

Oracle® Database
Advanced Replication

11g Release 2 (11.2)

E10706-01

July 2009

Oracle Database Advanced Replication, 11g Release 2 (11.2)

E10706-01

Copyright © 1996, 2009, Oracle and/or its affiliates. All rights reserved.

Primary Author: Randy Urbano

Contributors: Nimar Arora, Yuen Chan, Alan Downing, Curt Elsbernd, Yong Feng, Jairaj Galagali, Lewis
Kaplan, Jonathan Klein, Jing Liu, Edwina Lu, Pat McElroy, Maria Pratt, Arvind Rajaram, Neeraj Shodhan,
Wayne Smith, Jim Stamos, Janet Stern, Mahesh Subramaniam, Lik Wong, David Zhang

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... xi

Audience... xi
Documentation Accessibility .. xii
Related Documents .. xii
Conventions ... xiii

1 Introduction to Advanced Replication

Overview of Replication ... 1-1
Applications that Use Replication .. 1-2
Replication Objects, Groups, and Sites ... 1-3

Replication Objects... 1-3
Replication Groups .. 1-3
Replication Sites ... 1-3

Types of Replication Environments ... 1-4
Multimaster Replication.. 1-4
Materialized View Replication... 1-5
Multimaster and Materialized View Hybrid Configurations.. 1-9

Administration Tools for a Replication Environment ... 1-10
Advanced Replication Interface in Oracle Enterprise Manager... 1-11
Replication Management API ... 1-11
Replication Catalog... 1-12
Distributed Schema Management .. 1-12

Replication Conflicts .. 1-12
Other Options for Multimaster Replication .. 1-13

Synchronous Replication ... 1-13
Procedural Replication ... 1-13

2 Master Replication Concepts and Architecture

Master Replication Concepts ... 2-1
What is Master Replication? ... 2-1
Why Use Multimaster Replication?... 2-3
Multimaster Replication Process ... 2-5
Conflict Resolution Concepts ... 2-7
How Replication Works with Object Types and Collections .. 2-8

iv

Master Replication Architecture .. 2-13
Master Site Mechanisms... 2-13
Administrative Mechanisms ... 2-22
Organizational Mechanisms.. 2-26
Propagation Mechanism .. 2-28
Performance Mechanisms.. 2-33
Replication Protection Mechanisms ... 2-37
Conflict Resolution Mechanisms .. 2-40

3 Materialized View Concepts and Architecture

Materialized View Concepts .. 3-1
What is a Materialized View?... 3-1
Why Use Materialized Views? ... 3-2
Read-Only, Updatable, and Writeable Materialized Views .. 3-3
Available Materialized Views .. 3-5
Required Privileges for Materialized View Operations .. 3-10
Data Subsetting with Materialized Views ... 3-12
Determining the Fast Refresh Capabilities of a Materialized View... 3-20
Multitier Materialized Views .. 3-21
How Materialized Views Work with Object Types and Collections....................................... 3-26
Materialized View Registration at a Master Site or Master Materialized View Site 3-34

Materialized View Architecture ... 3-35
Master Site and Master Materialized View Site Mechanisms .. 3-37
Materialized View Site Mechanisms .. 3-40
Organizational Mechanisms.. 3-41
Refresh Process .. 3-45

4 Deployment Templates Concepts and Architecture

Mass Deployment Challenge ... 4-1
Deployment Templates and the Mass Deployment Goal .. 4-2

Oracle Deployment Templates Concepts .. 4-2
Deployment Template Elements.. 4-3
Deployment Template Packaging and Instantiation .. 4-7

Deployment Template Architecture .. 4-10
Template Definitions Stored in System Tables ... 4-10
Packaging and Instantiation Process.. 4-11
After Instantiation ... 4-14

Deployment Template Design .. 4-15
Column Subsetting with Deployment Templates .. 4-15
Row Subsetting.. 4-17
Data Sets ... 4-19
Additional Design Considerations ... 4-21

Local Control of Materialized View Creation.. 4-21
Local Materialized View Control.. 4-21

v

5 Conflict Resolution Concepts and Architecture

Conflict Resolution Concepts .. 5-1
Understanding Your Data and Application Requirements ... 5-2
Types of Replication Conflicts.. 5-2
Data Conflicts and Transaction Ordering... 5-3
Conflict Detection... 5-3
Conflict Resolution... 5-4
Techniques for Avoiding Conflicts... 5-12

Conflict Resolution Architecture ... 5-14
Support Mechanisms .. 5-15
Common Update Conflict Resolution Methods ... 5-16
Additional Update Conflicts Resolution Methods... 5-18
Uniqueness Conflicts Resolution Methods ... 5-26
Delete Conflict Resolution Methods... 5-27
Send and Compare Old Values... 5-27

6 Planning Your Replication Environment

Considerations for Replicated Tables .. 6-1
Primary Keys and Replicated Tables .. 6-1
Foreign Keys and Replicated Tables ... 6-2
Data Type Considerations for Replicated Tables .. 6-2
Unsupported Table Types .. 6-3
Row-Level Dependency Tracking ... 6-4

Initialization Parameters... 6-4
Master Sites and Materialized View Sites... 6-7

Advantages of Master Sites .. 6-8
Advantages of Materialized View Sites .. 6-8
Preparing for Materialized Views.. 6-9
Creating a Materialized View Log.. 6-12
Creating a Materialized View Environment ... 6-14
Avoiding Problems When Adding a New Materialized View Site ... 6-15

Interoperability in an Advanced Replication Environment ... 6-16
Guidelines for Scheduled Links .. 6-17

Scheduling Periodic Pushes... 6-17
Scheduling Continuous Pushes... 6-18

Guidelines for Scheduled Purges of a Deferred Transaction Queue.. 6-19
Scheduling Periodic Purges ... 6-19
Scheduling Continuous Purges... 6-20

Serial and Parallel Propagation .. 6-21
Deployment Templates .. 6-21

Preparing Materialized View Sites for Instantiation of Deployment Templates................... 6-21
Conflict Resolution ... 6-23
Security and Replication.. 6-24
Designing for Survivability .. 6-24

Oracle Real Application Clusters versus Replication .. 6-25
Designing a Replication Environment for Survivability ... 6-26

vi

Implementing a Survivable System.. 6-26

A Troubleshooting Replication Problems

Diagnosing Problems with Database Links .. A-1
Diagnosing Problems with Master Sites .. A-1

Replicated Objects Not Created at New Master Site ... A-2
DDL Changes Not Propagated to Master Site .. A-2
DML Changes Not Asynchronously Propagated to Other Sites.. A-2
DML Cannot be Applied to Replicated Table... A-3
Bulk Updates and Constraint Violations ... A-3
Re-creating a Replicated Object .. A-3
Unable to Generate Replication Support for a Table ... A-3
Problems with Replicated Procedures or Triggers... A-4

Diagnosing Problems with the Deferred Transaction Queue .. A-4
Check Jobs for Scheduled Links.. A-4
Distributed Transaction Problems with Synchronous Replication.. A-4
Incomplete Database Link Specifications .. A-4
Incorrect Replication Catalog Views .. A-5

Diagnosing Problems with Materialized Views ... A-5
Problems Creating Replicated Objects at Materialized View Site ... A-5
Problems Performing Offline Instantiation of a Deployment Template................................... A-5
Refresh Problems... A-6
Advanced Troubleshooting of Refresh Problems .. A-7

B Column Length Semantics and Unicode

Column Length Semantics for Replication Sites and Table Columns.. B-1
Multimaster Support for Column Length Semantics... B-2

Column Length Semantics Support for Tables Generated by Advanced Replication............ B-2
Column Length Semantics Support for Precreated Tables ... B-2

Materialized View Support for Column Length Semantics ... B-3
Materialized Views with Prebuilt Container Tables.. B-3
Column Length Semantics Support for Updatable Materialized Views B-4

DDL Propagation and Column Length Semantics ... B-4
Replication Support for Unicode ... B-5

Replication of NCLOB Data Type Columns ... B-6

Index

vii

viii

List of Figures

1–1 Multimaster Replication... 1-5
1–2 Read-Only Materialized View Replication ... 1-6
1–3 Updatable Materialized View Replication .. 1-7
1–4 Hybrid Configuration ... 1-10
1–5 Advanced Replication Interface in Enterprise Manager .. 1-11
2–1 Multimaster Replication... 2-2
2–2 Multimaster Replication Supporting Multiple Points of Update Access 2-4
2–3 Each Arrow Represents a Database Link ... 2-15
2–4 Master Group hr_mg Contains Same Replication Objects at All Sites............................. 2-27
2–5 Master Groups Are Identical at Each Master Site ... 2-28
2–6 Asynchronous Data Replication Mechanisms... 2-29
2–7 Synchronous Data Replication Mechanisms.. 2-30
2–8 Propagating Changes Using Synchronous Row-Level Replication 2-31
2–9 Selecting a Propagation Mode ... 2-32
2–10 Ordering Considerations .. 2-33
3–1 Materialized View Connected to a Single Master Site... 3-2
3–2 Comparison of Simple and Complex Materialized Views .. 3-10
3–3 Row Subsetting with Many to One Subqueries... 3-14
3–4 Row Subsetting with One to Many Subqueries... 3-15
3–5 Row Subsetting with Many to Many Subqueries.. 3-16
3–6 Row Subsetting with Subqueries and Unions ... 3-18
3–7 Multitier Materialized Views .. 3-21
3–8 Levels of Materialized Views ... 3-22
3–9 Master Materialized Views... 3-23
3–10 Materialized View Replication Objects... 3-36
3–11 Master Site and Master Materialized View Site Objects .. 3-37
3–12 Materialized View Groups Correspond with Master Groups... 3-42
3–13 Refresh Groups Can Contain Objects from Multiple Materialized View Groups 3-44
3–14 Fast Refresh of a Materialized View.. 3-47
4–1 Deployment Template View Relationships .. 4-4
4–2 Deployment Template Elements Added to Template... 4-5
4–3 Online Instantiation .. 4-8
4–4 Offline Instantiation.. 4-9
4–5 Checking for Parameters During Online Instantiation .. 4-13
4–6 Replicate Column-Subsetted Data... 4-16
4–7 Product/Warehouse Relationship... 4-18
4–8 The Different Needs of Salespersons and Customer Support Technicians..................... 4-20
5–1 Conflict Resolution and Multitier Materialized Views ... 5-6
5–2 Using Priority Groups ... 5-24
5–3 Column Groups and Data Propagation... 5-29
6–1 Recommended Schema and Database Link Configuration ... 6-11
6–2 Flowchart for Creating Materialized Views... 6-15
6–3 Survivability Methods: Replication Or Oracle Real Application Clusters 6-25

ix

List of Tables

3–1 Required Privileges for Creating Materialized Views (Creator != Owner).................... 3-12
3–2 Required Privileges for Refreshing Materialized Views (Refresher != Owner) 3-12
3–3 Large and Small Refresh Groups.. 3-45
4–1 Scenarios for Instantiating a Deployment Template .. 4-9
4–2 Packaging and Instantiation Options... 4-14
5–1 Example: Ordering Conflicts with Site Priority Conflict Resolution 5-14
5–2 Convergence Properties of Common Update Conflict Resolution Methods 5-16
5–3 Convergence Properties of Additional Update Conflict Resolution Methods 5-19
6–1 Initialization Parameters Important for Advanced Replication ... 6-5
6–2 Characteristics of Master Sites and Materialized View Sites... 6-8
6–3 Settings to Schedule Periodic Pushes... 6-17
6–4 Settings to Simulate Continuous Push... 6-18
6–5 Settings to Schedule Periodic Purges ... 6-19
6–6 Settings to Schedule Continuous Purges... 6-20
B–1 Column Length Semantics Support for Generated Tables ... B-2
B–2 Column Length Semantics Support for Precreated Tables... B-3
B–3 Column Length Semantics Support for Updatable Materialized Views B-4
B–4 Replication Support for Globalization Support Character Sets ... B-5

x

xi

Preface

Oracle Database Advanced Replication describes the features and functionality of
Advanced Replication. Specifically, Oracle Database Advanced Replication contains
conceptual information about Advanced Replication, as well as information about
planning your replication environment and troubleshooting replication problems.

This Preface contains these topics:

■ Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Audience
Oracle Database Advanced Replication is intended for database administrators and
application developers who develop and maintain replication environments. These
administrators and application developers perform one or more of the following tasks:

■ Plan for a replication environment

■ Configure the following types of replication environments:

– Read-only materialized view

– Updatable materialized view

– Single master replication

– Multimaster replication

■ Use deployment templates to create a materialized view environment

■ Configure conflict resolution

■ Administer a replication environment

■ Perform troubleshooting activities when necessary

■ Manage job queues

■ Manage deferred transactions

■ Use the Advanced Replication interface in Oracle Enterprise Manager to create,
monitor, and manage replication environments

xii

To use this document, you need to be familiar with relational database concepts,
distributed database administration, PL/SQL (if using procedural replication), and the
operating system under which you run an Advanced Replication environment.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Deaf/Hard of Hearing Access to Oracle Support Services
To reach Oracle Support Services, use a telecommunications relay service (TRS) to call
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle
technical issues and provide customer support according to the Oracle service request
process. Information about TRS is available at
http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone
numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.

Related Documents
For more information, see these Oracle resources:

■ Oracle Database Advanced Replication Management API Reference

■ The Advanced Replication online Help in Oracle Enterprise Manager

■ Oracle Database Concepts

■ Oracle Database Administrator's Guide

■ Oracle Database SQL Language Reference

■ Oracle Database PL/SQL Language Reference

■ Oracle Streams Replication Administrator's Guide if you want to migrate your
Advanced Replication environment to Oracle Streams

Many of the examples in this book use the sample schemas of the sample database,
which is installed by default when you install Oracle Database. Refer to Oracle

xiii

Database Sample Schemas for information about how these schemas were created and
how you can use them.

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://www.oracle.com/technology/membership/

If you already have a user name and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://www.oracle.com/technology/documentation/

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xiv

Introduction to Advanced Replication 1-1

1
Introduction to Advanced Replication

This chapter explains the basic concepts and terminology related to Advanced
Replication.

This chapter contains these topics:

■ Overview of Replication

■ Applications that Use Replication

■ Replication Objects, Groups, and Sites

■ Types of Replication Environments

■ Administration Tools for a Replication Environment

■ Replication Conflicts

■ Other Options for Multimaster Replication

Overview of Replication
Replication is the process of copying and maintaining database objects, such as tables,
in multiple databases that make up a distributed database system. Changes applied at
one site are captured and stored locally before being forwarded and applied at each of
the remote locations. Advanced Replication is a fully integrated feature of the Oracle
server; it is not a separate server.

Replication uses distributed database technology to share data between multiple sites,
but a replicated database and a distributed database are not the same. In a distributed
database, data is available at many locations, but a particular table resides at only one
location. For example, the employees table resides at only the ny.example.com
database in a distributed database system that also includes the hk.example.com
and la.example.com databases. Replication means that the same data is available at
multiple locations. For example, the employees table is available at
ny.example.com, hk.example.com, and la.example.com.

Some of the most common reasons for using replication are described as follows:

Availability
Replication provides fast, local access to shared data because it balances activity over
multiple sites. Some users can access one server while other users access different

Note: If you are using Trusted Oracle, then see your
documentation for Oracle security-related products for information
about using replication in that environment.

Applications that Use Replication

1-2 Oracle Database Advanced Replication

servers, thereby reducing the load at all servers. Also, users can access data from the
replication site that has the lowest access cost, which is typically the site that is
geographically closest to them.

Performance
Replication provides fast, local access to shared data because it balances activity over
multiple sites. Some users can access one server while other users access different
servers, thereby reducing the load at all servers.

Disconnected Computing
A materialized view is a complete or partial copy (replica) of a target table from a
single point in time. Materialized views enable users to work on a subset of a database
while disconnected from the central database server. Later, when a connection is
established, users can synchronize (refresh) materialized views on demand. When
users refresh materialized views, they update the central database with all of their
changes, and they receive any changes that happened while they were disconnected.

Network Load Reduction and Mass Deployment
Replication can be used to distribute data over multiple regional locations. Then,
applications can access various regional servers instead of accessing one central server.
This configuration can reduce network load dramatically.

You can find more detailed descriptions of the uses of replication in later chapters.

Applications that Use Replication
Replication supports a variety of applications that often have different requirements.
Some applications allow for relatively autonomous individual materialized view sites.
For example, sales force automation, field service, retail, and other mass deployment
applications typically require data to be periodically synchronized between central
database systems and a large number of small, remote sites, which are often
disconnected from the central database. Members of a sales force must be able to
complete transactions, regardless of whether they are connected to the central
database. In this case, remote sites must be autonomous.

On the other hand, applications such as call centers and Internet systems require data
on multiple servers to be synchronized in a continuous, nearly instantaneous manner
to ensure that the service provided is available and equivalent at all times. For
example, a retail Web site on the Internet must ensure that customers see the same
information in the online catalog at each site. Here, data consistency is more important
than site autonomy.

Advanced Replication can be used for each of the types of applications described in
the previous paragraphs, and for systems that combine aspects of both types of
applications. In fact, Advanced Replication can support both mass deployment and
server-to-server replication, enabling integration into a single coherent environment.
In such an environment, for example, sales force automation and customer service call
centers can share data.

Note: The Advanced Replication feature is automatically installed
and upgraded in every Oracle Database installation.

See Also: Oracle Database Administrator's Guide for more
information about distributed databases

Replication Objects, Groups, and Sites

Introduction to Advanced Replication 1-3

Advanced Replication can replicate data in environments that use different releases of
Oracle and in environments that run Oracle on different operating systems. Therefore,
applications that use data in such an environment can use Advanced Replication.

Replication Objects, Groups, and Sites
The following sections explain the basic components of a replication system, including
replication objects, replication groups, and replication sites.

Replication Objects
A replication object is a database object existing on multiple servers in a distributed
database system. In a replication environment, any updates made to a replication
object at one site are applied to the copies at all other sites. Advanced Replication
enables you to replicate the following types of objects:

■ Tables

■ Indexes

■ Views and Object Views

■ Packages and Package Bodies

■ Procedures and Functions

■ User-Defined Types and Type Bodies

■ Triggers

■ Synonyms

■ Indextypes

■ User-Defined Operators

Regarding tables, replication supports advanced features such as partitioned tables,
index-organized tables, tables containing columns that are based on user-defined
types, and object tables.

Replication Groups
In a replication environment, Oracle manages replication objects using replication
groups. A replication group is a collection of replication objects that are logically
related.

By organizing related database objects within a replication group, it is easier to
administer many objects together. Typically, you create and use a replication group to
organize the schema objects necessary to support a particular database application.
However, replication groups and schemas do not need to correspond with one
another. A replication group can contain objects from multiple schemas, and a single
schema can have objects in multiple replication groups. However, each replication
object can be a member of only one replication group.

Replication Sites
A replication group can exist at multiple replication sites. Replication environments
support two basic types of sites: master sites and materialized view sites. One site can
be both a master site for one replication group and a materialized view site for a
different replication group. However, one site cannot be both the master site and the
materialized view site for the same replication group.

Types of Replication Environments

1-4 Oracle Database Advanced Replication

The differences between master sites and materialized view sites are the following:

■ A replication group at a master site is more specifically referred to as a master
group. A replication group at a materialized view site is based on a master group
and is more specifically referred to as a materialized view group. Additionally,
every master group has exactly one master definition site. A replication group's
master definition site is a master site serving as the control center for managing
the replication group and the objects in the group.

■ A master site maintains a complete copy of all objects in a replication group, while
materialized views at a materialized view site can contain all or a subset of the
table data within a master group. For example, if the hr_repg master group
contains the tables employees and departments, then all of the master sites
participating in a master group must maintain a complete copy of employees
and departments. However, one materialized view site might contain only a
materialized view of the employees table, while another materialized view site
might contain materialized views of both the employees and departments
tables.

■ All master sites in a multimaster replication environment communicate directly
with one another to continually propagate data changes in the replication group.
Materialized view sites contain an image, or materialized view, of the table data
from a certain point in time. Typically, a materialized view is refreshed
periodically to synchronize it with its master site. You can organize materialized
views into refresh groups. Materialized views in a refresh group can belong to one
or more materialized view groups, and they are refreshed at the same time to
ensure that the data in all materialized views in the refresh group correspond to
the same transactionally consistent point in time.

Types of Replication Environments
Advanced Replication supports the following types of replication environments:

■ Multimaster Replication

■ Materialized View Replication

■ Multimaster and Materialized View Hybrid Configurations

Multimaster Replication
Multimaster replication (also called peer-to-peer or n-way replication) enables
multiple sites, acting as equal peers, to manage groups of replicated database objects.
Each site in a multimaster replication environment is a master site, and each site
communicates with the other master sites.

Applications can update any replicated table at any site in a multimaster
configuration. Oracle database servers operating as master sites in a multimaster
environment automatically work to converge the data of all table replicas and to
ensure global transaction consistency and data integrity.

Asynchronous replication is the most common way to implement multimaster
replication. Other ways include synchronous replication and procedural replication,
which are discussed later in this chapter. When you use asynchronous replication,
information about a data manipulation language (DML) change on a table is stored in
the deferred transactions queue at the master site where the change occurred. These
changes are called deferred transactions. The deferred transactions are pushed (or
propagated) to the other participating master sites at regular intervals. You can control
the amount of time in these intervals.

Types of Replication Environments

Introduction to Advanced Replication 1-5

Using asynchronous replication means that data conflicts are possible because the
same row value might be updated at two different master sites at nearly the same
time. However, you can use techniques to avoid conflicts and, if conflicts occur, Oracle
provides prebuilt mechanisms that can be implemented to resolve them. Information
about unresolved conflicts is stored in an error log.

Figure 1–1 Multimaster Replication

Master Group Quiesce
At times, you must stop all replication activity for a master group so that you can
perform certain administrative tasks on the master group. For example, you must stop
all replication activity for a master group to add a new master group object. Stopping
all replication activity for a master group is called quiescing the group. When a master
group is quiesced, users cannot issue DML statements on any of the objects in the
master group. Also, all deferred transactions must be propagated before you can
quiesce a master group. Users can continue to query the tables in a quiesced master
group.

Materialized View Replication
A materialized view contains a complete or partial copy of a target master from a
single point in time. The target master can be either a master table at a master site or a
master materialized view at a materialized view site. A master materialized view is a
materialized view that functions as a master for another materialized view. A
multitier materialized view is one that is based on another materialized view, instead
of on a master table.

Materialized views provide the following benefits:

■ Enable local access, which improves response times and availability

■ Offload queries from the master site or master materialized view site, because
users can query the local materialized view instead

■ Increase data security by enabling you to replicate only a selected subset of the
target master's data set

Master
Site

Master
Site

Master
Site

TableTableTable
TableTable

Replication
Group

TableTableTable
TableTable

Replication
Group

TableTableTable
TableTable

Replication
Group

Types of Replication Environments

1-6 Oracle Database Advanced Replication

A materialized view can be read-only, updatable, or writeable, and these types of
materialized views provide benefits in addition to those listed previously.

Overview of Read-Only Materialized Views
In a basic configuration, materialized views can provide read-only access to the table
data that originates from a master site or master materialized view site. Applications
can query data from read-only materialized views to avoid network access to the
master site, regardless of network availability. However, applications throughout the
system must access data at the master site to perform data manipulation language
changes (DML). Figure 1–2 illustrates basic, read-only replication. The master tables
and master materialized views of read-only materialized views do not need to belong
to a replication group.

Read-only materialized views provide the following benefits:

■ Eliminate the possibility of conflicts because they cannot be updated.

■ Support complex materialized views. Examples of complex materialized views are
materialized views that contain set operations or a CONNECT BY clause.

Figure 1–2 Read-Only Materialized View Replication

Overview of Updatable Materialized Views
In a more advanced configuration, you can create an updatable materialized view
that allows users to insert, update, and delete rows of the target master table or master
materialized view by performing these operations on the materialized view. An
updatable materialized view can also contain a subset of the data in the target master.
Figure 1–3 illustrates a replication environment using updatable materialized views.

Updatable materialized views are based on tables or other materialized views that
have been set up to support replication. In fact, updatable materialized views must be

See Also: "Available Materialized Views" on page 3-5 for more
information about complex materialized views

Replicate table data

Network

Refresh

Materialized View
(read-only)

Master
database

Master Table
(updatable)

Client applications

Remote update

Local
query

Materialized
View

database

Types of Replication Environments

Introduction to Advanced Replication 1-7

part of a materialized view group that is based on another replication group. For
changes made to an updatable materialized view to be pushed back to the master
during refresh, the updatable materialized view must belong to a materialized view
group.

Figure 1–3 Updatable Materialized View Replication

Updatable materialized views have the following properties.

■ They are always based on a single table, although multiple tables can be
referenced in a subquery.

■ They can be incrementally (or fast) refreshed.

■ Oracle propagates the changes made to an updatable materialized view to the
materialized view's remote master table or master materialized view. The updates
to the master then cascade to all other replication sites.

Updatable materialized views provide the following benefits:

■ Allow users to query and update a local replicated data set even when
disconnected from the master site or master materialized view site.

■ Require fewer resources than multimaster replication, while still supporting data
updates. Materialized views can reduce the amount of stress placed on network
resources because materialized views can be refreshed on demand, while
multimaster replication propagates changes at regular intervals. In addition,
because materialized views can reside in a database that contains far less data, the
disk space and memory requirements for materialized view clients can be less
than the requirements for an Oracle server containing master sites.

Overview of Writeable Materialized Views
You can create a materialized view using the FOR UPDATE clause during creation but
then never add the materialized view to a materialized view group. In this case, users
can perform data manipulation language (DML) changes on the materialized view,

Replicate table data

Network

Refresh

Materialized
View

database

Materialized View
(updatable)

Master
database

Master Table
(updatable)

Client applications

Remote update

Local
query

Local
update

Types of Replication Environments

1-8 Oracle Database Advanced Replication

but these changes cannot be pushed back to the master and are lost if the materialized
view refreshes. Such materialized views are called writeable materialized views.

Overview of Row and Column Subsetting with Materialized Views
Both row and column subsetting enable you to create materialized views that contain
a partial copy of the data at a master table or master materialized view. Such
materialized views can be helpful for regional offices or sales forces that do not require
the complete data set.

Row subsetting enables you to include only the rows that are needed from the masters
in the materialized views by using a WHERE clause. Column subsetting enables you to
include only the columns that are needed from the masters in the materialized views.
You do this by specifying particular columns in the SELECT statement during
materialized view creation.

Materialized View Refresh
To ensure that a materialized view is consistent with its master table or master
materialized view, you need to refresh the materialized view periodically. Oracle
provides the following three methods to refresh materialized views:

■ Fast refresh uses materialized view logs to update only the rows that have
changed since the last refresh.

■ Complete refresh updates the entire materialized view.

■ Force refresh performs a fast refresh when possible. When a fast refresh is not
possible, force refresh performs a complete refresh.

Refresh Groups
When it is important for materialized views to be transactionally consistent with each
other, you can organize them into refresh groups. By refreshing the refresh group, you
can ensure that the data in all of the materialized views in the refresh group
correspond to the same transactionally consistent point in time. Both read-only and
updatable materialized views can be included in a refresh group. A materialized view
in a refresh group still can be refreshed individually, but doing so nullifies the benefits
of the refresh group because refreshing the materialized view individually does not
refresh the other materialized views in the refresh group.

Materialized View Log
A materialized view log is a table at the materialized view's master site or master
materialized view site that records all of the DML changes to the master table or
master materialized view. A materialized view log is associated with a single master
table or master materialized view, and each of those has only one materialized view

Note: Column subsetting of updatable materialized views is
supported only through the use of deployment templates and the
Advanced Replication interface in Oracle Enterprise Manager. This
restriction does not apply to column subsetting of read-only
materialized views.

See Also:

■ "Data Subsetting with Materialized Views" on page 3-12

■ "Column Subsetting with Deployment Templates" on page 4-15

Types of Replication Environments

Introduction to Advanced Replication 1-9

log, regardless of how many materialized views refresh from the master. A fast refresh
of a materialized view is possible only if the materialized view's master has a
materialized view log. When a materialized view is fast refreshed, entries in the
materialized view's associated materialized view log that have appeared since the
materialized view was last refreshed are applied to the materialized view.

Deployment Templates
Deployment templates simplify the task of deploying and maintaining many remote
materialized view sites. Using deployment templates, you can define a collection of
materialized view definitions at a master site, and you can use parameters in the
definitions so that the materialized views can be customized for individual users or
types of users.

For example, you might create one template for the sales force and another template
for field service representatives. In this case, a parameter value might be the sales
territory or the customer support level. When a remote user connects to a master site,
the user can query a list of available templates. When the user instantiates a template,
the materialized views are created and populated at the remote site. The parameter
values can either be supplied by the remote user or taken from a table maintained at
the master site.

Online and Offline Instantiation When a user instantiates a template at a materialized view
site, the object DDL (for example, CREATE MATERIALIZED VIEW or CREATE TABLE
statements) is executed to create the schema objects at the materialized view site, and
the objects are populated with the appropriate data. Users can instantiate templates
while connected to the master site over a network (online instantiation), or while
disconnected from the master site (offline instantiation).

Offline instantiation is often used to decrease server loads during peak usage periods
and to reduce remote connection times. To instantiate a template offline, you package
the template and required data on some type of storage media, such as tape, CD-ROM,
and so on. Then, instead of pulling the data from the master site, users pull the data
from the storage media containing the template and data.

Multimaster and Materialized View Hybrid Configurations
Multimaster replication and materialized views can be combined in hybrid or "mixed"
configurations to meet different application requirements. Hybrid configurations can
have any number of master sites and multiple materialized view sites for each master.

For example, as shown in Figure 1–4, multimaster (or n-way) replication between two
masters can support full-table replication between the databases that support two
geographic regions. Materialized views can be defined on the masters to replicate full
tables or table subsets to sites within each region.

Administration Tools for a Replication Environment

1-10 Oracle Database Advanced Replication

Figure 1–4 Hybrid Configuration

Key differences between materialized views and replicated master tables include the
following:

■ Replicated master tables must contain data for the full table being replicated,
whereas materialized views can replicate subsets of master table data.

■ Multimaster replication enables you to replicate changes for each transaction as
the changes occur. Materialized view refreshes are set oriented, propagating
changes from multiple transactions in a more efficient, batch-oriented operation,
but at less frequent intervals.

■ If conflicts occur because of changes made to multiple copies of the same data,
then detection and resolution of conflicts always occurs at a master site or a master
materialized view site.

Scheduled Links
Both master sites and materialized view sites use scheduled links to propagate data
changes to other sites. A scheduled link is a database link with a user-defined schedule
to push deferred transactions. A scheduled link determines how a master site
propagates its deferred transaction queue to another master site, or how a materialized
view site propagates its deferred transaction queue to its master site. When you create
a scheduled link, Oracle creates a job in the local job queue to push the deferred
transaction queue to another site in the system.

Administration Tools for a Replication Environment
Several tools are available for configuring, administering, and monitoring your
replication environment. The Advanced Replication interface in Oracle Enterprise
Manager provides a powerful graphical user interface (GUI) to help you manage your
environment, while the replication management application programming interface
(API) provides you with a familiar API to build customized scripts for replication

Materialized
View
Site Replication

Group

Materialized
View
Site Replication

Group

Materialized
View
Site

Master
Site Replication

Group

Master
Site Replication

Group

Replication
Group

or.example.com pa.example.com

sf.example.com ph.example.com

kc.example.com

Administration Tools for a Replication Environment

Introduction to Advanced Replication 1-11

administration. Additionally, the replication catalog keeps you informed about your
replication environment.

Advanced Replication Interface in Oracle Enterprise Manager
To help configure and administer replication environments, Oracle provides a
sophisticated Advanced Replication interface in Oracle Enterprise Manager. To access
the Advanced Replication interface, go to the Data Movement subpage in Enterprise
Manager. The Advanced Replication interface online Help is the primary
documentation source for this tool. Figure 1–5 shows the Advanced Replication
interface in Enterprise Manager.

Figure 1–5 Advanced Replication Interface in Enterprise Manager

Replication Management API
The replication management API is a set of PL/SQL packages that encapsulate
procedures and functions that you can use to configure an Advanced Replication
environment. The replication management API is a command-line alternative to the
Advanced Replication interface in Oracle Enterprise Manager. In fact, the Advanced
Replication interface uses the procedures and functions of the replication management
API to perform its work. For example, when you use the Advanced Replication
interface to create a new master group, the interface completes the task by making a
call to the CREATE_MASTER_REPGROUP procedure in the DBMS_REPCAT package. The
replication management API makes it easy for you to create custom scripts to manage
your replication environment.

See Also: The Advanced Replication interface online Help in Oracle
Enterprise Manager

See Also: Oracle Database Advanced Replication Management API
Reference for more information about using the replication
management API

Replication Conflicts

1-12 Oracle Database Advanced Replication

Replication Catalog
Every master site and materialized view site in a replication environment has a
replication catalog. A replication catalog for a site is a distinct set of data dictionary
tables and views that maintain administrative information about replication objects
and replication groups at the site. Every server participating in a replication
environment can automate the replication of objects in replication groups using the
information in its replication catalog.

Distributed Schema Management
In a replication environment, all DDL statements must be issued using either the
Advanced Replication interface in the Oracle Enterprise Manager or the DBMS_
REPCAT package in the replication management API. Specifically, if you use the
DBMS_REPCAT package, then use the CREATE_MASTER_REPOBJECT procedure to add
objects to a master group, and use ALTER_MASTER_REPOBJECT to modify replicated
objects. You can also use the EXECUTE_DDL procedure.

When you use either the Advanced Replication interface or the DBMS_REPCAT
package, all DDL statements are replicated to all of the sites participating in the
replication environment. In some cases, you can also use export/import to create
replicated objects.

Replication Conflicts
Asynchronous multimaster and updatable materialized view replication environments
must address the possibility of replication conflicts that can occur when, for example,
two transactions originating from different sites update the same row at nearly the
same time. When data conflicts occur, you need a mechanism to ensure that the
conflict is resolved in accordance with your business rules and to ensure that the data
converges correctly at all sites.

In addition to logging any conflicts that can occur in your replication environment,
Advanced Replication offers a variety of prebuilt conflict resolution methods that
enable you to define a conflict resolution system for your database that resolves
conflicts in accordance with your business rules. If you have a unique situation that
Oracle's prebuilt conflict resolution methods cannot resolve, then you have the option
of building and using your own conflict resolution methods.

See Also: Oracle Database Advanced Replication Management API
Reference for more information about the replication catalog

Note: Any DDL statements issued directly using a tool such as
SQL*Plus are not replicated to other sites.

Other Options for Multimaster Replication

Introduction to Advanced Replication 1-13

Other Options for Multimaster Replication
Asynchronous replication is the most common way to implement multimaster
replication. However, you have two other options: synchronous replication and
procedural replication.

Synchronous Replication
A multimaster replication environment can use either asynchronous or synchronous
replication to copy data. With asynchronous replication, changes made at one master
site occur at a later time at all other participating master sites. With synchronous
replication, changes made at one master site occur immediately at all other
participating master sites.

When you use synchronous replication, an update of a table results in the immediate
replication of the update at all participating master sites. In fact, each transaction
includes all master sites. Therefore, if one master site cannot process a transaction for
any reason, then the transaction is rolled back at all master sites.

Although you avoid the possibility of conflicts when you use synchronous replication,
it requires a very stable environment to operate smoothly. If communication to one
master site is not possible because of a network problem, for example, then users can
still query replicated tables, but no transactions can be completed until communication
is reestablished. Also, it is possible to configure asynchronous replication so that it
simulates synchronous replication.

Procedural Replication
Batch processing applications can change large amounts of data within a single
transaction. In such cases, typical row-level replication might load a network with
many data changes. To avoid such problems, a batch processing application operating
in a replication environment can use Oracle's procedural replication to replicate
simple stored procedure calls to converge data replicas. Procedural replication
replicates only the call to a stored procedure that an application uses to update a table.
It does not replicate the data modifications themselves.

To use procedural replication, you must replicate the packages that modify data in the
system to all sites. After replicating a package, you must generate a wrapper for the
package at each site. When an application calls a packaged procedure at the local site

See Also:

■ Chapter 5, "Conflict Resolution Concepts and Architecture" for
information about how to design your database to avoid data
conflicts and how to build conflict resolution methods that
resolve such conflicts when they occur

■ The Advanced Replication interface online Help in Oracle
Enterprise Manager for instructions on using the interface to
configure conflict resolution methods

■ Oracle Database Advanced Replication Management API Reference
for a description of how to build conflict resolution methods
using the replication management API

See Also: "Scheduling Continuous Pushes" on page 6-18 for
information about simulating synchronous replication in an
asynchronous replication environment

Other Options for Multimaster Replication

1-14 Oracle Database Advanced Replication

to modify data, the wrapper ensures that the call is ultimately made to the same
packaged procedure at all other sites in the replication environment. Procedural
replication can occur asynchronously or synchronously.

Conflict Detection and Procedural Replication
When replicating data using procedural replication, the procedures that replicate data
are responsible for ensuring the integrity of the replicated data. That is, you must
design such procedures to either avoid or detect replication conflicts and to resolve
them appropriately. Consequently, procedural replication is most typically used when
databases are modified only with large batch operations. In such situations, replication
conflicts are unlikely because numerous transactions are not contending for the same
data.

See Also: Oracle Database Advanced Replication Management API
Reference for more information about procedural replication

Master Replication Concepts and Architecture 2-1

2
Master Replication Concepts and

Architecture

This chapter explains the concepts and architecture of Oracle's master replication sites
in both single master and multimaster replication environments.

This chapter contains these topics:

■ Master Replication Concepts

■ Master Replication Architecture

Master Replication Concepts
To understand the architectural details of master replication, you need to understand
the concepts of master replication. Knowing how and why replication is used provides
you with a greater understanding of how the individual architectural elements work
together to create a multimaster replication environment.

This section contains these topics:

■ What is Master Replication?

■ Why Use Multimaster Replication?

■ Multimaster Replication Process

■ Conflict Resolution Concepts

■ How Replication Works with Object Types and Collections

What is Master Replication?
Oracle has two types of master replication: single master replication and multimaster
replication. Multimaster replication includes multiple master sites, where each master
site operates as an equal peer. In single master replication, a single master site
supporting materialized view replication provides the mechanisms to support
potentially hundreds or thousands of materialized view sites. A single master site that
supports one or more materialized view sites can also participate in a multiple master
site environment, creating a hybrid replication environment (combination of
multimaster and materialized view replication).

Materialized views can be based on master tables at master sites or on materialized
views at materialized view sites. When materialized views are based on materialized
views, you have a multitier materialized view environment. In such an environment,
materialized views that have other materialized views based on them are called
master materialized views.

Master Replication Concepts

2-2 Oracle Database Advanced Replication

Multimaster Replication
Multimaster replication, also known as peer-to-peer or n-way replication, is comprised
of multiple master sites equally participating in an update-anywhere model. Updates
made to an individual master site are propagated (sent) to all other participating
master sites. Figure 2–1 illustrates a multimaster replication system.

Oracle database servers operating as master sites in a multimaster replication
environment automatically work to converge the data of all table replicas, and ensure
global transaction consistency and data integrity. Conflict resolution is independently
handled at each of the master sites. Multimaster replication provides complete replicas
of each replicated table at each of the master sites.

If the replication environment is a hybrid environment (it has multiple master sites
supporting one or more materialized view sites), then the target master site propagates
any of the materialized view updates to all other master sites in the multimaster
replication environment. Then each master site propagates changes to their
materialized views when the materialized views refresh.

Figure 2–1 Multimaster Replication

Single Master Replication
A single master site can also function as the target master site for one or more
materialized view sites. Unlike multimaster replication, where updates to a single site
are propagated to all other master sites, materialized views update only their target
master site.

Conflict resolution is handled only at master sites or master materialized view sites.
Materialized view replication can contain complete or partial replicas of the replicated
table.

See Also: Chapter 3, "Materialized View Concepts and
Architecture" for more information about multitier materialized
views

Master
Site

Master
Site

Master
Site

TableTableTable
TableTable

Replication
Group

TableTableTable
TableTable

Replication
Group

TableTableTable
TableTable

Replication
Group

Master Replication Concepts

Master Replication Concepts and Architecture 2-3

Master Sites
A master site can be both a node in a multimaster replication environment and the
master for one or more materialized view sites in a single master or multimaster
replication environment. The replicated objects are stored at the master site and are
available for user access.

Master Definition Site In a multimaster replication environment, one master site operates
as the master definition site for a master group. This particular site performs many of
the administrative and maintenance tasks for the multimaster replication
environment.

Each master group can have only one master definition site, though the master
definition site can be any of the master sites in the multimaster environment.
Additionally, the master definition site can be changed to a different master site if
necessary.

A single master site supporting materialized view replication is by default the master
definition site.

Why Use Multimaster Replication?
From a very basic point of view, replication is used to ensure that data is available
when and where you need it. The following sections describe several different
environments that have different information delivery requirements. Your replication
environment might have one or more of the following requirements.

Failover
Multimaster replication can be used to protect the availability of a mission critical
database. For example, a multimaster replication environment can replicate data in
your database to establish a failover site should the primary site become unavailable
due to system or network outages. Such a failover site can also serve as a fully
functional database to support application access when the primary site is
concurrently operational.

You can use Oracle Net to configure automatic connect-time failover, which enables
Oracle Net to fail over to a different master site if the first master site fails. You
configure automatic connect-time failover in your tnsnames.ora file by setting the
FAILOVER_MODE parameter to on and specifying multiple connect descriptors.

Load Balancing
Multimaster replication is useful for transaction processing applications that require
multiple points of access to database information for the following purposes:

■ Distributing a heavy application load

■ Ensuring continuous availability

■ Providing more localized data access

See Also: Chapter 3, "Materialized View Concepts and
Architecture" for more information about materialized view
replication with a master site

See Also: Oracle Database Net Services Administrator's Guide for
more information about configuring connect-time failover

Master Replication Concepts

2-4 Oracle Database Advanced Replication

Applications that have application load distribution requirements commonly include
customer service oriented applications.

Figure 2–2 Multimaster Replication Supporting Multiple Points of Update Access

Support for Disconnected Materialized View Environments
Materialized view replication enables users to remotely store all or a subset of
replicated data from a master site in a disconnected environment. This scenario is
typical of sales force automation systems where an individual's laptop (a disconnected
device) stores a subset of data related to the individual salesperson.

Master sites operate as the target of the materialized view environment. Master site
support can be:

■ A single master site supporting all of the materialized views, which reduces the
possibility of divergent data because conflict resolution is performed only at
master sites or master materialized view sites (in a multitier materialized view
environment).

■ A combination of multimaster and materialized view replication where groups of
materialized views are targeted to different masters of the multimaster
configuration. This configuration distributes the network load across multiple
master nodes, providing improved scalability and availability should one of the
master nodes become unavailable.

Oracle Real Application Clusters Compared with Replication
The two major areas where you need to consider whether Advanced Replication or
Oracle Real Application Clusters (Oracle RAC) better serves your needs are load
balancing and survivability.

■ Load Balancing: Advanced Replication provides read load balancing over
multiple databases, while Oracle RAC provides read and write load balancing
over multiple instances. Because each write must be performed at each replication
site, replication does not offer write load balancing.

■ Survivability: Replication provides greater survivability protection with regards
to natural disasters, power outages, or sabotage, or both because the remaining
replication sites can be positioned in a geographically different region. Oracle

CS_DL

CS_SF CS_NY

Master Replication Concepts

Master Replication Concepts and Architecture 2-5

RAC operates on a cluster or other massively parallel system and is located in the
same physical environment, and thus cannot protect against the physical problems
that replication can protect against.

■ Interoperability: Advanced Replication can replicate data between different
platforms and operating systems that are running Oracle. The instances in an
Oracle RAC environment must run on the same platform.

Multimaster Replication Process
There are two types of multimaster replication: asynchronous and synchronous.

Asynchronous replication, often referred to as store-and-forward replication, captures
any local changes, stores them in a queue, and, at regular intervals, propagates and
applies these changes at remote sites. With this form of replication, there is a period of
time before all sites achieve data convergence.

Synchronous replication, also known as real-time replication, applies any changes or
executes any replicated procedures at all sites participating in the replication
environment as part of a single transaction. If the data manipulation language (DML)
statement or procedure fails at any site, then the entire transaction rolls back.
Synchronous replication ensures data consistency at all sites in real-time.

You can change the propagation mode from asynchronous to synchronous or vice
versa for a master site. If you change the propagation mode for a master site in a
master group, then you must regenerate replication support for all master group
objects. When you regenerate replication support, Oracle then activates the internal
triggers and regenerates the internal packages to support replication of the objects at
all master sites. Also, a multimaster replication environment can contain a mixture of
both synchronous and asynchronous replication.

Asynchronous Replication
Asynchronous replication independently propagates any DML or replicated
procedure execution to all of the other master sites participating in the multimaster
replication environment. Propagation occurs in a separate transaction after the DML
or replication procedure has been executed locally.

Asynchronous replication is the default mode of replication. Asynchronous replication
requires less networking and hardware resources than does synchronous replication,
resulting in better availability and performance.

Asynchronous replication, however, means that the data sets at the different master
sites in the replication environment can be different for a period of time before the
changes have been propagated. Also, data conflicts can occur in an asynchronous
replication environment.

The following describes the process of asynchronous replication:

1. A user issues DML statement or executes a wrapper for a replicated procedure.

After a table has been set up for replication, any DML that a user commits on the
table is captured for replication to all other master sites.

For each row that is inserted, updated, or deleted, an internal trigger creates a
deferred remote procedure call (RPC) and places it in the deferred transaction
queue. The deferred transaction queue contains all deferred RPCs.

See Also: "Understanding Mixed-Mode Multimaster Systems" on
page 2-32 for more information

Master Replication Concepts

2-6 Oracle Database Advanced Replication

If a procedure has been replicated and its wrapper is executed at a master site,
then the procedure call is placed in the deferred transaction queue.

2. The deferred transaction queue stores deferred RPCs.

Each transaction in the deferred transaction queue has a list of destinations that
define where the deferred transaction should be propagated; this list contains all
master sites except for the originating site. There is one deferred transaction queue
for each site, and this one queue can be used by multiple replication groups.

3. Propagation sends deferred transaction queue entry to destination.

At scheduled intervals or on-demand, the deferred transactions in the deferred
transaction queue are propagated to the target destinations. Each destination can
have a different interval.

4. The deferred transaction queue entry applied at a remote destination.

As a deferred transaction is being propagated to a target destination, each
deferred RPC is applied at the destination site by calling an internal package. If the
deferred transaction cannot be successfully applied at the destination site, then it
is resent and placed into the error queue at the destination site, where the DBA
can fix the error condition and re-apply the deferred transaction.

When a deferred transaction queue entry is applied at the remote destination,
Oracle checks for data conflicts. If a conflict is detected, then it is logged at the
remote location and, optionally, a conflict resolution method is invoked.

5. When a deferred transaction has been successfully pushed to all remote master
sites, it is not purged from the deferred transaction queue at the originating site
immediately. It can be purged later by a purge job, which runs at a user-defined
interval.

Synchronous Replication
Synchronous replication propagates any changes made at a local site to other
synchronously linked masters in a replication environment during the same
transaction as the initial change. If the propagation fails at any of the master sites, then
the entire transaction, including the initial change at the local master site, rolls back.
This strict enforcement ensures data consistency across the replication environment.
Unlike asynchronous replication, there is never a period of time when the data at any
of the master sites does not match.

Synchronous replication also ensures that no data conflicts are introduced into the
replication environment. These benefits have the cost of requiring many hardware and
networking resources with no flexibility for downtime. For example, if a single master
site of a six node multimaster environment is unavailable, then a transaction cannot be
completed at any master site.

However, in asynchronous replication, the deferred transaction is held at the
originating site until the downed site becomes available. Meanwhile, the transaction
can be successfully propagated and applied at other replication sites.

See Also: Chapter 5, "Conflict Resolution Concepts and
Architecture" for more information

See Also: "Understanding Mixed-Mode Multimaster Systems" on
page 2-32 for a discussion on using both synchronous and
asynchronous replication in a single environment

Master Replication Concepts

Master Replication Concepts and Architecture 2-7

Additionally, while query performance remains high because they are performed
locally with synchronous replication, updates are slower because of the two-phase
commit protocol that ensures that any updates are successfully propagated and
applied to the remote destination sites.

The following describes the process of synchronous replication:

1. User issues DML statement or executes a wrapper for a replicated procedure.

After a table has been set up for replication, any DML that a user commits on the
target table is captured for replication to all other master replication sites.

If a procedure has been replicated and its wrapper is executed at a master site,
then the procedure call is captured for replication.

2. DML or wrapper execution is immediately propagated to destination sites.

The internal trigger captures any DML and immediately propagates these actions
to all other master sites in the replication environment. The internal trigger applies
these actions in the security context of the propagator's database link and uses an
internal RPC to apply these actions at the destination site.

Like an internal trigger, a wrapper for a replicated procedure immediately
propagates the procedure call to all other master sites in the replication
environment.

If the transaction fails at any one of the master replication sites, then the
transaction is rolled back at all master sites. This methodology ensures data
consistency across all master replication sites. Because of the need to roll back a
transaction if any site fails, synchronous replication is extremely dependent on
highly-available networks, databases, and the associated hardware.

Conflict Resolution Concepts
When Oracle replicates a table, any DML applied to the replicated table at any
replication site (either master or materialized view site) that causes a data conflict at a
destination site is automatically detected by the Oracle server at the destination site.
Any data conflicts introduced by a materialized view site are detected and resolved at
the target master site or master materialized view site of the materialized view.

For example, if the following master group is scheduled to propagate changes once an
hour, then consider what happens when:

If the time between propagations is considered an interval and two or more sites
update the same row during a single interval, then a conflict occurs.

