((the number of change sets planned) * (11 MB))

s If the current value of the STREAMS_POOL_SIZE parameter is less than 50 MB,
then set the value of this parameter to:

50 MB + ((the number of change sets planned) * (11 MB))

See Oracle Streams Concepts and Administration for information on how the STREAMS_
POOL_SIZE parameter is applied when changed dynamically.

Initialization Parameters for Asynchronous AutoLog Publishing

Table 16-9 lists the database initialization parameters and their recommended settings
for the asynchronous AutoLog publishing source database and Table 16-10 lists the
database initialization parameters and their recommended settings for the
asynchronous AutoLog publishing staging database.

16-22 Oracle Database Data Warehousing Guide

Preparing to Publish Change Data

Table 16-9 Source Database Initialization Parameters for Asynchronous AutoLog Publishing

Parameter

Recommended Value

COMPATIBLE

LOG_ARCHIVE_DEST_l1

LOG_ARCHIVE DEST 2!

LOG_ARCHIVE DEST
STATE_1!

LOG_ARCHIVE_DEST
STATE_ 2!

LOG_ARCHIVE_FORMAT2

REMOTE_ARCHIVE_
ENABLE

11.0

The directory specification on the source database where its own archived redo log
files are to be kept.

This parameter must include the SERVICE, ARCH or LGWR ASYNC, OPTIONAL,
NOREGISTER, and REOPEN attributes so that redo transport services are configured to
copy the redo log files from the source database to the staging database. This
parameter must also include either the VALID_FOR or the TEMPLATE attribute
depending on the AutoLog option. These attributes are set as follows:

= SERVICE specifies the network name of the staging database.
L] ARCH or LGWR ASYNC

To use the AutoLog online option, specify LGWR ASYNC. LGWR ASYNC specifies
that the log writer process (LGWR) copy redo data asynchronously to the staging
database as the redo is generated on the source database. The copied redo data
becomes available to Change Data Capture after its source database transaction
commits.

To use the AutoLog archive option, specify either ARCH or LGWR ASYNC. ARCH
specifies that the archiver process (ARCn) copy the redo log files to the staging
database after a source database log switch occurs. LGWR ASYNC specifies that the
log writer process (LGWR) copy redo data asynchronously to the staging database
as the redo is generated on the source database. For both ARCH and LGWR ASYNC,
the copied redo data becomes available to Change Data Capture only after a
source database log switch occurs when using the AutoLog archive option.

= OPTIONAL specifies that the copying of a redo log file to the staging database
need not succeed before the corresponding online redo log at the source database
can be overwritten. This is needed to avoid stalling operations on the source
database due to a transmission failure to the staging database. The original redo
log file remains available to the source database in either archived or backed up
form, if it is needed.

= NOREGISTER specifies that the staging database location is not recorded in the
staging database control file.

= REOPEN specifies the minimum number of seconds the log writer process (LGWR)
or the archive process (ARCn) should wait before trying to access the staging
database if a previous attempt to access this location failed.

= VALID_FOR When using the AutoLog online option, set VALID_FOR either to
(ONLINE_LOGFILE, PRIMARY_ ROLE) or (ONLINE_ LOGFILE, ALL_ROLES) to
enable redo data to be copied from the online redo log on the source database to
the standby redo log at the staging database.

= TEMPLATE When using the AutoLog archive option, specify TEMPLATE to define
a directory specification and a format template for the file name used for the

archived redo log files that are copied to the staging database.’

ENABLE

Indicates that redo transport services can transmit archived redo log files to this
destination.

ENABLE
Indicates that redo transport services can transmit redo log files to this destination.
"arch_%s_%t_%r.dbf"

Specifies a format template for the default file name when archiving redo log files.?
The string value (arch) and the file name extension (.db£) do not have to be exactly
as specified here.

TRUE

Indicates that this source database can send redo log files to remote destinations.