See Also: Oracle Database Administrator's Guide for more
information about two-phase commit

Time Master Site A Master Site B Status

8:00 AM Propagate Changes to
Master Site B

Propagate Changes to
Master Site A

Data converges.

8:15 AM Updates Row 1 - -

8:30 AM - Updates Row 1 -

9:00 AM Propagate Changes to
Master Site B

Propagate Changes to
Master Site A

Conflict Detected on
Row 1

Master Replication Concepts

2-8 Oracle Database Advanced Replication

In addition to the update conflict described previously, there are insert and delete
conflicts. Consider the following summaries of each type of conflict. Each conflict
occurs when the conflicting actions occur within the same interval.

After a data conflict is detected, the following actions occur:

1. The conflict resolution methods try to resolve the data conflict.

2. If the conflict is not resolved, then the data conflict is logged in the error queue at
the destination site.

When a data conflict is logged in the error queue, then the database administrator is
responsible for resolving the data conflict manually.

If you choose to use Oracle-supplied or user-defined conflict resolution methods, then
the Oracle server automatically tries to resolve the data conflict. The conflict resolution
methods that you implement should conform to the business rules defined for your
replication environment and should work to guarantee data convergence. You might
need to modify tables to meet the needs of the conflict resolution methods you
implement. For example, the latest time stamp conflict resolution method requires a
time stamp column in the table on which it is implemented.

How Replication Works with Object Types and Collections
Oracle object types are user-defined data types that make it possible to model
complex real-world entities such as customers and orders as single entities, called
objects, in the database. You create object types using the CREATE TYPE ... AS
OBJECT statement. You can replicate object types and objects between master sites in a
multimaster replication environment.

An Oracle object that occupies a single column in a table is called a column object.
Typically, tables that contain column objects also contain other columns, which can be
built-in data types, such as VARCHAR2 and NUMBER. An object table is a special kind
of table in which each row represents an object. Each row in an object table is a row
object.

You can also replicate collections. Collections are user-defined data types that are
based on VARRAY and nested table data types. You create varrays with the CREATE

Conflict Type Summary

Update conflict Two or more DML statements are applied to the same row at
different replication sites before the DML statement can be
propagated to the other sites.

Uniqueness conflict An insert is performed at two or more sites and the primary key
(or other set of unique columns) for each insert contains the
same value, or an update at one site modifies the primary key
(or other set of unique columns), which contains the same value
as an insert at another site.

Delete conflict A row is deleted at one site and an update occurs at another site,
which can result in an attempt to update a row that does not
exist, or the same row is deleted in the same interval at more
than one site.

See Also: Chapter 5, "Conflict Resolution Concepts and
Architecture" for more information about the different types of data
conflicts

Master Replication Concepts

Master Replication Concepts and Architecture 2-9

TYPE ... AS VARRAY statement, and you create nested tables with the CREATE TYPE
... AS TABLE statement.

Type Agreement at Replication Sites
User-defined types include all types created using the CREATE TYPE statement,
including object, nested table, and VARRAY. To replicate schema objects based on
user-defined types, the user-defined types themselves must exist, and must be exactly
the same, at all replication sites.

When replicating user-defined types and the schema objects on which they are based,
the following conditions apply:

■ All replication sites must have the same object identifier (OID), schema owner,
and type name for a replicated user-defined type.

■ If the user-defined type is an object type, then all replication sites must agree on
the order and data type of the attributes in the object type. You establish the order
and data types of the attributes when you create the object type. For example,
consider the following object type:

CREATE TYPE cust_address_typ AS OBJECT
 (street_address VARCHAR2(40),
 postal_code VARCHAR2(10),
 city VARCHAR2(30),
 state_province VARCHAR2(10),
 country_id CHAR(2));
/

At all replication sites, street_address must be the first attribute for this type
and must be VARCHAR2(40), postal_code must be the second attribute and
must be VARCHAR2(10), city must be the third attribute and must be
VARCHAR2(30), and so on.

■ All replication sites must agree on the hashcode of the user-defined type. Oracle
examines a user-defined type and assigns the hashcode. This examination includes
the type attributes, order of attributes, and type name. When all of these items are
the same for two or more types, the types have the same hashcode. You can view
the hashcode for a type by querying the DBA_TYPE_VERSIONS data dictionary
view.

To ensure that a user-defined type is exactly the same at all replication sites, you must
create the user-defined type in one of the following ways:

■ Use the Replication Management API

■ Use a CREATE TYPE Statement

Note: Advanced Replication does not support type inheritance or
type evolution, and Advanced Replication does not support types
created with the NOT FINAL clause. If a column of a replicated table
or a replicated object table is based on a user-defined type, then you
cannot alter the user-defined type.

See Also: Oracle Database Object-Relational Developer's Guide for
detailed information about user-defined types, column objects,
object tables, and collections. This section assumes a basic
understanding of the information in that book.

Master Replication Concepts

2-10 Oracle Database Advanced Replication

■ Use Export/Import

Use the Replication Management API Oracle recommends that you use the replication
management API to create, modify, or drop any replicated object at a replication site,
including user-defined types. If you do not use the replication management API for
these actions, then replication errors can result. For example, to add a user-defined
type that meets the conditions described previously to all replication sites in a master
group, create the type at the master definition site and then use the CREATE_MASTER_
REPOBJECT procedure in the DBMS_REPCAT package to add the type to a master
group.

Use a CREATE TYPE Statement You can use a CREATE TYPE statement at a replication
site to create the type. It might be necessary to do this if you want to precreate the type
at all replication sites and then add it to a replication group.

If you choose this option, then you must ensure the following:

■ The type is in the same schema at all replication sites.

■ The type has exactly the same attributes in exactly the same order at all replication
sites.

■ The type has exactly the same data type for each attribute at all replication sites.

■ The type has the same object identifier at all replication sites.

You can find the object identifier for a type by querying the DBA_TYPES data
dictionary view. For example, to find the object identifier (OID) for the cust_
address_typ, enter the following query:

SELECT TYPE_OID FROM DBA_TYPES WHERE TYPE_NAME = 'CUST_ADDRESS_TYP';

TYPE_OID

6F9BC33653681B7CE03400400B40A607

Or, if you are creating a new type at a number of different replication sites, then you
can specify the same OID at each site during type creation. In this case, you can
identify a globally unique OID by running the following query:

SELECT SYS_GUID() OID FROM DUAL;

When you know the OID for the type, complete the following steps to create the type
at the replication sites where it does not exist:

1. Log in to the replication site as the user who owns the type. If this user does not
exist at the replication site, then create the user.

2. Issue the CREATE TYPE statement and specify the OID:

CREATE TYPE oe.cust_address_typ OID '6F9BC33653681B7CE03400400B40A607'
 AS OBJECT (
 street_address VARCHAR2(40),
 postal_code VARCHAR2(10),
 city VARCHAR2(30),
 state_province VARCHAR2(10),
 country_id CHAR(2));
/

See Also: Oracle Database Advanced Replication Management API
Reference

Master Replication Concepts

Master Replication Concepts and Architecture 2-11

The type is now ready for use at the replication site.

Use Export/Import You can use the Export and Import utilities to maintain type
agreement between replication sites. When you export object tables based on
user-defined types, or tables containing column objects based on user-defined types,
the user-defined types are also exported automatically, if the user performing the
export has access to these types. When you import these tables at another replication
site, the user-defined types are exactly the same as the ones at the site where you
performed the export.

Therefore, you can use export/import to precreate your replication tables at new
replication sites, and then specify the "use existing object" option when you add these
tables to a replication group. This practice ensures type agreement at your replication
sites.

Object Tables and Replication
When you replicate object tables, the following conditions apply:

■ The OID of an object table must be the same at all replication sites.

■ The OID of each row object in an object table must be the same at all replication
sites.

You can meet these conditions by using the replication management API to add object
tables to a replication group, modify object tables, and drop object tables from a
replication group. For example, if you use the CREATE_MASTER_REPOBJECT
procedure in the DBMS_REPCAT package to add an object table to a master group, then
Oracle ensures that these conditions are met. You can also use export/import to
precreate object tables at replication sites to meet these conditions.

Another option is to specify the OID for an object table when you create the object
table at multiple replication sites. Complete the following steps if you want to use this
option:

1. Query the DUAL view for a globally unique OID:

SELECT SYS_GUID() OID FROM DUAL;

OID

81D98C325D4A45D0E03408002074B239

2. Create the categories_tab object table with the OID returned in Step 1 at each
replication site:

CREATE TABLE oe.categories_tab5 OF oe.category_typ
 OID '81D98C325D4A45D0E03408002074B239'
 (category_id PRIMARY KEY);

Tables with Collection Columns
Collection columns are columns based on VARRAY and nested table data types. Oracle
supports the replication of collection columns. When you add a table with a collection
column to a replication group, the data in the collection column is replicated

See Also: Oracle Database Advanced Replication Management API
Reference

See Also: Oracle Database Utilities for information about
export/import

Master Replication Concepts

2-12 Oracle Database Advanced Replication

automatically. If the collection column is a varray, then a varray larger than four
kilobytes is stored as a BLOB.

If the collection column is a nested table, then Oracle performs row-level replication
for each row in the nested table's storage table. For example, changes in five rows of a
storage table result in five distinct remote procedure calls (RPCs), and five distinct
conflict detection and optional resolution phases. The storage table can be stored as an
index-organized table.

In addition, DML on a row that contains a nested table results in separate RPCs for the
parent table and for each affected row in the nested table's storage table. Oracle does
not perform referential integrity checks between the rows in the parent table and the
rows in the storage table unless you explicitly specified integrity constraints during
the creation of the parent table. Oracle recommends that you specify such constraints
for replicated tables to detect all conflicts.

To ensure conflict detection between a nested table and its storage table, Oracle
recommends that you define a deferrable foreign key constraint between them.
Without a deferrable foreign key constraint, a conflict can insert rows in the storage
table that cannot be accessed. A deferrable foreign key constraint causes an error to be
raised in these situations so that the conflict is detected. You use the DEFERRED clause
of the SET CONSTRAINTS statement to defer a constraint.

The following actions are not allowed directly on the storage table of a nested table in
a replicated table:

■ Adding the storage table to a replication group

■ Altering the storage table

■ Dropping the storage table

■ Generating replication support on the storage table

These actions can occur indirectly when they are performed on the parent table of the
storage table. In addition, you cannot replicate a subset of the columns in a storage
table.

Tables with REF Columns
A REF is an Oracle built-in data type that is a logical "pointer" to a row object in an
object table. A scoped REF is a REF that can only contain references to a specified
object table, while an unscoped REF can contain references to any object table in the
database. A scoped REF requires less storage space and provides more efficient access
than an unscoped REF. Oracle supports the replication of tables with REFs.

Scoped REFs If a table with a scoped REF is replicated and the object table referenced
by a REF is not replicated, then you must create the referenced object table at the sites
where it does not exist before you begin replicating the table containing the scoped
REF. Otherwise, replicating this table results in an error when the scoped REF cannot
find the referenced object table. Typically, in this situation, it is best to replicate the
referenced object table as well because it can become out of sync at the various
replication sites if it is not replicated.

Unscoped REFs If a table with an unscoped REF is replicated and the object table
referenced by the REF is not replicated, then a dangling REF might result at replicated
sites if the REF cannot find the referenced object. For a replicated REF to be valid, the
referenced object table must exist at each replication site.

Master Replication Architecture

Master Replication Concepts and Architecture 2-13

REFs Created Using the WITH ROWID Option If the WITH ROWID option is specified for a
REF column, then Oracle maintains a hint for the rowid of the row object referenced in
the REF. Oracle can find the object referenced directly using the rowid contained in the
REF, without the need to fetch the rowid from the OID index. The WITH ROWID option
is not supported for scoped REFs.

Replicating a REF created using the WITH ROWID option results in an incorrect rowid
hint at each replication site, except the site where the REF was first created or
modified. The ROWID information in the REF is meaningless at the other sites, and
Oracle does not correct the rowid hint automatically. Invalid rowid hints can cause
performance problems. In this case, you can use the VALIDATE STRUCTURE option of
the ANALYZE TABLE statement to determine which rowid hints at each replication site
are incorrect.

Master Replication Architecture
Although you can build a replication environment by following the procedures and
examples described in the online Help for the Advanced Replication interface in
Oracle Enterprise Manager and in the Oracle Database Advanced Replication Management
API Reference, understanding the architecture of replication gives you valuable
information for setting up your database environment to support replication, tuning
your replication environment, and troubleshooting your replication environment
when necessary. This section describes the architecture of replication in terms of
mechanisms and processes.

This section contains these topics:

■ Master Site Mechanisms

■ Administrative Mechanisms

■ Organizational Mechanisms

■ Propagation Mechanism

■ Performance Mechanisms

■ Replication Protection Mechanisms

■ Conflict Resolution Mechanisms

Master Site Mechanisms
To support a replication environment, Oracle uses the following mechanisms at each
master site that is participating in either a multimaster replication or single master
replication environment. Some of the following master site mechanisms are required
only in special circumstances.

Master Site Roles/Users
Depending on your security requirements, the following three roles can be
consolidated into a single replication administrator. In fact, most multimaster
replication environments use a single user to perform the replication administration,
propagation, and receiving roles. If you have more stringent security requirements,
then you can assign the following roles to different users.

See Also: Oracle Database SQL Language Reference for more
information about the ANALYZE TABLE statement

Master Replication Architecture

2-14 Oracle Database Advanced Replication

Replication Administrator The replication administrator performs all of the
administrative functions relating to a master site in a replication environment. In
general, it is preferable to have a single replication administrator for a replication
environment. In addition to preparing a database to support replication, the
replication administrator has the following responsibilities:

■ Building and maintaining the individual master replication groups

■ Adding and removing participating master sites

■ Managing the queues

■ Controlling the state of the replication environment (normal and quiesced)

The default user name for this administrator is repadmin, but you can use any user
name you wish.

Propagator The propagator performs the task of propagating each transaction
contained in the deferred transaction queue to the transaction's destinations. There is a
single propagator for the database. In other words, it is possible for you to have
multiple replication administrators to manage different schemas, but there can only be
a single propagator for each database.

Receiver The receiver is responsible for receiving and applying the deferred
transactions from the propagator. If the receiver does not have the appropriate
privileges to apply a call in the deferred transaction, then the entire deferred
transaction is placed in the error queue at the destination. You can register the receiver
by using the REGISTER_USER_REPGROUP procedure in the DBMS_REPCAT_ADMIN
package.

Database Links and Replication
Database links provide the conduit to replicate data between master sites and
materialized view sites. In a multimaster environment, there is a database link from
each individual master site to all other master sites. Another way to look at the
configuration of database links is that there are N - 1 database links for each master
site, where N is the total number of master sites.

Note: The term "roles" in this context is not related to the SQL
term "roles." The referenced replication roles are granted using
stored PL/SQL procedures or individual privileges or both.

Master Replication Architecture

Master Replication Concepts and Architecture 2-15

Figure 2–3 Each Arrow Represents a Database Link

In Figure 2–3, each master site has two database links to the other master sites (N-1 or
in this case 3 - 1 = 2). This configuration ensures the bi-directional communication
channels between master sites needed for multimaster replication. Notice that for a
materialized view site, only a link from the materialized view site to the master site is
required. The master site does not need a database link to the materialized view site.

The most basic setup has a database link from the replication administrator at the
individual master site to the replication administrators at the other participating
master replication sites.

A common approach, however, adds an additional set of database links to your
replication environment. Before creating any replication administrator database links,
you create public database links between all of the participating master sites, without
specifying a CONNECT TO clause. The public database links specify the target of each
database link with the USING clause, which specifies the service name of a remote
database.

After creating the public database links, you can create the private replication
administrator database links. When creating private database links, you specify the
CONNECT TO clause, but the associated public database link eliminates the need to
specify a USING clause.

The approach of using both public and private database links reduces the amount of
administration needed to manage database links. Consider the following advantages:

■ Multiple sets of private database links can share the same public link, further
simplifying the administration of database links.

■ If the target database of a database link changes but the service name for the target
database remains the same, then you only need to change the tnsnames.ora file
entry for the target database. Remember that the USING clause specifies the
service name for the remote target database. All private database links for the
same target point to the destination defined in the USING clause in the public
database link.

For example, if a database is moved to a different server but keeps the same
service name, then you can update the tnsnames.ora file entry for the remote
database at each replication site, and you do not need to re-create the database
link.

As previously described, the replication administrator usually performs the tasks of
administration and propagation in a multimaster environment. Because a single user

orc1.example.com orc2.example.com

mv1.example.com orc3.example.com

Materialized
View
Site

Master
Site

Master
Site

Master
Site

Master Replication Architecture

2-16 Oracle Database Advanced Replication

performs these tasks, only one set of private database links must be created for the
replication administrator.

However, in multimaster replication environments where propagation is performed
by users other than the replication administrator, the appropriate set of private
database links must be created for each of these alternate users.

Database Links Created by the Advanced Replication Interface If you use a wizard in the
Advanced Replication interface in the Oracle Enterprise Manager to set up your
replication sites, then, by default, the wizard creates database links with a USING
clause that contains the description of the service name in the tnsnames.ora file or
the Oracle Management Server.

For example, suppose the tnsnames.ora file entry for a site is the following:

HQ.MYCOMPANY.COM =
'(DESCRIPTION=
 (ADDRESS=(PROTOCOL=TCP)(HOST=server1)(PORT=1521))
 (CONNECT_DATA=(SID=hqdb)(SERVER=DEDICATED)))'

Here, the service name is HQ.MYCOMPANY.COM and the description is the text after the
first equal sign. The following statement shows an example of a database link to the
HQ.MYCOMPANY.COM site created by the wizard:

CREATE PUBLIC DATABASE LINK "HQ.MYCOMPANY.COM" USING
'(DESCRIPTION=
 (ADDRESS=(PROTOCOL=TCP)(HOST=server1)(PORT=1521))
 (CONNECT_DATA=(SID=hqdb)(SERVER=DEDICATED)))'

The wizard uses the description of the service name and not the service name itself
because different sites can have different information in their tnsnames.ora files.
For example, if the wizard only used the service name and not the service name
description, then the user would be required to ensure that the same service name
exists and has the same information in the tnsnames.ora file at all sites, because
there is no way for the Advanced Replication interface to check for this requirement.

By using the description for the service name, the wizard ensures that the database
link is valid for all replication sites. The drawback to this type of database link is that,
in the rare cases when service name description of a database changes, you must drop
and re-create the database link. If the database link is created only with the service
name and not the description, then you could change the tnsnames.ora file at all
sites and retain the same database link.

See Also:

■ Oracle Database Administrator's Guide for detailed information
about database links and for information about creating
database links

■ Oracle Database Net Services Administrator's Guide for
information about service names and the tnsnames.ora file

Note: You can override the default behavior of the wizard by
editing the customization screens of the wizard.

Master Replication Architecture

Master Replication Concepts and Architecture 2-17

Connection Qualifiers Connection qualifiers allow several database links pointing to the
same remote database to establish connections using different paths. For example, a
database named ny can have two public database links named ny.example.com that
connect to the remote database using different paths.

■ ny.example.com@ethernet, a link that connects to ny using an Ethernet link

■ ny.example.com@modem, another link that connects to ny using a modem link

For the purposes of replication, connection qualifiers can also enable you to more
closely control the propagation characteristics for multiple master groups. Consider, if
each master site contains three separate master groups and you are not using
connection qualifiers, then the scheduling characteristics for the propagation of the
deferred transaction queue is the same for all master groups. This can be costly if one
master group propagates deferred transactions once an hour while the other two
master groups propagate deferred transactions once a day.

Associating a connection qualifier with a master group gives you the ability to define
different scheduling characteristics for the propagation of the deferred transaction
queue on a master group level versus on a database level as previously described.

When you create a new master group, you can indicate that you want to use a
connection qualifier for all scheduled links that correspond to the group. However,
when you use connection qualifiers for a master group, Oracle propagates information
only after you have created database links with connection qualifiers at every master
site. After a master group is created, you cannot remove, add, or change the
connection qualifier for the group.

Replication Objects
The most visible part of your replication environment is the replicated objects
themselves. Of these replicated objects, replicated tables are the foundation of your
replication environment. The following sections discuss replicating the related
database objects. These discussions highlight the benefits and potential limitations of
replicating the following types of database objects:

■ Tables

■ Indexes

■ Packages and Package Bodies

See Also: Oracle Database Administrator's Guide to learn about
defining connection qualifiers for a database link

Caution: To preserve transaction integrity in a multimaster
environment that uses connection qualified links and multiple
master groups, a transaction cannot manipulate replication objects
in groups with different connection qualifiers.

Note: If you plan to use connection qualifiers, then you probably
need to increase the value of the OPEN_LINKS initialization
parameter at all master sites. The default is four open links for each
process. Estimate the required value based on your usage. See
"Initialization Parameters" on page 6-4, and see the Oracle Database
Reference for more information about OPEN_LINKS.

Master Replication Architecture

2-18 Oracle Database Advanced Replication

■ Procedures and Functions

■ User-Defined Types and Type Bodies

■ Triggers

■ Views, Object Views, and Synonyms

■ Indextypes

■ User-Defined Operators

Tables In most cases, replicated tables are the foundation of your replication
environment. After a table is selected for replication and has had replication support
generated, it is monitored by internal triggers to detect any DML applied to it.

When you replicate a table, you have the option of replicating the table structure and
table data to the remote data sites or just the table structure. Additionally, if a table of
the same name and structure already exists at the target replication site, then you have
the option of using the existing object in your replication environment.

Though replicating a table is intended for replicating any table data changes to all sites
participating in the replication environment, there are other uses for replicating a
table.

■ Object and Data Transport: After an object has been replicated to a target
destination site, replication support is not automatically generated. You can use
this approach as an easy way to distribute objects and data to remote destinations.
If you do not drop the replication objects and do not generate replication support,
then the table (or other objects) and the data remain at the remote destination site,
and any changes at the remote destination site are not replicated. This approach
enables you to distribute a standard database environment and data set to a new
database environment.

■ Object Transport: Similarly, you can replicate a table to a target destination site
without copying the data. This approach creates the object at the destination site,

See Also: "Internal Triggers" on page 2-21

Note:

■ On tables with self-referential integrity constraints, Advanced
Replication cannot guarantee that the deletes will be performed
in the correct order. To perform deletes on tables with
self-referential integrity constraints, use procedural replication.
See Oracle Database Advanced Replication Management API
Reference for information.

■ When adding a master site to a master group that contains
tables with circular dependencies or a table that contains a
self-referential constraint, you must precreate the table
definitions and manually load the data at the new master site.
The following is an example of a circular dependency: Table A
has a foreign key constraint on table B, and table B has a
foreign key constraint on table A.

■ When you drop a function-based index from a replicated table,
or add a function-based index to a replicated table, you must
regenerate replication support for the table.

Master Replication Architecture

Master Replication Concepts and Architecture 2-19

but does not populate it with data. Therefore, you can quickly distribute an empty
database environment.

Indexes Any index that is used to enforce a constraint in a table is automatically
created at the remote destination sites when a table is selected for replication and
created at the remote site. Any index that is used for performance reasons, however,
must be explicitly selected for replication to be created at the other master sites
participating in the replication environment. When an index is replicated to other sites,
it operates as if the index was created locally. You do not need to generate replication
support for indexes.

Oracle supports the replication of domain indexes. You can replicate the definition of
storage tables for domain indexes, but you cannot replicate the storage tables
themselves because they typically contain ROWID information.

Packages and Package Bodies Selecting packages and package bodies for replication and
generating the needed replication support gives you the ability to do procedural
replication. Procedural replication can offer performance advantages for large,
batch-oriented operations on large numbers of rows that can be run serially within a
replication environment.

All parameters for a procedure with replication support must be IN parameters and
must meet the data type requirements described in "Data Type Considerations for
Replicated Tables" on page 6-2. OUT and IN/OUT modes are not supported.

A replicated procedure must be declared in a package. Standalone procedures cannot
have replication support.

Procedures and Functions Procedures and functions not declared as part of a package
cannot have replication support. Though you cannot create a procedural replication
environment with standalone procedures and functions, you can still use replication to
distribute these standalone procedures and functions to the sites in your replication
environment. When the standalone procedure or function is created at the remote site
using replication, the created object does not have replication support and operates as
though the object was created locally.

See Also: "Considerations for Replicated Tables" on page 6-1

See Also:

■ "Foreign Keys and Replicated Tables" on page 6-2 for
information about replicating the index on a foreign key
column

■ Oracle Database Data Cartridge Developer's Guide for more
information about extensible indexes

See Also: Oracle Database Advanced Replication Management API
Reference for detailed information about using procedural
replication

Note: Similar to the concepts presented in the "Tables" on
page 2-18, you can select a package and package body for
replication but not generate replication support to use replication
as an easy way to distribute the object to a remote site, though any
calls made to the package are not replicated.

Master Replication Architecture

2-20 Oracle Database Advanced Replication

User-Defined Types and Type Bodies To replicate schema objects with user-defined types,
the user-defined types must exist on all replication sites and be exactly the same at all
replication sites.

Triggers To ensure that any application or database logic is present at each master site,
you can select triggers for replication. An important example of replicating a trigger is
replicating a trigger that automatically inserts a time stamp into a table when any
DML is applied to the table.

To avoid refiring of the trigger, it is important to insert an API call into the trigger to
detect if the trigger is being fired through a local or remote call. This is to avoid the
situation where the trigger updates a row that causes the trigger to fire again.

Notice line 5 in the following code example:

1) CREATE OR REPLACE TRIGGER hr.insert_time
2) BEFORE
3) INSERT OR UPDATE ON hr.employees FOR EACH ROW
4) BEGIN
5) IF DBMS_REPUTIL.FROM_REMOTE = FALSE THEN
6) :NEW.TIMESTAMP := SYSDATE;
7) END IF;
8) END;
9) /

If the DBMS_REPUTIL.FROM_REMOTE function determines that the insert or update
was locally initiated, then the defined action (that is, assign time stamp) occurs. If this
function determines that the insert or update is from a remote site, then the time stamp
value is not assigned. This example assumes that a timestamp column was added to
the hr.employees table.

Views, Object Views, and Synonyms When you replicate a view, an object view or a
synonym, you are simply using replication to distribute these objects to the other
master sites that are involved in the replication environment. After the object is
replicated to the other sites, it operates as if the object was created locally. No internal
trigger or package monitors the object to capture any changes. Because it is a
replicated object, though, you can still drop or modify it using either the Advanced
Replication interface in Oracle Enterprise Manager or the replication management
API.

Indextypes Oracle supports the replication of indextypes. You must explicitly replicate
the type and type body functions that you use to implement an indextype, either using
the Advanced Replication interface in Enterprise Manager or the CREATE_MASTER_
REPOBJECT procedure in the DBMS_REPCAT package.

User-Defined Operators Developers of object-oriented applications can extend the list of
built-in relational operators (for example, +, -, /, *, LIKE) with domain specific
operators (for example, Contains, Within_Distance, Similar) called
user-defined operators. When you replicate a user-defined operator, you are simply

See Also: "How Replication Works with Object Types and
Collections" on page 2-8

See Also: Oracle Database Advanced Replication Management API
Reference for more information about creating replicated triggers

See Also: Oracle Database Data Cartridge Developer's Guide for
more information about extensible indexes

Master Replication Architecture

Master Replication Concepts and Architecture 2-21

using replication to distribute the operator to the other master sites that are involved
in the replication environment. After the object is replicated to the other sites, it
operates as if the operator was created locally. No internal trigger or package monitors
the object to capture any changes. Because it is a replicated object, though, you can still
drop or modify it using the replication management API.

Alternatives to Replicating Sequences
Because two sequences at different databases can generate the same value, replicating
sequences is not supported.

Three alternatives to replicating sequences guarantee the generation of unique values
and avoid any uniqueness data conflicts. You can retrieve a unique identifier by
executing the following select statement:

SELECT SYS_GUID() OID FROM DUAL;

This SQL statement returns a 16-byte globally unique identifier. This value is based on
an algorithm that uses time and datestamp and machine identifier to generate a
globally unique identifier. The globally unique identifier appears in a format similar to
the following:

4595EF13AB785E73E03400400B40F58B

An alternate solution to using the SYS_GUID() function is to create a sequence at each
of the master sites and concatenate the site name (or other globally unique value) with
the local sequence. This approach helps you to avoid any potential duplicate sequence
values and helps in preventing insert conflicts as described in the "Conflict Resolution
Concepts" section on page 2-7.

Additionally, you can create a sequence at each of the master sites so that each site
generates a unique value in your replication environment. You can accomplish this by
using a combination of starting, incrementing, and maximum values in the CREATE
SEQUENCE statement. For example, you might configure the following:

Using a similar approach, you can define different ranges for each master site by
specifying a START WITH and MAXVALUE that would produce a unique range for each
site.

Internal Triggers
Oracle uses internal triggers to capture and store information about updates to
replicated data. Internal triggers build remote procedure calls (RPCs) to reproduce
data changes made to the local site at remote replication sites. These deferred RPCs are
stored in the deferred transaction queue and are propagated to the other master sites
participating in the replication environment. The internal triggers supporting data
replication are essentially components within the Oracle server executable. Therefore,
Oracle can capture and store updates to replicated data very quickly with minimal use
of system resources.

See Also: Oracle Database Data Cartridge Developer's Guide

Parameter Master Site A Master Site B Master Site C

START WITH 1 3 5

INCREMENT BY 10 10 10

Range Example 1, 11, 21, 31, 41,... 3, 13, 23, 33, 43,... 5, 15, 25, 35, 45,...

Master Replication Architecture

2-22 Oracle Database Advanced Replication

Deferred Transactions
Oracle forwards data replication information by propagating (that is, sending and
executing) the RPCs that are generated by the internal triggers described previously.
These RPCs are stored in the deferred transaction queue. In addition to containing the
execution command for the internal procedure at the destination site, each RPC also
contains the data to be replicated to the target site. Oracle uses distributed transaction
protocols to protect global database integrity automatically and ensure data
survivability.

Internal Procedure
When a deferred RPC created by an internal trigger is propagated to the other master
sites participating in a replication environment, an internal procedure at the
destination site is used to apply the deferred RPC at the remote site. These internal
procedures are activated automatically when you generate replication support for a
table. These internal procedures are executed based on the RPCs that are received
from the deferred transaction queue of the originating site.

Queues
The following queues manage the transactions that are generated by Advanced
Replication:

Deferred Transaction Queue This queue stores the transactions (for example, DML) that
are bound for another destination in the master group. Oracle stores RPCs produced
by the internal triggers in the deferred transaction queue of a site for later propagation.
Oracle also records information about initiating transactions so that all RPCs from a
transaction can be propagated and applied remotely as a transaction. Oracle's
replication facility implements the deferred transaction queue using Oracle's advanced
queuing mechanism.

Error Queue The error queue stores information about deferred transactions that could
not be applied successfully at the local site. The error queue does not display
information about errors at other master sites in the replication environment. When
the error condition has been resolved, you can either reexecute the transaction or
delete the transaction from the error queue.

Job Queue Oracle manages the propagation process using Oracle's job queue
mechanism and deferred transactions. Each server has a local job queue. A server's
job queue is a database table storing information about local jobs such as the PL/SQL
call to execute for a job, when to run a job, and so on. Typical jobs in a replication
environment include jobs to push deferred transactions to remote master sites, jobs to
purge applied transactions from the deferred transaction queue, and jobs to refresh
materialized view refresh groups.

Administrative Mechanisms
Several mechanisms are required to handle the administrative tasks that are often
performed to support a replication environment. These mechanisms enable you to

Note: When the restricted session is enabled by the SQL statement
ALTER SYSTEM with the ENABLE RESTRICTED SESSION clause,
deferred transactions are not propagated. When the restricted
session is disabled, they are propagated.

Master Replication Architecture

Master Replication Concepts and Architecture 2-23

turn on and off a replication environment, as well as monitor the administrative tasks
that are generated when you build or modify a replication environment.

Replication Modes of Operation
There are three modes of operation for a replication environment.

Normal A replication environment in the normal mode allows replication to occur. The
replication environment is "running" in this mode. Any transaction against a
replicated object is allowed and is appropriately propagated.

Quiescing Quiescing is the mode that transfers a replication environment from the
normal mode to the quiesced mode. While a replication environment is quiescing, the
user is no longer able to execute a transaction against a replicated object, but any
existing deferred transactions are propagated. Queries against a quiescing table are
allowed. When all deferred transactions have been successfully propagated to their
respective destinations, the replication environment proceeds to the quiesced mode.

Quiesced A quiesced replication environment can be considered disabled for normal
replication use and is used primarily for administrative purposes (such as adding and
removing replicated objects). Replication is "stopped" in this mode. A quiesced state
prevents users from executing any transactions against a replicated object in the
quiesced master group unless they turn off replication, which can result in divergent
data after replication is resumed. Transactions include DML against a replicated table
or the execution of a wrapper for a replicated procedure. If master tables are quiesced,
then materialized views based on those master tables cannot propagate their changes
to the target master tables, but local changes to the materialized view can continue.

A replication environment is quiesced on a master group level. All master sites
participating in the master group are affected. When a master group reaches a
quiesced state, you can be certain that any transactions in the deferred transaction
queue have been successfully propagated to the other master sites or put into the error
queue. Users can still query tables that belong to a quiesced master group.

Quiescing one master group does not affect other master groups. A master group in
normal mode can continue to process updates while other master groups are quiesced.

Replication Mode Control
Though there are three modes of replication operation, there are only two mechanisms
to control these modes (recall that the quiescing mode is a transition from a normal to
quiesced mode).

Suspend Executing the suspend mechanism begins the quiescing mode that transfers
the mode of replication operation for a master group from normal to quiesced. When
the deferred transaction queue has no unpropagated deferred transactions for the
master group, the replication environment proceeds to the quiesced mode.

The suspend mechanism can only be executed when the replication environment is in
normal mode. Execute suspend when you need to modify the replication environment.

Resume The resume mechanism transfers a master group from the quiesced replication
mode to the normal mode. If you have been performing administrative work on your
replication environment (for example, adding replicated objects), then you should
verify that the administrative request queue (DBA_REPCATLOG) is empty before
executing the resume mechanism.

Master Replication Architecture

2-24 Oracle Database Advanced Replication

Administrative Requests
To configure and manage a replication environment, each participating server uses
Oracle's replication management API. A server's replication management API is a set
of PL/SQL packages encapsulating procedures and functions administrators can use
to configure Oracle's replication features. The Advanced Replication interface in
Oracle Enterprise Manager also uses the procedures and functions of each site's
replication management API to perform work.

An administrative request is a call to a procedure or function in Oracle's replication
management API. For example, when you use the Advanced Replication interface in
Enterprise Manager to create a new master group, the interface completes the task by
making a call to the DBMS_REPCAT.CREATE_MASTER_REPGROUP procedure. Some
administrative requests generate additional replication management API calls to
complete the request.

The Administrative Request Mechanisms When you use the Advanced Replication
interface in Enterprise Manager or make a call to a procedure in the DBMS_REPCAT
package to administer a replication system, Oracle uses its internal mechanisms to
broadcast the request synchronously. If a synchronous broadcast fails for any reason,
then Oracle returns an error message and rolls back the encompassing transaction.

When an Oracle server receives an administrative request, it records the request in the
DBA_REPCATLOG view and the corresponding DDL statement in a child table of the
DBA_REPCATLOG view. When you view administrative requests for a master group at
a master site, you might observe requests that are waiting for a callback from another
master site. These requests are called AWAIT_CALLBACK requests. Master replication
activity cannot resume until all of the administrative requests in the DBA_REPCATLOG
view have been applied and any errors resolved.

Whenever you use the Advanced Replication interface in Enterprise Manager to create
an administrative request for a replication group, Oracle automatically inserts a job
into the local job queue, if one does not already exist for the group. This job
periodically executes the DBMS_REPCAT.DO_DEFERRED_REPCAT_ADMIN procedure.
Whenever you synchronously broadcast a request, Oracle attempts to start this job
immediately in order to apply the replicated changes at each master site.

Assuming that Oracle does not encounter any errors, DO_DEFERRED_REPCAT_ADMIN
is run whenever a background process is available to execute the job. Oracle
automatically determines how often the background process wakes up. You can
experience a delay if you do not have enough background processes available to
execute the outstanding jobs.

For each call of DO_DEFERRED_REPCAT_ADMIN at a master site, the site checks the
DBA_REPCATLOG view to see if there are any requests that need to be performed.
When one or more administrative requests are present, Oracle applies the request and
updates any local views as appropriate. This event can occur asynchronously at each
master site.

DO_DEFERRED_REPCAT_ADMIN executes the local administrative requests in the
proper order. When DO_DEFERRED_REPCAT_ADMIN is executed at a master that is not
the master definition site, it does as much as possible. Some asynchronous activities,
such as populating a replicated table, require communication with the master
definition site. If this communication is not possible, then DO_DEFERRED_REPCAT_
ADMIN stops executing administrative requests to avoid executing requests out of
order. Some communication with the master definition site, such as the final step of
updating or deleting an administrative request at the master definition site, can be
deferred and does not prevent DO_DEFERRED_REPCAT_ADMIN from executing
additional requests.

Master Replication Architecture

Master Replication Concepts and Architecture 2-25

The success or failure of an administrative request at each master site is noted in the
DBA_REPCATLOG view at each site. For each master group, the Advanced Replication
interface in Enterprise Manager displays the corresponding status of each
administrative request. Ultimately, each master site propagates the status of its
administrative requests to the master definition site. If a request completes
successfully at a master site, then Oracle removes the callback for the site from the
DBA_REPCATLOG view at the master definition site.

If a request completes successfully at all sites, then all entries in the DBA_REPCATLOG
view at all sites, including the master definition site, are removed. If a request at a non
master definition site fails, then Oracle removes the request at the master site and
updates the corresponding AWAIT_CALLBACK request at the master definition site
with ERROR status and the reason for the failure.

By synchronously broadcasting the change, Oracle ensures that all sites are aware of
the change, and thus are capable of remaining synchronized. By allowing the change
to be applied at the site at a future point in time, Oracle provides you with the
flexibility to choose the most appropriate time to apply changes at a site.

If an object requires replication support, then you must regenerate replication support
after altering the object. Oracle then activates the internal triggers and regenerates the
packages to support replication of the altered object at all master sites.

Any materialized view sites that are affected by a DDL change are updated the next
time you perform a refresh of the materialized view site. While all master sites can
communicate with one another, materialized view sites can communicate only with
their associated master site.

If you must alter the shape of a materialized view as the result of a change to its
master, then you must drop and re-create the materialized view.

Administrative Request Queue
Often referred to as the administrative request queue, the DBA_REPCATLOG view
stores administrative requests that manage and modify your replication environment.
Some DBMS_REPCAT procedures that are executed are listed in the administrative
request queue. For example, if you wanted to add an additional replicated table to an
existing master group, then you would see a request naming the DBMS_
REPCAT.CREATE_MASTER_REPOBJECT procedure.

You can view the administrative request queue by querying the DBA_REPCATLOG
view or viewing the Administrative Requests page in the Advanced Replication
interface in Enterprise Manager.

Each request has a status that displays the state of the request. Here are the possible
states:

Note: Although the DDL must be successfully applied at the
master definition site in order for these procedures to complete
without error, this does not guarantee that the DDL is successfully
applied at each master site. The Advanced Replication interface in
Enterprise Manager displays the status of all administrative
requests. Additionally, the DBA_REPCATLOG view contains interim
status and any asynchronous error messages generated by the
request.

Master Replication Architecture

2-26 Oracle Database Advanced Replication

■ READY: The READY state indicates that the request is ready to be executed. If you
monitor the administrative request queue and a request remains in the READY
state for a long time, then a request in front of the ready request might be waiting
for a callback. Typically, administrative requests in the READY state are waiting for
a job to execute them. You can execute them manually by using the DO_
DEFERRED_REPCAT_ADMIN procedure in the DBMS_REPCAT package.

■ AWAIT_CALLBACK: The AWAIT_CALLBACK state indicates that the request is
waiting for a request to be executed at another site and is waiting for confirmation
of the request execution. After the request receives the callback, the request is
either removed or has its status changed. The request is removed from the queue if
it was applied successfully, or its status is changed to ERROR if it failed. This state
is only possible at the master definition site.

■ ERROR: If a request cannot be successfully executed, then it is placed in the ERROR
state. The error number appears in the ERRNUM column and the error message
appears in the MESSAGE column of the administrative request queue (or ERROR in
the Status field on the Administrative Requests page when using the Advanced
Replication interface in Oracle Enterprise Manager).

■ DO_CALLBACK: If a request at a master site is in the DO_CALLBACK state, then it
means that the master site must inform the master definition site about the success
or failure of the request. This state is only possible at a master site that is not the
master definition site.

The administrative request queue of each master site lists only the administrative
requests to be performed at that master site. The master definition site for a master
group, however, lists administrative requests to be performed at each of the master
sites. The administrative request queue at the master definition site lets the DBA
monitor administrative requests of all the master sites in the replication environment.

Organizational Mechanisms
Oracle uses several organizational mechanisms to organize the previously described
master site and administrative mechanisms to create discrete replication groups. Most
notable of these organizational mechanisms is the master group. An additional
organization mechanism helps to group columns that are used to resolve conflicts for a
replicated table.

Master Group
In a replication environment, Oracle manages replication objects using replication
groups. A replication group is a collection of replication objects that are always
updated in a transactionally consistent manner.

By organizing related database objects within a replication group, it is easier to
administer many objects together. Typically, you create and use a replication group to

Note: If a request is in the ERROR state, then resolve the error
condition as described by the error number and resubmit the
request.

Note: When the restricted session is enabled by the SQL statement
ALTER SYSTEM with the ENABLE RESTRICTED SESSION clause,
administrative requests are not executed. When the restricted
session is disabled, they are executed.

Master Replication Architecture

Master Replication Concepts and Architecture 2-27

organize the schema objects necessary to support a particular database application.
That is not to say that replication groups and schemas must correspond with one
another. Objects in a replication group can originate from several database schemas,
and a schema can contain objects that are members of different replication groups. The
restriction is that a replication object can be a member of only one group.

In a multimaster replication environment, the replication groups are called master
groups. Corresponding master groups at different sites must contain the same set of
replication objects (see "Replication Objects" on page 2-17). Figure 2–4 illustrates that
master group hr_mg contains an exact replica of the replicated objects at each master
site.

Figure 2–4 Master Group hr_mg Contains Same Replication Objects at All Sites

The master group organization at the master site plays an integral role in the
organization of replication objects at a materialized view site.

Additionally, Figure 2–5 illustrates that each site can contain multiple replication
groups, though each group must contain exactly the same set of objects at each master
site.

See Also: "Organizational Mechanisms" on page 3-41 for more
information about the organizational mechanisms at a materialized
view site

orc2.world

hr_mg
hr.employees
hr.departments
hr.locations
hr.countries
hr.job_history
hr.jobs
hr.regions

orc1.world

hr_mg
hr.employees
hr.departments
hr.locations
hr.countries
hr.job_history
hr.jobs
hr.regions

orc3.world

hr_mg
hr.employees
hr.departments
hr.locations
hr.countries
hr.job_history
hr.jobs
hr.regions

Master Replication Architecture

2-28 Oracle Database Advanced Replication

Figure 2–5 Master Groups Are Identical at Each Master Site

Column Groups
Column groups provide the organizational mechanism to group all columns that are
involved in a conflict resolution routine. If a conflict occurs in one of the columns of
the group, then the remainder of the group's columns can be used to resolve the
conflict. For example, if a column group for a table contains a min_price, list_
price, cost_price, and timestamp field and a conflict arises for the list_price
field, then the timestamp field can be used to resolve the conflict, assuming that a
timestamp conflict resolution routine has been used.

Initially, you might think that you should put all columns in the table into a single
column group. Although this makes setup and administration easier, it might decrease
the performance of your replicated table and might increase the potential for data
conflicts. As described in the "Performance Mechanisms" on page 2-33, if a conflict
occurs in one column group of a table, then the minimum communication feature does
not send data from other column groups in the table. Therefore, placing all columns
into a single column group might negate the advantages of the minimum
communication feature, unless you use the SEND_OLD_VALUES and COMPARE_OLD_
VALUES procedures in the DBMS_REPCAT package.

Propagation Mechanism
Propagation is the essence of replication because it is the mechanism that sends or
distributes any actions to all other master sites in the replication environment.

Propagation Types
As the internal trigger captures any DML applied to a replicated table, the DML must
be propagated (or sent) to the other master sites in the replication environment.
Internal triggers are described in the section "Internal Triggers" on page 2-21.

See Also: Chapter 5, "Conflict Resolution Concepts and
Architecture" for more information about column groups

Master Site 1

hr.employees
hr.departments
hr.jobs
hr.job_history
hr.locations
hr.countries
hr.regions

Group A

oe.customers
oe.orders
oe.order_items
oe.product_information
oe.product_descriptions
oe.inventories
oe.warehouses

Group B

Master Site 2

hr.employees
hr.departments
hr.jobs
hr.job_history
hr.locations
hr.countries
hr.regions

Group A

oe.customers
oe.orders
oe.order_items
oe.product_information
oe.product_descriptions
oe.inventories
oe.warehouses

Group B

Master Replication Architecture

Master Replication Concepts and Architecture 2-29

Advanced Replication supports both asynchronous and synchronous replication.

Asynchronous Typical replication configurations use asynchronous data replication.
Asynchronous data replication occurs when an application updates a local replica of a
table, stores replication information in a local queue, and then forwards the replication
information to other replication sites at a later time. Consequently, asynchronous data
replication is also called store-and-forward data replication.

As Figure 2–6 shows, Oracle uses its internal triggers, deferred transactions, deferred
transaction queues, and job queues to propagate data-level changes asynchronously
among master sites in a replication environment, as well as from an updatable
materialized view to its master table.

Figure 2–6 Asynchronous Data Replication Mechanisms

Synchronous Oracle also supports synchronous data propagation for applications with
special requirements. Synchronous data propagation occurs when an application
updates a local replica of a table, and within the same transaction also updates at least
one other replica of the same table. Consequently, synchronous data replication is also
called real-time data replication. Use synchronous replication only when applications
require that replicated sites remain continuously synchronized.

Source Database

Store

ACCTNG Replication Group

Destination Database

ACCTNG Replication Group

Error log

Change

Error log

Internal trigger

Internal
procedure

Employees
replicated table

Deferred transaction
queue

Internal trigger

Employees
replicated table

Internal
procedure

Background
process

Forward using Remote Procdure Call

Deferred transaction
queue

Background
process

Master Replication Architecture

2-30 Oracle Database Advanced Replication

Figure 2–7 Synchronous Data Replication Mechanisms

As Figure 2–7 shows, Oracle uses the same internal triggers to generate remote
procedure calls (RPCs) that asynchronously replicate data-level changes to other
replication sites to support synchronous, row-level data replication. However, Oracle
does not defer the execution of such RPCs. Instead, data replication RPCs execute
within the boundary of the same transaction that modifies the local replica.
Consequently, a data-level change must be possible at all synchronously linked sites
that manage a replicated table; otherwise, a transaction rollback occurs.

Synchronous Data Propagation
As shown in Figure 2–8, whenever an application makes a DML change to a local
replicated table and the replication group is using synchronous row-level replication,
the change is synchronously propagated to the other master sites in the replication
environment using internal triggers. When the application applies a local change, the
internal triggers issue calls to generated procedures at the remote master sites in the
security context of the replication propagator. Oracle ensures that all distributed
transactions either commit or rollback in the event of a failure.

See Also: Oracle Database Administrator's Guide for more
information about distributed transactions

Source Database

ACCTNG Replication Group

Destination Database

ACCTNG Replication Group

error log

Change

error log

internal trigger

internal
procedure

Employees
replicated table

Employees
replicated table

internal
procedure Remote Procedure Call

internal trigger

Master Replication Architecture

Master Replication Concepts and Architecture 2-31

Figure 2–8 Propagating Changes Using Synchronous Row-Level Replication

Restrictions Because of the locking mechanism used by synchronous replication,
deadlocks can occur when the same row is updated at two different sites at the same
time. When an application performs a synchronous update to a replicated table, Oracle
first locks the local row and then uses an AFTER ROW trigger to lock the corresponding
remote row. Oracle releases the locks when the transaction commits at each site.

Destination of Synchronously Replicated Transactions The necessary remote procedure calls
to support synchronous replication are included in the internal trigger for each object.
When you generate replication support for a replicated object, Oracle activates the
triggers at all master sites to add the necessary remote procedure calls for the new site.
Conversely, when you remove a master site from a master group, Oracle removes the
calls from the internal triggers.

Conflict Detection If all sites of a master group communicate synchronously with one
another, then applications should never experience replication conflicts. However, if
even one site is sending changes asynchronously to another site, then applications can
experience conflicts at any site in the replication environment.

If the change is being propagated synchronously, then an error is raised and a rollback
is required. If the change is propagated asynchronously, then Oracle automatically
detects the conflicts and either logs the conflict in the error queue or, if you designate
an appropriate resolution method, resolves the conflict.

Note: A replication system that uses real-time propagation of
replication data is highly dependent on system and network
availability because it can function only when all sites in the system
are concurrently available.

UPDATE employees SET department_id=20
 WHERE last_name='Jones';

Site A Site B

Employees table

employee_id last_name department_id

100

101
102

Jones

Braun

20

20
20

Kim

Employees table

employee_id last_name department_id

100

101
102

Jones

Braun

20

20
20

Kim

Package

update(oldargs newargs)
 UPDATE employees ...

insert(newargs)
 INSERT INTO employees ...

delete(oldargs)
 DELETE FROM employees ...

if updating
 update@dbs1(oldargs newargs)

if inserting
 insert@dbs1(newargs)

if deleting
 delete@dbs1(oldargs)

Internal Trigger

 update@dbs2(oldargs newargs)

 insert@dbs2(newargs)

 delete@dbs2(oldargs)

Master Replication Architecture

2-32 Oracle Database Advanced Replication

Understanding Mixed-Mode Multimaster Systems
In some situations, you might decide to have a mixed-mode environment in which
some master sites propagate a master group's changes asynchronously and others
propagate changes synchronously. The order in which you add new master sites to a
group with different data propagation modes can be important.

For example, suppose that you have three master sites: A, B, and C. If you first create
site A as the master definition site, and then add site B with a synchronous
propagation mode, then site A sends changes to site B synchronously and site B sends
changes to site A synchronously. There is no need to be concerned about the
scheduling of links at either site, because neither site is creating deferred transactions.

Now suppose that you create master site C with an asynchronous propagation mode.
The propagation modes are now as illustrated in Figure 2–9.

Figure 2–9 Selecting a Propagation Mode

You must now schedule propagation of the deferred transaction queue from site A to
site C, from site B to site C, and from site C to sites A and B.

As another example, consider what would happen if you created site A as the master
definition site, then added site C with an asynchronous propagation mode, then added
site B with a synchronous propagation mode. Now the propagation modes would be
as shown in Figure 2–10.

See Also: Chapter 5, "Conflict Resolution Concepts and
Architecture"

synch synch

asynch

asynch

asynch asynch

Site
A

Site
B

Site
C

Master Replication Architecture

Master Replication Concepts and Architecture 2-33

Figure 2–10 Ordering Considerations

Each time that you add a new master site to a mixed-mode multimaster system,
consider how the addition affects the data propagation modes to and from existing
sites.

Initiating Propagation
When synchronous propagation is used, the propagation of the DML is handled
immediately and is automatically initiated. If asynchronous propagation is used, then
you can use the following methods to propagate the deferred transactions:

■ Scheduled job: In most cases, use a scheduled job to automatically propagate the
deferred transactions at a set interval.

■ Manual propagation: You can also manually propagate the changes by executing
a stored procedure or using the Advanced Replication interface in Oracle
Enterprise Manager. You might occasionally need to manually propagate your
deferred transactions if you do not want to wait for the job queue to automatically
propagate the deferred transactions.

Performance Mechanisms
As with any enterprise database solution, performance is always an important issue
for the database administrator. Advanced Replication provides several mechanisms to
help increase the performance of your replication environment.

Parallel Propagation
With parallel propagation, Oracle asynchronously propagates replicated transactions
using multiple, parallel transit streams for higher throughput. When necessary, Oracle
orders the execution of dependent transactions to ensure global database integrity.

Parallel propagation uses the pool of available parallel processes. This is the same
facility Oracle uses for other parallel operations such as parallel query, parallel load,
and parallel recovery. Each server process propagates transactions through a single
stream. A parallel coordinator process controls these server processes. The coordinator
tracks transaction dependencies, allocates work to the server processes, and tracks
their progress.

Parallel processes remain associated with a parallel operation on the server
throughout the execution of that operation. When the operation is complete, those
server processes become available to process other parallel operations. For example,

synch synch

synch

synch

asynch asynch

Site
A

Site
B

Site
C

Master Replication Architecture

2-34 Oracle Database Advanced Replication

when Oracle performs a parallel push of the deferred transaction queue to its
destination, all parallel processes used to push the queue remain dedicated to the push
until it is complete.

To configure a pool of parallel processes for a server properly, you must consider
several issues related to the configuration of a replication system.

■ When you configure all scheduled links to use serial propagation, the replication
system does not use parallel processes. Therefore, you do not need to adjust the
size of any server's pool of parallel processes to account for replication. Typically,
serial propagation is used only for backward compatibility.

■ When you configure one or more scheduled links to use parallel propagation, you
must consider the number of parallel processes that each link uses to push
changes to its destination. Furthermore, you should also consider how long each
push holds parallel servers from being used by other operations. For example,
when you configure a scheduled link for continuous propagation with a large
value for delay seconds, Oracle holds on to the parallel processes used to push
transactions to its destination. Therefore, you should increase the number of
parallel processes for the corresponding database server to ensure that there is a
sufficient number of processes for other parallel operations on the server.

To configure a database server's pool of parallel query processes, use the following
initialization parameters:

■ PARALLEL_MAX_SERVERS

■ PARALLEL_MIN_SERVERS

Implementing Parallel Propagation For most users, setting the parallel propagation
parameter to a value of 1 provides sufficient performance. A setting of 1 enables the
optimized data transfer method discussed in the previous section instead of serial
propagation. However, some users might want to further tune the parallel
propagation value.

The following procedure is the recommended method that should be used to further
tune the parallel propagation value:

1. Set the parallel propagation value to 1.

2. Test your database environment and carefully measure the propagation
throughput.

If you have achieved your performance goals with a parallel propagation value of
1, then you have implemented parallel propagation, and you do not need to
complete the remaining steps in this procedure.

3. If you want to try to achieve greater propagation throughput than with a value of
1, then set your parallel propagation value to 2.

See Also:

■ "Initialization Parameters" on page 6-4

■ Oracle Database Reference

Note:: As you increase the value of the parallel propagation
parameter, be aware of the trade-offs between increased parallel
propagation and the resources required to support the extra
parallel processes.

Master Replication Architecture

Master Replication Concepts and Architecture 2-35

4. Test your database environment and carefully measure the propagation
throughput.

In many cases, you might experience propagation throughput degradation with a
value of 2. This reduction is due to round-trip delays associated with the
coordinator assigning dependent transactions to available processes and waiting
for the necessary commit acknowledgments before assigning additional
transactions.

Repeat Steps 3 and 4 with the parallel propagation value set to 4 and again with 8.
If throughput still does not improve, then it suggests that the transactions in your
environment are highly dependent on each other. Reduce the parallel propagation
value to 1 and proceed to Step 5.

If your performance did improve with a value of 2, 4, or 8, then it suggests that
your transactions have a low degree of interdependence. You can even set your
parallel propagation parameter to any value greater than 8. Just be sure to
thoroughly test your environment and remain aware of the trade-offs between
increased parallelism and the necessary resources to support those extra parallel
processes.

5. Set parallel propagation to the value that offers the best performance in your
environment based on your testing.

Tuning Parallel Propagation To gain the greatest amount of performance benefits from
parallel propagation, reduce the amount of dependent transactions that are created.
Remember that a transaction cannot start until all of its dependent transactions have
been committed.

When trying to reduce the number of dependent transactions:

■ Use smaller transactions if possible (that is, commit more often, without
destroying autonomy).

■ Increase number of freelists for each table that receives inserts.

■ Try to avoid hotspots (a row that is frequently modified - if the same row is
touched, then those transactions are serialized). For example, use an Oracle
sequence instead of using a counter in a row and incrementing it "manually."

■ Consider using row-level dependency tracking.

Minimum Communication
To detect and resolve an update conflict for a row, the propagating site must send a
certain amount of data about the new and old versions of the row to the receiving site.
By default, Oracle minimizes the amount of data that must be communicated to detect
conflicts for each changed row in the table. Specifically, Oracle propagates:

■ The primary key value and the old value of each column in each modified column
group (the value before the modification)

■ The new value of each updated column

See Also: "Tuning Parallel Propagation" on page 2-35 to learn
about techniques to reduce transaction dependencies

See Also: "Use of Row-Level Dependency Tracking to Improve
Parallelism" on page 2-39

Master Replication Architecture

2-36 Oracle Database Advanced Replication

Delay Seconds
Though not directly a performance mechanism, properly configuring the delay_
seconds parameter can give you greater control over the timing of your propagation
of deferred transactions.

When you are pushing deferred transactions, you set the delay_seconds parameter
in the SCHEDULE_PUSH procedure or the PUSH function. When you are purging
deferred transactions, you set the delay_seconds parameter in the SCHEDULE_
PURGE procedure or the PURGE function. These procedures and functions are in the
DBMS_DEFER_SYS package.

The delay_seconds parameter controls how long a job remains aware of the
deferred transaction queue. The effects of the delay_seconds parameter can best be
illustrated with the following two examples:

delay_seconds = 0 (default)
If a scheduled job with a 60 minute interval wakes up at 2:30 pm and checks the
deferred transaction queue, then any existing deferred transactions are propagated.
The propagation takes 2 minutes and therefore the job is complete at 2:32 pm.

If a deferred transaction enters the queue at 2:34 pm, then the deferred transaction is
not propagated because the job is complete. In this scenario, the deferred transaction
will be propagated at 3:30 pm.

delay_seconds = 300
If a scheduled job with a 60 minute interval wakes up at 2:30 pm and checks the
deferred transaction queue, then any existing deferred transactions are propagated.
The propagation takes 2 minutes and therefore the job is complete at 2:32 pm.

If a deferred transaction enters the queue at 2:34 pm, then the deferred transaction is
propagated because the job remains aware of the deferred transaction queue for 300
seconds (5 minutes) after the job has completed propagating whatever was in the
queue. In this scenario, the deferred transaction is propagated at 2:34 pm.

Why not just set the job to execute more often? Starting and stopping the job has a
greater amount of overhead than starting the job and keeping it aware for a set period
of time. In addition to decreasing the overhead associated with starting and stopping
these jobs, using the delay_seconds parameter can reduce the amount of redo
logging required to support scheduled jobs.

As with most performance features, there is a point of diminishing returns. Keep the
length of the delay_seconds parameter in check for the following reasons:

■ Parallel Propagation: Each parallel process that is used when pushing the
deferred transaction queue is not available for other parallel activities until the
propagation job is complete. A long delay_seconds value might keep the
parallel process unavailable for other operations. To use parallel propagation, you

Note:

■ For an inserted row, the row has no old value. For a deleted
row, the row has no new value.

■ Ensure that your replication environment uses minimum
communication by ensuring that the min_communication
parameter is set to the default value of TRUE when you run the
procedures CREATE_MVIEW_REPOBJECT and GENERATE_
REPLICATION_SUPPORT in the DBMS_REPCAT package.

Master Replication Architecture

Master Replication Concepts and Architecture 2-37

set the parallelism parameter to 1 or higher in the SCHEDULE_PUSH procedure
or the PUSH function.

■ Serial Propagation: If you are using serial propagation (not parallel propagation),
then the delay_seconds value causes the open session to "sleep" for the entire
length of the delay, providing none of the benefits earlier described. To use serial
propagation, you set the parallelism parameter to 0 (zero) in the SCHEDULE_
PUSH procedure or the PUSH function.

■ Precise Purge: If you specify the purge_method_precise method when using
the DBMS_DEFER_SYS.PURGE procedure and you have defined a large delay_
seconds value, then you might experience performance degradation when
performing the specified purge. Using purge_method_precise is more
expensive than the alternative (purge_method_quick), but it ensures that the
deferred transactions and procedure calls are purged after they have been
successfully pushed.

As a general rule of thumb, there are few viewable benefits of setting the delay_
seconds parameter to a value greater than 20 minutes (which is 1200 seconds for the
parameter setting).

Additionally, if you are using serial propagation by setting the parallelism
parameter to 0, then you probably do not want to set a large delay_seconds value.
Unlike parallel propagation, serial propagation only checks the queue after the
duration of the delay_seconds value has elapsed. If you use serial propagation and
set delay_seconds to 20 minutes, then the scheduled job sleeps for the entire 20
minutes, and any deferred transactions that enter the deferred transaction queue
during that time are not pushed until 20 minutes have elapsed. Therefore, if you are
using serial propagation, then consider setting delay_seconds to a value of 60
seconds or lower.

If you set a value of 20 minutes for parallel propagation, then the parallel push checks
once a minute. If you can afford this resource lock, then the relatively high delay_
seconds value of 20 minutes is probably most efficient in your environment. If,
however, you cannot afford this resource lock, then consider setting the delay_
seconds value to 10 or 20 seconds. Although you must execute the jobs more often
than if the value was set to 1200 seconds, you still gain many of the benefits of the
delay_seconds feature (versus the default value of 0 seconds).

Replication Protection Mechanisms
In a multimaster replication environment, Oracle ensures that transactions propagated
to remote sites are never lost and never propagated more than once, even when
failures occur. Oracle protects transactions in the following ways:

■ Multiple procedure calls submitted within a single local transaction are executed
within a transaction remotely.

■ If the network or remote database fails during propagation, then the transaction is
rolled back at the remote site and the transaction remains in the local queue at the
originating site until the remote database becomes accessible again and the
transaction can be successfully propagated.

■ A transaction is not removed from the queue at the local site until it is successfully
propagated and applied to all of its destination sites. Even after the transaction is
successfully propagated to all destination sites, it remains in the queue until the
purge job removes it.

In the case of parallel propagation, replication uses a special-purpose distributed
transaction protocol optimized for propagation. The remote site keeps track of the

Master Replication Architecture

2-38 Oracle Database Advanced Replication

transactions that have been propagated successfully and sends this information back
to the local site when it is requested. The local site records this information and purges
the entries in its local queue that have been propagated to all destination sites. In case
of failures, the local site asks the remote site for information about the transactions that
have been propagated successfully so that propagation can continue at the appropriate
point.

Data Propagation Dependency Maintenance
Oracle maintains dependency ordering when propagating replicated transactions to
remote sites. For example, consider the following transactions:

1. Transaction A cancels an order.

2. Transaction B sees the cancellation and processes a refund.

Transaction B depends on transaction A because transaction B sees the committed
update canceling the order (transaction A) on the local system.

Oracle propagates transaction B (the refund) after it successfully propagates
transaction A (the order cancellation). Oracle applies the updates that process the
refund after it applies the cancellation.

Parallel Propagation Dependency Tracking When Oracle executes a new transaction on the
local system, Oracle completes the following process:

1. Oracle records the system change number (SCN) of the most recent transaction
that updates data that is seen by the new transaction as the dependent SCN. You
can record the SCN either at the data block level or at the row level, as discussed
later in this chapter.

2. Oracle ensures that transactions with SCNs less than or equal to the dependent
SCN propagate successfully to the remote system.

3. Oracle propagates the waiting, dependent transaction.

Parallel propagation maintains data integrity in a manner different from that of serial
propagation. With serial propagation, Oracle applies all transactions in the same order
that they commit on the local system to maintain any dependencies. With parallel
propagation, Oracle tracks dependencies and executes them in commit order when

Note: Successful propagation does not necessarily imply
successful application of the transaction at the remote site. Errors
such as unresolvable conflicts or running out of storage space can
cause the transaction to result in an error, which is logged at the
remote site as an error transaction.

See Also:

■ "Parallel Propagation" on page 2-33

■ The Advanced Replication interface online Help for more
information about viewing and managing error transactions
with the Advanced Replication interface in Oracle Enterprise
Manager

Note: When there are no possible dependencies between
transactions, Oracle propagates transactions in parallel.

Master Replication Architecture

Master Replication Concepts and Architecture 2-39

dependencies can exist and in parallel when dependencies cannot exist. With both
serial and parallel propagation, Oracle preserves the order of execution within a
transaction. The deferred transaction executes every remote procedure call at each site
in the same order as it was executed within the local transaction.

Use of Row-Level Dependency Tracking to Improve Parallelism When you create a table, you
can specify the following options for tracking system change numbers (SCN)s:

■ NOROWDEPENDENCIES, the default, specifies that the SCN is tracked at the data
block level.

■ ROWDEPENDENCIES specifies that the SCN is tracked for each row in the table.

When you use the NOROWDEPENDENCIES clause for a table, the data block SCN tracks
the most recent update of a row that is stored in the data block. Other rows that were
updated earlier can be stored in the same data block, but information about when
these rows were updated is lost when a new SCN is applied at the data block level.

When you use the ROWDEPENDENCIES clause for a table, multiple SCNs can be stored
in a single data block. That is, a separate SCN tracks changes for each row that is
stored in the data block. If two rows that are stored in the same data block are changed
by different transactions, then each row has an SCN that tracks the change. To track
the SCN at the row level, each row in the table uses an additional six bytes of storage
space.

Using the ROWDEPENDENCIES clause for a table enables parallel propagation to track
dependencies and order changes more efficiently when applying the deferred
transaction queue. This increased efficiency improves performance and provides
greater scalability in replication environments.

You can use the following query to list the tables that are using the
ROWDEPENDENCIES clause currently:

SELECT OWNER, TABLE_NAME FROM DBA_TABLES
 WHERE DEPENDENCIES = 'ENABLED';

Minimize Transaction Dependencies to Improve Parallelism If you did not use the
ROWDEPENDENCIES clause for some of your replicated tables, then you can improve
the performance of parallel propagation for these tables by minimizing transaction
dependencies.

In this case, certain application conditions can establish dependencies among
transactions that force Oracle to serialize the propagation of deferred transactions.
When several unrelated transactions modify the same data block in a replicated table,
Oracle serializes the propagation of the corresponding transactions to remote
destinations.

Note: A single coordinator process exists for each database link to
a remote site. Each database link to the same remote site requires a
different connection qualifier.

See Also: "Connection Qualifiers" on page 2-17

See Also: "Row-Level Dependency Tracking" on page 6-4 for
information about creating a table using the ROWDEPENDENCIES
clause

Master Replication Architecture

2-40 Oracle Database Advanced Replication

To minimize transaction dependencies created at the data block level, avoid situations
that concentrate data block modifications into one or a small number of data blocks.
For example, when a replicated table experiences a high degree of INSERT activity,
you can distribute the storage of new rows into multiple data blocks by creating
multiple free lists for the table.

If possible, avoid situations where many transactions all update the same small table.
For example, a poorly designed application might employ a small table that
transactions read and update to simulate sequence number generation for a primary
key. This design forces all transactions to update the same data block. A better
solution is to create a sequence and cache sequence numbers to optimize primary key
generation and improve parallel propagation performance.

Conflict Resolution Mechanisms
The receiving master site in a replication environment detects update, uniqueness, and
delete conflicts as follows:

■ The receiving site detects an update conflict if there is any difference between the
old values of the replicated row, which are the values before the modification, and
the current values of the same row at the receiving site in either the primary key
columns or the columns in an updated column group.

■ The receiving site detects a uniqueness conflict if a uniqueness constraint violation
occurs during an INSERT or UPDATE of a replicated row.

■ The receiving site detects a delete conflict if it cannot find a row for an UPDATE or
DELETE statement because the primary key of the row does not exist.

Row Identification During Conflict Detection
To detect replication conflicts accurately, Oracle must be able to uniquely identify and
match corresponding rows at different sites during data replication. Typically, Oracle's
replication facility uses the primary key of a table to uniquely identify rows in the
table. When a table does not have a primary key, you must designate an alternate
key—a column or set of columns that Oracle can use to uniquely identify rows in the
table during data replication.

Resolution of Data Conflicts
Oracle provides a mechanism that enables you to define a conflict resolution method
that resolves a data conflict when detected. Oracle provides several prebuilt conflict
resolution methods:

Note: To detect and resolve an update conflict for a row, the
propagating site must send a certain amount of data about the new
and old versions of the row to the receiving site. For maximum
performance, tune the amount of data that Oracle uses to support
update conflict detection and resolution. For more information, see
"Send and Compare Old Values" on page 5-27.

Caution: Do not permit applications to update the primary key or
alternate key columns of a table. This ensures that Oracle can identify
rows and preserve the integrity of replicated data.

Master Replication Architecture

Master Replication Concepts and Architecture 2-41

■ Latest and Earliest Timestamp

■ Overwrite and Discard

■ Maximum and Minimum

■ Additive and Average

■ Timestamp

■ Priority Group

■ Site Priority

If the prebuilt Oracle conflict resolution methods do not meet the needs of your
replication environment, then you have the option of writing your own conflict
resolution method using PL/SQL and implementing it as a user-defined conflict
resolution method. See Chapter 5, "Conflict Resolution Concepts and Architecture" to
learn how conflict resolution works.

See Also: The online Help for the Advanced Replication interface
to learn how to implement conflict resolution with Oracle
Enterprise Manager, and see the Oracle Database Advanced
Replication Management API Reference to learn how to implement
conflict resolution using the replication management API.

Master Replication Architecture

2-42 Oracle Database Advanced Replication

Materialized View Concepts and Architecture 3-1

3
Materialized View Concepts and Architecture

This chapter explains the concepts and architecture of Oracle materialized views.

This chapter contains these topics:

■ Materialized View Concepts

■ Materialized View Architecture

Materialized View Concepts
Oracle uses materialized views (also known as snapshots in prior releases) to replicate
data to nonmaster sites in a replication environment and to cache expensive queries in
a data warehouse environment. This chapter, and this Oracle Database Advanced
Replication manual in general, discusses materialized views for use in a replication
environment.

This section contains these topics:

■ What is a Materialized View?

■ Why Use Materialized Views?

■ Read-Only, Updatable, and Writeable Materialized Views

■ Available Materialized Views

■ Required Privileges for Materialized View Operations

■ Data Subsetting with Materialized Views

■ Determining the Fast Refresh Capabilities of a Materialized View

■ Multitier Materialized Views

■ How Materialized Views Work with Object Types and Collections

■ Materialized View Registration at a Master Site or Master Materialized View Site

What is a Materialized View?
A materialized view is a replica of a target master from a single point in time. The
master can be either a master table at a master site or a master materialized view at a
materialized view site. Whereas in multimaster replication tables are continuously
updated by other master sites, materialized views are updated from one or more
masters through individual batch updates, known as a refreshes, from a single master

See Also: Oracle Database Data Warehousing Guide to learn more
about materialized views for data warehousing

Materialized View Concepts

3-2 Oracle Database Advanced Replication

site or master materialized view site, as illustrated in Figure 3–1. The arrows in
Figure 3–1 represent database links.

Figure 3–1 Materialized View Connected to a Single Master Site

When a fast refresh is performed on a materialized view, Oracle must examine all of
the changes to the master table or master materialized view since the last refresh to see
if any apply to the materialized view. Therefore, if any changes where made to the
master since the last refresh, then a materialized view refresh takes some time to apply
the changes to the materialized view. If, however, no changes at all were made to the
master since the last refresh of a materialized view, then the materialized view refresh
should be very quick.

Why Use Materialized Views?
You can use materialized views to achieve one or more of the following goals:

■ Ease Network Loads

■ Create a Mass Deployment Environment

■ Enable Data Subsetting

■ Enable Disconnected Computing

Ease Network Loads
If one of your goals is to reduce network loads, then you can use materialized views to
distribute your corporate database to regional sites. Instead of the entire company
accessing a single database server, user load is distributed across multiple database
servers. Through the use of multitier materialized views, you can create materialized
views based on other materialized views, which enables you to distribute user load to
an even greater extent because clients can access materialized view sites instead of
master sites. To decrease the amount of data that is replicated, a materialized view can
be a subset of a master table or master materialized view.

While multimaster replication also distributes a corporate database among multiple
sites, the networking requirements for multimaster replication are greater than those
for replicating with materialized views because of the transaction by transaction
nature of multimaster replication. Further, the ability of multimaster replication to
provide real-time or near real-time replication can result in greater network traffic, and
might require a dedicated network link.

orc1.example.com orc2.example.com

mv1.example.com orc3.example.com

Materialized
View
Site

Master
Site

Master
Site

Master
Site

Materialized View Concepts

Materialized View Concepts and Architecture 3-3

Materialized views are updated through an efficient batch process from a single
master site or master materialized view site. They have lower network requirements
and dependencies than multimaster replication because of the point in time nature of
materialized view replication. Whereas multimaster replication requires constant
communication over the network, materialized view replication requires only periodic
refreshes.

In addition to not requiring a dedicated network connection, replicating data with
materialized views increases data availability by providing local access to the target
data. These benefits, combined with mass deployment and data subsetting (both of
which also reduce network loads), greatly enhance the performance and reliability of
your replicated database.

Create a Mass Deployment Environment
Deployment templates enable you to precreate a materialized view environment
locally. You can then use deployment templates to quickly and easily deploy
materialized view environments to support sales force automation and other mass
deployment environments. Parameters enable you to create custom data sets for
individual users without changing the deployment template. This technology enables
you to roll out a database infrastructure to hundreds or thousands of users.

Enable Data Subsetting
Materialized views enable you to replicate data based on column- and row-level
subsetting, while multimaster replication requires replication of the entire table. Data
subsetting enables you to replicate information that pertains only to a particular site.
For example, if you have a regional sales office, then you might replicate only the data
that is needed in that region, thereby cutting down on unnecessary network traffic.

Enable Disconnected Computing
Materialized views do not require a dedicated network connection. Though you have
the option of automating the refresh process by scheduling a job, you can manually
refresh your materialized view on-demand, which is an ideal solution for sales
applications running on a laptop. For example, a developer can integrate the
replication management API for refresh on-demand into the sales application. When
the salesperson has completed the day's orders, the salesperson simply dials up the
network and uses the integrated mechanism to refresh the database, thus transferring
the orders to the main office.

Read-Only, Updatable, and Writeable Materialized Views
A materialized view can be either read-only, updatable, or writeable. Users cannot
perform data manipulation language (DML) statements on read-only materialized
views, but they can perform DML on updatable and writeable materialized views.

Note:

■ For read-only, updatable, and writeable materialized views, the
defining query of the materialized view must reference all of
the primary key columns in the master.

■ Materialized views do not support columns that have been
encrypted using transparent data encryption.

Materialized View Concepts

3-4 Oracle Database Advanced Replication

Read-Only Materialized Views
You can make a materialized view read-only during creation by omitting the FOR
UPDATE clause or disabling the equivalent option in the Advanced Replication
interface in Oracle Enterprise Manager. Read-only materialized views use many of the
same mechanisms as updatable materialized views, except that they do not need to
belong to a materialized view group.

In addition, using read-only materialized views eliminates the possibility of a
materialized view introducing data conflicts at the master site or master materialized
view site, although this convenience means that updates cannot be made at the remote
materialized view site. The following is an example of a read-only materialized view:

CREATE MATERIALIZED VIEW hr.employees AS
 SELECT * FROM hr.employees@orc1.example.com;

Updatable Materialized Views
You can make a materialized view updatable during creation by including the FOR
UPDATE clause or enabling the equivalent option in the Advanced Replication
interface in Oracle Enterprise Manager. For changes made to an updatable
materialized view to be pushed back to the master during refresh, the updatable
materialized view must belong to a materialized view group.

Updatable materialized views enable you to decrease the load on master sites because
users can make changes to the data at the materialized view site. The following is an
example of an updatable materialized view:

CREATE MATERIALIZED VIEW hr.departments FOR UPDATE AS
 SELECT * FROM hr.departments@orc1.example.com;

The following statement creates a materialized view group:

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPGROUP (
 gname => 'hr_repg',
 master => 'orc1.example.com',
 propagation_mode => 'ASYNCHRONOUS');
END;
/

The following statement adds the hr.departments materialized view to the
materialized view group, making the materialized view updatable:

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'departments',
 type => 'SNAPSHOT',
 min_communication => TRUE);
END;
/

See Also:

■ "Materialized View Replication" on page 1-5 for an introduction
to read-only and updatable materialized views

■ "Considerations for Replicated Tables" on page 6-1

Materialized View Concepts

Materialized View Concepts and Architecture 3-5

You can also use the Advanced Replication interface in Oracle Enterprise Manager to
create a materialized view group and add a materialized view to it.

In a single master site environment that has updatable materialized views, quiesce is
not required when you perform administration operations on the master site if you:

■ Propagate all of the deferred transactions at the databases containing updatable
materialized views before you perform the administration operations to the
master group.

■ Do not allow any database manipulation language (DML) changes on the
updatable materialized views until you have finished the administration operation
on the master site and regenerated replication support for the materialized view.

If you do not perform these actions, then quiesce the master group before you perform
the administration operations on it.

Writeable Materialized Views
A writeable materialized view is one that is created using the FOR UPDATE clause but
is not part of a materialized view group. Users can perform DML operations on a
writeable materialized view, but if you refresh the materialized view, then these
changes are not pushed back to the master and the changes are lost in the materialized
view itself. Writeable materialized views are typically allowed wherever
fast-refreshable read-only materialized views are allowed.

Available Materialized Views
Oracle offers several types of materialized views to meet the needs of many different
replication (and nonreplication) situations. The following sections describe each type
of materialized view and also describe some environments for which they are best
suited.

Note:

■ Do not use column aliases when you are creating an updatable
materialized view. Column aliases cause an error when you
attempt to add the materialized view to a materialized view
group using the CREATE_MVIEW_REPOBJECT procedure.

■ An updatable materialized view based on a master table or
master materialized view that has defined column default
values does not automatically use the master's default values.

■ A DELETE CASCADE constraint used with an updatable
materialized view must be deferrable.

See Also:

■ "Materialized View Groups" on page 3-41 for more information

■ Oracle Database SQL Language Reference for more information
about column aliases

Note: Most of the documentation about materialized views only
refers to read-only and updatable materialized views because
writeable materialized views are rarely used.

Materialized View Concepts

3-6 Oracle Database Advanced Replication

The following sections contain examples of creating different types of materialized
views:

■ Primary Key Materialized Views

■ Object Materialized Views

■ ROWID Materialized Views

■ Complex Materialized Views

Whenever you create a materialized view, regardless of its type, always specify the
schema name of the table owner in the query for the materialized view. For example,
consider the following CREATE MATERIALIZED VIEW statement:

CREATE MATERIALIZED VIEW hr.employees
 AS SELECT * FROM hr.employees@orc1.example.com;

Here, the schema hr is specified in the query.

Primary Key Materialized Views
Primary key materialized views are the default type of materialized view. They are
updatable if the materialized view was created as part of a materialized view group
and FOR UPDATE was specified when defining the materialized view. An updatable
materialized view must belong to a materialized view group that has the same name
as the replication group at its master site or master materialized view site. In addition,
an updatable materialized view must reside in a different database than the master
replication group.

Changes are propagated according to the row-level changes that have occurred, as
identified by the primary key value of the row (not the ROWID). The following is an
example of a SQL statement for creating an updatable, primary key materialized view:

CREATE MATERIALIZED VIEW oe.customers FOR UPDATE AS
 SELECT * FROM oe.customers@orc1.example.com;

Primary key materialized views can contain a subquery so that you can create a subset
of rows at the remote materialized view site. A subquery is a query imbedded within
the primary query, so that you have more than one SELECT statement in the CREATE
MATERIALIZED VIEW statement. This subquery can be as simple as a basic WHERE
clause or as complex as a multilevel WHERE EXISTS clause. Primary key materialized
views that contain a selected class of subqueries can still be incrementally (or fast)
refreshed, if each master referenced has a materialized view log. A fast refresh uses
materialized view logs to update only the rows that have changed since the last
refresh.

The following materialized view is created with a WHERE clause containing a
subquery:

CREATE MATERIALIZED VIEW oe.orders REFRESH FAST AS
 SELECT * FROM oe.orders@orc1.example.com o
 WHERE EXISTS

Note: You cannot execute a distributed transaction on the master
table of a refresh-on-commit materialized view. Refresh-on-commit
materialized views are those created using the ON COMMIT REFRESH
clause in the CREATE MATERIALIZED VIEW statement. You can
execute a distributed transaction on the master table of a
refresh-on-demand materialized view.

Materialized View Concepts

Materialized View Concepts and Architecture 3-7

 (SELECT * FROM oe.customers@orc1.example.com c
 WHERE o.customer_id = c.customer_id AND c.credit_limit > 10000);

This type of materialized view is called a subquery materialized view.

Object Materialized Views
If a materialized view is based on an object table and is created using the OF type
clause, then the materialized view is called an object materialized view. An object
materialized view is structured in the same way as an object table. That is, an object
materialized view is composed of row objects, and each row object is identified by an
object identifier (OID) column.

ROWID Materialized Views
Oracle supports ROWID materialized views in addition to the default primary key
materialized views. A ROWID materialized view is based on the physical row
identifiers (rowids) of the rows in a master. ROWID materialized views can be used for
materialized views based on master tables that do not have a primary key, or for
materialized views that do not include all primary key columns of the master tables.

The following is an example of a CREATE MATERIALIZED VIEW statement that creates
a ROWID materialized view:

CREATE MATERIALIZED VIEW oe.orders REFRESH WITH ROWID AS
 SELECT * FROM oe.orders@orc1.example.com;

Note: To create this oe.orders materialized view, credit_
limit must be logged in the master's materialized view log. See
"Logging Columns in the Materialized View Log" on page 6-13 for
more information.

See Also:

■ "Materialized View Groups" on page 3-41 for more information
about materialized view groups

■ "Materialized Views with Subqueries" on page 3-13 for more
information about materialized views with subqueries

■ "Refresh Types" on page 3-45 for more information about fast
refresh

■ "Materialized View Log" on page 3-38 for more information
about materialized view logs

■ Oracle Database SQL Language Reference for more information
about subqueries

See Also: "Materialized Views Based on Object Tables" on
page 3-29

Materialized View Concepts

3-8 Oracle Database Advanced Replication

Complex Materialized Views
To be fast refreshed, the defining query for a materialized view must observe certain
restrictions. If you require a materialized view whose defining query is more general
and cannot observe the restrictions, then the materialized view is complex and cannot
be fast refreshed.

Specifically, a materialized view is considered complex when the defining query of the
materialized view contains:

■ A CONNECT BY clause

For example, the following statement creates a complex materialized view:

CREATE MATERIALIZED VIEW hr.emp_hierarchy AS
 SELECT LPAD(' ', 4*(LEVEL-1))||email USERNAME
 FROM hr.employees@orc1.example.com START WITH manager_id IS NULL
 CONNECT BY PRIOR employee_id = manager_id;

■ An INTERSECT, MINUS, or UNION ALL set operation

For example, the following statement creates a complex materialized view because
it has a UNION ALL set operation:

CREATE MATERIALIZED VIEW hr.mview_employees AS
 SELECT employees.employee_id, employees.email
 FROM hr.employees@orc1.example.com
UNION ALL
 SELECT new_employees.employee_id, new_employees.email
 FROM hr.new_employees@orc1.example.com;

■ The DISTINCT or UNIQUE keyword

For example, the following statement creates a complex materialized view:

CREATE MATERIALIZED VIEW hr.employee_depts AS
 SELECT DISTINCT department_id FROM hr.employees@orc1.example.com
 ORDER BY department_id;

■ In some cases, an aggregate function, although it is possible to have an aggregate
function in the defining query and still have a simple materialized view

For example, the following statement creates a complex materialized view:

CREATE MATERIALIZED VIEW hr.average_sal AS
 SELECT AVG(salary) "Average" FROM hr.employees@orc1.example.com;

■ In some cases, joins other than those in a subquery, although it is possible to have
joins in the defining query and still have a simple materialized view

For example, the following statement creates a complex materialized view:

CREATE MATERIALIZED VIEW hr.emp_join_dep AS
 SELECT last_name

See Also:

■ "Materialized View Log" on page 3-38 for more information
about the differences between a ROWID and primary key
materialized view

■ Oracle Database SQL Language Reference for more information
about the WITH ROWID clause in the CREATE MATERIALIZED
VIEW statement

Materialized View Concepts

Materialized View Concepts and Architecture 3-9

 FROM hr.employees@orc1.example.com e, hr.departments@orc1.example.com d
 WHERE e.department_id = d.department_id;

■ In some cases, a UNION operation

Specifically, a materialized view with a UNION operation is complex if any one of
these conditions is true:

– Any query within the UNION is complex. The previous bullet items specify
when a query makes a materialized view complex.

– The outermost SELECT list columns do not match for the queries in the
UNION. In the following example, the first query only has order_total in
the outermost SELECT list while the second query has customer_id in the
outermost SELECT list. Therefore, the materialized view is complex.

CREATE MATERIALIZED VIEW oe.orders AS
 SELECT order_total
 FROM oe.orders@orc1.example.com o
 WHERE EXISTS
 (SELECT cust_first_name, cust_last_name
 FROM oe.customers@orc1.example.com c
 WHERE o.customer_id = c.customer_id
 AND c.credit_limit > 50)
UNION
 SELECT customer_id
 FROM oe.orders@orc1.example.com o
 WHERE EXISTS
 (SELECT cust_first_name, cust_last_name
 FROM oe.customers@orc1.example.com c
 WHERE o.customer_id = c.customer_id
 AND c.account_mgr_id = 30);

The innermost SELECT list has no bearing on whether a materialized view is
complex. In the previous example, the innermost SELECT list is cust_
first_name and cust_last_name for both queries in the UNION.

■ Clauses that do not comply with the requirements detailed in "Restrictions for
Materialized Views with Subqueries" on page 3-19

A Comparison of Simple and Complex Materialized Views For certain applications, you might
want to consider using a complex materialized view. Figure 3–2 and the following text
discuss some issues that you should consider.

Note: If possible, you should avoid using complex materialized
views because they cannot be fast refreshed, which might degrade
network performance (see "Refresh Process" on page 3-45 for
information).

See Also:

■ Oracle Database Data Warehousing Guide for information about
materialized views with aggregate functions and joins

■ Oracle Database SQL Language Reference for more information
about the CONNECT BY clause, set operations, the DISTINCT
keyword, and aggregate functions

Materialized View Concepts

3-10 Oracle Database Advanced Replication

Figure 3–2 Comparison of Simple and Complex Materialized Views

■ Complex Materialized View: Method A in Figure 3–2 shows a complex
materialized view. The materialized view in Database II exhibits efficient query
performance because the join operation was completed during the materialized
view's refresh. However, complete refreshes must be performed because the
materialized view is complex, and these refreshes will probably be slower than
fast refreshes.

■ Simple Materialized Views with a Joined View: Method B in Figure 3–2 shows
two simple materialized views in Database II, as well as a view that performs the
join in the materialized view's database. Query performance against the view
would not be as good as the query performance against the complex materialized
view in Method A. However, the simple materialized views can be refreshed more
efficiently using fast refresh and materialized view logs.

In summary, to decide which method to use:

■ If you refresh rarely and want faster query performance, then use Method A
(complex materialized view).

■ If you refresh regularly and can sacrifice query performance, then use Method B
(simple materialized view).

Required Privileges for Materialized View Operations
Three distinct types of users perform operations on materialized views:

■ Creator: the user who creates the materialized view.

■ Refresher: the user who refreshes the materialized view.

■ Owner: the user who owns the materialized view. The materialized view resides
in this user's schema.

employees
Table

departments
Table

employees
Table

departments
Table

MLOG$_
employees

MLOG$_
departments

M
eth

o
d

 B

M
eth

o
d

 A

employees
Materialized

View
emp_dept View

SELECT ...
FROM employees e, departments d
WHEREe.department_id =

d.department_id

emp_dept Materialized View

SELECT ...
FROM emp_dept

Faster query
performance

Acceptable query
performance

Database I Database II

departments
Materialized

View

Slower
complete
refreshes

Quicker
fast

refreshes

Quicker
fast

refreshes

SELECT ...
FROM hr.employees@ny e, hr.department@ny d
WHERE e.department_id = d.department_id

Materialized View Concepts

Materialized View Concepts and Architecture 3-11

One user can perform all of these operations on a particular materialized view.
However, in some replication environments, different users perform these operations
on a particular materialized view. The privileges required to perform these operations
depend on whether the same user performs them or different users perform them. The
following sections explain the privileges requirements in detail.

If the owner of a materialized view at the materialized view site has a private database
link to the master site or master materialized view site, then the database link connects
to the owner of the master at the master site or master materialized view site.
Otherwise, the normal rules for connections through database links apply.

Creator Is Owner
If the creator of a materialized view also owns the materialized view, then this user
must have the following privileges to create a materialized view, granted either
explicitly or through a role:

■ CREATE MATERIALIZED VIEW or CREATE ANY MATERIALIZED VIEW.

■ CREATE TABLE or CREATE ANY TABLE.

■ SELECT object privilege on the master and the master's materialized view log or
SELECT ANY TABLE system privilege. If the master site or master materialized
view site is remote, then the SELECT object privilege must be granted to the user
at the master site or master materialized view site to which the user at the
materialized view site connects through a database link.

Creator Is Not Owner
If the creator of a materialized view is not the owner, certain privileges must be
granted to the creator and to the owner to create a materialized view. The creator's
privileges can be granted explicitly or through a role, but the owner's privileges must
be granted explicitly. That is, the privileges granted to the owner cannot be granted
through a role.

Table 3–1 shows the required privileges when the creator of the materialized view is
not the owner.

Note: The following sections do not cover the requirements
necessary to create materialized views with query rewrite enabled.
See the Oracle Database SQL Language Reference for information.

See Also: The following sections discuss database links. See the
Oracle Database Administrator's Guide for more information about
using database links.

Materialized View Concepts

3-12 Oracle Database Advanced Replication

Refresher Is Owner
If the refresher of a materialized view also owns the materialized view, this user must
have SELECT object privilege on the master and the master's materialized view log or
SELECT ANY TABLE system privilege. If the master site or master materialized view
site is remote, then the SELECT object privilege must be granted to the user at the
master site or master materialized view site to which the user at the materialized view
site connects through a database link. This privilege can be granted either explicitly or
through a role.

Refresher Is Not Owner
If the refresher of a materialized view is not the owner, certain privileges must be
granted to the refresher and to the owner. These privileges can be granted either
explicitly or through a role.

Table 3–2 shows the required privileges when the refresher of the materialized view is
not the owner.

Data Subsetting with Materialized Views
In certain situations, you might want your materialized view to reflect a subset of the
data in the master table or master materialized view. Row subsetting enables you to
include only the rows that are needed from the master in the materialized views by
using a WHERE clause. Column subsetting enables you to include only the columns
that are needed from the master in the materialized views. You do this by specifying
certain select columns in the SELECT statement during materialized view creation. If
you use deployment templates to build your materialized views, then you can define
column subsets on updatable materialized views.

Table 3–1 Required Privileges for Creating Materialized Views (Creator != Owner)

Creator Owner

CREATE ANY MATERIALIZED VIEW CREATE TABLE or CREATE ANY TABLE

SELECT object privilege on the master and the
master's materialized view log or SELECT ANY TABLE
system privilege. If the master site or master
materialized view site is remote, then the SELECT
object privilege must be granted to the user at the
master site or master materialized view site to which
the user at the materialized view site connects
through a database link.

Note: These privileges for the owner must be granted
to the user explicitly, not through a role.

Table 3–2 Required Privileges for Refreshing Materialized Views (Refresher != Owner)

Refresher Owner

ALTER ANY MATERIALIZED VIEW If the master site or master materialized view site is
local, then SELECT object privilege on the master and
master's materialized view log or SELECT ANY TABLE
system privilege.

If the master site or master materialized view site is
remote, then the SELECT object privilege must be
granted to the user at the master site or master
materialized view site to which the user at the
materialized view site connects through a database
link.

Materialized View Concepts

Materialized View Concepts and Architecture 3-13

Some reasons to use data subsetting are to:

■ Reduce Network Traffic: In a column-subsetted materialized view, only changes
that satisfy the WHERE clause of the materialized view's defining query are
propagated to the materialized view site, thereby reducing the amount of data
transferred and reducing network traffic.

■ Secure Sensitive Data: Users can only view data that satisfies the defining query
for the materialized view.

■ Reduce Resource Requirements: If the materialized view is located on a laptop,
then hard disks are generally significantly smaller than the hard disks on a
corporate server. Subsetted materialized views might require significantly less
storage space.

■ Improve Refresh Times: Because less data is propagated to the materialized view
site, the refresh process is faster, which is essential for those who need to refresh
materialized views using a dial up network connection from a laptop.

For example, the following statement creates a materialized view based on the
oe.orders@orc1.example.com master table and includes only the rows for the
sales representative with a sales_rep_id number of 173:

CREATE MATERIALIZED VIEW oe.orders REFRESH FAST AS
 SELECT * FROM oe.orders@orc1.example.com
 WHERE sales_rep_id = 173;

Rows of the orders table with a sales_rep_id number other than 173 are excluded
from this materialized view.

Materialized Views with Subqueries
The previous example works well for individual materialized views that do not have
any referential constraints to other materialized views. But, if you want to replicate
data based on the information in more than one table, then maintaining and defining
these materialized views can be difficult. The following sections provide examples of
situations where a subquery is useful.

Many to One Subqueries Consider a scenario where you have the customers table and
orders table in the oe schema, and you want to create a materialized view of the
orders table based on data in both the orders table and the customers table. For
example, suppose a salesperson wants to see all of the orders for the customers with a
credit limit greater than $10,000. In this case, the CREATE MATERIALIZED VIEW
statement that creates the orders materialized view has a subquery with a many to
one relationship, because there can be many orders for each customer.

Look at the relationships in Figure 3–3, and notice that the customers and orders
tables are related through the customer_id column. The following statement
satisfies the original goal of the salesperson. That is, the following statement creates a
materialized view that contains orders for customers whose credit limit is greater than
$10,000:

CREATE MATERIALIZED VIEW oe.orders REFRESH FAST FOR UPDATE AS
 SELECT * FROM oe.orders@orc1.example.com o
 WHERE EXISTS

Note: The following sections discuss row subsetting through the
use of subqueries. For more information about column subsetting,
see "Column Subsetting with Deployment Templates" on page 4-15.

Materialized View Concepts

3-14 Oracle Database Advanced Replication

 (SELECT * FROM oe.customers@orc1.example.com c
 WHERE o.customer_id = c.customer_id AND c.credit_limit > 10000);

Figure 3–3 Row Subsetting with Many to One Subqueries

As you can see, the materialized view created by this statement is fast refreshable and
updatable. If new customers are identified that have a credit limit greater than $10,000,
then the new data will be propagated to the materialized view site during the
subsequent refresh process. Similarly, if a customer's credit limit drops to less than
$10,000, then the customer's data will be removed from the materialized view during
the subsequent refresh process.

One to Many Subqueries Consider a scenario where you have the customers table and
orders table in the oe schema, and you want to create a materialized view of the
customers table based on data in both the customers table and the orders table.
For example, suppose a salesperson wants to see all of the customers who have an
order with an order total greater than $20,000, then the most efficient method is to
create a materialized view with a one to many subquery in the defining query of a
materialized view.

Here, the defining query in the CREATE MATERIALIZED VIEW statement on the
customers table has a subquery with a one to many relationship. That is, one
customer can have many orders.

Look at the relationships in Figure 3–4, and notice that the orders table and
customers table are related through the customer_id column. The following
statement satisfies the original goal of the salesperson. That is, this statement creates a
materialized view that contains customers who have an order with an order total
greater than $20,000:

CREATE MATERIALIZED VIEW oe.customers REFRESH FAST FOR UPDATE AS
 SELECT * FROM oe.customers@orc1.example.com c
 WHERE EXISTS
 (SELECT * FROM oe.orders@orc1.example.com o
 WHERE c.customer_id = o.customer_id AND o.order_total > 20000);

Note: To create this oe.orders materialized view, credit_
limit must be logged in the master's materialized view log. See
"Logging Columns in the Materialized View Log" on page 6-13 for
more information.

orders Master Table

order_id customer_id . . .

.

.

.

.

.

.

4865
4886
4865
5420
5420
.

900
901
902
903
904
.

Primary Key

customers Master Table

customer_id credit_limit . . .

.

.

.

.

.

50000
7500
12000
35000
.

4865
4872
4886
5420
.

Primary Key

customer_id

Materialized View Concepts

Materialized View Concepts and Architecture 3-15

Figure 3–4 Row Subsetting with One to Many Subqueries

The materialized view created by this statement is fast refreshable and updatable. If
new customers are identified that have an order total greater than $20,000, then the
new data will be propagated to the materialized view site during the subsequent
refresh process. Similarly, if a customer cancels an order with an order total greater
than $20,000 and has no other order totals greater than $20,000, then the customer's
data will be removed from the materialized view during the subsequent refresh
process.

Many to Many Subqueries Consider a scenario where you have the order_items table
and inventories table in the oe schema, and you want to create a materialized view
of the inventories table based on data in both the inventories table and the
order_items table. For example, suppose a salesperson wants to see all of the
inventories with a quantity on hand greater than 0 (zero) for each product whose
product_id is in the order_items table. In other words, the salesperson wants to
see the inventories that are greater than zero for all of the products that customers
have ordered. Here, an inventory is a certain quantity of a product at a particular
warehouse. So, a certain product can be in many order items and in many inventories.

To accomplish the salesperson's goal, you can create a materialized view with a
subquery on the many to many relationship between the order_items table and the
inventories table.

When you create the inventories materialized view, you want to retrieve the
inventories with the quantity on hand greater than zero for the products that appear in
the order_items table. Look at the relationships in Figure 3–5, and note that the
inventories table and order_items table are related through the product_id
column. The following statement creates the materialized view:

CREATE MATERIALIZED VIEW oe.inventories REFRESH FAST FOR UPDATE AS
 SELECT * FROM oe.inventories@orc1.example.com i
 WHERE i.quantity_on_hand > 0 AND EXISTS
 (SELECT * FROM oe.order_items@orc1.example.com o
 WHERE i.product_id = o.product_id);

Note: To create this oe.customers materialized view,
customer_id and order_total must be logged in the
materialized view log for the orders table. See "Logging Columns
in the Materialized View Log" on page 6-13 for more information.

customers Master Table

customer_id . . .

.

.

.

.

.

4225
4226
4227
4228
.

Primary Key

orders Master Table

order_id customer_id order_total

12229
25650
48239
32155
16000
.

. . .

.

.

.

.

.

4227
4228
4225
4227
4226
.

800
801
802
803
804
.

Primary Key

customer_id

Materialized View Concepts

3-16 Oracle Database Advanced Replication

Figure 3–5 Row Subsetting with Many to Many Subqueries

The materialized view created by this statement is fast refreshable and updatable. If
new inventories that are greater than zero are identified for products in the order_
items table, then the new data will be propagated to the materialized view site
during the subsequent refresh process. Similarly, if a customer cancels an order for a
product and there are no other orders for the product in the order_items table, then
the inventories for the product will be removed from the materialized view during the
subsequent refresh process.