Change Data Capture 16-23

Preparing to Publish Change Data

The integer value in this parameter can be any value between 1 and 10. In this manual, the values 1 and 2 are used. For each

LOG_ARCHIVE_DEST_n parameter, there must be a corresponding LOG_ARCHIVE_DEST_STATE_n parameter that specifies

the same value for n.

In the format template, %t corresponds to the thread number, %s corresponds to the sequence number, and %r corresponds to

the resetlogs ID. Together, these ensure that unique names are constructed for the copied redo log files. Each of these items
must be present, but their ordering and format are flexible.

Table 16-10 Staging Database Initialization Parameters for Asynchronous AutoLog Publishing

Parameter Recommended Value
COMPATIBLE 11.2.0

GLOBAL_NAMES TRUE
JAVA_POOL_SIZE 50000000

LOG_ARCHIVE DEST 1!

LOG_ARCHIVE_DEST_21

LOG_ARCHIVE_DEST
STATE_1!

LOG_ARCHIVE_DEST
STATE_2!

LOG_ARCHIVE_FORM.AT2

JOB_QUEUE_PROCESSES
PARALLEL_MAX_ SERVERS
PROCESSES

REMOTE_ARCHIVE_
ENABLE

The directory specification on the staging database where its own archived redo log
files are to be kept. If the staging database has an AutoLog online change source, the
following attributes should be specified:

= LOCATION specifies a unique directory path name for the staging database's own
archived redo log files.

] Set VALID_FOR either to (ONLINE_LOGFILE, PRIMARY_ROLE) or (ONLINE_
LOGFILE, ALL_ROLES) to enable the online redo log file to be archived locally.

If the staging database has an AutoLog online change source, this specifies the
standby redo log files on the staging database that receive change data from the
source database. It is very important to specify a unique location for these standby
redo log files so that they do not overwrite the staging database's own archived log
files.

= LOCATION specifies a unique directory path name for the staging database's
standby redo log files.

= MANDATORY specifies that a standby redo log file must be successfully archived
before it can be overwritten.

L] Set VALID_FOR either to (STANDBY_LOGFILE, PRIMARY_ROLE) or (STANDBY_
LOGFILE, ALL_ROLES) to enable the staging database to receive change data
from the source database and write it to the staging database standby log files.

ENABLE

Indicates that redo transport services can transmit archived redo log files to this
destination.

ENABLE

Indicates that redo transport services can transmit redo log files to this destination.
"arch_%s_%t_%r.dbf"

Specifies a format template for the default file name when archiving redo log files?.
The string value (arch) and the file name extension (. dbf) do not have to be exactly
as specified here.

2
(current value) + (5 * (the number of change sets planned))
(current value) + (7 * (the number of change sets planned))

TRUE

Indicates that this staging database can receive remotely archived redo log files.

16-24 Oracle Database Data Warehousing Guide

Publishing Change Data

Table 16-10 (Cont.) Staging Database Initialization Parameters for Asynchronous AutoLog Publishing

Parameter Recommended Value
SESSIONS (current value)+ (2 * (the number of change sets planned))
STREAMS_POOL_SIZE = If the current value of the STREAMS_POOL_SIZE parameter is 50 MB or greater,

then set this parameter to:
(current value) + ((the number of change sets planned) * (21 MB))

s If the current value of the STREAMS_POOL_SIZE parameter is less than 50 MB,
then set the value of this parameter to:

50 MB + ((the number of change sets planned) * (21 MB))

See Oracle Streams Concepts and Administration for information on how the STREAMS_
POOL_SIZE parameter is applied when changed dynamically.

UNDO_RETENTION 3600

1

The integer value in this parameter can be any value between 1 and 10. In this manual, the values 1 and 2 are used. For each
LOG_ARCHIVE_DEST_n parameter, there must be a corresponding LOG_ARCHIVE_DEST_STATE_n parameter that specifies
the same value for n.