Materialized Views with Subqueries and Unions In situations where you want a single
materialized view to contain data that matches the complete results of two or more
different queries, you can use the UNION operator. When you use the UNION operator
to create a materialized view, you have two SELECT statements around each UNION
operator, one is above it and one is below it. The resulting materialized view contains
rows selected by either query.

You can use the UNION operator as a way to create fast refreshable materialized views
that satisfy "or" conditions without using the OR expression in the WHERE clause of a
subquery. Under some conditions, using an OR expression in the WHERE clause of a
subquery causes the resulting materialized view to be complex, and therefore not fast
refreshable.

For example, suppose a salesperson wants the product information for the products in
a particular category_id that are either in a warehouse in California or contain the
word "Rouge" in their translated product descriptions (for the French translation). The
following statement uses the UNION operator and subqueries to capture this data in a
materialized view for products in category_id 29:

Note: To create this oe.inventories materialized view, the
product_id column in the order_items table must be logged in
the master's materialized view log. See "Logging Columns in the
Materialized View Log" on page 6-13 for more information.

See Also: "Restrictions for Materialized Views with Subqueries"
on page 3-19 for more information about the OR expressions in
subqueries

inventories Master Table

product_id warehouse_id quantity_on_hand

0
500
250
79
122
0
.

7
9
5
7
8
2
.

3391
3345
3391
3402
3402
3345
.

order_items Master Table

order_id line_item_id product_id

3402
3391
3345
.

. . .

.

.

.

.

100
1005
1252
.

700
701
702
.

Primary Key

product_id

Primary Key

Materialized View Concepts

Materialized View Concepts and Architecture 3-17

CREATE MATERIALIZED VIEW oe.product_information REFRESH FAST FOR UPDATE AS
 SELECT * FROM oe.product_information@orc1.example.com pi
 WHERE pi.category_id = 29 AND EXISTS
 (SELECT * FROM oe.product_descriptions@orc1.example.com pd
 WHERE pi.product_id = pd.product_id AND
 pd.translated_description LIKE '%Rouge%')
UNION
 SELECT * FROM oe.product_information@orc1.example.com pi
 WHERE pi.category_id = 29 AND EXISTS
 (SELECT * FROM oe.inventories@orc1.example.com i
 WHERE pi.product_id = i.product_id AND EXISTS
 (SELECT * FROM oe.warehouses@orc1.example.com w
 WHERE i.warehouse_id = w.warehouse_id AND EXISTS
 (SELECT * FROM hr.locations@orc1.example.com l
 WHERE w.location_id = l.location_id
 AND l.state_province = 'California')));

Figure 3–6 shows the relationships of the master tables involved in this statement.

Note: To create the oe.product_information materialized
view, translated_description in the oe.product_
descriptions table, the state_province in the
hr.locations table, and the location_id column in the
oe.warehouses table must be logged in each master's
materialized view log. See "Logging Columns in the Materialized
View Log" on page 6-13 for more information.

Materialized View Concepts

3-18 Oracle Database Advanced Replication

Figure 3–6 Row Subsetting with Subqueries and Unions

In addition to the UNION operation, this statement contains the following subqueries:

■ A subquery referencing the product_information table and the product_
descriptions table. This subquery is one to many because one product can
have multiple product descriptions (for different languages).

■ A subquery referencing the product_information table and the inventories
table. This subquery is one to many because a product can be in many inventories.

■ A subquery referencing the inventories table and the warehouses table. This
subquery is many to one because many inventories can be stored in one
warehouse.

■ A subquery referencing the warehouses table and the locations table. This
subquery is many to one because many warehouses can be in one location.

The materialized view created by this statement is fast refreshable and updatable. If a
new product is added that is stored in a warehouse in California or that has the string
"Rouge" in the translated product description, then the new data will be propagated to
the product_information materialized view during the subsequent refresh
process.

product_id

product_information Master Table

product_id category_id . . .

.

.

.

.

.

28
28
29
29
.

3159
3161
3163
3165
.

Primary Key

union

inventories Master Table

product_id warehouse_id . . .

.

.

.

.

.

4
5
7
1
.

3161
3161
3163
3163
.

product_descriptions Master Table

product_id translated_description . . .

.

.

.

.

.

language_id

F
F
F
F
.

.

.

.

.

.

3159
3161
3163
3165
.

Primary Key Primary Key
warehouse_id

warehouses Master Table

warehouse_id location_id . . .

.

.

.

1500
2900
.

1
2
.

Primary Key

locations Master Table

location_id state_province . . .

.

.

.

California
New Jersey
.

1500
1600
.

Primary Key

product_id

product_information Master Table

product_id category_id . . .

.

.

.

.

.

28
28
29
29
.

3159
3161
3163
3165
.

Primary Key

location_id

Materialized View Concepts

Materialized View Concepts and Architecture 3-19

Restrictions for Materialized Views with Subqueries
The defining query of a materialized view with a subquery is subject to several
restrictions to preserve the materialized view's fast refresh capability.

The following are restrictions for fast refresh materialized views with subqueries:

■ Materialized views must be primary key materialized views.

■ The master's materialized view log must include certain columns referenced in the
subquery. For information about which columns must be included, see "Logging
Columns in the Materialized View Log" on page 6-13.

■ If the subquery is many to many or one to many, join columns that are not part of
a primary key must be included in the materialized view log of the master. This
restriction does not apply to many to one subqueries.

■ The subquery must be a positive subquery. For example, you can use the EXISTS
condition, but not the NOT EXISTS condition.

■ The subquery must use EXISTS to connect each nested level (IN is not allowed).

■ Each table can be in only one EXISTS expression.

■ The join expression must use exact match or equality comparisons (that is,
equi-joins).

■ Each table can be joined only once within the subquery.

■ A primary key must exist for each table at each nested level.

■ Each nested level can only reference the table in the level above it.

■ Subqueries can include AND conditions, but each OR condition can only reference
columns contained within one row. Multiple OR conditions within a subquery can
be connected with an AND condition.

■ All tables referenced in a subquery must reside in the same master site or master
materialized view site.

Restrictions for Materialized Views with Unions Containing Subqueries
The following are restrictions for fast refresh materialized views with unions
containing subqueries:

■ All of the restrictions described in the previous section, "Restrictions for
Materialized Views with Subqueries" on page 3-19, apply to the subqueries in each
union block.

■ All join columns must be included in the materialized view log of the master, even
if the subquery is many to one.

Note: If the CREATE MATERIALIZED VIEW statement includes an
ON PREBUILT TABLE clause and a subquery, then the subquery is
treated as many to many. Therefore, in this case, the join columns
must be recorded in the materialized view log. See the Oracle
Database SQL Language Reference for more information about the ON
PREBUILT TABLE clause in the CREATE MATERIALIZED VIEW
statement.

See Also: "Primary Key Materialized Views" on page 3-6 for more
information about primary key materialized views

Materialized View Concepts

3-20 Oracle Database Advanced Replication

■ All of the restrictions described in the previous section, "Complex Materialized
Views" on page 3-8, for clauses with UNIONS.

Examples of Materialized Views with Unions Containing Subqueries The following statement
creates the oe.orders materialized view. This materialized view is fast refreshable
because the subquery in each union block satisfies the restrictions for subqueries
described in "Restrictions for Materialized Views with Subqueries" on page 3-19.

CREATE MATERIALIZED VIEW oe.orders REFRESH FAST AS
 SELECT * FROM oe.orders@orc1.example.com o
 WHERE EXISTS
 (SELECT * FROM oe.customers@orc1.example.com c
 WHERE o.customer_id = c.customer_id
 AND c.credit_limit > 50)
UNION
 SELECT *
 FROM oe.orders@orc1.example.com o
 WHERE EXISTS
 (SELECT * FROM oe.customers@orc1.example.com c
 WHERE o.customer_id = c.customer_id
 AND c.account_mgr_id = 30);

Notice that one of the restrictions for subqueries states that each table can be in only
one EXISTS expression. Here, the customers table appears in two EXISTS
expressions, but the EXISTS expressions are in separate UNION blocks. Because the
restrictions described in "Restrictions for Materialized Views with Subqueries" on
page 3-19 only apply to each UNION block, not to the entire CREATE MATERIALIZED
VIEW statement, the materialized view is fast refreshable.

In contrast, the materialized view created with the following statement cannot be fast
refreshed because the orders table is referenced in two different EXISTS expressions
within the same UNION block:

CREATE MATERIALIZED VIEW oe.orders AS
 SELECT * FROM oe.orders@orc1.example.com o
 WHERE EXISTS
 (SELECT * FROM oe.customers@orc1.example.com c
 WHERE o.customer_id = c.customer_id -- first reference to orders table
 AND c.credit_limit > 50
 AND EXISTS
 (SELECT * FROM oe.orders@orc1.example.com o
 WHERE order_total > 5000
 AND o.customer_id = c.customer_id)) -- second reference to orders table
UNION
 SELECT *
 FROM oe.orders@orc1.example.com o
 WHERE EXISTS
 (SELECT * FROM oe.customers@orc1.example.com c
 WHERE o.customer_id = c.customer_id
 AND c.account_mgr_id = 30);

Determining the Fast Refresh Capabilities of a Materialized View
To determine whether a materialized view's subquery satisfies the restrictions detailed
in the previous section, create the materialized view with fast refresh. Oracle returns
errors if the materialized view violates any restrictions for subquery materialized
views. If you specify force refresh, then you might not receive any errors because,
when a force refresh is requested, Oracle automatically performs a complete refresh if
it cannot perform a fast refresh.

Materialized View Concepts

Materialized View Concepts and Architecture 3-21

You can also use the EXPLAIN_MVIEW procedure in the DBMS_MVIEW package to
determine the following information about an existing materialized view or a
proposed materialized view that does not yet exist:

■ The capabilities of a materialized view

■ Whether each capability is possible

■ If a capability is not possible, why it is not possible

This information can be stored in a varray or in the MV_CAPABILITIES_TABLE. If
you want to store the information in the table, then, before you run the EXPLAIN_
MVIEW procedure, you must build this table by running the utlxmv.sql script in the
Oracle_home/rdbms/admin directory.

For example, to determine the capabilities of the oe.orders materialized view, enter:

EXECUTE DBMS_MVIEW.EXPLAIN_MVIEW ('oe.orders');

Or, if the materialized view does not yet exist, then you can supply the query that you
want to use to create it:

BEGIN
 DBMS_MVIEW.EXPLAIN_MVIEW ('SELECT * FROM oe.orders@orc1.example.com o
 WHERE EXISTS (SELECT * FROM oe.customers@orc1.example.com c
 WHERE o.customer_id = c.customer_id AND c.credit_limit > 500)');
END;
/

Query the MV_CAPABILITIES_TABLE to see the results.

Multitier Materialized Views
The ability to create materialized views that are based on other materialized views
enables you to create multitier materialized views. Materialized views that are based
on other materialized views can be read-only or updatable. The arrows in Figure 3–7
represent database links.

Figure 3–7 Multitier Materialized Views

When you are using multitier materialized views, the materialized view based on a
master table is called a level 1 materialized view. Then, a materialized view based on

See Also: Oracle Database Data Warehousing Guide for more
information about the EXPLAIN_MVIEW procedure

orc1.example.com orc2.example.com

mv1.example.commv2.example.com orc3.example.com

Materialized
View
Site

Materialized
View
Site

Master
Site

Master
Site

Master
Site

Materialized View Concepts

3-22 Oracle Database Advanced Replication

the level 1 materialized view is called a level 2 materialized view. Next is level 3 and
so on. Figure 3–8 shows these levels.

Figure 3–8 Levels of Materialized Views

A materialized view that is acting as the master for another materialized view is called
a master materialized view. A materialized view at any level can be a master
materialized view, and, as you can see in Figure 3–8, a master materialized view can
have more than one materialized view based on it. In Figure 3–8, two level 2
materialized views are based on one level 1 materialized view.

Figure 3–9 illustrates an example that shows a master materialized view at level 1
(orders_1) and level 2 (orders_2).

Materialized View

Materialized View

Materialized View

Materialized View

Materialized View

Materialized View

Materialized View

Master Table

Level 1

Level 2

Level 3

Materialized View Concepts

Materialized View Concepts and Architecture 3-23

Figure 3–9 Master Materialized Views

The master for the level 1 materialized view orders_1 is the master table orders at
the master site, but, starting with level 2, each materialized view has a master
materialized view at the level above it. For example, the master for the level 2
materialized view orders_2 is the level 1 materialized view orders_1.

A master materialized view functions the same way a master table does at a master
site. That is, changes pushed from a level 2 materialized view to a level 1 materialized
view are handled in exactly the same way that changes pushed from a level 1
materialized view to a master table are handled.

A receiver must be registered at a master materialized view site. The receiver is
responsible for receiving and applying the deferred transactions from the propagator
at multitier materialized view sites that are based on the master materialized view.

See Also: "Receiver" on page 2-14

orders Master Table
order_id order_date . . .

.

.

.

.

16-AUG-99
19-NOV-99
02-OCT-99
.

2458
2397
2454
.

orders_1 Materialized View
order_id order_date . . .

.

.

.

.

16-AUG-99
19-NOV-99
02-OCT-99
.

2458
2397
2454
.

Level 1 materialized view is
master of orders_2

orders_2 Materialized View
order_id order_date . . .

.

.

.

.

16-AUG-99
19-NOV-99
02-OCT-99
.

2458
2397
2454
.

Level 2 materialized view is
master of orders_3

orders_3 Materialized View
order_id order_date . . .

.

.

.

.

16-AUG-99
19-NOV-99
02-OCT-99
.

2458
2397
2454
.

Level 3 materialized view
that is not a master

Materialized View Concepts

3-24 Oracle Database Advanced Replication

Multitier materialized views offer greater flexibility in the design of a replication
environment. Some materialized view sites might not need to replicate all of the data
in master tables, and, in fact, these sites might not have the storage capacity for all of
the data. In addition, replicating less data means that there is less activity on the
network.

Multitier materialized views are ideal for organizations that are structured on three or
more levels or constrained by limited network resources. For example, consider a
company with international, national, and local offices. This company has many
computers at both the national and local level that replicate data. Here, the replication
environment can be configured with the master site at the international headquarters
and with materialized views at the national level. These materialized views at the
national level only replicate the subset of data from the master tables that apply to
their respective countries. Now, using multitier materialized views, another level of
materialized views at the local level can be based on the materialized views at the
national level. The materialized views at the local level contain the subset of data from
the level 1 materialized views that apply to their local customers.

Scenario for Using Multitier Materialized Views
Consider a multinational company that maintains all employee information at
headquarters, which is in the in the United States. The company uses the tables in the
hr schema to maintain the employee information. This company has one main office
in 14 countries and many regional offices for cities in these countries.

For example, the company has one main office for all of the United Kingdom, but it
also has an office in the city of London. The United Kingdom office maintains
employee information for all of the employees in the United Kingdom, while the
London office only maintains employee information for the employees at the London
office. In this scenario, the hr.employees master table is at headquarters in the
United States and each regional office has a an hr.employees materialized view that
only contains the necessary employee information.

The following statement creates the hr.employees materialized view for the United
Kingdom office. The statement queries the master table in the database at
headquarters, which is orc1.example.com. Notice that the statement uses
subqueries so that the materialized view only contains employees whose country_id
is UK.

CREATE MATERIALIZED VIEW hr.employees REFRESH FAST FOR UPDATE AS
 SELECT * FROM hr.employees@orc1.example.com e
 WHERE EXISTS
 (SELECT * FROM hr.departments@orc1.example.com d
 WHERE e.department_id = d.department_id
 AND EXISTS
 (SELECT * FROM hr.locations@orc1.example.com l
 WHERE l.country_id = 'UK'
 AND d.location_id = l.location_id));

Materialized View Concepts

Materialized View Concepts and Architecture 3-25

The following statement creates the hr.employees materialized view for the London
office based on the level 1 materialized view at the United Kingdom office. The
statement queries the materialized view in the database at the United Kingdom office,
which is reg_uk.example.com. Notice that the statement uses subqueries so that
the materialized view only contains employees whose city is London.

CREATE MATERIALIZED VIEW hr.employees REFRESH FAST FOR UPDATE AS
 SELECT * FROM hr.employees@reg_uk.example.com e
 WHERE EXISTS
 (SELECT * FROM hr.departments@reg_uk.example.com d
 WHERE e.department_id = d.department_id
 AND EXISTS
 (SELECT * FROM hr.locations@reg_uk.example.com l
 WHERE l.city = 'London'
 AND d.location_id = l.location_id));

Restrictions for Using Multitier Materialized Views
Both master materialized views and materialized views based on materialized views
must be primary key materialized views.

Additional Restrictions for Master Materialized Views The following types of materialized
views cannot be masters for updatable materialized views:

■ ROWID materialized views

■ Complex materialized views

■ Read-only materialized views

Note: To create this hr.employees materialized view, the
following columns must be logged:

■ The department_id column must be logged in the
materialized view log for the hr.employees master table at
orc1.example.com.

■ The country_id must be logged in the materialized view log
for the hr.locations master table at orc1.example.com.

See "Logging Columns in the Materialized View Log" on page 6-13
for more information.

Note: To create this hr.employees materialized view, the
following columns must be logged:

■ The department_id column must be logged in the
materialized view log for the hr.employees master
materialized view at reg_uk.example.com.

■ The country_id must be logged in the materialized view log
for the hr.locations master materialized view at reg_
uk.example.com.

See "Logging Columns in the Materialized View Log" on page 6-13
for more information.

Materialized View Concepts

3-26 Oracle Database Advanced Replication

However, these types of materialized views can be masters for read-only materialized
views.

Additional Restrictions for Updatable Materialized Views Based on Materialized Views
Updatable materialized views based on materialized views must:

■ Belong to a materialized view group that has the same name as the materialized
view group at its master materialized view site.

■ Reside in a different database than the materialized view group at its master
materialized view site.

■ Be based on another updatable materialized view or other updatable materialized
views, not on a read-only materialized view.

■ Be based on a materialized view in a materialized view group that is owned by
PUBLIC at the master materialized view site.

How Materialized Views Work with Object Types and Collections
Oracle object types are user-defined data types that make it possible to model
complex real-world entities such as customers and orders as single entities, called
objects, in the database. You create object types using the CREATE TYPE ... AS
OBJECT statement. You can replicate object types and objects between master sites and
materialized view sites in a replication environment.

An Oracle object that occupies a single column in a table is called a column object.
Typically, tables that contain column objects also contain other columns, which can be
built-in data types, such as VARCHAR2 and NUMBER. An object table is a special kind
of table in which each row represents an object. Each row in an object table is a row
object.

You can also replicate collections. Collections are user-defined data types that are
based on VARRAY and nested table data types. You create varrays with the CREATE
TYPE ... AS VARRAY statement, and you create nested tables with the CREATE TYPE
... AS TABLE statement.

Note:

■ You cannot create refresh-on-commit materialized views based
on a master with user-defined types or Oracle-supplied types.
Refresh-on-commit materialized views are those created using
the ON COMMIT REFRESH clause in the CREATE MATERIALIZED
VIEW statement.

■ Advanced Replication does not support type inheritance, and
Advanced Replication does not support types created with the
NOT FINAL clause.

See Also:

■ Oracle Database Object-Relational Developer's Guide for detailed
information about user-defined types, Oracle objects, and
collections. This section assumes a basic understanding of the
information in that book.

■ Oracle Database SQL Language Reference for more information
about user-defined types and Oracle-supplied types

Materialized View Concepts

Materialized View Concepts and Architecture 3-27

Type Agreement at Replication Sites
User-defined types include all types created using the CREATE TYPE statement,
including object, nested table, VARRAY, and indextype. To replicate schema objects
based on user-defined types, the user-defined types themselves must exist, and must
be exactly the same, at all replication sites. In addition, Oracle recommends that you
add a user-defined type to the replication group in which it is used, but doing so is not
required.

When replicating user-defined types and the schema objects on which they are based,
the following conditions apply:

■ The user-defined types replicated at the master site and materialized view site
must be created at the materialized view site before you create any materialized
views that depend on these types.

■ All of the masters on which a materialized view is based must be at the same
master site to create a materialized view with user-defined types.

■ A user-defined type must be exactly the same at all replication sites:

– All replication sites must have the same object identifier (OID), schema owner,
and type name for each replicated user-defined type.

– If the user-defined type is an object type, then all replication sites must agree
on the order and data type of the attributes in the object type. You establish
the order and data types of the attributes when you create the object type. For
example, consider the following object type:

CREATE TYPE cust_address_typ AS OBJECT
 (street_address VARCHAR2(40),
 postal_code VARCHAR2(10),
 city VARCHAR2(30),
 state_province VARCHAR2(10),
 country_id CHAR(2));
/

At all replication sites, street_address must be the first attribute for this
type and must be VARCHAR2(40), postal_code must be the second
attribute and must be VARCHAR2(10), city must be the third attribute and
must be VARCHAR2(30), and so on.

– All replication sites must agree on the hashcode of the user-defined type.
Oracle examines a user-defined type and assigns the hashcode. This
examination includes the type attributes, order of attributes, and type name.
When all of these items are the same for two or more types, the types have the
same hashcode. You can view the hashcode for a type by querying the DBA_
TYPE_VERSIONS data dictionary view.

To ensure that a user-defined type is exactly the same at all replication sites, you must
create the user-defined type at the materialized view site in one of the following ways:

■ Use the Replication Management API

■ Use a CREATE TYPE Statement

Use the Replication Management API Oracle recommends that you use the replication
management API to create, modify, or drop any replicated object at a materialized
view site, including user-defined types. If you do not use the replication management
API for these actions, then replication errors might result.

Specifically, to create a user-defined type that is exactly the same at the master site and
the materialized view site, use the CREATE_MVIEW_REPOBJECT procedure in the

Materialized View Concepts

3-28 Oracle Database Advanced Replication

DBMS_REPCAT package. This procedure creates the type and adds it to a materialized
view group. To drop a user-defined type from the materialized view site, use the
DROP_MVIEW_REPOBJECT procedure in the DBMS_REPCAT package.

Use a CREATE TYPE Statement You can use a CREATE TYPE statement at the
materialized view site to create the type. It might be necessary to do this if you want to
create a read-only materialized view that uses the type, and you do not want to add
the read-only materialized view to a materialized view group.

If you choose this option, then you must ensure the following:

■ The type is in the same schema at both the materialized view site and the master
site.

■ The type has exactly the same attributes in exactly the same order at both the
materialized view site and the master site.

■ The type has exactly the same data type for each attribute at both the materialized
view site and the master site.

■ The type has the same object identifier at both the materialized view site and the
master site.

You can find the object identifier for a type by querying the DBA_TYPES data
dictionary view. For example, to find the object identifier (OID) for the cust_
address_typ, enter the following query:

SELECT TYPE_OID FROM DBA_TYPES WHERE TYPE_NAME = 'CUST_ADDRESS_TYP';

TYPE_OID

6F9BC33653681B7CE03400400B40A607

Now that you know the OID for the type at the master site, complete the following
steps to create the type at the materialized view site:

1. Log in to the materialized view site as the user who owns the type at the master
site. If this user does not exist at the materialized view site, then create the user.

2. Issue the CREATE TYPE statement and specify the OID:

CREATE TYPE oe.cust_address_typ OID '6F9BC33653681B7CE03400400B40A607'
 AS OBJECT (
 street_address VARCHAR2(40),
 postal_code VARCHAR2(10),
 city VARCHAR2(30),
 state_province VARCHAR2(10),
 country_id CHAR(2));
/

The type is now ready for use at the materialized view site.

Column Subsetting of Masters with Column Objects
A read-only materialized view can replicate specific attributes of a column object
without replicating other attributes. For example, using the cust_address_typ
user-defined data type described in the previous section, suppose a customers_sub
master table is created at master site orc1.example.com:

See Also: Oracle Database Advanced Replication Management API
Reference

Materialized View Concepts

Materialized View Concepts and Architecture 3-29

CREATE TABLE oe.customers_sub (
 customer_id NUMBER(6) PRIMARY KEY,
 cust_first_name VARCHAR2(20),
 cust_last_name VARCHAR2(20),
 cust_address oe.cust_address_typ);

You can create the following read-only materialized view at a remote materialized
view site:

CREATE MATERIALIZED VIEW oe.customers_mv1 AS
 SELECT customer_id, cust_last_name, c.cust_address.postal_code
 FROM oe.customers_sub@orc1.example.com c;

Notice that the postal_code attribute is specified in the cust_address column
object.

An updatable materialized view must replicate the entire column object. It cannot
replicate some attributes of a column object but not others. The following statement is
valid because it specifies the entire cust_address column object:

CREATE MATERIALIZED VIEW oe.customers_mv1 FOR UPDATE AS
 SELECT customer_id, cust_last_name, cust_address
 FROM oe.customers_sub@orc1.example.com;

Materialized Views Based on Object Tables
If a materialized view is based on an object table and is created using the OF type
clause, then the materialized view is called an object materialized view. An object
materialized view is structured in the same way as an object table. That is, an object
materialized view is composed of row objects. If a materialized view that is based on
an object table is created without using the OF type clause, then the materialized view
is read-only and is not an object materialized view. That is, such a materialized view
has regular rows, not row objects.

To create a materialized view based on an object table, the types on which the
materialized view depends must exist at the materialized view site, and each type
must have the same object identifier as it does at the master site.

Creation of Object Materialized Views Using the OF type Clause After the required types are
created at the materialized view site, you can create an object materialized view by
specifying the OF type clause.

For example, suppose the following SQL statements create the oe.categories_tab
object table at the orc1.example.com master site:

CREATE TYPE oe.category_typ AS OBJECT
 (category_name VARCHAR2(50),
 category_description VARCHAR2(1000),
 category_id NUMBER(2));
/

CREATE TABLE oe.categories_tab OF oe.category_typ
 (category_id PRIMARY KEY);

See Also: "Column Subsetting with Deployment Templates" on
page 4-15 for more information about column subsetting with
deployment templates. Column subsetting is supported only
through the use of deployment templates.

Materialized View Concepts

3-30 Oracle Database Advanced Replication

If you want to create materialized views that can be fast refreshed based on the
oe.categories_tab master table, then create a materialized view log for this table:

CREATE MATERIALIZED VIEW LOG ON oe.categories_tab WITH OBJECT ID;

The WITH OBJECT ID clause is required when you create a materialized view log on
an object table.

After you create the oe.category_typ type at the materialized view site with the
same object identifier as the same type at the master site, you can create an object
materialized view based on the oe.categories_tab object table using the OF type
clause, as in the following SQL statement:

CREATE MATERIALIZED VIEW oe.categories_objmv OF oe.category_typ
 REFRESH FAST FOR UPDATE
 AS SELECT * FROM oe.categories_tab@orc1.example.com;

Here, type is oe.category_typ.

Materialized Views Based on Object Tables Created Without Using the OF type Clause If you
create a materialized view based on an object table without using the OF type clause,
then the materialized view is read-only, and it loses the object properties of the object
table on which it is based. That is, the resulting read-only materialized view contains
one or more of the columns of the master, but each row functions as a row in a
relational table. The rows are not row objects.

For example, you can create a materialized view base on the categories_tab
master by using the following SQL statement:

CREATE MATERIALIZED VIEW oe.categories_relmv
 AS SELECT * FROM oe.categories_tab@orc1.example.com;

In this case, the categories_relmv materialized view must be read-only, and the
rows in this materialized view function in the same way as rows in a relational table.

OID Preservation in Object Materialized Views An object materialized view inherits the
object identifier (OID) specifications of its master. If the master has a primary
key-based OID, then the OIDs of row objects in the materialized view are primary
key-based. If the master has a system generated OID, then the OIDs of row objects in
the materialized view are system generated. Also, the OID of each row in the object
materialized view matches the OID of the same row in the master, and the OIDs are
preserved during refresh of the materialized view. Consequently, REFs to the rows in
the object table remain valid at the materialized view site.

Materialized Views with Collection Columns
Collection columns are columns based on varray and nested table data types. Oracle
supports the creation of materialized views with collection columns.

If the collection column is a nested table, then you can optionally specify the nested_
table_storage_clause during materialized view creation. The nested_table_storage_clause
lets you specify the name of the storage table for the nested table in the materialized
view. For example, suppose you create the master table people_reltab at the
master site orc1.example.com that contains the nested table phones_ntab:

Note: The types must be exactly the same at the materialized view
site and master site. See "Type Agreement at Replication Sites" on
page 3-27 for more information.

Materialized View Concepts

Materialized View Concepts and Architecture 3-31

CREATE TYPE oe.phone_typ AS OBJECT (
 location VARCHAR2(15),
 num VARCHAR2(14));
/

CREATE TYPE oe.phone_ntabtyp AS TABLE OF oe.phone_typ;
/

CREATE TABLE oe.people_reltab (
 id NUMBER(4) CONSTRAINT pk_people_reltab PRIMARY KEY,
 first_name VARCHAR2(20),
 last_name VARCHAR2(20),
 phones_ntab oe.phone_ntabtyp)
 NESTED TABLE phones_ntab STORE AS phone_store_ntab
 ((PRIMARY KEY (NESTED_TABLE_ID, location)));

Notice the PRIMARY KEY specification in the last line of the preceding SQL statement.
You must specify a primary key for the storage table if you plan to create materialized
views based on its parent table. In this case, the storage table is phone_store_ntab
and the parent table is people_reltab.

If you want to create materialized views that can be fast refreshed, then create a
materialized view log on both the parent table and the storage table, specifying the
nested table column as a filter column for the parent table's materialized view log:

CREATE MATERIALIZED VIEW LOG ON oe.people_reltab;

ALTER MATERIALIZED VIEW LOG ON oe.people_reltab ADD(phones_ntab);

CREATE MATERIALIZED VIEW LOG ON oe.phone_store_ntab WITH PRIMARY KEY;

At the materialized view site, create the required types, ensuring that the object
identifier for each type is the same as the object identifier at the master site. Then, you
can create a materialized view based on people_reltab and specify its storage table
using the following statement:

CREATE MATERIALIZED VIEW oe.people_reltab_mv
 NESTED TABLE phones_ntab STORE AS phone_store_ntab_mv
 REFRESH FAST AS SELECT * FROM oe.people_reltab@orc1.example.com;

In this case, the nested_table_storage_clause is the line that begins with "NESTED TABLE"
in the previous example, and it specifies that the storage table's name is phone_
store_ntab_mv. The nested_table_storage_clause is optional. If you do not specify this
clause, Oracle automatically names the storage table. To view the name of a storage
table, query the DBA_NESTED_TABLES data dictionary table.

The storage table:

■ Is a separate, secondary materialized view

■ Is refreshed automatically when you refresh the materialized view containing the
nested table

■ Is dropped automatically when you drop the materialized view containing the
nested table

■ Inherits the primary key constraint of the master's storage table

Because the storage table inherits the primary key constraint of the master's storage
table, do not specify PRIMARY KEY in the STORE AS clause.

Materialized View Concepts

3-32 Oracle Database Advanced Replication

The following actions are not allowed directly on the storage table of a nested table in
a materialized view:

■ Refreshing the storage table

■ Adding the storage table to a replication group

■ Altering the storage table

■ Dropping the storage table

■ Generating replication support on the storage table

These actions can occur indirectly when they are performed on the materialized view
that contains the nested table. In addition, you cannot replicate a subset of the columns
in a storage table.

Restrictions for Materialized Views with Collection Columns The following restrictions apply
to materialized views with collection columns:

■ Row subsetting of collection columns is not allowed. However, you can use row
subsetting on the parent table of a nested table and doing so can result in a subset
of the nested tables in the materialized view.

■ Column subsetting of collection columns is not allowed.

■ A nested table's storage table must have a primary key.

■ For the parent table of a nested table to be fast refreshed, both the parent table and
the nested table's storage table must have a materialized view log.

Materialized Views with REF Columns
You can create materialized views with REF columns. A REF is an Oracle built-in data
type that is a logical "pointer" to a row object in an object table. A scoped REF is a REF
that can contain references only to a specified object table, while an unscoped REF can
contain references to any object table in the database that is based on the
corresponding object type. A scoped REF requires less storage space and provides
more efficient access than an unscoped REF.

As described in the following section, you can rescope a REF column to a local
materialized view or table at the materialized view site during creation of the
materialized view. If you do not rescope the REF column, then they continue to point
to the remote master. Unscoped REF columns always continue to point to the master.
When a REF column at a materialized view site points to a remote master, the REFs are
considered dangling. In SQL, dereferencing a dangling REF returns a NULL. Also,
PL/SQL only supports dereferencing REFs by using the UTL_OBJECT package and
raises an exception for dangling REFs.

Scoped REF Columns If you are creating a materialized view based on a master that has
a scoped REF column, then you can rescope the REF to a different object table or object
materialized view at the materialized view site. Typically, you would rescope the REF
column to the local object materialized view instead of the original remote object table.
To rescope a materialized view, you can either use the SCOPE FOR clause in the
CREATE MATERIALIZED VIEW statement, or you can use the ALTER MATERIALIZED
VIEW statement after creating the materialized view. If you do not rescope the REF
column, then the materialized view retains the REF scope of the master.

See Also: Oracle Database SQL Language Reference for more
information about the nested_table_storage_clause, which is fully
documented in the CREATE TABLE statement

Materialized View Concepts

Materialized View Concepts and Architecture 3-33

For example, suppose you create the customers_with_ref master table at the
orc1.example.com master site using the following statements:

-- Create the user-defined data type cust_address_typ.
CREATE TYPE oe.cust_address_typ AS OBJECT
 (street_address VARCHAR2(40),
 postal_code VARCHAR2(10),
 city VARCHAR2(30),
 state_province VARCHAR2(10),
 country_id CHAR(2));
/

-- Create the object table cust_address_objtab.
CREATE TABLE oe.cust_address_objtab OF oe.cust_address_typ;

-- Create table with REF to cust_address_typ.
CREATE TABLE oe.customers_with_ref (
 customer_id NUMBER(6) PRIMARY KEY,
 cust_first_name VARCHAR2(20),
 cust_last_name VARCHAR2(20),
 cust_address REF oe.cust_address_typ
 SCOPE IS oe.cust_address_objtab);

Assuming the cust_address_typ exists at the materialized view site with the same
object identifier as the type at the master site, you can create a cust_address_
objtab_mv object materialized view using the following statement:

CREATE MATERIALIZED VIEW oe.cust_address_objtab_mv OF oe.cust_address_typ AS
 SELECT * FROM oe.cust_address_objtab@orc1.example.com;

Now, you can create a materialized view of the customers_with_ref master table
and rescope the REF to the cust_address_objtab_mv materialized view using the
following statement:

CREATE MATERIALIZED VIEW oe.customers_with_ref_mv
 (SCOPE FOR (cust_address) IS oe.cust_address_objtab_mv)
 AS SELECT * FROM oe.customers_with_ref@orc1.example.com;

If you want to use the SCOPE FOR clause when you create a materialized view, then
remember to create the materialized view or table specified in the SCOPE FOR clause
first. Otherwise, you cannot specify the SCOPE FOR clause during materialized view
creation. For example, if you had created the customers_with_ref_mv materialized
view before you created the cust_address_objtab_mv materialized view, then you
could not use the SCOPE FOR clause when you created the customers_with_ref_
mv materialized view. In this case, the REFs are considered dangling because they
point back to the object table at the remote master site.

However, even if you do not use the SCOPE FOR clause when you are creating a
materialized view, you can alter the materialized view to specify a SCOPE FOR clause.
For example, you can alter the customers_with_ref_mv materialized view with the
following statement:

ALTER MATERIALIZED VIEW oe.customers_with_ref_mv
 MODIFY SCOPE FOR (cust_address) IS oe.cust_address_objtab_mv;

Unscoped REF Columns If you create a materialized view based on a remote master with
an unscoped REF column, then the REF column is created in the materialized view,
but the REFs are considered dangling because they point to a remote database.

Materialized View Concepts

3-34 Oracle Database Advanced Replication

Logging REF Columns in the Materialized View Log If necessary, you can log REF columns
in the materialized view log.

REFs Created Using the WITH ROWID Clause If the WITH ROWID clause is specified for a
REF column, then Oracle maintains the rowid of the object referenced in the REF.
Oracle can find the object referenced directly using the rowid contained in the REF,
without the need to fetch the rowid from the OID index. Therefore, you use the WITH
ROWID clause to specify a rowid hint. The WITH ROWID clause is not supported for
scoped REFs.

Replicating a REF created using the WITH ROWID clause results in an incorrect rowid
hint at each replication site except the site where the REF was first created or modified.
The ROWID information in the REF is meaningless at the other sites, and Oracle does
not correct the rowid hint automatically. Invalid rowid hints can cause performance
problems. In this case, you can use the VALIDATE STRUCTURE option of the ANALYZE
TABLE statement to determine which rowid hints at each replication site are incorrect.

Materialized View Registration at a Master Site or Master Materialized View Site
At the master site and master materialized view site, an Oracle database automatically
registers information about a materialized view based on its master table(s) or master
materialized view(s). The following sections explain more about Oracle's materialized
view registration mechanism.

Viewing Information about Registered Materialized Views
A level 1 materialized view or materialized view group is registered at its master site.
A level 2 or higher multitier materialized view or materialized view group is
registered at its master materialized view site, not at the master site. You can query the
DBA_REGISTERED_MVIEWS data dictionary view at a master site or master
materialized view site to list the following information about a remote materialized
view:

■ The owner, name, and database that contains the materialized view

■ The materialized view's defining query

■ Other materialized view characteristics, such as its refresh method

You can also query the DBA_MVIEW_REFRESH_TIMES view at a master site or master
materialized view site to obtain the last refresh times for each materialized view.
Administrators can use this information to monitor materialized view activity and
coordinate changes to materialized view sites if a master table or master materialized
view must be dropped, altered, or relocated.

Internal Mechanisms
Oracle automatically registers a materialized view at its master site or master
materialized view site when you create the materialized view, and unregisters the
materialized view when you drop it. The same applies to materialized view groups.

When you drop a master materialized view, Oracle does not automatically drop the
materialized views based on it. You must drop these materialized views manually. If

See Also: "Logging Columns in the Materialized View Log" on
page 6-13 for more information

See Also: Oracle Database SQL Language Reference for more
information about the ANALYZE TABLE statement

Materialized View Architecture

Materialized View Concepts and Architecture 3-35

you do not drop such a materialized view and the materialized view tries to refresh to
a master materialized view that has been dropped, Oracle returns an error.

For example, suppose a materialized view named orders_lev1 is based on the
oe.orders master table, and a materialized view named orders_lev2 is based on
orders_lev1. If you drop orders_lev1, orders_lev2 remains intact. However, if
you try to refresh orders_lev2, Oracle returns an error because orders_lev1 no
longer exists.

Manual Materialized View Registration
If necessary, you can maintain registration manually. Use the REGISTER_MVIEW and
UNREGISTER_MVIEW procedures of the DBMS_MVIEW package at the master site or
master materialized view site to add, modify, or remove materialized view registration
information.

Materialized View Architecture
The objects used in materialized view replication are depicted in Figure 3–10. Some of
these objects are optional and are used only as needed to support the created
materialized view environment. For example, if you have a read-only materialized
view, then you do not have an updatable materialized view log nor an internal trigger
at the materialized view site. Also, if you have a complex materialized view that
cannot be fast refreshed, then you might not have a materialized view log at the
master site.

Caution: Oracle cannot guarantee the registration or
unregistration of a materialized view at its master site or master
materialized view site during the creation or drop of the
materialized view, respectively. If Oracle cannot successfully
register a materialized view during creation, then you must
complete the registration manually using the REGISTER_MVIEW
procedure in the DBMS_MVIEW package. If Oracle cannot
successfully unregister a materialized view when you drop the
materialized view, then the registration information for the
materialized view persists in the master site or master materialized
view site until it is manually unregistered. It is possible that
complex materialized views might not be registered.

See Also: The REGISTER_MVIEW and UNREGISTER_MVIEW
procedures are described in the Oracle Database PL/SQL Packages and
Types Reference

Materialized View Architecture

3-36 Oracle Database Advanced Replication

Figure 3–10 Materialized View Replication Objects

Notice that a master materialized view can have both a materialized view log and an
updatable materialized view log. Ensure that you account for the extra space required
by these logs when you are planning for your master materialized view site.

This section contains these topics:

■ Master Site and Master Materialized View Site Mechanisms

■ Materialized View Site Mechanisms

■ Organizational Mechanisms

■ Refresh Process

Master
Database

Materialized
View Log

Master Table
Materialized

View Log

Trigger for
Materialized

View Log

Optional

Updatable
Materialized
Views Only

Always
required

Master
Materialized

View
Database

Updatable
Materialized

View Log

Index

Master Materialized
View

Materialized
View Log

Trigger for
Materialized

View Log

Trigger for
Updatable

Materialized
View Log

Materialized
View

Database

Index

Trigger for
Updatable

Materialized
View Log

Updatable
Materialized

View Log

Materialized View

Network

Network

Materialized View Architecture

Materialized View Concepts and Architecture 3-37

Master Site and Master Materialized View Site Mechanisms
The three mechanisms displayed in Figure 3–11 are required at a master site and at a
master materialized view site to support fast refreshing of materialized views.

Figure 3–11 Master Site and Master Materialized View Site Objects

Master Table or Master Materialized View
The master table or master materialized view is the basis for the materialized view. A
master table is located at the target master site while a master materialized view is
located at a master materialized view site. If the master is a master table, then this
table can be involved in both materialized view replication and multimaster
replication. Remember that a materialized view points to only one master site or
master materialized view site. Changes made to the master table or master
materialized view, as recorded by the materialized view log, are propagated to the
materialized view during the refresh process.

Internal Trigger for the Materialized View Log
When changes are made to the master table or master materialized view using DML,
an internal trigger records information about the affected rows in the materialized
view log. This information includes the values of the primary key, rowid, or object id,
or both, as well as the values of the other columns logged in the materialized view log.
This is an internal AFTER ROW trigger that is automatically activated when you create a
materialized view log for the target master table or master materialized view. It inserts
a row into the materialized view log whenever an INSERT, UPDATE, or DELETE
statement modifies the table's data. This trigger is always the last trigger to fire.

Note: Master materialized views contain the mechanisms
described in "Materialized View Site Mechanisms" on page 3-40 in
addition to the mechanisms described in this section.

Note: Fast refreshable materialized views must be based on master
tables, master materialized views, or synonyms of master tables or
master materialized views. Complete refresh must be used for a
materialized view based on a view.

Note: When the materialized view contains a subquery, you
might need to log columns referenced in a subquery. See "Data
Subsetting with Materialized Views" on page 3-12 for information
about subquery materialized views and "Logging Columns in the
Materialized View Log" on page 6-13 for more information about
the columns that must be logged.

10
20
30
.

Administration
Marketing
Purchasing
.

1500
1500
1500
.

department_id (PK) department_name location_id

30
10
20
.

department_id (PK)

Master Table or Master Materialized View Materialized View Log
Internal trigger
adds rows to
Materialized View
Log

Materialized View Architecture

3-38 Oracle Database Advanced Replication

Materialized View Log
A materialized view log is required on a master if you want to perform a fast refresh
on materialized views based on the master. When you create a materialized view log
for a master table or master materialized view, Oracle creates an underlying table as
the materialized view log. A materialized view log can hold the primary keys, rowids,
or object identifiers of rows, or both, that have been updated in the master table or
master materialized view. A materialized view log can also contain other columns to
support fast refreshes of materialized views with subqueries.

The name of a materialized view log's table is MLOG$_master_name. The materialized
view log is created in the same schema as the target master. One materialized view log
can support multiple materialized views on its master table or master materialized
view. As described in the previous section, the internal trigger adds change
information to the materialized view log whenever a DML transaction has taken place
on the target master.

Following are the types of materialized view logs:

■ Primary Key: The materialized view records changes to the master table or master
materialized view based on the primary key of the affected rows.

■ Row ID: The materialized view records changes to the master table or master
materialized view based on the rowid of the affected rows.

■ Object ID: The materialized view records changes to the master object table or
master object materialized view based on the object identifier of the affected row
objects.

■ Combination: The materialized view records changes to the master table or
master materialized view based any combination of the three options. It is possible
to record changes based on the primary key, the ROWID, and the object identifier of
the affected rows. Such a materialized view log supports primary key, ROWID, and
object materialized views, which is helpful for environments that have all three
types of materialized views based on a master.

A combination materialized view log works in the same manner as a materialized
view log that tracks only one type of value, except that more than one type of value is
recorded. For example, a combination materialized view log can track both the
primary key and the rowid of the affected row are recorded.

Though the difference between materialized view logs based on primary keys and
rowids is small (one records affected rows using the primary key, while the other
records affected rows using the physical rowid), the practical impact is large. Using
rowid materialized views and materialized view logs makes reorganizing and
truncating your master tables difficult because it prevents your ROWID materialized
views from being fast refreshed. If you reorganize or truncate your master table, then
your rowid materialized view must be COMPLETE refreshed because the rowids of the
master table have changed.

Materialized View Architecture

Materialized View Concepts and Architecture 3-39

Materialized View Logs on Object Tables You can create materialized view logs on object
tables. For example, the following SQL statement creates the categories_typ
user-defined type:

CREATE TYPE oe.category_typ AS OBJECT
 (category_name VARCHAR2(50),
 category_description VARCHAR2(1000),
 category_id NUMBER(2));
/

When you create an object table based on this type, you can either specify that the
object identifier should be system-generated or primary key-based:

CREATE TABLE oe.categories_tab_sys OF oe.category_typ
 (category_id PRIMARY KEY)
 OBJECT ID SYSTEM GENERATED;

CREATE TABLE oe.categories_tab_pkbased OF oe.category_typ
 (category_id PRIMARY KEY)
 OBJECT ID PRIMARY KEY;

When you create a materialized view log on an object table, you must log the object
identifier by specifying the WITH OBJECT ID clause, but you can also specify that the
primary key is logged if the object identifier is primary key-based.

For example, the following statement creates a materialized view log for the
categories_tab_sys object table and specifies that the object identifier column be
logged:

CREATE MATERIALIZED VIEW LOG ON oe.categories_tab_sys
 WITH OBJECT ID;

The following statement creates a materialized view log for the categories_tab_
pkbased object table and specifies that the primary key column be logged along with
the object identifier column:

CREATE MATERIALIZED VIEW LOG ON oe.categories_tab_pkbased
 WITH OBJECT ID, PRIMARY KEY;

Note:

■ You use the BEGIN_TABLE_REORGANIZATION and END_
TABLE_REORGANIZATION procedures in the DBMS_MVIEW
package to reorganize a master table. See the Oracle Database
PL/SQL Packages and Types Reference for more information.

■ Online redefinition of tables is another possible way to
reorganize master tables, but online redefinition is not allowed
on master tables with materialized view logs, master
materialized views, and materialized views. Online redefinition
is allowed on master tables that do not have materialized view
logs. See the Oracle Database Administrator's Guide for more
information about online redefinition of tables.

■ Materialized view logs do not support columns that have been
encrypted using transparent data encryption.

Materialized View Architecture

3-40 Oracle Database Advanced Replication

Restriction on Import of Materialized View Logs to a Different Schema Materialized view logs
are exported with the schema name explicitly given in the DDL statements. Therefore,
materialized view logs cannot be imported into a schema that is different than the
schema from which they were exported. An error is written to the import log file and
the items are not imported if you attempt an import using the Data Pump Import
utility that specifies the REMAP_SCHEMA import parameter to import an export dump
file that contains materialized view logs in the specified schema.

Materialized View Site Mechanisms
When a materialized view is created, additional mechanisms are created at the
materialized view site to support the materialized view. Specifically, at least one index
is created. If you create an updatable materialized view, then an internal trigger and a
local log (the updatable materialized view log) are also created at the materialized
view site.

Index
At least one index is created at the remote materialized view site for each primary key
and ROWID materialized view. For a primary key materialized view, the index
corresponds to the primary key of the target master table or master materialized view
and includes _PK in its name. A number is appended if an index with the same name
already exists at the materialized view site. For a ROWID materialized view, the index
is on the ROWID column and includes I_SNAP$_ in its name. Additional indexes can
be created by Oracle at the remote materialized view site to support fast refreshing of
materialized views with subqueries.

Updatable Materialized View Log
An updatable materialized view log (USLOG$_materialized_view_name) is used to
determine which rows must be overwritten or removed from a materialized view
during a fast refresh. A read-only materialized view does not create this log, and
Oracle does not use this log during a complete refresh because, in this case, the entire
materialized view is replaced.

If there is a conflict between an updatable materialized view and a master, then,
during a refresh, the conflict might result in an entry in the updatable materialized
view log that is not in the materialized view log at the master site or master
materialized view site. In this case, Oracle uses the updatable materialized view log to
remove or overwrite the row in the materialized view.

Note:

■ If the materialized view site is a master materialized view site,
then it contains the mechanisms described in the previous
section in addition to the mechanisms described in this section.
See "Master Site and Master Materialized View Site
Mechanisms" on page 3-37.

■ The size limit for a materialized view name is 30 bytes. If you
try to create a materialized view with a name larger than 30
bytes, Oracle returns an error.

See Also: Figure 3–10, "Materialized View Replication Objects" on
page 3-36

Materialized View Architecture

Materialized View Concepts and Architecture 3-41

The updatable materialized view log is also used when you fast refresh a writeable
materialized view, as illustrated in the following scenario:

1. A user inserts a row into a writeable materialized view that has a remote master.
Because the materialized view is writeable and not updatable, the transaction is
not stored in the deferred transaction queue at the materialized view site.

2. Oracle logs information about this insert in the updatable materialized view log.

3. The user fast refreshes the materialized view.

4. Oracle uses the information in the updatable materialized view log and deletes the
inserted row. A materialized view must be an exact copy of the master when the
fast refresh is complete. Therefore, Oracle must delete the inserted row.

Internal Trigger for the Updatable Materialized View Log
Like the internal trigger at the master site or master materialized view site, the internal
trigger at the materialized view site records DML changes applied to an updatable
materialized view in the USLOG$_materialized_view_name log. A read-only
materialized view does not create this trigger.

Organizational Mechanisms
In addition to the materialized view mechanisms described in the previous section,
several other mechanisms organize the materialized views at the materialized view
site. These mechanisms maintain organizational consistency between the materialized
view site and its master site or master materialized view site, as well as transactional
(read) consistency with the target replication group. These mechanisms are
materialized view groups and refresh groups.

Materialized View Groups
A materialized view group in a replication system maintains a partial or complete
copy of the objects at the target replication group at its master site or master
materialized view site. Materialized view groups cannot span the boundaries of the
replication group at the master site or master materialized view site. Figure 3–12
displays the correlation between Groups A and B at the master site and Groups A and
B at the materialized view site.

Materialized View Architecture

3-42 Oracle Database Advanced Replication

Figure 3–12 Materialized View Groups Correspond with Master Groups

Group A at the materialized view site (see Figure 3–12) contains only some of the
objects in the corresponding Group A at the master site. Group B at the materialized
view site contains all objects in Group B at the master site. Under no circumstances,
however, could Group B at the materialized view site contain objects from Group A at
the master site. As illustrated in Figure 3–12, a materialized view group has the same
name as the master group on which the materialized view group is based. For
example, a materialized view group based on a personnel master group is also
named personnel.

In addition to maintaining organizational consistency between materialized view sites
and their master sites or master materialized view sites, materialized view groups are
required for supporting updatable materialized views. If a materialized view does not
belong to a materialized view group, then it must be a read-only or writeable
materialized view.

Materialized View Group Owners A materialized view group owner enables you to have
multiple materialized view groups based on a single replication group at a master site
or master materialized view site. For example, if you need to support multiple users
within the same database at a materialized view site, then you might want to create
multiple materialized view groups for a target master group. Doing so enables you to
define different subqueries for your materialized view definitions in each materialized
view group, and allows each user to access only his or her subset of the data.

Defining multiple materialized view groups gives you the ability to control data sets at
a group level. For example, if you create different materialized view groups named
hr, personnel, and manufacturing for these departments, then you can
administer each department as a group, instead of as individual objects. For example,
you can drop the objects as a group.

To accommodate multiple materialized view groups at the same materialized view site
that are based on a single replication group at the master site or master materialized
view site, you can specify a group owner as an additional identifier when defining
your materialized view group.

Master Site

hr.employees
hr.departments
hr.jobs
hr.job_history
hr.locations
hr.countries

Group A

oe.customers
oe.orders
oe.order_items
oe.product_information
oe.product_descriptions
oe.inventories
oe.warehouses

Group B

Materialized View Site

hr.employees
hr.departments

Group A

oe.customers
oe.orders
oe.order_items
oe.product_information
oe.product_descriptions
oe.inventories
oe.warehouses

Group B

Materialized View Architecture

Materialized View Concepts and Architecture 3-43

After you have defined your materialized view group with the addition of a group
owner, you add your materialized view objects to the target materialized view group
by defining the same group owner. When using a group owner, remember that each
materialized view object must have a unique name. If a single materialized view site
has multiple materialized view groups based on the same replication group at the
master site or master materialized view site, then a materialized view group's object
names cannot have the same name as materialized view objects in another
materialized view group. To avoid conflicting names, you can append the group
owner name to the end of your object name. For example, if you have group owners
hr and ac, then you might name the employees materialized view object as
employees_hr and employees_ac, respectively.

Additionally, all materialized view groups that are based on the same replication
group at a single materialized view site must "point" to the same master site or master
materialized view site. For example, if the hr_repg materialized view group owned
by hr is based on the associated master group at the orc1.example.com master site,
then the hr_repg materialized view group owned by personnel must also be based
on the associated master group at orc1.example.com, assuming that the hr and
personnel owned groups are at the same materialized view site.

Refresh Groups
To preserve referential integrity and transactional (read) consistency among multiple
materialized views, Oracle has the ability to refresh individual materialized views as
part of a refresh group. After refreshing all of the materialized views in a refresh
group, the data of all materialized views in the group correspond to the same
transactionally consistent point in time.

As illustrated in Figure 3–13, a refresh group can contain materialized views from
more than one materialized view group to maintain transactional (read) consistency
across replication group boundaries.

See Also: Oracle Database Advanced Replication Management API
Reference for more information about defining a group owner using
the replication management API

Materialized View Architecture

3-44 Oracle Database Advanced Replication

Figure 3–13 Refresh Groups Can Contain Objects from Multiple Materialized View
Groups

While you might want to define a single refresh group for each materialized view
group, it might be more efficient to use one large refresh group that contains objects
from multiple materialized view groups. Such a configuration reduces the amount of
"overhead" needed to refresh your materialized views. A refresh group can contain up
to 400 materialized views.

One configuration that you want to avoid is using multiple refresh groups to refresh
the contents of a single materialized view group. Using multiple refresh groups to
refresh the contents of a single materialized view group might introduce
inconsistencies in the materialized view data, which can cause referential integrity
problems at the materialized view site. Only use this type of configuration when you
have in-depth knowledge of the database environment and can prevent any referential
integrity problems.

Refresh Group Size
There are a few trade-offs to consider when you are deciding on the size of your
refresh groups. Oracle is optimized for large refresh groups. So, large refresh groups
refresh faster than an equal number of materialized views in small refresh groups,
assuming that the materialized views in the groups are similar. For example,
refreshing a refresh group with 100 materialized views is faster than refreshing five
refresh groups with 20 materialized views each. Also, large refresh groups enable you
to refresh a greater number of materialized views with only one call to the replication
management API.

During the refresh of a refresh group, each materialized view in the group is locked at
the materialized view site for the amount of time required to refresh all of the
materialized views in the refresh group. This locking is required to prevent users from
updating the materialized views during the refresh operation, because updates can
make the data inconsistent. Therefore, having smaller refresh groups means that the
materialized views are locked for less time when you perform a refresh.

Network connectivity must be maintained while performing a refresh. If the
connectivity is lost or interrupted during the refresh, then all changes are rolled back

Master Site

hr.employees
hr.departments
hr.jobs
hr.job_history
hr.locations
hr.countries

Group A

oe.customers
oe.orders
oe.order_items
oe.product_information
oe.product_descriptions
oe.inventories
oe.warehouses

Group B

R
ef

re
sh

 G
ro

u
p

 A
Materialized View Site

hr.employees
hr.departments

Group A

oe.customers
oe.orders
oe.order_items
oe.product_information
oe.product_descriptions
oe.inventories
oe.warehouses

Group B

Materialized View Architecture

Materialized View Concepts and Architecture 3-45

so that the database remains consistent. Therefore, in cases where the network
connectivity is difficult to maintain, consider using smaller refresh groups.

Advanced Replication includes an optimization for null refresh. That is, if there were
no changes to the master tables or master materialized views since the last refresh for a
particular materialized view, then almost no extra time is required for the materialized
view during materialized view group refresh.

Table 3–3 summarizes the advantages of large and small refresh groups.

Refresh Process
A materialized view's data does not necessarily match the current data of its master
table or master materialized view at all times. A materialized view is a transactionally
(read) consistent reflection of its master as the data existed at a specific point in time
(that is, at creation or when a refresh occurs). To keep a materialized view's data
relatively current with the data of its master, the materialized view must be refreshed
periodically. A materialized view refresh is an efficient batch operation that makes a
materialized view reflect a more current state of its master table or master materialized
view.

A refresh of an updatable materialized view first pushes the deferred transactions at
the materialized view site to its master site or master materialized view site. Then, the
data at the master site or master materialized view site is pulled down and applied to
the materialized view.

A row in a master table can be updated many times between refreshes of a
materialized view, but the refresh updates the row in the materialized view only once
with the current data. For example, a row in a master table might be updated 10 times
since the last refresh of a materialized view, but the result is still only one update of
the corresponding row in the materialized view during the next refresh.

Decide how and when to refresh each materialized view to make it more current. For
example, materialized views based on masters that applications update often might
require frequent refreshes. In contrast, materialized views based on relatively static
masters usually require infrequent refreshes. In summary, analyze application
characteristics and requirements to determine appropriate materialized view refresh
intervals.

To refresh materialized views, Oracle supports several refresh types and methods of
initiating a refresh.

Refresh Types
Oracle can refresh a materialized view using either a fast, complete, or force refresh.

Complete Refresh To perform a complete refresh of a materialized view, the server that
manages the materialized view executes the materialized view's defining query, which
essentially re-creates the materialized view. To refresh the materialized view, the
result set of the query replaces the existing materialized view data. Oracle can perform

Table 3–3 Large and Small Refresh Groups

Advantages of Large Refresh Groups Advantages of Small Refresh Groups

■ Refreshes faster than an equal number
of materialized views in multiple refresh
groups

■ Materialized views locked for shorter
periods of time

■ Refreshes with single replication
management API call

■ Rollback of refresh changes due to loss
of connectivity is less likely

Materialized View Architecture

3-46 Oracle Database Advanced Replication

a complete refresh for any materialized view. Depending on the amount of data that
satisfies the defining query, a complete refresh can take a substantially longer amount
of time to perform than a fast refresh.

If you perform a complete refresh of a master materialized view, then the next refresh
performed on any materialized views based on this master materialized view must be
a complete refresh. If a fast refresh is attempted for such a materialized view after its
master materialized view has performed a complete refresh, then Oracle returns the
following error:

ORA-12034 mview log is younger than last refresh

Fast Refresh To perform a fast refresh, the master that manages the materialized view
first identifies the changes that occurred in the master since the most recent refresh of
the materialized view and then applies these changes to the materialized view. Fast
refreshes are more efficient than complete refreshes when there are few changes to the
master because the participating server and network replicate a smaller amount of
data.

You can perform fast refreshes of materialized views only when the master table or
master materialized view has a materialized view log. Also, for fast refreshes to be
faster than complete refreshes, each join column in the CREATE MATERIALIZED VIEW
statement must have an index on it.

After a direct path load on a master table or master materialized view using
SQL*Loader, a fast refresh does not apply the changes that occurred during the direct
path load. Also, fast refresh does not apply changes that result from other types of
bulk load operations on masters. Examples of these operations include INSERT
statements with an APPEND hint and INSERT ... SELECT * FROM statements.

Note: If complete refresh is used for a materialized view, then set
its PCTFREE to 0 and PCTUSED to 99 for maximum efficiency.

Materialized View Architecture

Materialized View Concepts and Architecture 3-47

Figure 3–14 Fast Refresh of a Materialized View

If you have materialized views based on partitioned master tables, then you might be
able to use Partition Change Tracking (PCT) to identify which materialized view rows
correspond to a particular partition. PCT is also used to support fast refresh after
partition maintenance operations on a materialized view's master table. PCT-based
refresh on a materialized view is possible only if a number of conditions are satisfied.

If you have updatable multitier materialized views, then DML changes made to the
multitier materialized view can be pulled back to this materialized view multiple
times to ensure data consistency after each refresh of a materialized view. This
behavior is best illustrated through an example.

Consider a replication environment with the following characteristics:

■ Master site orc1.example.com has the oe.customers table.

■ Level 1 materialized view site ca.us has the oe.customers_region updatable
materialized view based on the oe.customers table at orc1.example.com.

■ Level 2 updatable materialized view site sf.ca has the oe.customers_sf
updatable materialized view based on the oe.customers_region materialized
view at ca.us.

Given these characteristics, the following scenario might follow:

1. The credit_limit for a customer is changed from 3000 to 5000 in the
oe.customers_sf updatable materialized view at sf.ca.

2. Oracle enters the change in the deferred transaction queue at sf.ca.

See Also: Oracle Database Data Warehousing Guide for information
about PCT and about PCT-based refresh

No

Is
materialized view

updatable?

Use the materialized
view log to identify
changes made to the
master table.

Propagate identified
changes to the
materialized view.

End Fast
Refresh

Yes

* This step can also be performed separately using
the DBMS_DEFER_SYS.PUSH function.

Start Fast Refresh

Push materialized
view deferred
transaction queue to
update master table.*

Materialized View Architecture

3-48 Oracle Database Advanced Replication

3. A fast refresh of the level 2 materialized view oe.customers_sf pushes the new
value for the credit_limit to oe.customers_region materialized view at
ca.us.

4. The change is applied to the oe.customers_region materialized view at
ca.us.

5. The update for the credit_limit at the ca.us site is recorded in both the
deferred transaction queue and the materialized view log a this level 1
materialized view site.

6. A fast refresh of the level 2 materialized view oe.customers_sf pulls the
credit_limit value of 5000 back down to this materialized view at sf.ca.

7. A fast refresh of the level 1 materialized view oe.customers_region pushes
the new value for the credit_limit to oe.customers master table at
orc1.example.com.

8. The change is applied to the oe.customers master table at
orc1.example.com.

9. The update for the credit_limit at the orc1.example.com site is recorded in
both the deferred transaction queue and the materialized view log a this master
site.

10. A new fast refresh of the level 1 materialized view oe.customers_region pulls
the credit_limit value of 5000 back down to this materialized view at ca.us.

11. The update for the credit_limit at the ca.us site is recorded in the
materialized view log a this level 1 materialized view site.

12. A fast refresh of the level 2 materialized view oe.customers_sf pulls the
credit_limit value of 5000 back down to this materialized view at sf.ca for
a second time.

Force Refresh To perform a force refresh of a materialized view, the server that
manages the materialized view attempts to perform a fast refresh. If a fast refresh is
not possible, then Oracle performs a complete refresh. Use the force setting when you
want a materialized view to refresh if a fast refresh is not possible.

Initiating a Refresh
When creating a refresh group, you can configure the group so that Oracle
automatically refreshes the group's materialized views at scheduled intervals.
Conversely, you can omit scheduling information so that the refresh group must be
refreshed manually or "on-demand." Manual refresh is an ideal solution when the
refresh is performed with a dial-up network connection.

Scheduled Refresh When you create a refresh group for automatic refreshing, you must
specify a scheduled refresh interval for the group during the creation process. When
setting a group's refresh interval, consider the following characteristics:

■ The dates or date expressions specifying the refresh interval must evaluate to a
future point in time.

■ The refresh interval must be greater than the length of time necessary to perform a
refresh.

■ Relative date expressions evaluate to a point in time relative to the most recent
refresh date. If a network or system failure interferes with a scheduled group
refresh, then the evaluation of a relative date expression could change accordingly.

Materialized View Architecture

Materialized View Concepts and Architecture 3-49

■ Explicit date expressions evaluate to specific points in time, regardless of the most
recent refresh date.

■ Consider your environment's tolerance for stale data: if there is a low tolerance,
then refresh often; whereas if there is a high tolerance, then refresh less often.

The following are examples of simple date expressions that you can use to specify an
interval:

■ An interval of one hour is specifies as:

SYSDATE + 1/24

■ An interval of seven days is specifies as:

SYSDATE + 7

On-Demand Refresh Scheduled materialized view refreshes might not always be the
appropriate solution for your environment. For example, immediately following a
bulk data load into a master table, dependent materialized views no longer represent
the master table's data. Rather than wait for the next scheduled automatic group
refreshes, you can manually refresh dependent materialized view groups to
immediately propagate the new rows of the master table to associated materialized
views.

You might also want to refresh your materialized views on-demand when your
materialized views are integrated with a sales force automation system located on a
disconnected laptop. Developers designing the sales force automation software can
create an application control, such as a button, that a salesperson can use to refresh the
materialized views when they are ready to transfer the day's orders to the server after
establishing a dial-up network connection.

The following example illustrates an on-demand refresh of the hr_refg refresh
group:

EXECUTE DBMS_REFRESH.REFRESH('hr_refg');

Constraints and Refresh
To avoid any integrity constraint violations during refresh of materialized views,
make non primary key integrity constraints on each materialized view deferrable. This
requirement includes LOB columns with NOT NULL constraints. In addition, all
materialized views that are related by foreign key constraints should be refreshed
together or in the same refresh group.

See Also: Oracle Database Administrator's Guide and Oracle
Database SQL Language Reference for more information about date
arithmetic

Note: Do not use the DBMS_MVIEW.REFRESH_ALL_MVIEWS or
the DBMS_MVIEW.REFRESH_DEPENDENT procedure to refresh
materialized views used in a replication environment. Instead, use
the DBMS_REFRESH.REFRESH or the DBMS_MVIEW.REFRESH
procedure to refresh materialized views in a replication
environment.

Materialized View Architecture

3-50 Oracle Database Advanced Replication

Note:

■ Primary key constraints on materialized views might or might
not be deferrable.

■ A DELETE CASCADE constraint used with an updatable
materialized view must be deferrable.

See Also: Oracle Database SQL Language Reference for information
about making constraints deferrable

Deployment Templates Concepts and Architecture 4-1

4
Deployment Templates Concepts and

Architecture

This chapter introduces deployment templates and describes how to use them to easily
and efficiently distribute materialized view environments.

This chapter contains these topics:

■ Mass Deployment Challenge

■ Oracle Deployment Templates Concepts

■ Deployment Template Architecture

■ Deployment Template Design

■ Local Control of Materialized View Creation

Mass Deployment Challenge
Oracle deployment templates provide you with the tools to efficiently deploy and
administer a widely distributed materialized view environment. Before learning about
the concepts, architecture, and use of deployment templates, consider the challenges of
a mass deployment environment.

The need to have accurate information at any time and at any place continues to grow
rapidly. At the same time, information is becoming decentralized and users are often
disconnected from the network, requiring the information to be distributed to the
active points-of-usage.

Consider the mobile sales force. Potentially hundreds, if not thousands, of
professionals need accurate information about their customers on a laptop in a manner
that causes the salesperson very little inconvenience. The challenge, therefore, is for
the database administrator to roll out the data and the database infrastructure (tables,
indexes, constraints, triggers, and so on) to all sites in an efficient and timely manner.

Traditionally, DBAs have been required to develop a deployment method of their
own. Typically, the DBA was responsible for developing a very complex script to
create the materialized view environment at the remote materialized view site. In
addition to building the script, the DBA was often forced to customize data sets at the
materialized view site. After the DBA completed engineering the script, deploying the

Note: Read Chapter 3, "Materialized View Concepts and
Architecture" before you create a deployment template.
Understanding materialized views better prepares you to build
deployment templates.

Oracle Deployment Templates Concepts

4-2 Oracle Database Advanced Replication

script required manual packaging and implementation, both of which often required
extensive troubleshooting.

The problems encountered in the preceding scenario have spawned technologies and
resources dedicated to the art of efficient mass deployment. Mass deployment is the
term used to describe the process of distributing database infrastructure, data, and
front-end applications to a large number of users. For the purposes of Advanced
Replication, the discussion of mass deployment is limited to the delivery of data and
data infrastructure.

Deployment Templates and the Mass Deployment Goal
Mass deployment tools and technologies should aid the database administrator in
delivering the data and database infrastructure. The goal is to define the environment
once and create as many instances of the deployment template as necessary, while still
maintaining the ability to customize individual sites.

To support this goal, Oracle's deployment templates enable you accomplish the
following objectives:

Define the materialized view environment once
You define the structure of a materialized view environment once using a deployment
template so that each user (site) receives the database infrastructure to support the
front-end application.

Customize materialized view sites individually
You use deployment template parameters to customize each materialized view
environment so that each user receives the particular data subset needed.

Mass deployment has many applications, such as distributing information to mobile
sales forces, field technicians, retail stores, remote inventory collection sites, and so on.
Such environments use deployment templates to build the database infrastructure at
the remote site, largely because deployment templates support data subsetting,
disconnected replication, and lower resource requirements, making them ideal for
laptop users.

Oracle Deployment Templates Concepts
Oracle offers deployment templates to allow the database administrator to package a
materialized view environment for easy, custom, and secure deployment. Packaging a
deployment template is the process of defining the materialized view environment
that will be created by the deployment template. Packaging a deployment template
prepares it for instantiation at the remote materialized view site. Instantiation creates
the materialized view site objects and populates the materialized views with data.

A deployment template can be as simple as a single materialized view with a fixed
data set, or as complex as hundreds of materialized views with a dynamic data set
based on one or more variables. Deployment template features include the following:

■ Centralized control

■ Ability to repeatedly deploy a materialized view environment

■ Template parameters that allow data subsetting or customization at remote site

■ Authorized user lists to control template instantiation and data access

Oracle Deployment Templates Concepts

Deployment Templates Concepts and Architecture 4-3

To prepare a materialized view environment for deployment, create a deployment
template at the master site. This template stores all of the information needed to
deploy a materialized view environment, including the data definition language
(DDL) to create the objects at the remote site and the target refresh group. This
template also maintains links to user security information and template parameters for
custom materialized view creation.

This section contains these topics:

■ Deployment Templates and the Mass Deployment Goal

■ Deployment Template Elements

■ Deployment Template Packaging and Instantiation

Deployment Template Elements
Each deployment template contains the "blueprint" for creating the necessary
materialized views and related objects at a materialized view site. Specifically, you
create the deployment template at the master site, adding the necessary materialized
views, triggers, views, and so on to the template as needed to create the materialized
view environment. You can optionally define template parameters and authorized
users, giving the template greater flexibility and security during the instantiation
process.

Deployment template elements can be divided into the following four categories:

■ General Template Information

■ Template Object Definitions

■ Template Parameters

■ User Authorization

General Template Information
Oracle deployment templates center around the general template information, which
consists of the template name, target refresh group, and private/public status. As
illustrated in Figure 4–1, the REFRESH_TEMPLATE_NAME is used in all aspects of
deployment template data dictionary views. You add the materialized view
environment objects to the template prior to releasing the template for distribution
according to the specified template identification (see Figure 4–2).

A deployment template is defined at a single master site. While you cannot have two
deployment templates at the master site with the same name, you can copy a
deployment template to another site using the same deployment template name.

Oracle Deployment Templates Concepts

4-4 Oracle Database Advanced Replication

Figure 4–1 Deployment Template View Relationships

DBA_REPCAT_USER_PARM_VALUES

REFRESH_TEMPLATE_NAME
OWNER
REFRESH_GROUP_NAME
TEMPLATE_COMMENT
PUBLIC_TEMPLATE
PARAMETER_NAME
DEFAULT_PARM_VALUE
PROMPT_STRING
PARM_VALUE
USER_NAME

DBA_REPCAT_USER_AUTHORIZATIONS

REFRESH_TEMPLATE_NAME
OWNER
REFRESH_GROUP_NAME
TEMPLATE_COMMENT
PUBLIC_TEMPLATE
USER_NAME

DBA_REPCAT_TEMPLATE_SITES

REFRESH_TEMPLATE_NAME
REFRESH_GROUP_NAME
TEMPLATE_OWNER
USER_NAME
SITE_NAME
REPAPI_SITE_NAME
STATUS

DBA_REPCAT_REFRESH_TEMPLATES

REFRESH_TEMPLATE_NAME
OWNER
REFRESH_GROUP_NAME
TEMPLATE_COMMENT
PUBLIC_TEMPLATE

DBA_REPCAT_TEMPLATE_OBJECTS

REFRESH_TEMPLATE_NAME
OBJECT_NAME
OBJECT_TYPE
DDL_TEXT
MASTER_ROLLBACK_SEGMENT
DERIVED_FROM_SNAME
DERIVED_FROM_ONAME
FLAVOR_ID

DBA_REPCAT_TEMPLATE_PARMS

REFRESH_TEMPLATE_NAME
OWNER
REFRESH_GROUP_NAME
TEMPLATE_COMMENT
PUBLIC_TEMPLATE
PARAMETER_NAME
DEFAULT_PARM_VALUE
PROMPT_STRING
USER_OVERRIDE

Oracle Deployment Templates Concepts

Deployment Templates Concepts and Architecture 4-5

Figure 4–2 Deployment Template Elements Added to Template

Template Object Definitions
After the template has been defined, add objects to the template. When the template is
instantiated at the materialized view site, the object DDL (that is, CREATE
MATERIALIZED VIEW, CREATE TABLE, and so on) is executed to create the
appropriate objects at the materialized view site.

You can add objects to a deployment template that are based on a existing master
objects, but if necessary, you can create a new template object by defining DDL to
create the object. Oracle checks any new object DDL to ensure that it is lexically
correct, which prevents the execution of faulty DDL. Updatable materialized views
added to a deployment template must be based on a table in a master group, but other
objects, such as read-only materialized views, can be based on objects that are not in
master groups.

In most cases, you add materialized views to the template, but if necessary, you can
add other objects. For example, constraints can be added to enforce data integrity at
the materialized view site, views can be added for displaying data, or tables can be
added for local data storage. In some cases, you might even include all objects for an

DDL 1
CREATE MATERIALIZED VIEW hr.mv_employees AS
SELECT employee_id, last_name, job_id, manager_id,
hire_date, salary, commission_pct, department_id
FROM hr.employees@:dblink WHERE department_id = :dept;

DDL 2

DDL 3

DDL 4

DT_PERSONNEL
(Template Name)

Template Parameter

:dblink
:dept

User Parameter Values

Authorized Users

Sally, DT_PERSONNEL
Bob, DT_PERSONNEL

USER PARAMETER NAME VALUE

SALLY
SALLY
BOB
BOB

:DBLINK
:DEPT
:DBLINK
:DEPT

HQDB
20
REG2DB
30

CREATE MATERIALIZED VIEW hr.mv_locations AS
SELECT location_id, city, state_provence, country_id
FROM hr.locations@:dblink;

CREATE MATERIALIZED VIEW hr.mv_jobs AS
SELECT job_id, job_title, max_salary
FROM hr.jobs@:dblink;

CREATE MATERIALIZED VIEW hr.mv_departments AS
SELECT department_id, department_name, location_id
FROM hr.departments@:dblink;

Oracle Deployment Templates Concepts

4-6 Oracle Database Advanced Replication

application in a deployment template. Materialized views created using a deployment
template are automatically added to the refresh group defined for the template.

You cannot use deployment templates to instantiate the following types of objects:

■ User-defined types

■ User-defined type bodies

■ User-defined operators

■ Indextypes

Nor can you use deployment templates to instantiate any objects based on these types
of objects.

Template Parameters
If each target materialized view site requires a data set unique to its site, then you can
define variables in the object DDL. These variables create a parameterized template
that allows for custom data sets when the template is instantiated, allowing different
materialized view sites to have different data sets. These parameters are embedded in
the object DDL. During template instantiation, the individual user values for these
parameters are substituted.

Oracle enables you to specify default values and user-specific parameter values for a
template. You can enter the parameter values during the creation of the deployment
template or after the template is created, but you must enter the parameter values
before the template is instantiated. Users cannot enter values for parameters during
instantiation.

If user-specific parameter values exist, then these values are automatically used when
the specified user instantiates the template. For example, consider the variable
region. Suppose you establish the following user-specific parameter values for
template sales_temp:

The defining SELECT statement for the materialized view is the following:

SELECT cust_id, sales_to_date, status FROM table_x WHERE region_id=:region;

When users fay and baer instantiate template sales_temp, their resulting
materialized view data sets are the following:

See Also: "General Template Information" on page 4-3 for more
information about the refresh group

User Region

fay east

baer west

User fay - User baer

cust_id region - cust_id region

a123 east - b123 west

a234 east - b234 west

a345 east - b345 west

a456 east - b456 west

Oracle Deployment Templates Concepts

Deployment Templates Concepts and Architecture 4-7

Template Parameters in the WHERE Clause and Security
In addition to creating customized data subsets, you can use template parameters in
the WHERE clause of a CREATE MATERIALIZED VIEW statement to securely limit the
materialized view site to viewing and changing only the data that satisfies the WHERE
clause. For example, suppose you have specified the following for the region
parameter in the user specific parameters list:

Users accessing the materialized view instantiated by user fay only see data for
region east and can only view, update, or delete data that complies with this WHERE
clause. In other words, a user of this materialized view cannot view, update, or delete
data for region west, because the materialized view only contains data for region
east.

User Authorization
Deployment templates can be either public or private. You set this when you create
the template. If a template is public, then any user with access to the master site can
instantiate the template.

If a template has been created for private use, then only authorized users can
instantiate the target template. To enforce private use, create a list of authorized users
at the master site. If an unauthorized user attempts to instantiate the target template,
then the instantiation process fails.

Deployment Sites
Maintaining the emphasis on centralized control, you can monitor and manage certain
characteristics of the instantiated environment at the remote materialized view site.
Specifically, you have the ability to view the sites that have instantiated a deployment
template, which includes the deployment template name, authorized user, and status
of the instantiated environment.

Deployment Template Packaging and Instantiation
When you have completed defining your deployment template, the template must be
packaged to prepare it for instantiation at the remote materialized view site. When the
packaged deployment template is instantiated at a materialized view site, the
materialized view site objects are created and the materialized views are populated
with data. Remote materialized view sites can be created either through online or
offline instantiation.

Online Instantiation
Online instantiation allows a materialized view site to instantiate a deployment
template while connected to the target master site. During the online instantiation
process, the structure of the materialized view site is created, and the specified data
subset is pulled from the master site and stored in the appropriate materialized views.

User Region

fay east

baer west

Oracle Deployment Templates Concepts

4-8 Oracle Database Advanced Replication

Figure 4–3 Online Instantiation

Packaging a deployment template for online instantiation means generating a script
file that, when run at the materialized view site, creates the materialized view objects
and connects to the master site to populate the materialized views with data. SQL
statements such as CREATE MATERIALIZED VIEW ... AS SELECT are used to
populate the materialized views with data over a network from the master site.

One of the benefits of online instantiation is that the data subset is current as of the
instantiation process. This data currency, however, comes at a cost. Online
instantiation requires a "live" connection between the materialized view and master
sites, which, depending on the size of the materialized view environment created,
might increase network traffic.

Furthermore, laptop users connected by a modem might need to stay connected for a
long time. The duration of the connection depends on the number of objects created,
the complexity of the materialized view subqueries, and the amount of data
transmitted, especially over low bandwidth modem lines.

Offline Instantiation
To decrease server loads during peak usage periods and reduce remote connection
times, you can choose offline instantiation of the template for your environment.
Packaging a template for offline instantiation means generating a script or a binary file
that contains the DDL and data manipulation language (DML) to build the
materialized view environment defined in the deployment template and populate the
environment with data. You package the script or binary file and save the file to some
type of storage media (such as tape, CD-ROM, and so on), and then provide a means
of transferring the script or binary file to the materialized view site. Each materialized
view site requires a separate offline instantiation script.

When you package a template for instantiation, the materialized view logs for each
master table on which a materialized view is based in the template begin to log
changes. The materialized view log for a particular master table does not clear these
changes until every materialized view based on the master table refreshes after
instantiation. Therefore, to prevent the materialized view log from growing large, the
template should be instantiated, and the materialized views should be refreshed as
soon as possible after packaging.

During instantiation, the template and data are pulled from the storage media, instead
of being pulled from the master site. This operation has the benefit of reducing
network traffic and eliminating the need for a constant network connection. However,
after instantiation, the data in the materialized view site reflects the master site data at
packaging time and must be made current by a refresh.

Materialized View Site

Online template instantiation
using dedicated database link.

Master
Site

Oracle Deployment Templates Concepts

Deployment Templates Concepts and Architecture 4-9

Figure 4–4 Offline Instantiation

Offline instantiation is an ideal solution for mass deployment situations where many
laptops and other disconnected computers are instantiating the target template.

Offline Instantiation of Multitier Materialized Views When you use deployment templates to
create a materialized view site using offline instantiation, the conflict resolution
methods defined on the master tables are not pulled down to the materialized view
site. These conflict resolution methods might be required to ensure data consistency if
you plan to create materialized views based on this materialized view site (multitier
materialized views). If you use online instantiation, then the conflict resolution
methods are pulled down during instantiation.

Scenarios for Instantiating a Deployment Template
Table 4–1 summarizes the scenarios for instantiating of a deployment template.

Either you (the DBA) or the target user can package the deployment template. Either
use the Advanced Replication interface's Create Deployment Template Wizard to
package a template for offline instantiation, or the replication management API to
package a template for offline or online instantiation. End-users use the public API to
package a deployment template, while DBAs generally use the private API for
packaging.

Typically, when a deployment template will be instantiated offline, the DBA performs
the packaging, but when the deployment template will be instantiated online, the user
can perform the packaging. However, there are no restrictions on users or DBAs
performing either online or offline packaging, other than the use of different API calls.

The following replication management API functions can be used to package a
deployment template.

Private functions (DBA only):

■ DBMS_REPCAT_RGT.INSTANTIATE_OFFLINE function

■ DBMS_REPCAT_RGT.INSTANTIATE_ONLINE function

Table 4–1 Scenarios for Instantiating a Deployment Template

Type of
Instantiation Description

Offline The user runs the offline instantiation script with SQL*Plus. The
offline instantiation script contains both CREATE statements to create
materialized view site objects and INSERT statements to populate
the materialized views with data.

Online The user runs the online instantiation script with SQL*Plus. The
online instantiation script contains CREATE statements to create
materialized view site objects. When materialized view objects are
created, the online instantiation script connects to the master site
and uses CREATE MATERIALIZED VIEW ... AS SELECT statements
to create the materialized views and populate them with data.

Materialized View Site Storage Media

Offline template instantiation
using packaged storage media.

Deployment Template Architecture

4-10 Oracle Database Advanced Replication

Public functions:

■ DBMS_REPCAT_INSTANTIATE.INSTANTIATE_OFFLINE function

■ DBMS_REPCAT_INSTANTIATE.INSTANTIATE_ONLINE function

Deployment Template Architecture
Oracle uses standard materialized view architecture with deployment templates to
distribute materialized view environments quickly and effectively. Deployment
templates use the same methods in creating materialized view definitions, refresh
characteristics, conflict resolution, and grouping as used when manually building a
materialized view environment. The distinction to remember is that instead of
executing the DDL to create the object immediately, the object DDL is simply
contained in a deployment template and is executed when the template is instantiated.

This section contains these topics:

■ Template Definitions Stored in System Tables

■ Packaging and Instantiation Process

■ After Instantiation

Template Definitions Stored in System Tables
Instead of executing DDL at the materialized view site to immediately create a
materialized view environment, the materialized view and other related object
definitions are stored within the deployment template. After all of the object
definitions have been added to the deployment template, the template can be
instantiated to execute all of the stored DDL at the remote materialized view site,
which creates the necessary materialized view environment.

All of these object definitions are stored in system tables maintained at the
deployment template definition site, keyed on the deployment template name. When
the deployment template is packaged, the stored object DDL is pulled from these
system tables to create the instantiation script of binary file.

Note: When you package a deployment template for offline
instantiation, the related materialized view logs begin logging for
the materialized views that were packaged in the template. This
immediate logging enables the remote materialized view site to
perform a fast refresh after completing the offline instantiation
process. Monitor the materialized view logs to ensure that remote
materialized view sites refresh in a timely manner after performing
an offline instantiation. Remote materialized view sites that have
not refreshed cause the materialized view log to grow quite large,
because logging begins when the template is packaged.

See Also: "Preparing Materialized View Sites for Instantiation of
Deployment Templates" on page 6-21, and see Oracle Database
Advanced Replication Management API Reference for information
about the functions

Deployment Template Architecture

Deployment Templates Concepts and Architecture 4-11

Use of Standard DDL
Template object definitions are created using the same DDL that is used to create the
objects locally at the materialized view site. For example, you can issue the following
statement to create a materialized view:

CREATE MATERIALIZED VIEW hr.departments_mv
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT
 department_id, department_name, manager_id, location_id
 FROM hr.departments@orc1.example.com;

To add this same materialized view to a deployment template, you can use the
Advanced Replication interface's Create Deployment Template Wizard, or execute the
CREATE_TEMPLATE_OBJECT function, as shown in the following example:

DECLARE
 tempstring VARCHAR2(3000);
 a NUMBER;
BEGIN
 tempstring := 'CREATE MATERIALIZED VIEW hr.departments_mv
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT
 department_id, department_name, manager_id, location_id
 FROM hr.departments@orc1.example.com';
 a := DBMS_REPCAT_RGT.CREATE_TEMPLATE_OBJECT (
 refresh_template_name => 'hr_refg_dt',
 object_name => 'departments_mv',
 object_type => 'MATERIALIZED VIEW',
 ddl_text => tempstring,
 master_rollback_seg => 'rbs');
END;
/

Executing the preceding function adds the materialized view definition to the
deployment template named dt_mviewenv. When this particular materialized view
is instantiated, the materialized view mview_test is created. In addition to creating
materialized views, you can add table, trigger, procedure, index, and other object
definitions to the deployment template.

Whenever you create a materialized view, always specify the schema name of the table
owner in the query for the materialized view. In the preceding example, hr is
specified as the owner of the employees table.

Packaging and Instantiation Process
When a deployment template is packaged in preparation for remote materialized view
site instantiation, the template is being prepared for online or offline instantiation. The
instantiation procedure creates the remote materialized view environment and
populates the environment with data.

Note: Do not place a terminating semi-colon in the DDL statement
inside the single quotation marks for the ddl_text parameter.

See Also: DBMS_REPCAT_RGT.CREATE_TEMPLATE_OBJECT in
the Oracle Database Advanced Replication Management API Reference
for information about using this function

Deployment Template Architecture

4-12 Oracle Database Advanced Replication

Packaging a Deployment Template for Online Instantiation
When a deployment template is packaged for online instantiation, the resulting DDL
that is required to create the remote materialized view environment is generated and
all template parameter substitutions are performed. Where this generated DDL is
stored depends on the type of materialized view client.

The online instantiation script is stored locally on the hard drive of the computer from
which replication management API is executed to package the template. If this
computer is not the materialized view site computer, then the online instantiation file
must be transferred to the materialized view site for online instantiation.

Packaging a Deployment Template for Offline Instantiation
When a deployment template is packaged for offline instantiation, the DDL that is
required to create the remote materialized view environment and the DML that is
required to populate the environment with the data are both stored in a generated file.
Also, during packaging, all template parameter substitutions are performed.

When a template is packaged, a script or binary file is created for offline instantiation
and is saved to a storage device, such as hard disk, CD-ROM, tape, and so on. Either
the Advanced Replication interface's Create Deployment Template Wizard or the
replication management API can be used to package a deployment template for offline
instantiation.

The offline instantiation script is stored locally on the hard drive of the computer from
which the request is made to package the template. If this computer is not the
materialized view site computer, then the offline instantiation file must be transferred
to the materialized view site for offline instantiation.

When the remote materialized view site instantiates the template, the script or binary
file is executed from the storage media or from the local hard drive. This execution
creates the materialized view environment and populates the environment according
to the data set defined during the packaging process. Recall that any template
parameters that define the data set for individual sites are defined during the
packaging process.

Online Instantiation
During the online instantiation process, the structure of the materialized view site is
created, and the specified data subset is pulled from the master site and stored in the
appropriate materialized views. Also, after the remote materialized view site begins
the online instantiation process, Oracle evaluates the parameters that have been
defined for the deployment template. Any values defined for these parameters are
used when the object DDL in the template is executed so that custom data sets can be
installed at the remote materialized view site. At the same time, the materialized views
are registered at the master site, and the materialized view logs begin logging the
changes to the master tables.

Two possible methods can be used to define template parameter values: default
parameter values and user parameter values. Oracle checks to see if these parameter
values exist and then uses them according to the hierarchy:

1. User Parameter Values

2. Default Parameter Values

If user parameter values have been defined and a listed user is instantiating the
template, then the user parameter values are used when instantiating the template. If
no user parameter values have been defined, then Oracle uses the default parameter
values. Figure 4–5 shows the parameter checking process.

Deployment Template Architecture

Deployment Templates Concepts and Architecture 4-13

Figure 4–5 Checking for Parameters During Online Instantiation

After the parameters are checked, the objects created by the template are added to the
refresh group specified when the template was created.

Offline Instantiation
In a mass deployment environment, most materialized view environments use the
offline instantiation method to create the necessary materialized view environment.
When you package the deployment template, a script or binary file is created to store
the DDL needed to create the materialized view environment, the parameter values
used during the instantiation process, and the DML necessary to populate the
materialized view environment with data.

The script or binary file can be copied to a CD-ROM, floppy disk, or other storage
media or can be posted on a Web or FTP site to be downloaded to the remote
materialized view site. It can also be transferred using the DBMS_FILE_TRANSFER
package. The flexibility in delivery mechanisms allows you and your users to choose
the most effective method for instantiating a deployment template.

Packaging and Instantiation Options
A number of possibilities for deployment template packaging and instantiation are
available. Table 4–2 illustrates the possibilities, identifies the mechanism for packaging
and instantiation, and lists the documentation to use when you perform an operation.

no

Do
template

parameters
exist?

Do
user

parameters
exist?

no

yes yes

Instantiate Template

Pull user values from
DBA_REPCAT_
USER_PARM_
VALUES view.

Use default values.

Build materialized
view environment.

Deployment Template Architecture

4-14 Oracle Database Advanced Replication

After Instantiation
After instantiating a deployment template at a remote materialized view site, the
structure created is exactly the same as if you had created the materialized view
environment locally at the materialized view site. Specifically, Oracle creates the
materialized view, with the specified name, and an index based on the primary key to
maintain constraint consistency. Other objects in the template are also created as if
they were created manually at the materialized view site.

With respect to offline instantiations, the longer the duration between the packaging at
the server and the instantiation at the remote site, the longer it takes for the first
refresh after instantiation at the remote materialized view site. The materialized view
site uses the materialized view log at the master site to perform the fast refresh from
the time that the template was packaged. Recall that changes made to the master table
are logged to the materialized view log as soon as you package the deployment
template.

Materialized View Groups
Objects created by an instantiated deployment template are added automatically to a
materialized view group with the same name as the object's master group. For
example, if you instantiated the dt_mviewenv deployment template, which contains
objects from the personnel and technical master groups, then your template
objects are added to materialized view groups personnel and technical,
respectively. Remember that a materialized view group helps to maintain
organizational consistency with the target master group and, more importantly, is
required for updatable materialized views.

Refresh Groups
When you first begin building a deployment template, you define the name of the
refresh group to which the template's materialized view objects will be added. After
the instantiation process is finished, you can specify that the materialized views in the

Table 4–2 Packaging and Instantiation Options

Type of
Instantiation

Package Template
Using Packaging Documentation

Instantiate
Template Using Instantiating Documentation

Offline Advanced
Replication
interface Create
Deployment
Template Wizard

See the Advanced Replication
interface's online Help.

Offline
Instantiation
Script and
SQL*Plus

See the Advanced Replication
interface's online Help.

Offline The Replication
Management API
(PL/SQL Packages
and SQL*Plus)

See the instructions for
packaging in Oracle Database
Advanced Replication Management
API Reference.

Offline
Instantiation
Script and
SQL*Plus

See the instructions for
instantiating a deployment
template in Oracle Database
Advanced Replication
Management API Reference.

Online The Replication
Management API
(PL/SQL Packages
and SQL*Plus)

See the instructions for
packaging in Oracle Database
Advanced Replication Management
API Reference.

Online
Instantiation
Script and
SQL*Plus

See the instructions for
instantiating a deployment
template in Oracle Database
Advanced Replication
Management API Reference.

See Also: "Materialized View Architecture" on page 3-35 for more
information

See Also: "Materialized View Groups" on page 3-41 for more
information

Deployment Template Design

Deployment Templates Concepts and Architecture 4-15

refresh group be refreshed automatically at set intervals, assuming a constant network
connection to the master site.

You can use the Advanced Replication interface in Oracle Enterprise Manager, or
DBMS_REFRESH.CHANGE procedure, to change the refresh interval and next refresh
data of a refresh group. To change these settings in the Advanced Replication
interface, select the refresh group and edit the Next Date and Interval fields. To change
these settings with the DBMS_REFRESH.CHANGE procedure, set the interval and
next_date parameters appropriately. If materialized view sites do not have a
constant network connection to the master site, then they can refresh their refresh
groups on-demand.

The following are examples of simple date expressions that you can use to specify
next_date and interval:

■ A next_date or interval of one hour is specifies as:

SYSDATE + 1/24

■ A next_date or interval of seven days is specifies as:

SYSDATE + 7

Deployment Template Design
The combination of deployment template parameters and subquery subsetting gives
the database administrator a powerful tool to administer a widely distributed database
environment using subqueries and row-subsetted data. Additional design
consideration must be given to column subsetting requirements and data sets needed
for a replication environment.

Materialized view data sets are defined based on the materialized view's query,
meaning that the user only sees data that complies with the materialized view's
defining query. Both row and column subsetting enable you to create materialized
views that contain customized data sets. Such materialized views can be helpful for
regional offices or sales forces that do not require the complete corporate data set.

This section contains these topics:

■ Column Subsetting with Deployment Templates

■ Row Subsetting

■ Data Sets

■ Additional Design Considerations

Column Subsetting with Deployment Templates
Column subsetting enables you to exclude columns that are in master tables from
materialized views. You do this by specifying certain select columns in the SELECT
statement during materialized view creation. Column subsetting is only possible

See Also: Oracle Database Administrator's Guide and Oracle
Database SQL Language Reference for more information about date
arithmetic

See Also: "Data Subsetting with Materialized Views" on
page 3-12 for more information about data subsetting

Deployment Template Design

4-16 Oracle Database Advanced Replication

through the use of deployment templates. Before you begin assembling your
deployment template, consider how to build your templates.

For example, in a mass deployment environment with many "lightweight" clients, you
might need to replicate tables that contain LOB data without actually replicating the
LOB data itself. This goal can be achieved by excluding the LOB column from the
selected columns to be replicated when defining the column subset.

You can select any subset of columns in a read-only materialized view. For an
updatable materialized view, the subset of columns must contain the following
columns:

■ Primary key column(s)

■ All columns used for conflict resolution for the replicated columns (see Figure 4–6)

Figure 4–6 Replicate Column-Subsetted Data

If you are adding a materialized view that replicates columns pk, empid, salary, and
level (illustrated in Figure 4–6), then you also need to include the Time Stamp
column because it is used for conflict resolution for columns contained in Column
Group A.

Note: While it is possible to configure column subsetting within a
column group, it is not recommended because it can result in data
inconsistencies between sites. When using column subsetting, you
should eliminate columns at the column group level.

Sales
History
(LOB)

Territory Priority
Site*

SalaryEmpIDPK Level Time
Stamp*

Replicated Data

Column Group A Column Group B

*Denotes conflict resolution
column for column group.

Deployment Template Design

Deployment Templates Concepts and Architecture 4-17

Row Subsetting
Row subsetting enables you to exclude rows that are in master tables from
materialized views by using a WHERE clause. For example, the following statement
creates a materialized view based on the oe.orders@orc1.example.com master
table and includes only the rows for the sales representative with a sales_rep_id
number of 173:

CREATE MATERIALIZED VIEW oe.orders REFRESH FAST FOR UPDATE AS
 SELECT * FROM oe.orders@orc1.example.com
 WHERE sales_rep_id = 173;

Rows of the orders table with a sales_rep_id number other than 173 are
excluded from this materialized view.

Row Subsetting with an Assignment Table
In some situations, you can benefit from using row subsetting with an assignment
table. An assignment table lets you relate one entity to another entity in your database,
without storing the assignment information in either of the tables for the two entities.
This technique is best illustrated through an example.

In the oe schema, the product_id column is the primary key in the product_
information table, and the warehouse_id column is the primary key in the
warehouses table. In this schema, the inventories table functions as an
assignment table because it assigns a product to a warehouse using the product_id
column and the warehouse_id column. These two columns form the primary key of
the inventories table.

With these three tables in oe schema (inventories, product_information, and
warehouses), you can track which products are in which warehouses without storing
the product_id information in the warehouses table, nor the warehouse_id
information in the product_information table. To illustrate why this is important,
consider what would happen if the inventories table did not exist and the
warehouse_id column was a foreign key in the product_information table.

In this case, if a salesperson wants to store product information for the nearest
warehouse, then the sales person would need to specify the warehouse_id for the
warehouse in the WHERE clause of the CREATE MATERIALIZED VIEW statement. For
example, the salesperson might create the materialized view using the following
statement:

CREATE MATERIALIZED VIEW oe.product_information REFRESH FAST FOR UPDATE AS
 SELECT * FROM oe.product_information@orc1.example.com
 WHERE warehouse_id = 1;

Note:

■ Column subsetting is only available when you add a
materialized view to a deployment template using the
Advanced Replication interface in Oracle Enterprise Manager.
Column subsetting is not available when using the replication
management API.

■ The master definition site must be available when defining a
column subset. If your deployment template contains
column-subsetted materialized views from multiple master
groups, then the master definition site for each group must be
available.

Deployment Template Design

4-18 Oracle Database Advanced Replication

The drawback to this configuration is that the warehouse_id is "hard coded" into the
materialized view definition. If the company closes warehouse 1 or opens a new
warehouse that is even closer to the salesperson, then the preceding materialized view
definitions would need to be altered or re-created. With this in mind, if you use
assignment tables in conjunction with row subsetting in a subquery, then you can
easily control changes to a materialized view environment.

In the oe schema, the warehouse_id column is not part of the product_
information table. Instead, a product is assigned to a warehouse through the
inventories table. This relationship between products and warehouses is illustrated
in Figure 4–7.

Figure 4–7 Product/Warehouse Relationship

If new warehouses are built or other warehouses are closed, then you can use the
inventories table to assign products to different warehouses. Besides creating a
single point of administration, assignment tables, such as the inventories table,
used in conjunction with row subsetting in subqueries, can ensure security. For

warehouse_id

inventories Master Table

product_id warehouse_id quantity_on_hand

870
788
882
870
788
.

1
2
3
1
2
.

1844
1844
1844
1845
1845
.

Primary Key

product_information Master Table

product_id . . .

.

.

.

1844
1845
.

location_id

locations Master Table

location_id postal_code . . .

.

.

.

26192
99236
50090

1400
1500
1600

Primary Key

Primary Key

warehouses Master Table

warehouse_id location_id

1400
1500
1600
.

. . .

.

.

.

.

1
2
3
.