In the format template, %t corresponds to the thread number, %s corresponds to the sequence number, and %r corresponds to
the resetlogs ID. Together, these ensure that unique names are constructed for the copied redo log files. Each of these items
must be present, but their ordering and format are flexible.

Adjusting Initialization Parameter Values When Oracle Streams Values Change

Asynchronous Change Data Capture uses an Oracle Streams configuration for each
change set. This Streams configuration consists of a Streams capture process and a
Streams apply process, with an accompanying queue and queue table. Each Streams
configuration uses additional processes, parallel execution servers, and memory. For
details about the Streams architecture, see Oracle Streams Concepts and Administration.

If anything in your configuration changes, initialization parameters may need to be
adjusted. See Table 16-10, " Staging Database Initialization Parameters for
Asynchronous AutoLog Publishing" for more information.

Tracking Changes to the CDC Environment

You can track when partition maintenance operations, direct-path loads, and DDL
operations occur in a change table. To do this, set the dd1_markers flag in the DBMS_
CDC_PUBLISH.CREATE_CHANGE_TABLE procedure.

Publishing Change Data

The following sections provide step-by-step instructions on performing the various
types of publishing:

s Performing Synchronous Publishing

s Performing Asynchronous HotLog Publishing

s Performing Asynchronous Distributed HotLog Publishing
s Performing Asynchronous AutoLog Publishing

Performing Synchronous Publishing

For synchronous Change Data Capture, the publisher must use the predefined change
source, SYNC_SOURCE. The publisher can define new change sets or can use the
predefined change set, SYNC_SET. The publisher must not create change tables on

Change Data Capture 16-25

Publishing Change Data

source tables owned by SYS or SYSTEM because triggers will not fire and therefore
changes will not be captured.

This example shows how to create a change set. If the publisher wants to use the
predefined SYNC_SET, he or she should skip Step 3 and specify SYNC_SET as the
change set name in the remaining steps.

This example assumes that the publisher and the source database DBA are two
different people.

Note that for synchronous Change Data Capture, the source database and the staging
database are the same.

Step 1 Source Database DBA: Set the JAVA_POOL_SIZE parameter.

The source database DBA sets the database initialization parameters, as described in
"Setting Initialization Parameters for Change Data Capture Publishing" on page 16-19.

java_pool_size = 50000000

Step 2 Source Database DBA: Create and grant privileges to the publisher.

The source database DBA creates a user (for example, cdcpub), to serve as the Change
Data Capture publisher and grants the necessary privileges to the publisher so that he
or she can perform the operations needed to create Change Data Capture change sets
and change tables on the source database, as described in "Creating a User to Serve As
a Publisher" on page 16-17. This example assumes that the tablespace ts_cdcpub has
already been created.

CREATE USER cdcpub IDENTIFIED EXTERNALLY DEFAULT TABLESPACE ts_cdcpub
QUOTA UNLIMITED ON SYSTEM

QUOTA UNLIMITED ON SYSAUX;

GRANT CREATE SESSION TO cdcpub;

GRANT CREATE TABLE TO cdcpub;

GRANT CREATE TABLESPACE TO cdcpub;

GRANT CREATE JOB TO cdcpub;

GRANT UNLIMITED TABLESPACE TO cdcpub;

GRANT SELECT_CATALOG_ROLE TO cdcpub;

GRANT EXECUTE_CATALOG_ROLE TO cdcpub;

GRANT ALL ON sh.sales TO cdcpub;

GRANT ALL ON sh.products TO cdcpub;

GRANT EXECUTE ON DBMS_CDC_PUBLISH TO cdcpub;

Step 3 Staging Database Publisher: Create a change set.

The publisher uses the DBMS_CDC_PUBLISH.CREATE_CHANGE_SET procedure on
the staging database to create change sets.

The following example shows how to create a change set called CHICAGO_DAILY:

BEGIN
DBMS_CDC_PUBLISH.CREATE_CHANGE_SET (
change_set_name => 'CHICAGO_DAILY',
description => 'Change set for sales history info',
change_source_name => 'SYNC_SOURCE') ;
END;
/

The change set captures changes from the predefined change source SYNC_SOURCE.
Because begin_date and end_date parameters cannot be specified for synchronous
change sets, capture begins at the earliest available change data and continues
capturing change data indefinitely.