Primary Key

product_id

Deployment Template Design

Deployment Templates Concepts and Architecture 4-19

example, if necessary, you can limit a certain salesperson to see data for some
warehouses but not others.

If we assume that each salesperson is responsible for a particular location and only
requires product information for products that are stored in a warehouse in that
location, then we can use the inventories table as an assignment table along with
row subsetting in subqueries to create the product_information materialized view
that contains only the relevant information for a particular salesperson. The following
statement provides a salesperson with the proper data:

CREATE MATERIALIZED VIEW oe.product_information REFRESH FAST FOR UPDATE AS
 SELECT * FROM oe.product_information@orc1.example.com pi
 WHERE EXISTS
 (SELECT * FROM oe.inventories@orc1.example.com inv
 WHERE pi.product_id = inv.product_id
 AND EXISTS
 (SELECT * FROM oe.warehouses@orc1.example.com w
 WHERE inv.warehouse_id = w.warehouse_id
 AND EXISTS
 (SELECT * FROM hr.locations@orc1.example.com loc
 WHERE w.location_id = loc.location_id
 AND loc.postal_code = :p_code)));

The product_information materialized view is populated with product
information for the products that are stored in the warehouse located at the postal
code specified with the p_code variable. Notice the p_code variable in the last line of the
CREATE MATERIALIZED VIEW statement.

With this flexibility, managers can easily control materialized view data sets by
making simple changes to the inventories table, without requiring modification of
the SQL for the materialized view creation statements. For example, if a new product
is added to a particular warehouse, then the manager would simply add a row to the
inventories table that assigns the product to the warehouse. After the next
materialized view refresh, the data for the product is added to the materialized view
site that tracks product information for the warehouse.

Data Sets
When designing your deployment templates, consider the different sets of users that
need to access the target data. For example, both salespersons and technicians need
customer information, but the technicians might not need sales information. You do
not want users to instantiate deployment templates that contain extraneous data,
because it requires extra storage space and incurs longer refresh time.

On the other hand, if you have users that require both sales and customer support
information, then you do not want users to have to instantiate multiple deployment
templates that share redundant data. Instantiating multiple templates might cause
data consistency problems. Each deployment template uses a different refresh group,
which means that data in the two deployment templates can be refreshed at different
times, possibly causing data consistency problems.

Note: To create this oe.product_information materialized
view, postal_code in must be logged in the materialized view
log for the hr.locations table. See "Logging Columns in the
Materialized View Log" on page 6-13 for more information.

Deployment Template Design

4-20 Oracle Database Advanced Replication

In this case, the best solution would be to have one deployment template for
salespersons, one for customer service technicians, and one for users that require both
sets of data.

To save time and effort, the best way to create these three templates is to create the
template with both sets of data first, copy the template twice, deleting unneeded items
to create the other deployment templates.

Figure 4–8 The Different Needs of Salespersons and Customer Support Technicians

Another design consideration is the usage of parameters. If many of the tables in
Figure 4–8 use the customer_id field, then you could define the same parameter in
each of the template objects. By using the same parameter, you would only need to
define the default parameter value once, and it would be used for all objects during
the instantiation process.

Using a single template parameter is even more useful when used with materialized
views that use subquery subsetting. One parameter allows a user to receive only the
data for the customers that the user needs. Consider the following CREATE
MATERIALIZED VIEW statements:

CREATE MATERIALIZED VIEW sales.orders AS
 SELECT * FROM sales.orders@orc1.example.com o
 -- conditions for customers
 WHERE EXISTS
 (SELECT c_id FROM sales.customer@orc1.example.com c
 WHERE o.c_id = c.c_id
 AND EXISTS
 (SELECT * FROM sales.assignment@orc1.example.com a
 WHERE a.c_id = c.c_id
 AND EXISTS
 (SELECT * FROM sales.salesperson@orc1.example.com s
 WHERE s.s_id = :salesperson_id)));

CREATE MATERIALIZED VIEW sales.customer AS
SELECT c_id FROM sales.customer@orc1.example.com c
-- conditions for customers

 WHERE EXISTS
(SELECT * FROM sales.assignment@orc1.example.com a

 WHERE a.c_id = c.c_id
 AND EXISTS
 (SELECT * FROM sales.salesperson@orc1.example.com s
 WHERE s.s_id = :salesperson_id)));

Even though the two materialized views being created do not explicitly contain the
salesperson_id field, using subquery subsetting makes using parameters very

order_lines

orders

Order Tables

products

customers

Product Tables

Customer Tables

Sales Application Tables

support_lines

support_hdr

Support Tables

products

customers

Product Tables

Customer Tables

Customer Support Tables

Local Control of Materialized View Creation

Deployment Templates Concepts and Architecture 4-21

effective for instantiating only required data sets. Using a single parameter
(:salesperson_id) makes managing and instantiating these materialized views
easier for both the DBA and the user instantiating the deployment template.

Additional Design Considerations
Finally, consider what other objects need to be created at the remote materialized view
site. Consider the following questions:

■ Do you need to include the DDL to create the necessary database links from the
materialized view site to the master site?

■ What triggers or procedures does the materialized view environment require?

■ Do any tables need to be created that store nonreplicated data?

■ Are any extra indexes required?

Local Control of Materialized View Creation
A deployment template is the most effective method of building and distributing a
materialized view environment. Even if distribution is limited to only two or three
sites, you still significantly reduce the amount of steps needed to build a materialized
view environment by using deployment templates as opposed to individually creating
the materialized view environment at those two or three sites. With deployment
templates, you build once and distribute as needed.

However, one question remains: If a deployment template is the most effective means
for building and distributing a materialized view environment, then when should you
locally build the materialized view environment at the remote materialized view site?
In most cases, you should build a materialized view environment using the
Materialized View Group Wizard or locally at the materialized view site when local
control must be maintained at the materialized view site.

One scenario where you might find local control of materialized view creation helpful
is when it is desirable for the materialized view site to control what data it receives.
For example, this is especially true of decision support sites (DSS), which are typically
read-only materialized view sites. A DSS site might occasionally need to run complex
queries and they do not want to slow the OLTP site, or bother the DBA at the OLTP
site.

Local Materialized View Control
One of the major benefits of deployment templates is that control is maintained
centrally by the DBA building the deployment template. In some cases, however, the
materialized view site must retain some control.

Local control might be required if the materialized view site:

■ Has an experienced DBA

■ Is considered a trusted site

■ Is a materialized view instead of a master site because of row subsetting
requirements

Because materialized view groups are created with the Advanced Replication
interface's Create Materialized View Group Wizard locally at the materialized view
site by its DBA, or perhaps a systems analyst with SQL knowledge, control can also be
maintained at the materialized view site.

Local Control of Materialized View Creation

4-22 Oracle Database Advanced Replication

Consider the following as a perfect example for maintaining local control. Because
multimaster replication does not allow for row and column data subsetting, updatable
materialized view sites are sometimes created primarily for their ability to subset data.
These sites are typically secure, have experienced DBAs, and require the ability to
maintain control locally to meet user and application requirements. Materialized view
groups created with the Materialized View Group Wizard or with the replication
management API allow for the localized control necessary to meet the requirements of
the secure updatable materialized view sites.

Also, remember that when a materialized view environment is created with a
deployment template, all objects in the materialized view environment are added to
the same refresh group. While this might be fine for most installations, certain
situations might require that the objects in a materialized view group are assigned to
several different refresh groups.

Conflict Resolution Concepts and Architecture 5-1

5
Conflict Resolution Concepts and

Architecture

Some replication environments must create conflict resolution methods to resolve
possible data conflicts that can result from replicating data between multiple sites.

This chapter contains these topics:

■ Conflict Resolution Concepts

■ Conflict Resolution Architecture

Conflict Resolution Concepts
Replication conflicts can occur in a replication environment that permits concurrent
updates to the same data at multiple sites. For example, when two transactions
originating from different sites update the same row at nearly the same time, a conflict
can occur. When you configure a replication environment, you must consider whether
replication conflicts can occur. If your system design permits replication conflicts and
a conflict occurs, then the system data does not converge until the conflict is resolved
in some way.

In general, your first choice should always be to design a replication environment that
avoids the possibility of conflicts. Using several techniques, most system designs can
avoid conflicts in all or a large percentage of the data that is replicated. However,
many applications require that some percentage of data be updatable at multiple sites
at any time. If this is the case, then you must address the possibility of replication
conflicts.

The next few sections introduce the following topics relating to replication conflicts:

■ How to design a replication system with replication conflicts in mind

■ How to determine the types of conflicts that are possible in your replication
environment

■ How you can avoid replication conflicts in designing your replication
environment

■ How Oracle can detect and resolve conflicts in designs where conflict avoidance is
not possible

This section contains these topics:

■ Understanding Your Data and Application Requirements

■ Types of Replication Conflicts

■ Data Conflicts and Transaction Ordering

Conflict Resolution Concepts

5-2 Oracle Database Advanced Replication

■ Conflict Detection

■ Conflict Resolution

■ Techniques for Avoiding Conflicts

Understanding Your Data and Application Requirements
When you design any type of database application and its supporting database, it is
critical that you understand the requirements of the application before you begin to
build the database or the application itself. For example, each application should be
modular, with clearly defined functional boundaries and dependencies, such as
order-entry, shipping, billing, and so on. Furthermore, you should normalize
supporting database data to reduce the amount of hidden dependencies between
modules in the application system.

In addition to basic database design practices, you must investigate additional
requirements when building a database that operates in a replication environment.
Start by considering the general requirements of the applications that will work with
the replicated data. For example, some applications might work fine with read-only
materialized views, and as a result, can avoid the possibility of replication conflicts
altogether. Other applications might require that most of the replicated data be
read-only and a small fraction of the data (for example, one or two tables or even one
or two columns in a specific table) be updatable at all replication sites. In this case, you
must determine how to resolve replication conflicts when they occur so that the
integrity of replicated data remains intact.

Examples of Conflict Detection and Resolution
To better understand how to design a replicated database system with conflicts in
mind, consider the following environments where conflict detection and resolution is
feasible in some cases but not possible in others:

■ Conflict resolution is often not possible in reservation systems where multiple
bookings for the same item are not allowed. For example, when reserving specific
seats for a concert, different agents accessing different replicas of the reservation
system cannot book the same seat for multiple customers because there is no way
to resolve such a conflict.

■ Conflict resolution is often possible in customer management systems. For
example, salespeople can maintain customer address information at different
databases in a replication environment. Should a conflict arise, the system can
resolve the conflicting updates by applying the most recent update to a record.

Types of Replication Conflicts
You might encounter these types of data conflicts in a replicated database
environment:

■ Update Conflicts

■ Uniqueness Conflicts

■ Delete Conflicts

You will most likely encounter update conflicts in your replication environment,
although you should always prepare to handle uniqueness and delete conflicts. Oracle
recommends that your database design works to avoid these types of conflicts.

Conflict Resolution Concepts

Conflict Resolution Concepts and Architecture 5-3

Update Conflicts
An update conflict occurs when the replication of an update to a row conflicts with
another update to the same row. Update conflicts can happen when two transactions
originating from different sites update the same row at nearly the same time.

Uniqueness Conflicts
A uniqueness conflict occurs when the replication of a row attempts to violate entity
integrity, such as a PRIMARY KEY or UNIQUE constraint. For example, consider what
happens when two transactions originate from two different sites, each inserting a row
into a respective table replica with the same primary key value. In this case, replication
of the transactions causes a uniqueness conflict.

Delete Conflicts
A delete conflict occurs when two transactions originate from different sites, with one
transaction deleting a row and another transaction updating or deleting the same row,
because in this case the row does not exist to be either updated or deleted.

Data Conflicts and Transaction Ordering
Ordering conflicts can occur in replication environments with three or more master
sites. If propagation to master site X is blocked for any reason, then updates to
replicated data can continue to be propagated among other master sites. When
propagation resumes, these updates might be propagated to site X in a different order
than they occurred on the other masters, and these updates might conflict. By default,
the resulting conflicts are recorded in the error log and can be reexecuted after the
transactions they depend upon are propagated and applied. See Table 5–1 on
page 5-14 for an example of an ordering conflict.

To guarantee data convergence in replication environments with three or more master
sites, you must select a conflict resolution method that can guarantee data convergence
with any number of master sites (latest time stamp, minimum, maximum, priority
group, additive).

The minimum, maximum, priority group, and additive conflict resolution methods
guarantee data convergence with any number of master sites, as long as certain
conditions exist. See the appropriate conflict resolution method in "Conflict Resolution
Architecture" on page 5-14 for more information

In addition to receiving a data conflict, replicated transactions that are applied
out-of-order might experience referential integrity problems at a remote site if
supporting data was not successfully propagated to that site. Consider the scenario
where a new customer calls an order department; a customer record is created and an
order is placed. If the order data is propagated to a remote site before the customer
data, then a referential integrity error is raised because the customer that the order
references does not exist at the remote site.

If a referential integrity error is encountered, then you can easily resolve the situation
by reexecuting the transaction in error after the supporting data has been propagated
to the remote site.

Conflict Detection
Each master site in a replication system automatically detects and resolves replication
conflicts when they occur. For example, when a master site pushes its deferred
transaction queue to another master site in the system, the remote procedures being
called at the receiving site can automatically detect if any replication conflicts exist.

Conflict Resolution Concepts

5-4 Oracle Database Advanced Replication

When a materialized view site pushes deferred transactions to its corresponding
master site or master materialized view site, the receiving site performs conflict
detection and resolution. A materialized view site refreshes its data by performing
materialized view refreshes. The refresh mechanism ensures that, upon completion,
the data at a materialized view is the same as the data at the corresponding master
table or master materialized view, including the results of any conflict resolution.
Therefore, it is not necessary for a materialized view site to perform work to detect or
resolve replication conflicts.

How Oracle Detects Different Types of Conflicts
The receiving master site or master materialized view site in a replication system
detects update, uniqueness, and delete conflicts as follows:

■ The receiving site detects an update conflict if there is any difference between the
old values of the replicated row (the values before the modification) and the
current values of the same row at the receiving site.

■ The receiving site detects a uniqueness conflict if a uniqueness constraint violation
occurs during an INSERT or UPDATE of a replicated row.

■ The receiving site detects a delete conflict if it cannot find a row for an UPDATE or
DELETE statement because the primary key of the row does not exist.

Identifying Rows During Conflict Detection
To detect replication conflicts accurately, Oracle must be able to uniquely identify and
match corresponding rows at different sites during data replication. Typically,
Advanced Replication uses the primary key of a table to uniquely identify rows in the
table. When a table does not have a primary key, you must designate an alternate
key—a column or set of columns that Oracle can use to uniquely identify rows in the
table during data replication.

Conflict Resolution
After a conflict has been detected, resolve the conflict with the goal of data
convergence across all sites. Oracle provides several prebuilt conflict resolution
methods to resolve update conflicts and in many situations can guarantee data

Note:

■ If a column is updated and the column's old value equals its
new value, then Oracle never detects a conflict for this column
update.

■ To detect and resolve an update conflict for a row, the
propagating site must send a certain amount of data about the
new and old versions of the row to the receiving site. For
maximum performance, tune the amount of data that Oracle
uses to support update conflict detection and resolution. For
more information, see "Send and Compare Old Values" on
page 5-27.

Caution: Do not permit applications to update the primary key or
alternate key columns of a table. This precaution ensures that
Oracle can identify rows and preserve the integrity of replicated
data.

Conflict Resolution Concepts

Conflict Resolution Concepts and Architecture 5-5

convergence across a variety of replication environments. Oracle also offers several
conflict resolution methods to handle uniqueness conflicts, though these methods
cannot guarantee data convergence.

Oracle does not provide any prebuilt conflict resolution methods to handle delete or
ordering conflicts. Oracle does, however, enable you to build your own conflict
resolution method to resolve data conflicts specific to your business rules. If you do
build a conflict resolution method that cannot guarantee data convergence, which is
likely for uniqueness and delete conflicts, then you should also build a notification
facility to notify the database administrator so that data convergence can be manually
achieved.

Whether you use an Oracle prebuilt or user-defined conflict resolution method, it is
applied as soon as the conflict is detected. If the defined conflict resolution method
cannot resolve the conflict, then the conflict is logged in the error queue.

To avoid a single point of failure for conflict resolution, you can define additional
conflict resolution methods to backup the primary method. For example, in the
unlikely event that the latest time stamp conflict resolution method cannot resolve a
conflict because the time stamps are identical, you might want to define a site priority
conflict resolution method, which breaks the time stamp tie and resolves the data
conflict.

Multitier Materialized Views and Conflict Resolution
When you have a master table and an updatable materialized view based on that
master table, a refresh of the materialized view pushes its changes to the master site,
where the master site handles any conflicts resulting from the push with its configured
conflict resolution methods. Then, the materialized view pulls changes at the master
down when the materialized view completes the refresh. The refresh is always
initiated at the materialized view site.

Similarly, the master materialized view of an updatable materialized view behaves in
the same way as a master table. However, to handle conflicts resulting from a push
from a materialized view, the master materialized view uses conflict resolution
methods that it has pulled from its master. Here, the master can either be a master
table at a master site or a master materialized view at another materialized view site.
Conflict resolution methods cannot be configured directly at a materialized view site.
Instead, the conflict resolution methods are pulled down from the immediate master
automatically when you create an updatable materialized view and when you
generate replication support for a materialized view. A read-only materialized view
does not pull down conflict resolution methods from its master.

For example, suppose a level 3 materialized view pushes its changes to its level 2
master materialized view. This push might cause a conflict at the level 2 materialized
view. To handle the conflict, the level 2 materialized view uses the conflict resolution
methods that it previously pulled from its level 1 master materialized view. Similarly,
the level 1 materialized view handles conflicts with the conflict resolution methods
that it previously pulled from its master site. Figure 5–1 illustrates this configuration.

See Also: Oracle Database Advanced Replication Management API
Reference for information about modifying tables without
replicating the modifications, which might be necessary when you
manually resolve a conflict that could not be resolved automatically

Conflict Resolution Concepts

5-6 Oracle Database Advanced Replication

Figure 5–1 Conflict Resolution and Multitier Materialized Views

Notice that each updatable materialized view pulls-down conflict resolution methods
from its master, even if the updatable materialized view does not have any
materialized views based on it. Notice also that a read-only materialized view does not
pull down conflict resolution methods from its master.

If you plan to change the conflict resolution methods for a master table in an
environment with multitier materialized views, then complete the following general
procedure:

1. If you are modifying either column groups or key columns and you are using
minimum communication for any of the updatable materialized views based on
the master table, then complete the following sub-steps:

a. Refresh the materialized views that are the farthest removed from the master
table you are altering. By refreshing, you push all the deferred transactions
from each materialized view to its master. For example, if you have three
levels of materialized views, then refresh the level 3 materialized views.

b. Stop all data manipulation language (DML) changes at the materialized views
you refreshed in Step a.

c. Repeat Step a and Step b for each materialized view level until you complete
these steps for the level 1 materialized views, which are based on a master
table at a master site.

2. If necessary, then quiesce the master group.

Conflict
Resolution
Methods

Updatable
Materialized View

Conflict
Resolution
Methods

Conflict
Resolution
Methods

Conflict
Resolution
Methods

Updatable
Materialized View

Read-Only
Materialized View

Updatable
Materialized View

Updatable
Materialized View

Read Only
Materialized View

Master Table

Pulled from
level 1
materialized
view

Pulled from
level 1
materialized
view

Conflict
Resolution
Methods

Pulled from
level 2
materialized
view

Pulled from
master

Pulled from
master

Conflict
Resolution
Methods

Updatable
Materialized View

Conflict Resolution Concepts

Conflict Resolution Concepts and Architecture 5-7

3. Change the conflict resolution configuration at the master definition site.

4. Regenerate replication support for the affected objects at the master definition site
using either the GENERATE_REPLICATION_SUPPORT procedure in the DBMS_
REPCAT package or the Advanced Replication interface in Oracle Enterprise
Manager.

5. If you quiesced the master group in Step 2, then resume replication activity for the
master group.

6. Regenerate replication support for the materialized views with the smallest level
number that have not yet regenerated replication support. The current conflict
resolution methods are pulled down from the immediate master during
regeneration. The first time you complete this step, it is for the level 1 materialized
views, the second time for the level 2 materialized views, and so on. You
regenerate replication support for a materialized view using either the
GENERATE_MVIEW_SUPPORT procedure in the DBMS_REPCAT package or the
Advanced Replication interface in Oracle Enterprise Manager.

7. If you completed the sub-steps in Step 1, then allow DML changes at the
materialized views with the smallest level number that do not currently allow
DML changes. The first time you complete this step, it is for the level 1
materialized views, the second time for the level 2 materialized views, and so on.

8. Repeat Step 6 and Step 7 for each level of materialized views until you complete
these steps for the materialized views that are farthest removed from the master
table. For example, if you have three levels of materialized views, then the last
time you complete these steps it is for the level 3 materialized views.

This regeneration of replication support is not performed automatically. In an
environment where different database administrators administer master sites and
materialized view sites, the database administrator at the master sites must notify the
database administrators at all of the affected materialized view sites of the changes in
conflict resolution methods. Then, it is the responsibility of all of the database
administrators to coordinate the previous procedure.

Column Subsetting of Updatable Materialized Views and Conflict Resolution
Column subsetting enables you to exclude columns in master tables from materialized
views by identifying specific columns in the SELECT statement during materialized
view creation. If only a subset of the columns in a column group are included in an
updatable materialized view, then do not create a conflict resolution method on this
column group, unless the conflict resolution method is either discard or site priority. If
the conflict resolution method is site priority, then column subsetting should only be
used in single master replication environments where the master site has a higher
priority number than the materialized view site.

For any type of conflict resolution method other than discard and the variant of site
priority described previously, the updatable materialized view sends information
about changes for some of the columns in the column group but not others, causing
Oracle to return an error when it tries to apply the conflict resolution method. Because
discard and this variant of site priority do not depend on column information, you can
use these methods along with column subsetting.

For example, suppose the employees master table has a column group that contains
the employee_id, manager_id, department_id, and timestamp columns. You
define a latest time stamp conflict resolution method on the column group at the
master site. Then, you create an updatable materialized view called employees_mv
based on the employees master table, but you use column subsetting to exclude the
department_id column from the materialized view. When an update is made to the

Conflict Resolution Concepts

5-8 Oracle Database Advanced Replication

employee_id or manager_id column at the materialized view, information about
these changes are sent to the master site during a subsequent refresh. An error is
returned at the master site because no information about the remaining column in the
column group, department_id, is found when Oracle tries to apply the conflict
resolution method.

Keep this in mind if you are using multitier materialized views. Because the conflict
resolution methods are pulled down from the master site to a master materialized
view, the same rules apply to master materialized view sites and updatable
materialized views based on them.

Nested Tables and Conflict Resolution
For each nested table column, Oracle creates a hidden column in the table called the
NESTED_TABLE_ID column. Oracle also creates a separate table called a storage table
to store the elements of the nested table. The storage table stores a row for each
element of the nested table for each parent table row. The storage table also contains a
NESTED_TABLE_ID column, which corresponds to the parent table's NESTED_
TABLE_ID column and is used to identify the elements of the nested table for a
particular parent row. Nested table columns require special consideration in
Advanced Replication.The underlying storage tables require as much consideration
for conflict resolution as the parent table, and there are additional issues to consider.

Replication handles data manipulation language (DML) statements on nested tables as
separate DML statements on the parent table and storage table. When DML statements
are executed on nested table columns, the actions performed by Oracle depend on the
type of DML statement. The following table shows the actions performed by Oracle for
each type of DML statement.

Example of Nested Table Conflicts The following example illustrates how DML
statements on nested table columns can lead to conflicts that are difficult to resolve.
Following the example is information about ways to minimize conflicts.

Suppose there is a university which stores information about its departments in a
department table containing a nested table column that stores information about
each department's courses:

CREATE TYPE Course AS OBJECT (
 course_no NUMBER(4),
 title VARCHAR2(35),
 credits NUMBER(1));
/

See Also: "Column Subsetting with Deployment Templates" on
page 4-15

Insert Statements Delete Statements Update Statements

■ Inserts new rows into
storage table (assuming
nested table value is
neither null nor empty).

■ Inserts new row into
parent table, with the
NESTED_TABLE_ID
value referring to
previously inserted
storage rows.

■ Deletes any storage table
rows associated with the
parent table being
deleted.

■ Deletes parent table row.

■ Inserts new rows into
storage table (assuming
the nested table column
is set to a value that is
neither null nor an
empty table).

■ Updates the parent table
row.

■ Deletes old storage table
rows.

Conflict Resolution Concepts

Conflict Resolution Concepts and Architecture 5-9

CREATE TYPE CourseList AS TABLE OF Course;
/

CREATE TABLE department (
 name VARCHAR2(20) primary key,
 director VARCHAR2(20),
 office VARCHAR2(20),
 courses CourseList)
 NESTED TABLE courses STORE AS courses_tab(
 (PRIMARY KEY(nested_table_id,course_no)));

The university has campuses across the United States and uses multimaster replication
to support its different locations. Each location can update the department table,
which is replicated. On univ1.example.com, one of the master sites, information is
inserted about the Psychology department.

INSERT INTO department
 VALUES('Psychology', 'Irene Friedman', 'Fulton Hall 133',
 CourseList(Course(1000, 'General Psychology', 5),
 Course(2100, 'Experimental Psychology', 4),
 Course(2200, 'Psychological Tests', 3),
 Course(2250, 'Behavior Modification', 4),
 Course(3540, 'Groups and Organizations', 3),
 Course(3552, 'Human Factors in Business', 4),
 Course(4210, 'Theories of Learning', 4)));

Advanced Replication propagates the insert to all masters.

Then, change information arrives about the Psychology class offerings. That is, a class
is added. The information is updated on univ1.example.com.

UPDATE department SET courses = CourseList(
 Course(1000, 'General Psychology', 5),
 Course(2100, 'Experimental Psychology', 4),
 Course(2200, 'Psychological Tests', 3),
 Course(2250, 'Behavior Modification', 4),
 Course(3540, 'Groups and Organizations', 3),
 Course(3552, 'Human Factors in Business', 4),
 Course(4210, 'Theories of Learning', 4),
 Course(4320, 'Cognitive Processes', 4))
 WHERE name = 'Psychology';

After univ1.example.com has committed the update, but before the change is
propagated to other master sites, another master site, univ2.example.com, receives
information that two more class have been added, both 4320 and 4410.

UPDATE department SET courses = CourseList(
 Course(1000, 'General Psychology', 5),
 Course(2100, 'Experimental Psychology', 4),
 Course(2200, 'Psychological Tests', 3),
 Course(2250, 'Behavior Modification', 4),
 Course(3540, 'Groups and Organizations', 3),
 Course(3552, 'Human Factors in Business', 4),
 Course(4210, 'Theories of Learning', 4),
 Course(4320, 'Cognitive Processes', 4),
 Course(4410, 'Abnormal Psychology', 4))
 WHERE name = 'Psychology';

Both the update on univ1.example.com and the update on univ2.example.com
are pushed.

Conflict Resolution Concepts

5-10 Oracle Database Advanced Replication

There will be an update conflict on department table. Each user who made an
update expects that it is the first update since the insert statement. But actually, the
local update has taken place first, and therefore the NESTED_TABLE_ID has changed,
because these are updates on the parent table. It is only updates on the nested table
column (changing the storage table rows and NESTED_TABLE_ID) which are
problematic. There is no problem updating other columns in the parent table.

Suppose this conflict is resolved by keeping the local table update. Delete conflict
resolution would be required on the storage table to ignore the missing rows, which
were already deleted by the local update. The new rows inserted into the storage table,
due to the update at the remote site, now have no reference in the parent table. These
new storage table rows must also be dealt with. Otherwise, they are orphaned. The
storage table would grow with course rows which are not accessible from the
department table.

Resolving conflicts by manipulating the storage table rows while updating the parent
table is very difficult with two master sites in a multimaster replication environment
and becomes nearly impossible as the number of master sites increases. If this type of
update is necessary, then it might be best to not define any conflict resolution methods
on the nested table and resolve conflicts manually. Incorrect conflict resolution could
lead to divergence. That is, tables on different masters might no longer match.

Recommendations for Avoiding Problematic Updates The following recommendations
enable you to avoid the problematic updates described in the preceding section:

■ Use a foreign key constraint, initially deferred, on the nested table. This constraint
prevents dangling rows in the storage table. The following is an example of such a
foreign key constraint:

ALTER TABLE courses_tab add CONSTRAINT courses_fk
 FOREIGN KEY(NESTED_TABLE_ID) REFERENCES department(courses)
 INITIALLY DEFERRED;

■ Ensure that all inserts on the parent table insert an empty nested table. Do not use
a null nested table value. This practice helps to create a reusable NESTED_TABLE_
ID. The following is an example of an insert that included an empty nested table:

INSERT INTO department (name, director, office, courses)
 VALUES('Psychology', 'Irene Friedman', 'Fulton Hall 133', CourseList());

■ Ensure that all inserts, deletes, and updates are performed directly on the nested
table rather than through DML on the parent table. This practice helps to reuse the
present NESTED_TABLE_ID value.

The following is an example of deleting rows directly from a nested table:

DELETE FROM TABLE
 (SELECT courses FROM department WHERE name = 'Psychology');

Consider an example where the following rows are inserted directly into the
nested table on univ1.example.com:

INSERT INTO TABLE
 (SELECT courses FROM department WHERE name = 'Psychology')
 VALUES (Course(5000, 'Social Psychology', 5));

INSERT INTO TABLE
 (SELECT courses FROM department WHERE name = 'Psychology')
 VALUES (Course(5100, 'Psychology of Personality', 4));

Conflict Resolution Concepts

Conflict Resolution Concepts and Architecture 5-11

Then, the following rows are inserted directly into the nested table on
univ2.example.com before the preceding inserts on univ1.example.com are
pushed:

INSERT INTO TABLE
 (SELECT courses FROM department WHERE name = 'Psychology')
 VALUES (Course(5000, 'Social Psychology', 5));

INSERT INTO TABLE
 (SELECT courses FROM department WHERE name = 'Psychology')
 VALUES (Course(5100, 'Psychology of Personality', 4));

INSERT INTO TABLE
 (SELECT courses FROM department WHERE name = 'Psychology')
 VALUES (Course(5500, 'Cognitive Neuroscience', 5));

Here, primary key conflicts will occur on the inserted rows in the storage table for
courses 5000 and 5100), but a conflict resolution on the storage table which allows
the inserts from one site to fail should provide the proper results. However, these
inserts do not result in the more complicated problem involving multiple tables
described in "Example of Nested Table Conflicts" on page 5-8, but the NESTED_
TABLE_ID value is not lost, because this value has not changed.

■ Consider using a trigger on the parent table that prevents inserts and updates that
include manipulation of the nested table column. The following is an example of
such a trigger:

CREATE OR REPLACE TRIGGER depart_trig
 AFTER INSERT OR UPDATE ON department
 FOR EACH ROW
 DECLARE
 new_ntid raw(100);
 old_ntid raw(100);
 BEGIN
-- obtain the nested table ids
 SELECT sys_op_tosetid(:new.courses) INTO new_ntid from dual;
 SELECT sys_op_tosetid(:old.courses) INTO old_ntid from dual;
 IF INSERTING THEN
-- raise error on insert of a null nested table column
 IF :new.courses IS NULL THEN
 raise_application_error(-20011, 'inserting null nested table ref');
 END IF;
-- raise error if new rows are inserted in the storage table
-- this is not strictly necessary, but it does enforce DML access
-- semantics of separate DMLS on parent table and storage table
 IF :new.courses.count != 0 THEN
 raise_application_error(-20012,
 'inserting rows into storage table while inserting parent table row');
 END IF;
 ELSE
-- raise error if update has caused the NESTED_TABLE_ID to change
 IF new_ntid != old_ntid THEN
 raise_application_error(-20013,
 'updating storage table reference while updating parent table row');
 END IF;
 END IF;
END;
/

Conflict Resolution Concepts

5-12 Oracle Database Advanced Replication

These recommendations continue to apply with multilevel nesting, where the storage
table row becomes a parent to another storage table's rows. All of these
recommendations are good strategies at each level of nesting.

Techniques for Avoiding Conflicts
Although Oracle provides powerful methods for resolving data conflicts, one of your
highest priorities when designing a replicated database and front-end application
should be to avoid data conflicts. The next few sections briefly suggest several
techniques that you can use to avoid some or all replication conflicts.

Use Column Groups
Column groups can help you avoid conflicts even if you do not apply any conflict
resolution methods to the column groups. When your replicated table contains
multiple column groups, each group is viewed independently when analyzing
updates for conflicts.

For example, consider a replicated table with column group a_cg and column group
b_cg. Column group a_cg contains the following columns: a1, a2, and a3. Column
group b_cg contains the following columns: b1, b2, and b3.

The following updates occur at replication sites sf.example.com and
la.example.com:

■ User wsmith updates column a1 in a row at sf.example.com.

■ At exactly the same time, user mroth updates column b2 in the same row at
la.example.com.

In this case, no conflicts result because Oracle analyzes the updates separately in
column groups a_cg and b_cg. If, however, column groups a_cg and b_cg did not
exist, then all of the columns in the table would be in the same column group, and a
conflict would have resulted. Also, with the column groups in place, if user mroth
had updated column a3 instead of column b2, then a conflict would have resulted,
because both a1 and a3 are in the a_cg column group.

Use Primary Site and Dynamic Site Ownership Data Models
One way that you can avoid the possibility of replication conflicts is to limit the
number of sites in the system with simultaneous update access to the replicated data.
Two replicated data ownership models support this approach: primary site ownership
and dynamic site ownership.

Primary Site Ownership Primary ownership is the replicated data model that the
read-only replication environments support. Primary ownership prevents all
replication conflicts, because only a single server permits update access to a set of
replicated data.

Rather than control the ownership of data at the table level, applications can employ
row and column subsetting to establish more granular static ownership of data. For
example, applications might have update access to specific columns or rows in a
replicated table on a site-by-site basis.

Dynamic Site Ownership The dynamic ownership replicated data model is less restrictive
than primary site ownership. With dynamic ownership, capability to update a data

See Also: "Column Groups" on page 5-15 for more information
about column groups

Conflict Resolution Concepts

Conflict Resolution Concepts and Architecture 5-13

replica moves from site to site, still ensuring that only one site provides update access
to specific data at any given point in time. A workflow system clearly illustrates the
concept of dynamic ownership. For example, related departmental applications can
read the status code of a product order, for example, enterable, shippable,
billable, to determine when they can and cannot update the order.

Avoiding Specific Types of Conflicts
When both primary site ownership and dynamic ownership data models are too
restrictive for your application requirements, you must use a shared ownership data
model. Even so, typically you can use some simple strategies to avoid specific types of
conflicts.

Avoiding Uniqueness Conflicts It is quite easy to configure a replication environment to
prevent the possibility of uniqueness conflicts. For example, you can create sequences
at each site so that each sequence at each site generates a mutually exclusive set of
sequence numbers. This solution, however, can become problematic as the number of
sites increase or the number of entries in the replicated table grows.

Alternatively, you can append a unique site identifier as part of a composite primary
key.

Finally, you can select a globally unique value using the SYS_GUID function. Using
the selected value as the primary key (or unique) value globally avoids uniqueness
conflicts.

Avoiding Delete Conflicts Always avoid delete conflicts replicated data environments. In
general, applications that operate within an asynchronous, shared ownership data
model should not delete rows using DELETE statements. Instead, applications should
mark rows for deletion and then configure the system to periodically purge logically
deleted rows using procedural replication.

Avoiding Update Conflicts After trying to eliminate the possibility of uniqueness and
delete conflicts in a replication system, you should also try to limit the number of
update conflicts that are possible. However, in a shared ownership data model, update
conflicts cannot be avoided in all cases. If you cannot avoid all update conflicts, then

See Also: Oracle Database Advanced Replication Management API
Reference for more information about using dynamic ownership
data models

Note: Sequences are not valid replication object types and you
must therefore create the sequence at each site.

See Also: "Alternatives to Replicating Sequences" on page 2-21
for more information about sequences and Oracle Database SQL
Language Reference for more information about the SYS_GUID
function

See Also: The instructions for creating conflict avoidance
methods for delete conflicts in the Oracle Database Advanced
Replication Management API Reference to learn how to prepare a table
for delete avoidance and build a replicated procedure to purge
marked rows

Conflict Resolution Architecture

5-14 Oracle Database Advanced Replication

you must understand exactly what types of replication conflicts are possible and then
configure the system to resolve conflicts when they occur.

Avoiding Ordering Conflicts Whenever possible, avoid or automatically resolve ordering
conflicts. For example, select conflict resolution methods that ensure convergence in
multimaster configurations where ordering conflicts are possible.

The example in Table 5–1 shows how having three master sites can lead to ordering
conflicts. Master Site A has priority 30; Master Site B has priority 25; and Master Site C
has priority 10; x is a column of a particular row in a column group that is assigned the
site-priority conflict resolution method. The highest priority is given to the site with
the highest priority value. Priority values can be any Oracle number and do not have
to be consecutive integers.

Conflict Resolution Architecture
Very few architectural mechanisms and processes are visible when implementing
conflict resolution into your replication environment. This section describes the few
supporting mechanisms involved in conflict resolution and describes different aspects
of Oracle's prebuilt conflict resolution methods.

Table 5–1 Example: Ordering Conflicts with Site Priority Conflict Resolution

Time Action Site A Site B Site C

1 All sites are up and agree that x = 2. 2 2 2

2 Site A updates x = 5. 5 2 2

3 Site C becomes unavailable. 5 2 down

4 Site A pushes update to Site B.
Site A and Site B agree that x = 5.

Site C is still unavailable.
The update transaction remains in the queue at Site A.

5 5 down

5 Site C becomes available with x = 2.
Sites A and B agree that x = 5.

5 5 2

6 Site B updates x = 5 to x = 7. 5 7 2

7 Site B pushes the transaction to Site A.
Sites A and B agree that x = 7.
Site C still says x = 2.

7 7 2

8 Site B pushes the transaction to Site C.
Site C says the old value of x = 2;
Site B says the old value of x = 5.
Oracle detects a conflict and resolves it by applying the update from
Site B, which has a higher priority level (25) than Site C (10).
All site agree that x = 7.

7 7 7

9 Site A successfully pushes its transaction (x = 5) to Site C.
Oracle detects a conflict because the current value at
Site C (x = 7) does not match the old value at Site A (x = 2).

Site A has a higher priority (30) than Site C (10).
Oracle resolves the conflict by applying the outdated update from Site
A (x = 5).

Because of this ordering conflict, the sites no longer converge.

7 7 5

Conflict Resolution Architecture

Conflict Resolution Concepts and Architecture 5-15

This section contains these topics:

■ Support Mechanisms

■ Common Update Conflict Resolution Methods

■ Additional Update Conflicts Resolution Methods

■ Uniqueness Conflicts Resolution Methods

■ Delete Conflict Resolution Methods

■ Send and Compare Old Values

Support Mechanisms
The most important mechanism involved in Oracle conflict resolution is the column
group because it is the basis for all update conflict detection and resolution.
Additionally, the error queue can provide you with important information to monitor
the conflict detection activity of your replication environment.

Column Groups
Oracle uses column groups to detect and resolve update conflicts. A column group is a
logical grouping of one or more columns in a replicated table. Every column in a
replicated table is part of a single column group. When configuring replicated tables at
the master definition site, you can create column groups and then assign columns and
corresponding conflict resolution methods to each group.

Column groups have the following characteristics:

■ A column can belong only to one column group.

■ A column group can consist of one or more columns of a table.

■ Conflict resolution is applicable only to columns in a column group.

Ensuring Data Integrity with Multiple Column Groups Having column groups enables you to
designate different methods of resolving conflicts for different types of data. For
example, numeric data is often suited for an arithmetical resolution method, and
character data is often suited for a time stamp resolution method. However, when
selecting columns for a column group, it is important to group columns wisely. If two
or more columns in a table must remain consistent with respect to each other, then
place the columns within the same column group to ensure data integrity.

For example, if the postal code column in a customer table uses one resolution method
while the city column uses a different resolution method, then the sites could converge
on a postal code that does not match the city. Therefore, all components of an address
should typically be within a single column group so that conflict resolution is applied
to the address as a unit.

Shadow Column Groups By default, every replicated table has a shadow column group.
The shadow column group of a table contains all columns that are not within a specific
column group. You cannot assign conflict resolution methods to a table's shadow
group. Therefore, ensure that to include a column in a column group when conflict
resolution is necessary for the column. Oracle detects conflicts that involve columns in
the shadow column group but does not attempt to apply any conflict resolution
methods to resolve these conflicts.

See Also: "Use Column Groups" on page 5-12 for information
about using column groups to avoid conflicts

Conflict Resolution Architecture

5-16 Oracle Database Advanced Replication

Column Objects and Column Groups An Oracle object based on a user-defined type that
occupies a single column in a table is a column object. A column object cannot span
column groups. That is, given a column group and a column object, either the column
object and all of its attributes must be within the column group, or the column object
and all of its attributes must be excluded from a column group.

Oracle's prebuilt conflict resolution methods cannot resolve conflicts based on
undefined column object attribute values. If a column object is NULL, then its attributes
are undefined.

Object Tables and Column Groups An object table is a special kind of table in which each
row represents an object based on a user-defined type. You can specify column groups
that include a subset of the columns in an object table.

Nested Tables and Column Groups A nested table's storage table is treated as an
independent table in conflict resolution. Therefore, you can create a column group
based on a subset of the columns in a storage table.

Error Queue
If a conflict resolution method fails to resolve a data conflict, or if you have not defined
any conflict resolution methods, then the error queue contains information about the
data conflict.

Common Update Conflict Resolution Methods
Although Oracle provides eight prebuilt update conflict resolution methods, the latest
time stamp and the overwrite conflict resolution methods are the most commonly
implemented resolution methods.

These methods are the most common because they are easy to use and, in the proper
environments, can guarantee data convergence. The latest time stamp and the
overwrite conflict resolution methods are described in detail in the following two
sections.

Latest Timestamp
The latest time stamp method resolves a conflict based on the most recent update, as
identified by the time stamp of when the update occurred.

The following example demonstrates an appropriate application of the latest time
stamp update conflict resolution method:

See Also: "Error Queue" on page 2-22 for more information about
the error queue

Table 5–2 Convergence Properties of Common Update Conflict Resolution Methods

Resolution Methods Convergence with Multiple Master Sites

Latest time stamp YES
(with backup method)

Overwrite NO

Note: All of Oracle's prebuilt conflict resolution methods provide
convergence in an environment with a single master site that has
one or more materialized view sites.

Conflict Resolution Architecture

Conflict Resolution Concepts and Architecture 5-17

1. A customer in Phoenix calls the local salesperson and updates her address
information.

2. After hanging up the phone, the customer realizes that she gave the local
salesperson the wrong postal code.

3. The customer tries to call the local salesperson with the correct postal code, but the
salesperson cannot be reached.

4. The customer calls the headquarters, which is located in New York. The New York
site, rather than the Phoenix site, correctly updates the address information.

5. The network connecting New York headquarters with the local Phoenix sales site
goes down temporarily.

6. When the New York/Phoenix network connection comes back up, Oracle sees two
updates for the same address, and detects a conflict at each site.

7. Using the latest time stamp method, Oracle selects the most recent update, and
applies the address with the correct postal code.

Target Environments The latest time stamp conflict resolution method works to
converge replication environments with two or more master sites. Because time is
always increasing, it is one of the few conflict resolution methods that can guarantee
data convergence with multiple master sites. This resolution also works well with any
number of materialized views.

Support Mechanisms To use the time stamp method, you must designate a column
in the replicated table of type DATE. When an application updates any column in a
column group, the application must also update the value of the designated time
stamp column with the local SYSDATE. For a change applied from another site, the
time stamp value should be set to the time stamp value from the originating site.

Timestamp Configuration Issues When you use time stamp resolution, you must carefully
consider how time is measured on the different sites managing replicated data. For
example, if a replication environment crosses time zones, then applications that use
the system should convert all time stamps to a common time zone such as Greenwich
Mean Time (GMT). Furthermore, if two sites in a system do not have their system
clocks synchronized reasonably well, then time stamp comparisons might not be
accurate enough to satisfy application requirements.

You can maintain time stamp columns if you use the EARLIEST or LATEST time
stamp update conflict resolution methods in the following ways:

■ Each application can include logic to synchronize time stamps.

■ You can create a trigger for a replicated table to synchronize time stamps
automatically for all applications.

A clock counts seconds as an increasing value. Assuming that you have properly
designed your time-stamping mechanism and established a backup method in case
two sites have the same time stamp, the latest time stamp method (like the maximum
value method) guarantees convergence. The earliest time stamp method, however,
cannot guarantee convergence for more than one master site.

Note: When you use a time stamp conflict resolution method, you
should designate a backup method, such as site priority, to be
called if two sites have the same time stamp.

Conflict Resolution Architecture

5-18 Oracle Database Advanced Replication

Implement Latest Timestamp See the Advanced Replication interface's online Help
to learn how to define a latest time stamp conflict resolution method with the
Advanced Replication interface in Oracle Enterprise Manager.

Overwrite
The overwrite method replaces the current value at the destination site with the new
value from the originating site, and therefore can never guarantee convergence with
more than one master site. This method is designed to be used by a single master site
and multiple materialized view sites. You can also use this form of conflict resolution
with multiple master sites, though it does not guarantee data convergence and should
be used with some form of a user-defined notification facility.

For example, if you have a single master site that you expect to be used primarily for
queries, with all updates being performed at the materialized view sites, then you
might select the overwrite method. The overwrite method is also useful if:

■ Your primary concern is data convergence.

■ You have a single master site.

■ No particular business rule exists for selecting one update over the other.

■ You have multiple master sites and you supply a notification facility to notify the
person who ensures that data is correctly applied, instead of logging the conflict in
the DEFERROR data dictionary view and leaving the resolution to your local
database administrator.

Target Environments The overwrite conflict resolution method ensures data
convergence for replication environments that have a single master site with any
number of materialized views. With this in mind, the overwrite conflict resolution
method is ideal for mass deployment environments.

If a conflict is detected, then the value originating from the materialized view site is
used, which means that priority is given to the most recently refreshed materialized
views.

Support Mechanisms No additional support mechanisms are required for the
overwrite conflict resolution method.

Implement Overwrite See the Advanced Replication interface's online Help to learn
how to define an overwrite conflict resolution method with the Advanced Replication
interface in Oracle Enterprise Manager.

Additional Update Conflicts Resolution Methods
If the latest time stamp or the overwrite conflict resolution methods do not meet your
needs to resolve data conflicts that are encountered in your replication environment,
then Oracle offers six additional prebuilt update conflict resolution methods.

See Also: Oracle Database Advanced Replication Management API
Reference to learn how to define this type of conflict resolution
method with the replication management API

See Also: Oracle Database Advanced Replication Management API
Reference to learn how to define this type of conflict resolution
method with the replication management API

Conflict Resolution Architecture

Conflict Resolution Concepts and Architecture 5-19

Additive
The additive method works with column groups consisting of a single numeric
column only. If a conflict arises, instead of choosing one value over another, then the
difference of the two values is added to the current value.

The additive method adds the difference between the old and new values at the
originating site to the current value at the destination site according to this formula:

current value = current value + (new value - old value)

The additive conflict resolution method provides convergence for any number of
master sites and materialized view sites.

Target Environments The additive conflict resolution method is designed to
conserve data rather than choose the most appropriate data. This method might be
useful in a financial environment where deposits and withdrawals happen so
frequently that conflicts can arise; with a balance, it is important to conserve data
rather than choose one value over another (though we might wish that deposits would
always be chosen over withdrawals).

Support Mechanisms No additional support mechanisms are required for the
additive conflict resolution method.

Implement Additive See the Advanced Replication interface's online Help to learn
how to define an additive conflict resolution method with the Advanced Replication
interface in Oracle Enterprise Manager.

Average
Like the additive method, the average method works with column groups consisting
of a single numeric column only. Instead of adding the difference to the current value,
the average method resolves the conflict by computing the average of the current and
the new value.

Table 5–3 Convergence Properties of Additional Update Conflict Resolution Methods

Resolution Methods Convergence with Multiple Master Sites

Additive YES

Average NO

Discard NO

Earliest time stamp NO

Maximum YES
(column values must always increase)

Minimum YES
(column values must always decrease)

Priority group YES
(with ordered update values)

Site priority NO

See Also: Oracle Database Advanced Replication Management API
Reference to learn how to define this type of conflict resolution
method with the replication management API

Conflict Resolution Architecture

5-20 Oracle Database Advanced Replication

The average conflict resolution method averages the new column value from the
originating site with the current value at the destination site.

current value = (current value + new value)/2

The average method cannot guarantee convergence if your replication environment
has more than one master site.

Target Environments Because the average method cannot guarantee data
convergence for replication environments with more than one master site, the average
method is ideally implemented in mass deployment environment with a single master
site and any number of updatable materialized views.

The average method might be useful for scientific applications that would rather
average two values than choose one value over another (for example, to compute the
average temperature or weight).

Support Mechanisms No additional support mechanisms are required for the
average conflict resolution method.

Implement Average See the Advanced Replication interface's online Help to learn
how to define an average conflict resolution method with the Advanced Replication
interface in Oracle Enterprise Manager.

Discard
The discard method ignores the values from the originating site and therefore can
never guarantee convergence with more than one master site. The discard method
ignores the new value from the originating site and retains the value at the destination
site. This method is designed to be used by a single master site and multiple
materialized view sites, or with some form of a user-defined notification facility.

For example, if you have a single master site and multiple materialized view sites
based on it, and you expect the materialized view sites to be used primarily for queries
with all updates being performed at the master site, then you might select the discard
method. The discard methods is also useful if:

■ Your primary concern is data convergence.

■ You have a single master site.

■ There is no particular business rule for selecting one update over the other.

■ You have multiple master sites and you supply a notification facility to notify the
person who ensures that data is correctly applied, instead of logging the conflict in
the DEFERROR view and leaving the resolution to your local database
administrator.

Target Environments The discard conflict resolution method is best suited for a mass
deployment model having a single master site with any number of materialized view
sites. If a conflict is detected, then the value originating from the materialized view site
is ignored, which means that priority is given to materialized views that refresh first.

Support Mechanisms No additional support mechanisms are required for the
discard conflict resolution method.

See Also: Oracle Database Advanced Replication Management API
Reference to learn how to define this type of conflict resolution
method with the replication management API

Conflict Resolution Architecture

Conflict Resolution Concepts and Architecture 5-21

Implement Discard See the Advanced Replication interface's online Help to learn
how to define a discard conflict resolution method with the Advanced Replication
interface in Oracle Enterprise Manager.

Earliest Timestamp
The earliest time stamp methods resolves a conflict based on the earliest (oldest)
update, as identified by the time stamp of when the update occurred.

Target Environments The earliest time stamp conflict resolution method works to
converge replication environments with a single master site and any number of
materialized views. Because time is always increasing, the earliest time stamp conflict
resolution cannot guarantee data convergence in replication environments with more
than one master site. This resolution also works well with any number of materialized
views, if you have a backup conflict resolution method in the event that two
transactions have the same time stamp.

Support Mechanisms To use the time stamp method, you must designate a column
in the replicated table of type DATE. When an application updates any column in a
column group, the application must also update the value of the designated time
stamp column with the local SYSDATE. For a change applied from another site, the
time stamp value should be set to the time stamp value from the originating site. Be
sure to review "Timestamp Configuration Issues" on page 5-17.

Implement Earliest Timestamp See the Advanced Replication interface's online Help
to learn how to define an earliest time stamp conflict resolution method with the
Advanced Replication interface in Oracle Enterprise Manager.

Maximum
When Advanced Replication detects a conflict with a column group and calls the
maximum value conflict resolution method, it compares the new value from the
originating site with the current value from the destination site for a designated
column in the column group. You must designate this column when you select the
maximum value conflict resolution method.

If the new value of the designated column is greater than the current value, then the
column group values from the originating site are applied at the destination site,
assuming that all other errors were successfully resolved for the row. If the new value
of the designated column is less than the current value, then the conflict is resolved by
leaving the current values of the column group unchanged.

See Also: Oracle Database Advanced Replication Management API
Reference to learn how to define this type of conflict resolution
method with the replication management API

Note: When you use a time stamp conflict resolution method, you
should designate a backup method, such as site priority, to be
called if two sites have the same time stamp.

See Also: Oracle Database Advanced Replication Management API
Reference to learn how to define this type of conflict resolution
method with the replication management API

Conflict Resolution Architecture

5-22 Oracle Database Advanced Replication

There are no restrictions on the data types of the columns in the column group.
Convergence for more than one master site is only guaranteed if the column value is
always increasing.

Target Environments If you have defined the maximum conflict resolution method
and the target column that is used to resolve the conflict is always increasing across all
sites, then this method guarantees data convergence with any number of master sites
and materialized view sites.

Support Mechanisms No additional support mechanisms are required for the
maximum conflict resolution method.

Implement Maximum See the Advanced Replication interface's online Help to learn
how to define a maximum conflict resolution method with the Advanced Replication
interface in Oracle Enterprise Manager.

Minimum
When Advanced Replication detects a conflict with a column group and calls the
minimum value conflict resolution method, it compares the new value from the
originating site with the current value from the destination site for a designated
column in the column group. You must designate this column when you select the
minimum value conflict resolution method.

If the new value of the designated column is less than the current value, then the
column group values from the originating site are applied at the destination site,
assuming that all other errors were successfully resolved for the row. If the new value
of the designated column is greater than the current value, then the conflict is resolved
by leaving the current values of the column group unchanged.

Note: If the two values for the designated column are the same
(for example, if the designated column was not the column causing
the conflict), then the conflict is not resolved, and the values of the
columns in the column group remain unchanged. Designate a
backup conflict resolution method to be used for this case.

Note: You should not enforce an always-increasing restriction by
using a CHECK constraint because the constraint could interfere
with conflict resolution.

See Also: Oracle Database Advanced Replication Management API
Reference to learn how to define this type of conflict resolution
method with the replication management API

Note: If the two values for the designated column are the same
(for example, if the designated column was not the column causing
the conflict), then the conflict is not resolved, and the values of the
columns in the column group remain unchanged. Designate a
backup conflict resolution method to be used for this case.

Conflict Resolution Architecture

Conflict Resolution Concepts and Architecture 5-23

There are no restrictions on the data types of the columns in the column group.
Convergence for more than one master site is only guaranteed if the column value is
always decreasing.

Target Environments If you have defined the minimum conflict resolution method
and the target column that is used to resolve the conflict is always decreasing across all
sites, then this method guarantees data convergence with any number of master sites
and materialized view sites.

Support Mechanisms No additional support mechanisms are required for the
minimum conflict resolution method.

Implement Minimum See the Advanced Replication interface's online Help to learn
how to define a minimum conflict resolution method with the Advanced Replication
interface in Oracle Enterprise Manager.

Priority Groups
Priority groups enable you to assign a priority level to each possible value of a
particular column. If Oracle detects a conflict, then Oracle updates the table whose
"priority" column has a lower value using the data from the table with the higher
priority value. Therefore, a higher value means a higher priority.

You can guarantee convergence with more than one master site when you are using
priority groups if the value of the priority column is always increasing. That is, the
values in the priority column correspond to an ordered sequence of events; for
example: ordered, shipped, billed.

As shown in Figure 5–2, the DBA_REPPRIORITY view displays the priority level
assigned to each priority group member (value that the "priority" column can contain).
You must specify a priority for all possible values of the "priority" column.

Note: You should not enforce an always-decreasing restriction by
using a CHECK constraint because the constraint could interfere
with conflict resolution.

See Also: Oracle Database Advanced Replication Management API
Reference book to learn how to define minimum and maximum
methods conflict resolution methods with the replication
management API

Conflict Resolution Architecture

5-24 Oracle Database Advanced Replication

Figure 5–2 Using Priority Groups

The DBA_REPPRIORITY view displays the values of all priority groups defined at the
current location. In the example shown in Figure 5–2, there are two different priority
groups: site-priority and order-status. The customer table is using the site-priority
priority group. In the order-status priority group in this example, billed (priority 3)
has a higher priority than shipped (priority 2), and shipped has a higher priority
than ordered (priority 1).

Before you use the Advanced Replication interface in Oracle Enterprise Manager to
select the priority group method of update conflict resolution, you must designate
which column in your table is the priority column.

Target Environments The priority group conflict resolution method is useful for
replication environments that have been designed for a work flow environment. For
example, once an order has reached the shipping status, updates from the order
entry department are always over-written.

Support Mechanisms You need to define the priority of the values contained in the
target column. This priority definition is required so that Oracle knows how to resolve
a conflict based on the priority of the column value that has been designated to resolve
a conflict. The priority definitions are stored in a priority group.

Implement Priority Groups See the Advanced Replication interface's online Help to
learn how to define a priority group conflict resolution method with the Advanced
Replication interface in Enterprise Manager.

Site Priority
Site priority is a special kind of priority group. With site priority, the priority column
you designate is automatically updated with the global database name of the site

See Also: Oracle Database Advanced Replication Management API
Reference to learn how to define this type of conflict resolution
method with the replication management API

customer Table

custno

153
118
121
204
.
.
.

name

Kelly
Klein
Lee
Potter
.
.
.

addr1

104 First St.
22 Iris Ln.
71 Blue Ct.
181 First Av.
.
.
.

addr2

Jones, NY
Planes, NE
Aspen, CO
Aspen, CO
.
.
.

site

new_york.example.com
houston.example.com
houston.example.com
houston.example.com
.
.
.

DBA_REPPRIORITY Data Dictionary View

... PRIORITY_GROUP

site-priority
site-priority
order-status
order-status
order-status
...

PRIORITY

1
2
1
2
3
...

... VARCHAR2_VALUE

houston.example.com
new_york.example.com
ordered
shipped
billed
...

Conflict Resolution Architecture

Conflict Resolution Concepts and Architecture 5-25

where the update originated. The DBA_REPPRIORITY view displays the priority level
assigned to each database site.

Site priority can be useful if one site is considered to be more likely to have the most
accurate information. For example, in Figure 5–2 on page 5-24, the new_
york.example.com site (priority value = 2) is corporate headquarters, while the
houston.example.com site (priority value = 1) is an updatable materialized view at
a sales office. Therefore, the headquarters office is considered more likely than the
sales office to have the most accurate information about the credit that can be extended
to each customer.

When you are using site priority alone, convergence with more than one master site is
not guaranteed, but site priority can be a good backup method in a multimaster
environment, especially for breaking latest time stamp ties.

Similar to priority groups, you must complete several preparatory steps before using
the Advanced Replication interface in Oracle Enterprise Manager to select site priority
conflict resolution for a column group.

Target Environments As with priority groups, site priority conflict resolution is
commonly implemented in a work-flow environment. Additionally, when the site
priority conflict resolution method is used in a mass deployment environment (which
is a single master site and any number of materialized views), data convergence can be
guaranteed.

The site priority conflict resolution method is also a good backup conflict resolution
method should a primary conflict resolution method fail in a multimaster
environment.

Support Mechanisms A column must be designated to store site information when a
row is updated. Additionally, you need to create a trigger that populates this site
column with the global name of the updating site when a row is either updated or
inserted. A sample of this trigger is contained in the Oracle Database Advanced
Replication Management API Reference book.

You also need to define the priority of the sites that participate in your replication
environment. This priority definition is required so that Oracle knows how to resolve
a conflict based on the priority of the site that performed the update/insert. The site
priority definitions are stored in a priority group.

Implement Site Priority See the Advanced Replication interface's online Help to learn
how to define a site priority conflict resolution method with the Advanced Replication
interface in Oracle Enterprise Manager.

Note: The priority-group column of the DBA_REPPRIORITY view
shows both the site-priority group and the order-status group.

See Also: Oracle Database Advanced Replication Management API
Reference to learn how to define this type of conflict resolution
method with the replication management API

Conflict Resolution Architecture

5-26 Oracle Database Advanced Replication

Uniqueness Conflicts Resolution Methods
Oracle provides three prebuilt methods for resolving uniqueness conflicts:

■ Append the global site name of the originating site to the column value from the
originating site.

■ Append a generated sequence number to the column value from the originating
site.

■ Discard the row value from the originating site.

The following sections explain each uniqueness conflict resolution method in detail.

Append Site Name
The append site name method works by appending the global database name of the
site originating the transaction to the replicated column value that is generating a
dup_val_on_index exception. Although this method allows the column to be
inserted or updated without violating a unique integrity constraint, it does not provide
any form of convergence between multiple master sites. The resulting discrepancies
must be manually resolved; therefore, this method is meant to be used with some form
of a notification facility.

This method can be useful when the availability of the data is more important than the
complete accuracy of the data. To allow data to be available as soon as it is replicated

■ Select append site name.

■ Use a notification scheme to alert the appropriate person to resolve the
duplication, instead of logging a conflict.

When a uniqueness conflict occurs, the append site name method appends the global
database name of the site originating the transaction to the replicated column value.
The name is appended to the first period (.). For example, houston.example.com
becomes houston.

Append Sequence
The append sequence methods works by appending a generated sequence number to
the column value that is generating a dup_val_on_index exception. Although this

Note: Oracle's prebuilt uniqueness conflict resolution methods do
not actually converge the data in a replication environment; they
simply provide techniques for resolving constraint violations.
When you use one of Oracle's uniqueness conflict resolution
methods, you should also use a notification mechanism to alert you
to uniqueness conflicts when they happen and then manually
converge replicated data, if necessary.

Note: To add unique conflict resolution method for a column, the
name of the unique index on the column must match the name of
the unique or primary key constraint.

Note: Both append site name and append sequence can be used
on character columns only.

Conflict Resolution Architecture

Conflict Resolution Concepts and Architecture 5-27

method allows the column to be inserted or updated without violating a unique
integrity constraint, it does not provide any form of convergence between multiple
master sites. The resulting discrepancies must be manually resolved; therefore, this
method is meant to be used with some form of a notification facility.

This method can be useful when the availability of the data is more important than the
complete accuracy of the data. To allow data to be available as soon as it is replicated:

■ Select append sequence.

■ Use a notification scheme to alert the appropriate person to resolve the
duplication, instead of logging a conflict.

The append sequence method appends a generated sequence number to the column
value. The column value is truncated as needed. If the generated portion of the column
value exceeds the column length, then the conflict method does not resolve the error.

Discard
The discard uniqueness conflict resolution method resolves uniqueness conflicts by
simply discarding the row from the originating site that caused the error. This method
does not guarantees convergence with multiple master sites and should be used with a
notification facility.

Unlike the append methods, the discard uniqueness method minimizes the
propagation of data until data accuracy can be verified.

Delete Conflict Resolution Methods
Oracle does not provide any prebuilt methods for resolving delete conflicts. As
discussed in "Avoiding Delete Conflicts" on page 5-13, you should design your
database and front-end application to avoid delete conflicts. You can achieve this goal
by marking rows for deletion and at regular intervals, using procedural replication to
purge such marked rows.

Send and Compare Old Values
To detect and resolve an update conflict for a row, the propagating site must send a
certain amount of data about the new and old versions of the row to the receiving site.
Depending on your environment, the amount of data that Oracle propagates to
support update conflict detection and resolution can be different.

You can reduce data propagation in some cases by using the DBMS_REPCAT.SEND_
OLD_VALUES procedure and the DBMS_REPCAT.COMPARE_OLD_VALUES procedure
to send old values only if they are needed to detect and resolve conflicts. For example,
the latest time stamp conflict detection and resolution method does not require old

Note: Both append site name and append sequence can be used
on character columns only.

See Also:

■ "Avoiding Delete Conflicts" on page 5-13 to learn how to avoid
encountering delete conflicts

■ Oracle Database Advanced Replication Management API Reference
to learn how to build conflict avoidance into your replication
environment

Conflict Resolution Architecture

5-28 Oracle Database Advanced Replication

values for nonkey and non time stamp columns in a column group if the columns are
guaranteed to be updated whenever the timestamp column is updated.

To further reduce data propagation, execute the following procedures:

DBMS_REPCAT.SEND_OLD_VALUES(
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 { column_list IN VARCHAR2,
 | column_table IN DBMS_UTILITY.VARCHAR2s | DBMS_UTILITY.LNAME_ARRAY,}
 operation IN VARCHAR2 := 'UPDATE',
 send IN BOOLEAN := TRUE);

DBMS_REPCAT.COMPARE_OLD_VALUES(
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 { column_list IN VARCHAR2,
 | column_table IN DBMS_UTILITY.VARCHAR2s | DBMS_UTILITY.LNAME_ARRAY,}
 operation IN VARCHAR2 := 'UPDATE',
 compare IN BOOLEAN := TRUE);

After executing these procedures, you must use the DBMS_REPCAT.GENERATE_
REPLICATION_SUPPORT procedure to generate replication support with min_
communication set to TRUE for this change to take effect.

The specified behavior for old column values is exposed in two columns in the DBA_
REPCOLUMN data dictionary view: COMPARE_OLD_ON_DELETE (Y or N) and
COMPARE_OLD_ON_UPDATE (Y or N).

Send and Compare Example
The following example shows how you can further reduce data propagation by using
these procedures. Consider a table called rsmith.reports with three columns.

Suggestion: Further minimizing propagation of old values is
particularly valuable if you are replicating LOB data types and do
not expect conflicts on these columns.

Note: You must ensure that the appropriate old values are
propagated to detect and resolve anticipated conflicts.
User-supplied conflict resolution procedures must deal properly
with NULL old column values that are transmitted. Using the
SEND_OLD_VALUES and COMPARE_OLD_VALUES procedures to
further reduce data propagation reduces protection against
unexpected conflicts.

Note: The operation parameter enables you to decide whether
or not to transmit old values for nonkey columns when rows are
deleted or when nonkey columns are updated or both. If you do
not send the old value, Oracle sends a NULL in place of the old
value and assumes the old value is equal to the current value of the
column at the target side when the update or delete is applied.

Conflict Resolution Architecture

Conflict Resolution Concepts and Architecture 5-29

Column 1 is the primary key and is in its own column group (column group 1).
Column 2 and column 3 are in a second column group (column group 2).

Figure 5–3 Column Groups and Data Propagation

The conflict resolution strategy for the second column group is site priority. Column 2
is a VARCHAR2 column containing the site name. Column 3 is a LOB column.
Whenever you update the LOB, you must also update column 2 with the global name
of the site at which the update occurs. Because there are no triggers for piecewise
updates to LOBs, you must explicitly update column 2 whenever you do a piecewise
update on the LOB.

Suppose you use the DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT procedure
to generate replication support for rsmith.reports with min_communication set
to TRUE and then use an UPDATE statement to modify column 2 (the site name) and
column 3 (the LOB). The deferred remote procedure call (RPC) contains the new value
of the site name and the new value of the LOB because they were updated. The
deferred RPC also contains the old value of the primary key (column 1), the old value
of the site name (column 2), and the old value of the LOB (column 3).

To ensure that the old value of the LOB is not propagated when either column C2 or
column C3 is updated, make the following calls:

BEGIN
 DBMS_REPCAT.SEND_OLD_VALUES(
 sname => 'rsmith',
 oname => 'reports',
 column_list => 'c3',
 operation => 'UPDATE',
 send => FALSE);
END;
/

BEGIN
 DBMS_REPCAT.COMPARE_OLD_VALUES(
 sname => 'rsmith',
 oname => 'reports',
 column_list => 'c3',
 operation => 'UPDATE',
 compare => FALSE);

Note: The conflict detection and resolution strategy does not
require the old value of the LOB. Only column C2 (the site name) is
required for both conflict detection and resolution. Sending the old
value for the LOB could add significantly to propagation time.

Column 1 Column 2 Column 3

primary
key

site LOB

column
group 1

column
group 2

Conflict Resolution Architecture

5-30 Oracle Database Advanced Replication

END;
/

You must use the DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT procedure to
generate replication support for rsmith.reports with min_communication set to
TRUE for this change to take effect. Suppose you subsequently use an UPDATE
statement to modify column 2 (the site name) and column 3 (the LOB). The deferred
RPC contains the old value of the primary key (column 1), the old and new values of
the site name (column 2), and just the new value of the LOB (column 3). The deferred
RPC contains nulls for the new value of the primary key and the old value of the LOB.

Send and Compare When Using Column Objects
You can specify leaf attributes of a column object when you send and compare old
values if the attributes are not replication key columns. For example, suppose you
create the following cust_address_typ object type.

CREATE TYPE cust_address_typ AS OBJECT
 (street_address VARCHAR2(40),
 postal_code VARCHAR2(10),
 city VARCHAR2(30),
 state_province VARCHAR2(10),
 country_id CHAR(2));
/

You create the customers table using this type as a column object:

CREATE TABLE customers
 (customer_id NUMBER(6),
 cust_first_name VARCHAR2(20),
 cust_last_name VARCHAR2(20),
 cust_address cust_address_typ,
 phone_numbers phone_list_typ);

If you want to send and compare old values for the street_address attribute of the
cust_address_typ type in the customers table, then you run the following
procedures to specify that you do want to send or compare the attribute value:

BEGIN
 DBMS_REPCAT.SEND_OLD_VALUES(
 sname => 'oe',
 oname => 'customers',
 column_list => 'cust_address.street_address', -- object attribute
 operation => 'UPDATE',
 send => TRUE);
END;
/

BEGIN
 DBMS_REPCAT.COMPARE_OLD_VALUES(
 sname => 'oe',
 oname => 'customers',
 column_list => 'cust_address.street_address', -- object attribute
 operation => 'UPDATE',
 compare => TRUE);
END;

Note: Oracle conflict resolution does not support piecewise
updates of LOBs.

Conflict Resolution Architecture

Conflict Resolution Concepts and Architecture 5-31

/

You can also specify that you want to send and compare an entire column object. For
example, the following procedures specify the entire cust_address column object:

BEGIN
 DBMS_REPCAT.SEND_OLD_VALUES(
 sname => 'oe',
 oname => 'customers',
 column_list => 'cust_address', -- entire column object
 operation => 'UPDATE',
 send => TRUE);
END;
/

BEGIN
 DBMS_REPCAT.COMPARE_OLD_VALUES(
 sname => 'oe',
 oname => 'customers',
 column_list => 'cust_address', -- entire column object
 operation => 'UPDATE',
 compare => TRUE);
END;
/

Note: If you have multiple levels of object attributes in one
column object, then you can only specify the final (or leaf) attribute
for the column_list parameter. You cannot specify middle
attributes.

See Also: The Oracle Database Advanced Replication Management
API Reference for details about the DBMS_REPCAT.SEND_OLD_
VALUES procedure and the DBMS_REPCAT.COMPARE_OLD_
VALUES procedure

Conflict Resolution Architecture

5-32 Oracle Database Advanced Replication

Planning Your Replication Environment 6-1

6
Planning Your Replication Environment

Before you begin to plan your replication environment, it is important to understand
the replication concepts and architecture described in the previous chapters of this
book. After you understand replication concepts and architecture, this chapter
presents important considerations for planning a replication environment.

This chapter contains these topics:

■ Considerations for Replicated Tables

■ Initialization Parameters

■ Master Sites and Materialized View Sites

■ Interoperability in an Advanced Replication Environment

■ Guidelines for Scheduled Links

■ Guidelines for Scheduled Purges of a Deferred Transaction Queue

■ Serial and Parallel Propagation

■ Deployment Templates

■ Conflict Resolution

■ Security and Replication

■ Designing for Survivability

Considerations for Replicated Tables
The following sections discuss considerations for tables you plan to use in a replication
environment:

■ Primary Keys and Replicated Tables

■ Foreign Keys and Replicated Tables

■ Data Type Considerations for Replicated Tables

■ Unsupported Table Types

■ Row-Level Dependency Tracking

Primary Keys and Replicated Tables
If possible, each replicated table should have a primary key. Where a primary key is
not possible, each replicated table must have a set of columns that can be used as a
unique identifier for each row of the table. If the tables that you plan to use in your
replication environment do not have a primary key or a set of unique columns, then

Considerations for Replicated Tables

6-2 Oracle Database Advanced Replication

alter these tables accordingly. In addition, if you plan to create any primary key
materialized views based on a master table or master materialized view, then that
master must have a primary key.

Foreign Keys and Replicated Tables
When replicating tables with foreign key referential constraints, Oracle recommends
that you always index foreign key columns and replicate these indexes, unless no
updates and deletes are allowed in the parent table. Indexes are not replicated
automatically. To replicate an index, add it to the master group containing its table
using either the Advanced Replication interface in Oracle Enterprise Manager or the
CREATE_MASTER_REPOBJECT procedure in the DBMS_REPCAT package.

Data Type Considerations for Replicated Tables
Advanced Replication supports the replication of tables and materialized views with
columns that use the following data types:

■ VARCHAR2

■ NVARCHAR2

■ NUMBER

■ DATE

■ TIMESTAMP

■ TIMESTAMP WITH TIME ZONE

■ TIMESTAMP LOCAL TIME ZONE

■ INTERVAL YEAR TO MONTH

■ INTERVAL DAY TO SECOND

■ RAW

■ ROWID

■ CHAR

■ NCHAR

■ CLOB with BASICFILE storage

■ NCLOB with BASICFILE storage

■ BLOB with BASICFILE storage

■ XMLType stored as CLOB

■ User-defined types that do not use type inheritance or type evolution

■ Oracle-supplied types that do not use type inheritance or type evolution

The deferred and synchronous remote procedure call mechanism used for multimaster
replication propagates only the piece-wise changes to the supported LOB data types
when piece-wise updates and appends are applied to these LOB columns. Also, you
cannot reference LOB columns in a WHERE clause of a materialized view's defining
query.

You can replicate tables and materialized views that use user-defined types, including
column objects, object tables, REFs, varrays, and nested tables.

Considerations for Replicated Tables

Planning Your Replication Environment 6-3

Advanced Replication does not support the replication of tables and materialized
views with columns that use the following data types:

■ FLOAT

■ BINARY_FLOAT

■ BINARY_DOUBLE

■ LONG

■ LONG RAW

■ CLOB with SECUREFILE storage

■ NCLOB with SECUREFILE storage

■ BLOB with SECUREFILE storage

■ BFILE

■ XMLType stored object relationally or as binary XML

■ Expression type

■ User-defined types that use type inheritance or type evolution

■ Oracle-supplied types that use type inheritance or type evolution

For Advanced Replication support, you should convert LONG data types to LOBs with
BASICFILE storage.

Oracle also does not support the replication of UROWID columns in master tables or
updatable materialized views. However, UROWID columns are allowed in read-only
materialized views.

Unsupported Table Types
Advanced Replication does not support the replication of the following types of tables
and does not support materialized views based on these types of tables:

■ Tables that have been compressed with the table compression feature

■ Tables with columns that have been encrypted using transparent data encryption

■ Tables with virtual columns

■ Temporary tables

■ Tables in a flashback data archive

■ Tables stored using Oracle Automatic Storage Management (ASM)

See Also:

■ Oracle Database Advanced Replication Management API Reference
for information about converting a LONG column into a LOB
column in a replicated table

■ Oracle Database SQL Language Reference for information about
data types

Initialization Parameters

6-4 Oracle Database Advanced Replication

Row-Level Dependency Tracking
When you create a table, you can specify the following options for tracking system
change numbers (SCNs):

■ NOROWDEPENDENCIES, the default, specifies that the SCN is tracked at the data
block level.

■ ROWDEPENDENCIES specifies that the SCN is tracked for each row in the table.

Using the ROWDEPENDENCIES option improves performance and scalability when
using parallel propagation, but this option also requires six bytes of additional storage
space for each row.

The following SQL statement creates a table with the ROWDEPENDENCIES option:

CREATE TABLE order_items
 (order_id NUMBER(12),
 line_item_id NUMBER(3) NOT NULL,
 product_id NUMBER(6) NOT NULL,
 unit_price NUMBER(8,2),
 quantity NUMBER(8)
) ROWDEPENDENCIES;

Oracle tracks the SCN for each row in this order_items table. You can also use the
ROWDEPENDENCIES option in a CREATE CLUSTER statement if your tables are part of
a cluster.

Initialization Parameters
Table 6–1 lists initialization parameters that are important for the operation, reliability,
and performance of a replication environment. This table specifies whether each
parameter is modifiable. A modifiable initialization parameter can be modified using
the ALTER SYSTEM statement while an instance is running. Some of the modifiable
parameters can also be modified for a single session using the ALTER SESSION
statement.

See Also: "Data Propagation Dependency Maintenance" on
page 2-38 for more information about the ROWDEPENDENCIES
option

Initialization Parameters

Planning Your Replication Environment 6-5

Table 6–1 Initialization Parameters Important for Advanced Replication

Parameter Values Description Recommendation

GLOBAL_NAMES Default: false

Range: true or false

Modifiable?: Yes

Specifies whether a
database link is
required to have the
same name as the
database to which it
connects.

GLOBAL_NAMES must
be set to true at each
database that is
participating in your
replication
environment, including
both master sites and
materialized view sites.

JOB_QUEUE_PROCESSES Default: 1000

Range: 0 to 1000

Modifiable?: Yes

Specifies the number
of Jn job slaves for
each instance (J000
... J999). Job slaves
handle requests
created by DBMS_JOB.

When JOB_QUEUE_
PROCESSES is set to 0
at a site, you must
apply administrative
requests manually for
all groups at the site,
and you must
manually push and
purge the deferred
transaction queue.

This parameter should
either be unset or set to
at least 1. If it is set,
then it should be set to
the same value as the
maximum number of
jobs that can run
simultaneously plus
one.

MEMORY_MAX_TARGET Default: 0

Range: 0 to the physical
memory size available to the
Oracle Database

Modifiable?: No

Specifies the
maximum
system-wide usable
memory for the
Oracle database.

If the MEMORY_TARGET
parameter is set to a
nonzero value, then set
this parameter to a
large nonzero value if
you need to specify the
maximum memory
usage of the Oracle
database.

MEMORY_TARGET Default: 0

Range: 152 MB to MEMORY_
MAX_TARGET setting

Modifiable?: Yes

Specifies the
system-wide usable
memory for the
Oracle database.

Oracle recommends
enabling the autotuning
of the memory usage of
the Oracle database by
setting MEMORY_
TARGET to a large
nonzero value (if this
parameter is supported
on your platform).

OPEN_LINKS Default: 4

Range: 0 to 255

Modifiable?: No

Specifies the
maximum number of
concurrent open
connections to remote
databases in one
session. These
connections include
the schema objects
called database links,
as well as external
procedures and
cartridges, each of
which uses a separate
process.

If you are using
synchronous
replication, OPEN_
LINKS must be set to at
least the number of
master sites. For
example, an
environment with five
master sites requires
that OPEN_LINKS be
set to at least 5.

Initialization Parameters

6-6 Oracle Database Advanced Replication

PARALLEL_MAX_SERVERS Default: Derived
automatically

Range: 0 to 3600

Modifiable?: Yes

Specifies the
maximum number of
parallel execution
processes and parallel
recovery processes for
an instance. As
demand increases,
Oracle increases the
number of processes
from the number
created at instance
startup up to this
value.

If you use parallel
propagation, then
ensure that the value of
this parameter is set
high enough to support
it.

PARALLEL_MIN_SERVERS Default: 0

Range: 0 to value of
PARALLEL_MAX_SERVERS

Modifiable?: Yes

Specifies the
minimum number of
parallel execution
processes for the
instance. This value is
the number of parallel
execution processes
Oracle creates when
the instance is started.

If you use parallel
propagation, then
ensure that you have at
least one process for
each stream.

PROCESSES Default: 100

Range: 6 to operating system
dependent limit

Modifiable?: No

Specifies the
maximum number of
operating system user
processes that can
simultaneously
connect to Oracle.

Ensure that the value of
this parameter allows
for all background
processes, such as
locks, job slaves, and
parallel execution
processes.

REPLICATION_DEPENDENCY_TRACKING Default: true

Range: true or false

Modifiable?: No

Enables or disables
dependency tracking
for read/write
operations to the
database. Dependency
tracking is essential
for propagating
changes in a
replication
environment in
parallel.

true: Enables
dependency tracking.

false: Allows
read/write operations
to the database to run
faster, but does not
produce dependency
information for Oracle
to perform parallel
propagation.

Typically, specify true.
Do not specify false
unless you are sure that
your application will
perform no read/write
operations to the
replicated tables.

Table 6–1 (Cont.) Initialization Parameters Important for Advanced Replication

Parameter Values Description Recommendation

Master Sites and Materialized View Sites

Planning Your Replication Environment 6-7

Master Sites and Materialized View Sites
When you are planning your replication environment, you need to decide whether the
sites participating in the replication environment will be master sites or materialized
view sites. Consider the characteristics and advantages of both types of replication
sites when you are deciding whether a particular site in your replication environment
should be a master site or a materialized view site. One replication environment can
support both master sites and materialized view sites.

SGA_TARGET Default: 0

Range: 64 MB to operating
system dependent limit

Modifiable?: Yes

Specifies the total size
of all SGA
components.

If MEMORY_MAX_
TARGET and MEMORY_
TARGET are set to 0
(zero), then Oracle
recommends enabling
the autotuning of SGA
memory by setting
SGA_TARGET to a large
nonzero value.

SHARED_POOL_SIZE Default: 0

If SGA_TARGET is set to a
nonzero value: If the
parameter is not specified,
then the default is 0
(internally determined by the
Oracle database). If the
parameter is specified, then
the user-specified value
indicates a minimum value
for the memory pool.

If SGA_TARGET is not set
(32-bit platforms): 64 MB,
rounded up to the nearest
granule size

If SGA_TARGET is not set
(64-bit platforms): 128 MB,
rounded up to the nearest
granule size

Range: The granule size to
operating system-dependent
limit

Modifiable?: Yes

Specifies in bytes the
size of the shared
pool. The shared pool
contains shared
cursors, stored
procedures, control
structures, and other
structures. Larger
values improve
performance in
multiuser systems.
Smaller values use
less memory.

Typically, the shared
pool should be larger
for an Oracle database
in a replication
environment than in a
nonreplication
environment.

You can monitor
utilization of the shared
pool by querying the
view V$SGASTAT.

See Also:

■ Oracle Database Reference for more information about these
initialization parameters

■ Oracle Database Administrator's Guide for more information
about the MEMORY_TARGET, MEMORY_MAX_TARGET, and SGA_
TARGET parameters

Table 6–1 (Cont.) Initialization Parameters Important for Advanced Replication

Parameter Values Description Recommendation

Master Sites and Materialized View Sites

6-8 Oracle Database Advanced Replication

Advantages of Master Sites
Master sites have the following advantages:

■ Support for highly available data access by remote sites

■ Provide better support for frequent data manipulation language (DML) changes
because changes are propagated automatically and, typically, at short intervals

■ Allow simultaneous DML changes and data propagation without locking tables

■ Can provide failover protection

To set up a master site, use either the Advanced Replication interface's Configure
Master Sites for Replication Wizard or the replication management API.

Advantages of Materialized View Sites
Materialized view sites have the following advantages:

■ Support disconnected computing

■ Can contain a subset of its master site's or master materialized view site's data

To set up a materialized view site, you can use either the Advanced Replication
interface's Configure Master and Materialized View Sites for Replication Wizard or the
replication management API.

Table 6–2 Characteristics of Master Sites and Materialized View Sites

Master Sites Materialized View Sites

Typically communicate with a small number
of other master sites, and might
communicate with a large number of
materialized view sites

Communicate with one master site or one
master materialized view site

Contain large amounts of data that are full
copies of the other master sites' data

Contain small amounts of data that can be
subsets of the master site's or master
materialized view site's data

Typically communicate continuously with
short intervals between data propagation

Communicate periodically with longer
intervals between bulk data transfers

See Also:

■ The Advanced Replication interface's online Help for
instructions on using the Configure Master Sites for Replication
Wizard to set up master sites in Oracle Enterprise Manager

■ The Oracle Database Advanced Replication Management API
Reference for instructions on using the replication management
API to set up a master site

■ "Designing for Survivability" on page 6-24 for information
about designing your replication environment for failover
protection

Master Sites and Materialized View Sites

Planning Your Replication Environment 6-9

Preparing for Materialized Views
Most problems encountered with materialized view replication result from not
preparing the environment properly. There are four essential tasks that you must
perform before you begin creating your materialized view environment:

■ Create the necessary schema.

■ Create the necessary database links.

■ Assign the appropriate privileges.

■ Allocate sufficient job processes.

The Advanced Replication interface's Configure Master and Materialized View Sites
for Replication Wizard automatically performs these tasks. The following discussion is
provided to help you understand the replication environment and to help those who
use the replication management API. After running Setup Wizard, create the necessary
materialized view logs. See the Advanced Replication interface's online Help in Oracle
Enterprise Manager for instructions on using the interface to set up your materialized
view site.

If you are not able to use the Advanced Replication interface, then review the "Set Up
Materialized View Sites" section in Chapter 2 of the Oracle Database Advanced
Replication Management API Reference for detailed instructions on setting up your
materialized view site using the replication management API.

The following sections describe what the Advanced Replication interface's Configure
Master and Materialized View Sites for Replication Wizard or the script in the Oracle
Database Advanced Replication Management API Reference does to set up your
materialized view site.

Create Materialized View Site Users
Each materialized view site needs several users to perform the administrative and
refreshing activities at the materialized view site. You must create and grant the
necessary privileges to the materialized view administrator and to the refresher.

Create Master Site Users
You need equivalent proxy users at the target master site to perform tasks on behalf of
the materialized view site users. Usually, a proxy materialized view administrator and
a proxy refresher are created.

See Also:

■ The Advanced Replication interface's online Help for
instructions on using the Configure Materialized View Sites for
Replication Wizard to set up materialized view sites in Oracle
Enterprise Manager

■ Oracle Database Advanced Replication Management API Reference
for instructions on using the replication management API to set
up a materialized view site

See Also: "Creating a Materialized View Log" on page 6-12

Master Sites and Materialized View Sites

6-10 Oracle Database Advanced Replication

Create Schemas at Materialized View Site
A schema containing a materialized view in a remote database must correspond to the
schema that contains the master table in the master database. Therefore, identify the
schemas that contain the master tables that you want to replicate with materialized
views. After you have identified the target schemas at the master database, create the
corresponding accounts with the same names at the remote database. For example, if
all master tables are in the sales schema of the ny.example.com database, then
create a corresponding sales schema in the materialized view database
sf.example.com.

Create Database Links
The defining query of a materialized view can use one or more database links to
reference remote table data. Before creating materialized views, the database links you
plan to use must be available. Furthermore, the account that a database link uses to
access a remote database defines the security context under which Oracle creates and
subsequently refreshes a materialized view.

To ensure proper behavior, a materialized view's defining query must use a database
link that includes an embedded user name and password in its definition; you cannot
use a public database link when creating a materialized view. A database link with an
embedded name and password always establishes connections to the remote database
using the specified account. Additionally, the remote account that the link uses must
have the SELECT privileges necessary to access the data referenced in the materialized
view's defining query.

Before creating your materialized views, you need to create several administrative
database links. Specifically, you should create a PUBLIC database link from the
materialized view site to the master site. Doing so makes defining your private
database links easier because you do not need to include the USING clause in each
link. You also need private database links from the materialized view administrator to
the proxy administrator and from the propagator to the receiver, but, if you use the
Advanced Replication interface's Configure Master and Materialized View Sites for
Replication Wizard, then these database links are created for you automatically.

After the administrative database links have been created, a private database link must
be created connecting each replicated materialized view schema at the materialized
view database to the corresponding schema at the master database. Be sure to embed
the associated master database account information in each private database link at the
materialized view database. For example, the hr schema at a materialized view
database should have a private database link to the master database that connects
using the hr user name and password.

See Also: If you are reviewing the steps in Oracle Database
Advanced Replication Management API Reference, then the necessary
schemas are created as part of the script described in the
instructions for creating a materialized view group

See Also: The information about security options in Oracle
Database Advanced Replication Management API Reference for more
information

Master Sites and Materialized View Sites

Planning Your Replication Environment 6-11

Figure 6–1 Recommended Schema and Database Link Configuration

For multimaster replication, there must be no Virtual Private Database (VPD)
restrictions on the replication propagator and receiver schemas. For materialized
views, the defining query for the materialized view cannot be modified by VPD. VPD
must return a NULL policy for the schema that performs both the create and refresh of
the materialized view. Creating a remote materialized view with a non-NULL VPD
policy will not generate an error but might yield incorrect results.

Assign Privileges
Both the creator and the owner of the materialized view must be able to issue the
defining SELECT statement of the materialized view. The owner is the schema that
contains the materialized view. If a user other than the replication or materialized
view administrator creates the materialized view, then that user must have the
CREATE MATERIALIZED VIEW privilege and the appropriate SELECT privileges to
execute the defining SELECT statement.

Schedule Purge at Master Site
To keep the size of the deferred transaction queues in check, schedule a purge
operation to remove all successfully completed deferred transactions from the

See Also:

■ Oracle Database Administrator's Guide for more information
about database links

■ Oracle Database Security Guide for more information about VPD

■ Oracle Label Security Administrator's Guide for information about
Advanced Replication and Oracle Label Security

See Also: If you are reviewing the steps in Oracle Database
Advanced Replication Management API Reference, then the necessary
privileges are granted as part of the script described in instructions
for creating a materialized view group. Privilege requirements are
also described in "Required Privileges for Materialized View
Operations" on page 3-10

Materialized
View

Database

Master
Database

Database Link
SnapshotsMaterialized
Views

SnapshotsMaster
Tables

SnapshotsSnapshotsMaster
Tables

CONNECT TO hr
INDENTIFIED BY . . .

CONNECT TO oe
IDENTIFIED BY . . .

Database Link

Snapshots
SnapshotsMaterialized
Views

hr Schema hr Schema

oe Schemaoe Schema

Master Sites and Materialized View Sites

6-12 Oracle Database Advanced Replication

deferred transaction queue. This operation might have already been performed at the
master site. Scheduling the purge operation again does not harm the master site, but
might change the purge scheduling characteristics.

Schedule Push
Scheduling a push at the materialized view site automatically propagates the deferred
transactions at the materialized view site to the associated target master site using a
database link. These types of database links are called scheduled links. Typically, there
is only a single scheduled link for each materialized view group at a materialized view
site, because a materialized view group only has a single target master site.

Allocate Job Slaves
It is important that you have allocated sufficient job slaves to handle the automation of
your replication environment. The job slaves automatically propagate the deferred
transaction queue, purge the deferred transaction queue, refresh materialized views,
and so on.

For multimaster replication, each site has a scheduled link to each of the other master
sites. For example, if you have six master sites, then each site has scheduled links to
the other five sites. You typically need one process for each scheduled link. You might
also want to add additional job processes for purging the deferred transaction queue
and other user-defined jobs.

By the nature of materialized view replication, each materialized view site typically
has one scheduled link to the master database and requires at least one job process.
Materialized view sites typically require between one and three job processes,
depending on purge scheduling, user-defined jobs, and the scheduled link. Also, you
need at least one job slave for each degree of parallelism.

Alternatively, if your users are responsible for manually refreshing the materialized
view through an application interface, then you do not need to create a scheduled link
and your materialized view site requires one less job process.

The job slaves are defined using the JOB_QUEUE_PROCESSES initialization parameter
in the initialization parameter file for your database. This initialization parameter is
modifiable. Therefore, you can modify it while an instance is running. Oracle
automatically determines the interval for job slaves. That is, Oracle determines when
the job slaves should "wake up" to execute jobs.

Creating a Materialized View Log
Before creating materialized view groups and materialized views for a remote
materialized view site, ensure that you create the necessary materialized view logs at
the master site or master materialized view site. A materialized view log is necessary
for every master table or master materialized view that supports at least one
materialized view with fast refreshes.

To create a materialized view log, you need the following privileges:

■ CREATE ANY TABLE

■ CREATE ANY TRIGGER

■ SELECT (on the materialized view log's master)

■ COMMENT ANY TABLE

See Also: "Initialization Parameters" on page 6-4 and the Oracle
Database Reference for information about JOB_QUEUE_PROCESSES

Master Sites and Materialized View Sites

Planning Your Replication Environment 6-13

Logging Columns in the Materialized View Log
When you create a materialized view log, you can add columns to the log when
necessary. To perform a fast refresh on a materialized view, the following types of
columns must be added to the materialized view log:

■ A column referenced in the WHERE clause of a subquery that is not part of an
equi-join and is not a primary key column. These columns are called filter
columns.

■ A column in an equi-join that is not a primary key column, if the subquery is
either many to many or one to many. If the subquery is many to one, then you do
not need to add the join column to the materialized view log.

A collection column cannot be added to a materialized view log. Also, materialized
view logs are not required for materialized views that use complete refresh.

For example, consider the following DDL:

1) CREATE MATERIALIZED VIEW oe.customers REFRESH FAST AS
2) SELECT * FROM oe.customers@orc1.example.com c
3) WHERE EXISTS
4) (SELECT * FROM oe.orders@orc1.example.com o
5) WHERE c.customer_id = o.customer_id AND o.order_total > 20000);

Notice in line 5 of the preceding DDL that three columns are referenced in the WHERE
clause. Columns orders.customer_id and customers.customer_id are
referenced as part of the equi-join clause. Because customers.customer_id is a
primary key column, it is logged by default, but orders.customer_id is not a
primary key column and so must be added to the materialized view log. Also, the
column orders.order_total is an additional filter column and so must be logged.

Therefore, add orders.customer_id and orders.order_total the materialized
view log for the oe.orders table.

To create the materialized view log with these columns added, issue the following
statement:

CREATE MATERIALIZED VIEW LOG ON oe.orders
 WITH PRIMARY KEY (customer_id,order_total);

If a materialized view log already exists on the oe.customers table, you can add
these columns by issuing the following statement:

ALTER MATERIALIZED VIEW LOG ON oe.orders ADD (customer_id,order_total);

If you are using user-defined data types, then the attributes of column objects can be
logged in the materialized view log. For example, the oe.customers table has the
cust_address.postal_code attribute, which can be logged in the materialized
view log by issuing the following statement:

ALTER MATERIALIZED VIEW LOG ON oe.customers ADD (cust_address.postal_code);

You are encouraged to analyze the defining queries of your planned materialized
views and identify which columns must be added to your materialized view logs. If
you try to create or refresh a materialized view that requires an added column without

See Also: The Advanced Replication interface's online Help for
detailed information about creating materialized view logs at the
master site or master materialized view site with the Advanced
Replication interface in Oracle Enterprise Manager.

Master Sites and Materialized View Sites

6-14 Oracle Database Advanced Replication

adding the column to the materialized view log, then your materialized view creation
or refresh might fail.

Creating a Materialized View Environment
Materialized view environments can be created in several different ways and from
several different locations. In most cases, you should use deployment templates at the
master site to locally precreate a materialized view environment that will be
individually deployed to the target materialized view site.

You can also individually create the materialized view environment by establishing a
connection to the materialized view site and building the materialized view
environment directly.

Creating a Materialized View Environment Using the Replication
Management Interface
See the Advanced Replication interface's online Help in Oracle Enterprise Manager for
information about using deployment templates to centrally create a materialized view
environment using the Advanced Replication interface.

See the Advanced Replication interface's online Help in Enterprise Manager for
information about individually creating the materialized view environment with a
direct connection to the remote materialized view site using the Advanced Replication
interface.

Note: To perform a fast refresh on a materialized view, you must
add join columns in subqueries to the materialized view log if the
join column is not a primary key and the subquery is either many
to many or one to many. If the subquery is many to one, then you
do not need to add the join column to the materialized view log.

See Also:

■ "Data Subsetting with Materialized Views" on page 3-12 for
information about materialized views with subqueries

■ "Restrictions for Materialized Views with Subqueries" on
page 3-19 for additional information about materialized views
with subqueries

■ "Creating a Materialized View Log" on page 6-12 for
information about creating a materialized view log

Master Sites and Materialized View Sites

Planning Your Replication Environment 6-15

Figure 6–2 Flowchart for Creating Materialized Views

Creating a Materialized View Environment Using the Replication Management API
The instructions for creating a deployment template in the Oracle Database Advanced
Replication Management API Reference manual for information about using deployment
templates to centrally precreate a materialized view environment using the replication
management API.

The instructions for creating a materialized view group the Oracle Database Advanced
Replication Management API Reference manual for information about individually
creating the materialized view environment with a direct connection to the remote
materialized view site using the replication management API.

Avoiding Problems When Adding a New Materialized View Site
After you have created a materialized view environment with one or more
materialized view sites, you might need to add new materialized view sites. You
might encounter problems when you try to perform a fast refresh on the materialized
views you create at a new materialized view site if both of the following conditions are
true:

■ Materialized views at the new materialized view site and existing materialized
views at other materialized view sites are based on the same master table or
master materialized view.

■ Existing materialized views can be refreshed while you create the new
materialized views at the new materialized view site.

The problem arises when the materialized view logs for the masters are purged before
a new materialized view can perform its first fast refresh. If this happens and you try
to perform a fast refresh on the materialized views at the new materialized view site,
then you might encounter the following errors:

Deployment
Template

Type
of materialized
view creation

Start
Create materialized
view logs at
master site

Set up materialized
view site

End

Create
deployment
template

Package
template and
distribute

Instantiate template
at materialized
view site

Connect to remote
materialized
view site

Create materialized
views

Individually

Interoperability in an Advanced Replication Environment

6-16 Oracle Database Advanced Replication

ORA-12004 REFRESH FAST cannot be used for materialized view materialized_view_name
ORA-12034 materialized view log on materialized_view_name younger than last
refresh

If you receive these errors, then the only solution is to perform a complete refresh of
the new materialized view.

To avoid this problem, choose one of the following options:

■ Use deployment templates to create the materialized view environment at
materialized view sites. You will not encounter this problem if you use
deployment templates.

■ Create a dummy materialized view at the new materialized view site before you
create your production materialized views. The dummy materialized view ensures
that the materialized view log will not be purged while your production
materialized views are being created.

If you choose to create a dummy materialized view at the materialized view site,
complete the following steps:

1. Create a dummy materialized view called dummy_mview based on the master
table or master materialized view. For example, to create a dummy materialized
view based on a master table named sales, issue the following statement at the
new materialized view site:

CREATE MATERIALIZED VIEW dummy_mview REFRESH FAST AS
 SELECT * FROM pr.sales@orc1.example.com WHERE 1=0;

2. Create your production materialized views at the new materialized view site.

3. Perform fast refresh of your production materialized views at the new
materialized view site.

4. Drop the dummy materialized view.

Interoperability in an Advanced Replication Environment
If you plan to configure an Advanced Replication environment that involves different
releases of Oracle Database at different replication sites, then your environment must
meet the following requirements:

■ Oracle Database 11g master sites can only interact with Oracle9i Release 2 (9.2) or
later master sites.

■ Oracle Database 11g materialized view sites can only interact with Oracle9i
Release 2 (9.2) or later master sites.

■ Oracle Database 11g master sites can only interact with Oracle9i Release 2 (9.2) or
later materialized view sites.

See Also: Chapter 4, "Deployment Templates Concepts and
Architecture" for information about deployment templates

See Also: "Replication Support for Unicode" on page B-5 for
information about interoperability in Advanced Replication
environments that use NCHAR or NVARCHAR data types

Guidelines for Scheduled Links

Planning Your Replication Environment 6-17

Guidelines for Scheduled Links
A scheduled link determines how a master site propagates its deferred transaction
queue to another master site, or how a materialized view site propagates its deferred
transaction queue to its master site or master materialized view site. When you create
a scheduled link, Oracle creates a job in the local job queue to push the deferred
transaction queue to another site in the system. When Oracle propagates deferred
transactions to a remote master site, it does so within the security context of the
replication propagator.