16-26 Oracle Database Data Warehousing Guide

Publishing Change Data

Step 4 Staging Database Publisher: Create a change table.

The publisher uses the DBMS_CDC_PUBLISH.CREATE_CHANGE_TABLE procedure to
create change tables.

The publisher can set the options_string field of the DBMS_CDC_
PUBLISH.CREATE_CHANGE_TABLE procedure to have more control over the physical
properties and tablespace properties of the change table. The options_string field
can contain any option, except partitioning, that is available in the CREATE TABLE
statement.

The following example creates a change table that captures changes that occur on a
source table. The example uses the sample schema table sh.products as the source
table. It assumes that the publisher has already created the TS_CHICAGO_DAILY
tablespace.

BEGIN
DBMS_CDC_PUBLISH.CREATE_CHANGE_TABLE (
owner => 'cdcpub’,

change_table_name =>
change_set_name
source_schema
source_table
column_type_ list

'products_ct',
'CHICAGO_DAILY',

'SH',

"PRODUCTS ',

"PROD_ID NUMBER(6),

PROD_NAME VARCHAR2 (50),
PROD_LIST_PRICE NUMBER(8,2) ',

=>
=>

=>

capture_values => 'both"',
rs_id = 'y',
row_id => 'n',
user_id => 'n',
timestamp => 'n',
object_id => 'n',
source_colmap = 'y',
target_colmap = 'y',

options_string

'TABLESPACE TS_CHICAGO_DAILY');

END;
/

This statement creates a change table named products_ct within the change set
CHICAGO_DAILY. The column_type_list parameter identifies the columns
captured by the change table. The source_schema and source_table parameters
identify the schema and source table that reside in the source database.

The capture_values setting in the example indicates that for update operations, the
change data will contain two separate rows for each row that changed: one row will
contain the row values before the update occurred, and the other row will contain the
row values after the update occurred.

See "Managing Change Tables" on page 16-53 for more information.

Step 5 Staging Database Publisher: Grant access to subscribers.

The publisher controls subscriber access to change data by granting and revoking the
SELECT privilege on change tables for users and roles. The publisher grants access to
specific change tables. Without this step, a subscriber cannot access any change data.
This example assumes that user subscriberl already exists.

GRANT SELECT ON cdcpub.products_ct TO subscriberl;

The Change Data Capture synchronous system is now ready for subscriberl to
create subscriptions.

Change Data Capture 16-27

Publishing Change Data

Performing Asynchronous HotLog Publishing

Change Data Capture uses Oracle Streams local capture to perform asynchronous
HotLog publishing. See Oracle Streams Concepts and Administration for information on
Streams local capture.

For HotLog Change Data Capture, the publisher must use the predefined change
source, HOTLOG_SOURCE, and must create the change sets and the change tables that
will contain the changes. The staging database is always the source database. This
example assumes that the publisher and the source database DBA are two different
people.

Note that for asynchronous HotLog Change Data Capture, the source database and the
staging database are the same.

The following steps set up redo logging, Oracle Streams, and Change Data Capture for
asynchronous HotLog publishing:

Step 1 Source Database DBA: Set the database initialization parameters.

The source database DBA sets the database initialization parameters, as described in
"Setting Initialization Parameters for Change Data Capture Publishing" on page 16-19.
In this example, one change set will be defined and the current value of the STREAMS_
POOL_SIZE parameter is 50 MB.

compatible = 11.0

java_pool_size = 50000000
job_queue_processes = 2
parallel_max_servers = <current value> + 5
processes = <current value> + 7

sessions = <current value> + 2
streams_pool_size = <current value> + 21 MB
undo_retention = 3600

Step 2 Source Database DBA: Alter the source database.

The source database DBA performs the following three tasks. The second is required.
The first and third are optional, but recommended. It is assumed that the database is
currently running in ARCHIVELOG mode.

1. Place the database into FORCE LOGGING logging mode to protect against unlogged
direct write operations in the source database that cannot be captured by
asynchronous Change Data Capture:

ALTER DATABASE FORCE LOGGING;

Note that logging can also be enforced at the tablespace or at the table level.

2. Enable supplemental logging. Supplemental logging places additional column
data into a redo log file whenever an UPDATE operation is performed. Minimally,
database-level minimal supplemental logging must be enabled for any Change
Data Capture source database:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

3. Create an unconditional log group on all columns to be captured in the source
table. Source table columns that are unchanged and are not in an unconditional
log group, will be null in the change table, instead of reflecting their actual source
table values. (This example captures rows in the sh.products table only. The
source database DBA would repeat this step for each source table for which
change tables will be created.)

ALTER TABLE sh.products

16-28 Oracle Database Data Warehousing Guide

Publishing Change Data

ADD SUPPLEMENTAL LOG GROUP log_group_products
(PROD_ID, PROD_NAME, PROD_LIST PRICE) ALWAYS;

If you intend to capture all the column values in a row whenever a column in that
row is updated, you can use the following statement instead of listing each
column one-by-one in the ALTER TABLE statement. However, do not use this form
of the ALTER TABLE statement if all columns are not needed. Logging all columns
incurs more overhead than logging selected columns.

ALTER TABLE sh.products ADD SUPPLEMENTAL LOG DATA (ALL) COLUMNS;

See Oracle Database Administrator’s Guide for information about running a database
in ARCHIVELOG mode and for information on FORCE LOGGING mode; see
"Asynchronous Change Data Capture and Supplemental Logging" on page 16-69
and Oracle Database Utilities for more information about supplemental logging.

Step 3 Source Database DBA: Create and grant privileges to the publisher.

The source database DBA creates a user, (for example, cdcpub), to serve as the
Change Data Capture publisher and grants the necessary privileges to the publisher so
that he or she can perform the underlying Oracle Streams operations needed to create
Change Data Capture change sets and change tables on the source database, as
described in "Creating a User to Serve As a Publisher" on page 16-17. This example
assumes that the ts_cdcpub tablespace has already been created.

CREATE USER cdcpub IDENTIFIED EXTERNALLY DEFAULT TABLESPACE ts_cdcpub
QUOTA UNLIMITED ON SYSTEM

QUOTA UNLIMITED ON SYSAUX;

GRANT CREATE SESSION TO cdcpub;

GRANT CREATE TABLE TO cdcpub;

GRANT CREATE TABLESPACE TO cdcpub;

GRANT UNLIMITED TABLESPACE TO cdcpub;

GRANT SELECT_CATALOG_ROLE TO cdcpub;

GRANT EXECUTE_CATALOG_ROLE TO cdcpub;

GRANT CREATE SEQUENCE TO cdcpub;

GRANT DBA TO cdcpub;

GRANT EXECUTE on DBMS_CDC_PUBLISH TO cdcpub;

EXECUTE DBMS_STREAMS_AUTH.GRANT_ADMIN_PRIVILEGE (GRANTEE => 'cdcpub');

Note that for HotLog Change Data Capture, the source database and the staging
database are the same database.

Step 4 Source Database DBA: Prepare the source tables.

The source database DBA must prepare the source tables on the source database for
asynchronous Change Data Capture by instantiating each source table. Instantiating
each source table causes the underlying Oracle Streams environment to record the
information it needs to capture each source table's changes. The source table structure
and the column datatypes must be supported by Change Data Capture. See
"Datatypes and Table Structures Supported for Asynchronous Change Data Capture"
on page 16-70 for more information.

BEGIN

DBMS_CAPTURE_ADM.PREPARE_TABLE_INSTANTIATION (TABLE_NAME => 'sh.produ