You can configure a scheduled link to push information using serial or parallel
propagation. In general, you should use parallel propagation, even if you set the
parallelism parameter to 1.

Before creating the scheduled links for a replication environment, carefully consider
how you want replication to occur globally throughout the system. For example, you
can choose to propagate deferred transactions at intervals, with time in between these
intervals when the deferred transactions are not propagated. In this case, you must
decide how often and when to schedule pushes. Alternatively, if you want to simulate
real-time (or synchronous) replication, then you might want to have each scheduled
link continuously push a master site's deferred transaction queue to its destination.

Also, you might want to schedule pushes at a time of the day when connectivity is
guaranteed or when communications costs are lowest, such as during evening hours.
Furthermore, you might want to stagger the scheduling for links among all master
sites to distribute the load that replication places on network resources.

Scheduling Periodic Pushes
You can schedule periodic intervals between pushes of a site's deferred transaction
queue to a remote destination. Examples of periodic intervals are once an hour or once
a day. To do so, you can use the DBMS_DEFER_SYS.SCHEDULE_PUSH procedure and
specify the settings shown in Table 6–3.

You can also use the Advanced Replication interface in Oracle Enterprise Manager to
schedule periodic pushes. To do so, set delay seconds to 0 (zero) when configuring a
scheduled link.

Then configure the interval (the "then push every" control) to push the deferred
transaction queue periodically.

The following is an example that schedules a periodic push once an hour:

BEGIN
 DBMS_DEFER_SYS.SCHEDULE_PUSH (
 destination => 'orc2.example.com',
 interval => 'SYSDATE + (1/24)',
 next_date => SYSDATE,

See Also: "Serial and Parallel Propagation" on page 6-21 for more
information about issues related to serial and parallel propagation

Table 6–3 Settings to Schedule Periodic Pushes

SCHEDULE_PUSH Procedure Parameter Value

delay_seconds 0

interval An appropriate date expression; for
example, to specify an interval of one
hour, use 'sysdate + 1/24'

Guidelines for Scheduled Links

6-18 Oracle Database Advanced Replication

 delay_seconds => 0);
END;
/

Scheduling Continuous Pushes
Even when using Oracle's asynchronous replication mechanisms, you can configure a
scheduled link to simulate continuous, real-time replication. To do so, use the DBMS_
DEFER_SYS.SCHEDULE_PUSH procedure and specify the settings shown in Table 6–4.

With this configuration, Oracle continues to push transactions that enter the deferred
transaction queue for the duration of the entire interval. If the deferred transaction
queue has no transactions to propagate for the amount of time specified by the
delay_seconds parameter, then Oracle releases the resources used by the job and
starts fresh when the next job slave becomes available.

If you are using serial propagation by setting the parallelism parameter to 0 (zero),
then you can simulate continuous push by reducing the settings of the delay_
seconds and interval parameters to an appropriate value for your environment.
However, if you are using serial propagation, simulating continuous push is costly
when the push job must initiate often.

The following is an example that simulates continual pushes:

BEGIN
 DBMS_DEFER_SYS.SCHEDULE_PUSH (
 destination => 'orc2.example.com',
 interval => 'SYSDATE + (1/144)',
 next_date => SYSDATE,
 parallelism => 1,
 execution_seconds => 1500,
 delay_seconds => 1200);
END;
/

See Also:

■ "Delay Seconds" on page 2-36 for more information about
setting delay seconds

■ Oracle Database Advanced Replication Management API Reference
for information about the DBMS_DEFER_SYS.SCHEDULE_
PUSH procedure

■ The Advanced Replication interface online Help for
information about using this interface in Enterprise Manager

Table 6–4 Settings to Simulate Continuous Push

SCHEDULE_PUSH Procedure Parameter Value

delay_seconds 1200

interval Lower than the delay_seconds setting

parallelism 1 or higher

execution_seconds Higher than the delay_seconds setting

Guidelines for Scheduled Purges of a Deferred Transaction Queue

Planning Your Replication Environment 6-19

Guidelines for Scheduled Purges of a Deferred Transaction Queue
A scheduled purge determines how a master site or materialized view site purges
applied transactions from its deferred transaction queue. When you use a
configuration wizard in the Advanced Replication interface in Oracle Enterprise
Manager to set up a master site or materialized view site, Oracle creates a job in each
site's local job queue to purge the local deferred transaction queue on a regular basis.
Carefully consider how you want purging to occur before configuring the sites in a
replication environment. For example, consider the following options:

■ You can synchronize the pushing and purging of a site's deferred transaction
queue. For example, you can configure continuous pushing and purging of the
transaction queue. This type of configuration can offer performance advantages
because it is likely that information about recently pushed transactions is already
in the server's buffer cache for the corresponding purge operation.

■ When a server is not CPU bound, you can schedule continuous purging of the
deferred transaction queue to keep the size of the queue as small as possible.

■ For servers that experience a high-volume of transaction throughput during
normal business hours, you can schedule purges to occur during off-peak hours if
you can store an entire day's deferred transactions.

Scheduling Periodic Purges
You can schedule periodic purges of a site's deferred transaction queue. Examples of
periodic purges are purges that occur once a day or once a week. To do so, you can use
the DBMS_DEFER_SYS.SCHEDULE_PURGE procedure and specify the settings shown
in Table 6–5.

You can also use the Advanced Replication interface in Oracle Enterprise Manager to
schedule periodic purges. To do so, set delay seconds to 0 (zero). Then configure the
interval (the "then purge every" control) to purge the deferred transaction queue.

The following is an example that schedules a periodic purge once a day:

See Also:

■ "Delay Seconds" on page 2-36 for more information about
setting delay seconds

■ "Serial and Parallel Propagation" on page 6-21 for more
information about issues related to serial and parallel
propagation

■ Oracle Database Advanced Replication Management API Reference
for information about the DBMS_DEFER_SYS.SCHEDULE_
PUSH procedure

Table 6–5 Settings to Schedule Periodic Purges

SCHEDULE_PURGE Procedure Parameter Value

delay_seconds 0

interval An appropriate date expression; for
example, to specify an interval of one day,
use 'sysdate + 1'

Guidelines for Scheduled Purges of a Deferred Transaction Queue

6-20 Oracle Database Advanced Replication

BEGIN
 DBMS_DEFER_SYS.SCHEDULE_PURGE (
 next_date => SYSDATE,
 interval => 'SYSDATE + 1',
 delay_seconds => 0);
END;
/

Scheduling Continuous Purges
To configure continuous purging of a site's deferred transaction queue, you can use
the DBMS_DEFER_SYS.SCHEDULE_PURGE procedure and specify the settings shown
in Table 6–6.

You can also use the Advanced Replication interface to configure continuous purge.
To do so, on the Purge Schedule page, set Delay Seconds to 500,000 and set interval
(the Every field) to a value less than the Delay Seconds setting.

The following is an example that simulates continuous purges:

BEGIN
 DBMS_DEFER_SYS.SCHEDULE_PURGE (
 next_date => SYSDATE,
 interval => 'SYSDATE + (1/144)',
 purge_method => dbms_defer_sys.purge_method_quick,
 delay_seconds => 500000);
END;
/

See Also:

■ Oracle Database Advanced Replication Management API Reference
for information about the DBMS_DEFER_SYS.SCHEDULE_
PURGE procedure

■ The Advanced Replication interface online Help for
information about using this interface in Enterprise Manager

Table 6–6 Settings to Schedule Continuous Purges

SCHEDULE_PURGE
Procedure Parameter Value

delay_seconds 500000

interval Lower than the delay_seconds setting

purge_method dbms_defer_sys.purge_method_quick setting

See Also:

■ "Delay Seconds" on page 2-36 for more information about
setting delay seconds

■ Oracle Database Advanced Replication Management API Reference
for information about the DBMS_DEFER_SYS.SCHEDULE_
PURGE procedure

■ The Advanced Replication interface online Help for
information about using this interface in Enterprise Manager

Deployment Templates

Planning Your Replication Environment 6-21

Serial and Parallel Propagation
When you create the scheduled links for a replication environment, each link can
asynchronously propagate changes to a destination using either serial or parallel
propagation. Before you configure your replication environment, decide whether you
want to use serial propagation or parallel propagation.

■ With serial propagation, Oracle propagates replicated transactions one at a time in
the same order that they are committed on the source system. To configure a
scheduled link with serial propagation, set the parallelism parameter to 0
(zero) in the DBMS_DEFER_SYS.SCHEDULE_PUSH procedure. Or, using the
Advanced Replication interface in Oracle Enterprise Manager, set the Propagation
Processes control to 0 (zero) in the Edit Push Schedule page.

■ With parallel propagation, Oracle propagates replicated transactions using
multiple parallel streams for higher throughput. When necessary, Oracle orders
the execution of dependent transactions to preserve data integrity. To configure a
scheduled link with parallel propagation, set the parallelism parameter to 1 or
higher in the DBMS_DEFER_SYS.SCHEDULE_PUSH procedure. Or, using the
Advanced Replication interface in Oracle Enterprise Manager, set the Propagation
Processes control to 1 or higher in the Edit Push Schedule page. Typically, you
should use parallel propagation.

Deployment Templates
If you plan to include materialized view sites in your replication environment, then
consider using deployment templates to create the replicated objects at the
materialized view sites.

Preparing Materialized View Sites for Instantiation of Deployment Templates
If you decide to use deployment templates, then you need to prepare your
materialized view sites for instantiation. If a deployment template has been designed
well, then little preparation is necessary at the remote materialized view site. This
section describes the most common preparations that must be performed at the remote
materialized view site. After any required preparations have been completed, you are
ready to perform either an online or offline instantiation.

Use the following questions to assess which actions are necessary to prepare the
remote materialized view site for instantiation:

■ Does the remote materialized view site have network connectivity to the target
master site?

■ Does the materialized view site have an Oracle9i Release 2 (9.2) or later database?

See Also:

■ "Parallel Propagation" on page 2-33

■ Oracle Database Advanced Replication Management API Reference
for information about the DBMS_DEFER_SYS package

■ The Advanced Replication interface online Help for
information about using this interface in Enterprise Manager

See Also: Chapter 4, "Deployment Templates Concepts and
Architecture" for information about deployment templates

Deployment Templates

6-22 Oracle Database Advanced Replication

■ Has the remote materialized view site been set up to support materialized view
replication?

■ Do the schemas required by the deployment template exist at the materialized
view site?

■ If required database links are not part of the deployment template, then do the
required database links from the materialized view site to the master site exist?

■ Will you use online instantiation or offline instantiation to instantiate the
deployment template at the materialized view sites?

■ Do the rollback segments that might be required by the deployment template exist
at the materialized view site and are they online?

The following sections provide guidance for the issues raised by each of these
questions.

Network Connectivity
As with all replication environments, network connectivity is a key component in
Advanced Replication. Verify that the remote materialized view site has a proper
Oracle Net connection to the target master site.

Database Version
The materialized view site must have an Oracle9i Release 2 (9.2) or later database to
work with Oracle Database 11g. If your materialized view site does not meet the
database version requirements, then you need to upgrade your database at the
materialized view site before instantiating a deployment template.

Materialized View Site Setup
Each materialized view site needs several users that have special privileges to support
a materialized view site. In addition to having the administrative privileges, these
users also participate in the propagation and refreshing of data.

Materialized view site setup also includes scheduling several automated jobs to handle
the automatic refreshing of the materialized view (optional) and the purging of the
deferred transaction queue.

You can set up your materialized view site with:

■ Advanced Replication Interface: You can connect to the remote materialized view
site with the Advanced Replication interface and use the Configure Master and
Materialized View Sites for Replication Wizard.

■ Replication Management API: Using the replication management API to setup
your materialized view site is an ideal solution when you are not able to connect
to the remote materialized view site with the Advanced Replication interface in
Enterprise Manager. When you build a SQL script containing the API calls to
setup your materialized view site, you can also add the DDL and API calls to
complete the remaining preparation (such as creating any necessary schemas,
database links, and rollback segments, as described in the following three

See Also: Oracle Database Net Services Administrator's Guide for
information about setting up an Oracle network connection

See Also: The Advanced Replication interface's online Help for
instructions on setting up your materialized view site with the
Advanced Replication interface in Oracle Enterprise Manager

Conflict Resolution

Planning Your Replication Environment 6-23

sections). The script that you create should be distributed with the offline
instantiation file and executed before the offline instantiation file.

Create Necessary Schemas
If the deployment template that you are instantiating creates objects in multiple
schemas, then ensure that all of the necessary schemas have been created.
Additionally, the user instantiating the deployment template must have the
appropriate CREATE privileges on that schema. For example, if the deployment
template will create a procedure in schema oe and the user hr is instantiating the
template, then hr must have the CREATE ANY PROCEDURE privilege on schema oe.

Create Database Links
While it is advantageous to include the DDL to create all necessary database links for a
remote materialized view site in the deployment template, it is not required. If the
database link DDL is not in the deployment template, then manually create the
database links to the target master site prior to instantiating the deployment template.
The database links are required to populate the materialized views during an online
instantiation and are required for the proper maintenance of the materialized view
environment.

Online or Offline Instantiation
You have the option of performing online or offline instantiation of deployment
templates at materialized view sites. With online instantiation, the data in your
materialized views is pulled from the master site during instantiation. With offline
instantiation, the data in your materialized views is packaged in the template itself
and is applied locally when you instantiate the template. In general, if your
materialized views will contain a large amount of data, then offline instantiation is
preferred to minimize utilization of your network resources.

Create Necessary Rollback Segments
If the deployment template that you are instantiating will use specific rollback
segments that do not currently exist at the remote materialized view site, then create
the necessary rollback segments. To see if your template objects use the default
rollback segment or a specific rollback segment, query the DBA_REPCAT_TEMPLATE_
OBJECTS data dictionary view.

Conflict Resolution
Asynchronous multimaster and updatable materialized view replication environments
must address the possibility of replication conflicts that can occur when, for example,
two transactions originating from different sites update the same row at nearly the
same time. If possible, plan your replication environment to avoid the possibility of
conflicts. If data conflicts can occur in your replication environment, then you need a

See Also: Oracle Database Advanced Replication Management API
Reference for instructions on setting up your materialized view site
with the replication management API

See Also: "Deployment Template Packaging and Instantiation" on
page 4-7 for more information about online and offline instantiation

See Also: Oracle Database Advanced Replication Management API
Reference for information about data dictionary views related to
replication

Security and Replication

6-24 Oracle Database Advanced Replication

mechanism to ensure that the conflict is resolved in accordance with your business
rules and to ensure that the data converges correctly at all sites.

Security and Replication
Security might be a concern in both multimaster and materialized view replication
environments. You should plan your security strategy before you configure your
replication environment.

Designing for Survivability
Survivability is the capability to continue running applications despite system or site
failures. Survivability enables you to run applications on a fail over system, accessing
the same, or very nearly the same, data as these systems accessed on the primary
system when it failed. As shown in Figure 6–3, the Oracle server provides two
different technologies for accomplishing survivability: multimaster replication and
Oracle Real Application Clusters (Oracle RAC).

See Also: Chapter 5, "Conflict Resolution Concepts and
Architecture", for more information about avoiding conflicts and
for information about the conflict resolution methods available to
you if conflicts can occur

See Also: Oracle Database Advanced Replication Management API
Reference for information about security options in a replication
environment

Designing for Survivability

Planning Your Replication Environment 6-25

Figure 6–3 Survivability Methods: Replication Or Oracle Real Application Clusters

Oracle Real Application Clusters versus Replication
Oracle Real Application Clusters (Oracle RAC) supports fail over to surviving systems
when a system supporting an instance of the Oracle server fails. Oracle RAC requires a
cluster or massively parallel hardware platform, and thus is applicable for protection
against processor system failures in the local environment where the cluster or
massively parallel system is running.

In these environments, Oracle RAC is a good solution for survivability — supporting
high transaction volumes with no lost transactions or data inconsistencies in the event
of an instance failure. If an instance fails in an Oracle RAC environment, then a
surviving instance automatically recovers any incomplete transactions. Applications
running on the failed system can execute on the fail over system, accessing all data in
the database.

Oracle RAC does not, however, provide survivability for site failures (such as power
outages, flood, fire, or sabotage) that render an entire site, and thus the entire cluster
or massively parallel system, inoperable. To provide survivability for site failures, you
can use the multimaster replication to maintain a replica of a database at a
geographically remote location. In addition, you can use multimaster replication to
replicate data between sites running different operating systems or different releases
of Oracle or both.

Should the local system fail, the application can continue to execute at the remote site.
Using multimaster replication, some administrative procedures might be necessary to
recover transactions at the failed site and to prevent data inconsistencies when
restarting the failed site.

database

Oracle Server

Primary
Database

Replication
Features

database

Oracle Server

Fail–over
Database

Replication
Features

Primary

database

Failover

Oracle
Real Application

Clusters

Oracle
Real Application

Clusters

Multi-Master Replication

Designing for Survivability

6-26 Oracle Database Advanced Replication

Designing a Replication Environment for Survivability
If you choose to use the replication facility for survivability, then consider the
following issues:

■ The replication facility must be able to keep up with the transaction volume of the
primary system.

■ If a failure occurs at the primary site, then recently committed transactions at the
primary site might not have been asynchronously propagated to the failover site
yet. These transactions appear to be lost.

These "lost" transactions must be dealt with when the primary site is recovered.

Suppose, for example, you are running an order-entry system that uses replication
to maintain a remote fail over order-entry system, and the primary system fails.

At the time of the failure, there were two transactions recently executed at the
primary site that did not have their changes propagated and applied at the
failover site. The first of these was a transaction that entered a new order, and the
second was a transaction that canceled an existing order.

In the first case, someone might notice the absence of the new order when
processing continues on the fail over system, and reenter it. In the second case, the
cancellation of the order might not be noticed, and processing of the order might
proceed; that is, the canceled item might be shipped and the customer billed.

What happens when you restore the primary site? If you simply push all of the
changes executed on the failover system back to the primary system, then you will
encounter conflicts.

Specifically, duplicate orders exist for the item originally ordered at the primary
system just before it failed. Additionally, data changes result from the transactions
to ship and bill the order that was originally canceled on the primary system.

You must carefully design your system to deal with these situations. The next section
explains this process.

Implementing a Survivable System
Advanced Replication provides survivability against site failures by using multiple
replicated master sites. You must configure your system using one of the following
methods, which are listed in order of increasing implementation difficulty:

■ The failover site is used for read access only. That is, no updates are allowed at the
failover site, even when the primary site fails.

■ After a failure, the primary site is restored from the fail over site using
export/import, or through full backup.

Note: You can also configure standby database to protect an
Oracle database from site failures.

See Also:

■ Oracle Real Application Clusters Administration and Deployment
Guide

■ Oracle Data Guard Concepts and Administration for more
information about standby database

Designing for Survivability

Planning Your Replication Environment 6-27

■ Full conflict resolution is employed for all data/transactions. This requires careful
design and implementation. You must ensure proper resolution of conflicts that
can occur when the primary site is restored, such as duplicate transactions.

■ Provide your own special applications-level routines and procedures to deal with
the inconsistencies that occur when the primary site is restored, and the queued
transactions from the active fail over system are propagated and applied to the
primary site.

You can use Oracle Net to configure automatic connect-time failover, which enables
Oracle Net to fail over to a different master site if the first master site fails. You
configure automatic connect-time failover in your tnsnames.ora file by setting the
FAILOVER option to on and specifying multiple connect descriptors.

Database Recovery in Replication Environments
If you recover a database that is a master site in a replication environment, then the
replicated data might not be consistent, and you might encounter replication errors.
For example, a restored master site might have propagated different transactions to
different masters. You might need to perform extra steps to correct for an incorrect
recovery operation. One such method is to drop and re-create all replicated objects in
the recovered database.

Before dropping and re-creating replicated objects, remove pending deferred
transactions and deferred error records from the restored database, and resolve any
outstanding distributed transactions. If the restored database was a master definition
site for some replication environments, then you should designate a new master
definition site before dropping and creating objects. Any materialized views that are
mastered at the restored database should be fully refreshed, as well as any
materialized views in the restored database.

To provide continued access to your data, you might need to change master definition
sites (assuming the database being recovered was the master definition site), or change
the master site of materialized view sites (assuming their master site is being
recovered).

Performing Checks on Imported Data After performing an export/import of a replicated
object or an object used by Advanced Replication, such as the DBA_REPSITES data
dictionary view, you should run the REPCAT_IMPORT_CHECK procedure in the DBMS_
REPCAT package.

In the following example, the procedure checks the objects in the hr_repg replication
group at a materialized view site to ensure that they have the appropriate object
identifiers and status values:

BEGIN
DBMS_REPCAT.REPCAT_IMPORT_CHECK(gname => 'hr_repg',
 master => FALSE);
END;
/

See Also: Oracle Database Net Services Administrator's Guide for
more information about configuring connect-time failover

See Also: The REPCAT_IMPORT_CHECK procedure in Oracle
Database Advanced Replication Management API Reference

Designing for Survivability

6-28 Oracle Database Advanced Replication

Troubleshooting Replication Problems A-1

A
Troubleshooting Replication Problems

This appendix contains troubleshooting guidelines for managing a replication
environment.

This appendix contains these topics:

■ Diagnosing Problems with Database Links

■ Diagnosing Problems with Master Sites

■ Diagnosing Problems with the Deferred Transaction Queue

■ Diagnosing Problems with Materialized Views

Diagnosing Problems with Database Links
If you think a database link is not functioning properly, then you can drop and
re-create it using Oracle Enterprise Manager, SQL*Plus, or another tool.

■ Ensure that the database link name is the same as the global name of the target
database.

■ Ensure that the scheduled interval is what you want.

■ Ensure that the scheduled interval is not shorter than the required execution time.

If you used a connection qualifier in a database link to a given site, then the other sites
that link to that site must have the same connection qualifier. For example, suppose
you create a database link as follows:

CREATE DATABASE LINK dbs1.example.com@myethernet CONNECT TO repadmin
 IDENTIFIED BY password USING 'connect_string_myethernet'

All the sites, whether masters or materialized views, associated with
dbs1.example.com@myethernet must include myethernet as the connection
qualifier.

Diagnosing Problems with Master Sites
Problems can arise in a multimaster replication system. The following sections discuss
some problems and ways to solve them:

■ Replicated Objects Not Created at New Master Site

■ DDL Changes Not Propagated to Master Site

See Also: Oracle Database Administrator's Guide for more
information database links and connection qualifiers

Diagnosing Problems with Master Sites

A-2 Oracle Database Advanced Replication

■ DML Changes Not Asynchronously Propagated to Other Sites

■ DML Cannot be Applied to Replicated Table

■ Bulk Updates and Constraint Violations

■ Re-creating a Replicated Object

■ Unable to Generate Replication Support for a Table

■ Problems with Replicated Procedures or Triggers

Replicated Objects Not Created at New Master Site
If you add a new master site to a master group, and the appropriate objects are not
created at the new site, then try the following:

■ Ensure that the necessary private database links exist between the new master site
and the existing master sites. If you used a configuration wizard in the Advanced
Replication interface in Oracle Enterprise Manager to set up your sites, then you
should not have any problems. You must have links both to the new site from each
existing site, and from the new site to each existing site.

■ Ensure that the administrative requests at all sites have completed successfully. If
requests have not been executed yet, then you can manually execute pending
administrative requests to complete the operation immediately.

DDL Changes Not Propagated to Master Site
If you create a new master group object or alter the definition of a master group object
at the master definition site and the modification is not propagated to a master site,
then first ensure that the administrative requests at all sites have completed
successfully. If requests are pending execution, then you can manually execute them to
complete the operation immediately.

When you execute DDL statements through the replication API, Oracle executes the
statements on behalf of the user who submits the DDL. When a DDL statement applies
to an object in a schema other than the submitter's schema, the submitter needs
appropriate privileges to execute the statement. In addition, the statement must
explicitly name the schema. For example, assume that you supply the following as the
ddl_text parameter to the DBMS_REPCAT.CREATE_MASTER_ REPOBJECT
procedure:

CREATE TABLE oe.new_employees AS SELECT * FROM hr.employees WHERE ...;

Because each table name contains a schema name, this statement works whether the
replication administrator is oe, hr, or another user, as long as the administrator has
the required privileges.

DML Changes Not Asynchronously Propagated to Other Sites
If you make an update to your data at a master site, and that change is not
asynchronously propagated to the other sites in your replication environment, then try
the following:

Note: Qualify the name of every schema object with the
appropriate schema.

Diagnosing Problems with Master Sites

Troubleshooting Replication Problems A-3

■ Use the Advanced Replication interface in Oracle Enterprise Manager to check
whether the corresponding deferred transaction has been pushed to the
destination. If not, then you can also check to see how much longer it will be
before the scheduled link pushes the queue to the destination site. If you do not
want to wait for the next scheduled push across a link, then you can execute
deferred transaction manually.

■ If a scheduled link's interval has passed and corresponding deferred transactions
have not been pushed, then check the corresponding job for the link.

■ Even after propagating a deferred transaction to a destination, it might not execute
because of an error. Check the DEFERROR data dictionary view at the destination
site for errors.

DML Cannot be Applied to Replicated Table
If you receive the deferred_rpc_quiesce exception when you attempt to modify a
replicated table, then the master group to which your replicated object belongs is
quiescing or quiesced. To proceed, your replication administrator must resume
replication activity for the master group.

Bulk Updates and Constraint Violations
A single update statement applied to a replicated table can update zero or more rows.
The update statement causes zero or more update requests to be queued for deferred
execution, one for each row updated. This distinction is important when constraints
are involved, because Oracle effectively performs constraint checking at the end of
each statement. While a bulk update might not violate a uniqueness constraint, for
example, some equivalent sequence of individual updates might violate uniqueness.

If the ordering of updates is important, then update one row at a time in an
appropriate order. This lets you define the order of update requests in the deferred
transactions queue.

Re-creating a Replicated Object
If you add an object such as a package, procedure, or view to a master group, then the
status of the object must be valid. If the status of an object is invalid, then recompile
the object or drop and re-create the object before adding it to a master group. Check
the DBA_REPOBJECT data dictionary view for the status of replication objects.

Unable to Generate Replication Support for a Table
When you generate replication support for a table, Oracle activates an internal trigger
at the local site. EXECUTE privileges for most of the packages involved with
replication, such as DBMS_REPCAT and DBMS_DEFER, need to be granted to replication
administrators and users that own replicated objects. The configuration wizards in the
Advanced Replication interface in Oracle Enterprise Manager and the DBMS_REPCAT_
ADMIN package both perform the grants needed by the replication administrators for
many typical replication scenarios. When the owner of a replicated object is not a
replication administrator, however, you must explicitly grant EXECUTE privilege on
DBMS_DEFER to the object owner.

See Also: Oracle Database Advanced Replication Management API
Reference for information about modifying tables without
replicating the modifications, which might be necessary when you
need to manually synchronize the data in replicated tables

Diagnosing Problems with the Deferred Transaction Queue

A-4 Oracle Database Advanced Replication

Problems with Replicated Procedures or Triggers
If you discover an unexpected unresolved conflict, and you were mixing procedural
and row-level replication on a table, then carefully review the procedure to ensure that
the replicated procedure did not cause the conflict. Complete the following checks:

■ Ensure that ordering conflicts between procedural and row-level updates are not
possible.

■ Check if the replicated procedure locks the table in EXCLUSIVE mode before
performing updates or uses some other mechanism of avoiding conflicts with
row-level updates.

■ Check that row-level replication is disabled at the start of the replicated procedure
and reenabled at the end.

■ Ensure that row-level replication is reenabled even if exceptions occur when the
procedure executes.

■ Check to be sure that the replicated procedure executed at all master sites.

You should perform similar checks on any replicated triggers that you have defined
on replicated tables.

Diagnosing Problems with the Deferred Transaction Queue
If deferred transactions at a site are not being pushed to their destinations, then the
following sections explain some possible causes for the problem:

■ Check Jobs for Scheduled Links

■ Distributed Transaction Problems with Synchronous Replication

■ Incomplete Database Link Specifications

■ Incorrect Replication Catalog Views

Check Jobs for Scheduled Links
When you create a scheduled link, Oracle adds a corresponding job to the site's job
queue. If you have scheduled a link to push deferred transactions at a periodic
interval, and you encounter a problem, then you should first be certain that you are
not experiencing a problem with the job queue.

Distributed Transaction Problems with Synchronous Replication
When you use synchronous replication, Oracle uses a distributed transaction to ensure
that the transaction has been properly committed at the remote site. Distributed
transactions use two-phase commit. Asynchronous replication does not use two-phase
commit.

Incomplete Database Link Specifications
If you notice that transactions are not being pushed to a given remote site, then you
might have a problem with how you have specified the destination for the transaction.
When you create a scheduled link, you must provide the full database link name.

See Also: Oracle Database Administrator's Guide for information
about diagnosing problems with distributed transactions

Diagnosing Problems with Materialized Views

Troubleshooting Replication Problems A-5

Incorrect Replication Catalog Views
Having the wrong view definitions can lead to erroneous deferred transaction
behavior. The DEFCALLDEST and DEFTRANDEST views are defined differently in
catdefer.sql and catrepc.sql. The definitions in catrepc.sql should be used
whenever replication is used. If catdefer.sql is ever (re)loaded, then ensure that
the view definitions in catrepc.sql are subsequently loaded.

Diagnosing Problems with Materialized Views
There are a number of problems that might happen with materialized view sites in a
replication system. The following sections discuss some problems and ways to
troubleshoot them:

■ Problems Creating Replicated Objects at Materialized View Site

■ Refresh Problems

■ Advanced Troubleshooting of Refresh Problems

Problems Creating Replicated Objects at Materialized View Site
If you unsuccessfully attempt to create a new object at a materialized view site, then
try the following:

■ For an updatable materialized view, check that the associated master table or
master materialized view has a materialized view log.

■ Ensure that you have the necessary privileges to create the object. For a
materialized view, you need SELECT privilege on the master table or master
materialized view and its materialized view log. See "Assign Privileges" on
page 6-11 for more information.

■ If you are trying to add an existing materialized view to a materialized view
group, then try re-creating the materialized view when you add it to the group.

■ If you are trying to create a fast refresh primary key or subquery materialized
view, then ensure that the materialized view log on the master table or master
materialized view logs primary keys.

■ If you are trying to create a fast refresh rowid materialized view, then ensure that
the materialized view log on the master table logs rowids.

■ Check if the materialized view log has the required columns added for subquery
materialized views. See "Logging Columns in the Materialized View Log" on
page 6-13 for information.

■ Check if the materialized view log exists for all tables that are involved in a fast
refresh materialized view. If the materialized view contains a subquery, then each
table referenced in the subquery should have a materialized view log.

Problems Performing Offline Instantiation of a Deployment Template
If you receive and error stating that Oracle is unable to initialize the extent in the
temporary tablespace when you try to instantiate a deployment template offline, then
you might need to adjust the data file for the temporary database so that it auto
extends.

For example, issue the following statement to adjust the data file:

Diagnosing Problems with Materialized Views

A-6 Oracle Database Advanced Replication

ALTER DATABASE TEMPFILE '/u02/oracle/rbdb1/temp.dbf'
 AUTOEXTEND ON
 NEXT 10M;

After you have made this adjustment, instantiate the deployment template offline at
the materialized view site.

Refresh Problems
The following sections explain several common materialized view refresh problems.

Common Refresh Problems
Several common factors can prevent the automatic refresh of a group of materialized
views:

■ The lack of a job slave at the materialized view database

■ An intervening network or server failure

■ An intervening server shutdown

When a materialized view refresh group is experiencing problems, ensure that none of
the preceding situations is preventing Oracle from completing group refreshes.

Automatic Refresh Retries
When Oracle fails to refresh a group automatically, the group remains due for its
refresh to complete. Oracle will retry an automatic refresh of a group with the
following behavior:

■ Oracle retries the group refresh first one minute later, then two minutes later, four
minutes later, and so on, with the retry interval doubling with each failed attempt
to refresh the group.

■ Oracle does not allow the retry interval to exceed the refresh interval itself.

■ Oracle retries the automatic refresh up to sixteen times.

If after 16 attempts to refresh a refresh group Oracle continues to encounter errors,
then Oracle considers the group broken. The General page of the Refresh Group
property sheet in Schema Manager indicates when a refresh group is broken. You can
also query the BROKEN column of the USER_REFRESH and USER_REFRESH_
CHILDREN data dictionary views to see the current status of a refresh group.

The errors causing Oracle to consider a materialized view refresh group broken are
recorded in a trace file. After you correct the problems preventing a refresh group
from refreshing successfully, you must refresh the group manually. Oracle then resets
the broken flag so that automatic refreshes can happen again.

Fast Refresh Errors at New Materialized View Sites
In some cases, a materialized view log for a master table or master materialized view
might be purged during the creation of a materialized view at a new materialized
view site. When this happens, you might encounter the following errors:

ORA-12004 REFRESH FAST cannot be used for materialized view materialized_view_name

See Also: The name of the materialized view trace file is of the
form jn, where n is operating system specific. See the Oracle
documentation for your operating system for the name on your
system.

Diagnosing Problems with Materialized Views

Troubleshooting Replication Problems A-7

ORA-12034 materialized view log on materialized_view_name younger than last
refresh

Materialized Views Continually Refreshing
If you encounter a situation where Oracle continually refreshes a group of
materialized views, then check the group's refresh interval. Oracle evaluates a group's
automatic refresh interval before starting the refresh. If a group's refresh interval is
less than the amount of time it takes to refresh all materialized views in the group,
then Oracle continually starts a group refresh each time the job slave checks the queue
of outstanding jobs.

Materialized View Logs Growing Too Large
If a materialized view log at a master site or master materialized view site is growing
too large, then check to see whether a network or site failure has prevented the master
site or master materialized view site from becoming aware that a materialized view
has been dropped. You might need to purge part of the materialized view log or
unregister the unused materialized view site.

Advanced Troubleshooting of Refresh Problems
If you have a problem refreshing a materialized view, then try the following:

■ Check the NEXT_DATE value in the DBA_REFRESH_CHILDREN view to determine
if the refresh has been scheduled.

■ If the refresh interval has passed, then check the DBA_REFRESH view for the
associated job number for the materialized view refresh and then diagnose the
problem with job queues.

■ Check if there are job slaves running. Check the JOB_QUEUE_PROCESSES
initialization parameter, query the DBA_JOBS_RUNNING view, and use your
operating system to check if the job slaves are still running.

■ You also might encounter an error if you attempt to define a master detail
relationship between two materialized views. You should define master detail
relationships only on the master tables by using declarative referential integrity
constraints. The related materialized views should then be placed in the same
refresh group to preserve this relationship. However, you can define deferred (or
deferrable) constraints on materialized views.

■ If there are any outstanding conflicts recorded at the master site or master
materialized view site for the materialized views, then you can only refresh the
materialized views by setting the parameter REFRESH_AFTER_ERRORS to TRUE.
This parameter can be set when you create or alter a materialized view refresh
group. There is a corresponding parameter for the Advanced Replication interface
in Oracle Enterprise Manager.

See Also: "Avoiding Problems When Adding a New Materialized
View Site" on page 6-15 for a complete description of how to avoid
this problem.

See Also: Oracle Database Advanced Replication Management API
Reference for more information about managing materialized view
logs

Diagnosing Problems with Materialized Views

A-8 Oracle Database Advanced Replication

■ Materialized views in the same refresh groups have their rows updated in a single
transaction. Such a transaction can be very large, requiring either a large rollback
segment at the materialized view site, with the rollback segment specified to be
used during refresh, or more frequent refreshes to reduce the transaction size.

■ If Oracle error ORA-12004 occurs, then the master site or master materialized
view site might have run out of rollback segments when trying to maintain the
materialized view log, or the materialized view log might be out of date. For
example, the materialized view log might have been purged or re-created.

■ Complete refreshes of a single materialized view internally use the TRUNCATE
feature to increase speed and reduce rollback segment requirements. However,
until the materialized view refresh is complete, users might temporarily see no
data in the materialized view. Refreshes of multiple materialized views (for
example, refresh groups) do not use the TRUNCATE feature.

■ Reorganization of the master table (for example, to reclaim system resources)
should TRUNCATE the master table to force rowid materialized views to do
complete refreshes. Otherwise, the materialized views have incorrect references to
master table rowids. You use the BEGIN_TABLE_REORGANIZATION and END_
TABLE_REORGANIZATION procedures in the DBMS_MVIEW package to reorganize
a master table. See the Oracle Database Advanced Replication Management API
Reference for more information.

■ If while refreshing you see an ORA-00942 (table or view does not exist), then
check your database links and ensure that you still have the required privileges on
the master table or master materialized view and the materialized view log.

■ If a fast refresh was succeeding but then fails, then check whether:

■ The materialized view log was truncated, purged, or dropped.

■ You still have the required privileges on the materialized view log.

■ If a force refresh takes an inordinately long time, then check if the materialized
view log used by the refresh has been dropped.

■ If the materialized view was created with BUILD DEFERRED, and its first fast
refresh fails, then ensure that a previous complete refresh was done successfully
before checking for other problems.

See Also: Oracle Database Advanced Replication Management API
Reference for information about managing materialized view logs

Column Length Semantics and Unicode B-1

B
Column Length Semantics and Unicode

This appendix contains information about replication support for column length
semantics and Unicode.

This appendix contains these topics:

■ Column Length Semantics for Replication Sites and Table Columns

■ Multimaster Support for Column Length Semantics

■ Materialized View Support for Column Length Semantics

■ DDL Propagation and Column Length Semantics

■ Replication Support for Unicode

Column Length Semantics for Replication Sites and Table Columns
Column length semantics determine whether the length of a column is specified in
bytes or in characters. You use BYTE to specify that the length is in bytes, and you use
CHAR to specify that the length is in characters. CHAR length semantics is also known
as codepoint length semantics.

Because some character sets require more than one byte for each character, a
specification of 10 BYTE for a column might actually store less than 10 characters for
certain character sets, but a 10 CHAR specification ensures that the column can store 10
characters, regardless of the character set. Only Oracle9i Database or later databases
can specify CHAR length semantics.

You set the length semantics for an Oracle database using the NLS_LENGTH_
SEMANTICS initialization parameter, and all VARCHAR2 and CHAR columns use the
setting specified for this initialization parameter as the default. If this initialization
parameter is not set, then the default setting is BYTE.

An individual column can override the length semantics for the database. For
example, if the length semantics for a site is CHAR, then you can still specify BYTE for
the length semantics of an individual column using the CREATE TABLE or ALTER
TABLE statement.

The following statement creates a table and specifies the column length in bytes:

CREATE TABLE byte_col (a VARCHAR2(10 BYTE));

See Also: The following documents contain more information
about length semantics and Unicode:

■ Oracle Database Globalization Support Guide

■ Oracle Database SQL Language Reference

Multimaster Support for Column Length Semantics

B-2 Oracle Database Advanced Replication

The following statement creates a table and specifies the column length in characters:

CREATE TABLE char_col (a VARCHAR2(10 CHAR));

Multimaster Support for Column Length Semantics
All master sites in a master group must have the same length semantics, and the
individual columns of a master table must have the same length semantics at all
master sites. When you have a table in a master group at a master definition site and
you want to replicate that table to a new master site, you can create the table at the
new site in one of the following ways:

■ Specify that Advanced Replication generate the table at the new master site when
adding the new master site to the master group.

■ Manually precreate the table at the new master site before adding the master site
to the master group.

The following sections describe column length semantics support for each table
creation method.

Column Length Semantics Support for Tables Generated by Advanced Replication
When you specify that Advanced Replication generate the table at the new master site,
and you are using CHAR length semantics, then both the master definition site and the
new master site must be running Oracle9i Database or later. If you specify BYTE length
semantics, then these sites can be running a previous Oracle release.

This support is summarized in Table B–1.

Column Length Semantics Support for Precreated Tables
When you precreate the table at the new master site, and you are using CHAR length
semantics, then both the master definition site and the new master site must be
running Oracle9i Database or later. If you specify BYTE length semantics, then these
sites can be running a previous Oracle release.

Also, because you precreated the table manually, it is possible that you specified a
different length semantics for a column in the new master table than was specified for
the column in the table at the master definition site. If so, Oracle raises an error
because a column in a master table must be using the same length semantics at each
master site.

This support is summarized in Table B–2.

Table B–1 Column Length Semantics Support for Generated Tables

Master Definition
Site Release

Master Definition
Site Column
Semantics

New Master Site
Release

Resulting Column
Semantics at New
Master Site

9.2 or later CHAR 9.2 or later CHAR

9.2 or later CHAR Prior to 9.2 Not supported

Any release BYTE Any release BYTE

Materialized View Support for Column Length Semantics

Column Length Semantics and Unicode B-3

Materialized View Support for Column Length Semantics
When you create a materialized view, Oracle determines the length semantics of the
columns in the materialized view in the following way:

■ If the master column is explicitly specified as either BYTE or CHAR, then the
column in the materialized view retains that specification. In the following
example, CHAR length semantics is explicitly specified for the a column:

CREATE TABLE char_col (a VARCHAR2(10 CHAR));

■ If the master column is not explicitly specified, then the column in the
materialized view uses the default length semantics of the materialized view site.
In the following example, length semantics is not explicitly specified for the a
column:

CREATE TABLE char_col (a VARCHAR2(10));

Materialized view creation fails if an Oracle9i Database or later master has a column
with an explicit CHAR specification and a materialized view site running a release prior
to Oracle9i Database attempts to create a materialized view based on this master.

Materialized Views with Prebuilt Container Tables
If you prebuild a container table at a materialized view site before you create the
materialized view, then the length semantics of the columns in the container table
must match the length semantics of the columns in the master. If the length semantics
do not match, then an Oracle returns an ORA-12060 error during materialized view
creation. You use the ON PREBUILT TABLE clause of the CREATE MATERIALIZED
VIEW statement to prebuild a table for a materialized view.

Table B–2 Column Length Semantics Support for Precreated Tables

Master Definition
Site Release

Master Definition
Site Column
Semantics

New Master Site
Release

New Master
Site Column
Semantics Supported?

9.2 or later CHAR 9.2 or later CHAR Yes

9.2 or later CHAR 9.2 or later BYTE No

9.2 or later BYTE 9.2 or later CHAR No

9.2 or later

(Multibyte
character set)

CHAR Prior to 9.2 BYTE No

9.2 or later

(Single-byte
character set)

CHAR Prior to 9.2 BYTE Yes

Prior to 9.2 BYTE 9.2 or later

(Multibyte
character set)

CHAR No

Prior to 9.2 BYTE 9.2 or later

(Single-byte
character set)

CHAR Yes

Any release BYTE Any release BYTE Yes

DDL Propagation and Column Length Semantics

B-4 Oracle Database Advanced Replication

Column Length Semantics Support for Updatable Materialized Views
The following operations are always supported if the length semantics of the columns
of an updatable materialized view matches the length semantics of the columns of the
materialized view's master:

■ Refreshing the updatable materialized view

■ Pushing DML changes made at the materialized view to the master

If, however, the length semantics do not match and the master is Oracle9i Database or
later, then Oracle raises an error when you try to add the materialized view to a
materialized view group. To be updatable, a materialized view must belong to a
materialized view group. If you use the replication management API, then you run the
CREATE_MVIEW_REPOBJECT procedure in the DBMS_REPCAT package to add the
materialized view to a materialized view group.

Table B–3 summarizes the length semantics support for updatable materialized views.

DDL Propagation and Column Length Semantics
You can use the DBMS_REPCAT package to propagate a data definition language
(DDL) statement that creates a new replicated table or adds columns to an existing
replicated table. If you want any of the new columns created by these DDL statements
to use CHAR column length semantics, then ensure that you specify CHAR column
length semantics explicitly. Otherwise, the column always has BYTE length semantics,
even if the replication site itself has CHAR column length semantics set as the default.

See Also: The Oracle Database SQL Language Reference for more
information about the ON PREBUILT TABLE clause in the CREATE
MATERIALIZED VIEW statement

Table B–3 Column Length Semantics Support for Updatable Materialized Views

Master Site
Release

Master Site
Column
Semantics

Materialized
View Site
Release

Materialized View
Site Column
Semantics

Updatable
Materialized View
Supported?

9.2 or later CHAR 9.2 or later CHAR Yes

9.2 or later CHAR 9.2 or later BYTE No

9.2 or later BYTE 9.2 or later CHAR No

9.2 or later

(Multibyte
character set)

CHAR Prior to 9.2 BYTE No

9.2 or later

(Single-byte
character set)

CHAR Prior to 9.2 BYTE Yes

Prior to 9.2 BYTE 9.2 or later CHAR Yes

Any release BYTE Any release BYTE Yes

Note: The master site in Table B–3 can be either a master site in a
multimaster replication environment or a master materialized view
site.

Replication Support for Unicode

Column Length Semantics and Unicode B-5

The following procedures in the DBMS_REPCAT package enable you to propagate DDL
statements:

■ ALTER_MASTER_REPOBJECT

■ CREATE_MASTER_REPOBJECT

■ EXECUTE_DDL

Replication Support for Unicode
Unicode is a universal encoded character set that enables you to store information
from any language using a single character set. Unicode provides a unique code value
for every character, regardless of the platform, program, or language. Unicode is
supported in both multimaster and materialized view replication environments. In
Oracle9i Database or later, all columns specified as NCHAR or NVARCHAR2 data type
are stored in Unicode format.

For both master sites and materialized view sites, replication is possible in an
environment with different releases of Oracle using an NCHAR or NVARCHAR2 data
type. However, replication is not recommended when one of the replication sites is a
release prior to Oracle9i Database and uses a variable width character set because, in
this case, there is a possibility of data loss.

Table B–4 summarizes when replication is recommended.

See Also: "Column Length Semantics for Replication Sites and
Table Columns" on page B-1 for more information about specifying
CHAR column length semantics explicitly

Table B–4 Replication Support for Globalization Support Character Sets

Release of Local Database
with NCHAR or
NVARCHAR2 Columns

Release of Remote
Database with NCHAR and
NVARCHAR2 Columns

Replication
Recommended?

9.2 or later

(Stored in Unicode format)

9.2 or later

(Stored in Unicode format)

Yes

Prior to 9.2

(Fixed or variable width
national character set format)

Prior to 9.2

(Fixed or variable width
national character set format)

Yes

9.2 or later

(Stored in Unicode format)

Prior to 9.2

(Variable width national
character set format)

Not Recommended

9.2 or later

(Stored in Unicode format)

Prior to 9.2

(Fixed width national
character set format)

Yes

Prior to 9.2

(Variable width national
character set format)

9.2 or later

(Stored in Unicode format)

Not Recommended

Prior to 9.2

(Fixed width national
character set format)

9.2 or later

(Stored in Unicode format)

Yes

Replication Support for Unicode

B-6 Oracle Database Advanced Replication

Replication of NCLOB Data Type Columns
NCLOB data type columns are always fixed width. Therefore, replication of NCLOB data
type columns is supported without restrictions.

Caution: Where Table B–4 specifies that replication is not
supported, Oracle does not detect an error when you set up
replication between the two sites, but data loss can occur later. If
data loss occurs, then an error is raised.

Index-1

Index

A
accounts

creating for materialized views, 6-10
additive conflict resolution method, 5-19
administrative request queue, 2-25
administrative requests, 2-24

states, 2-25
AWAIT_CALLBACK, 2-26
DO_CALLBACK, 2-26
ERROR, 2-26
READY, 2-26

Advanced Replication interface, 1-11
aliases

for columns
updatable materialized views, 3-5

AND condition
for simple subquery materialized views, 3-19

append sequence conflict resolution method, 5-26
append site name conflict resolution method, 5-26
assignment tables, 4-17
asynchronous replication, 1-4, 2-29
Automatic Storage Management (ASM), 6-3
average conflict resolution method, 5-19

B
bulk updates, A-3
BYTE character semantics, B-1

C
CHAR character semantics, B-1
character sets

replication, B-1
collections

materialized views, 3-30
restrictions, 3-32

replication, 2-11, 3-30
column groups, 5-15

column objects, 5-16
nested tables, 5-16
object tables, 5-16
shadow, 5-15

column objects
column groups, 5-16

conflict resolution
compare old values, 5-30
send old values, 5-30

materialized views
column subsetting, 3-28

replication, 2-8, 3-26
column subsetting, 1-8

deployment templates, 4-15
materialized views

column objects, 3-28
updatable materialized views

conflict resolution, 5-7
columns

character semantics, B-1
column groups, 2-28, 5-15

column objects, 5-16
ensuring data integrity with multiple, 5-15
nested tables, 5-16
object tables, 5-16
shadow, 5-15

complete refresh, 1-8, 3-45
complex materialized views, 3-8, 3-9

value for PCTFREE, 3-46
value for PCTUSED, 3-46

compression, 6-3
conflict resolution, 2-40

additive method, 5-19
append sequence method, 5-26
append site name method, 5-26
architecture, 5-14
average method, 5-19
avoiding conflicts, 5-12
column groups, 5-15

column objects, 5-16
data integrity, 5-15
nested tables, 5-16
object tables, 5-16
shadow, 5-15

column subsetting
updatable materialized views, 5-7

concepts, 5-1
convergence properties of methods, 5-18
data requirements, 5-2
delete conflicts, 5-3
detecting conflicts, 5-3
discard method, 5-20, 5-27

Index-2

dynamic site ownership, 5-12
earliest time stamp method, 5-21
error queue, 5-16
in synchronous propagation, 2-31
latest time stamp method, 5-16
maximum method, 5-21
methods for delete conflicts, 5-27
methods for uniqueness conflicts, 5-26
methods for update conflicts, 5-16
minimum method, 5-22
multitier materialized views, 5-5
nested tables, 5-8
overwrite method, 5-18
performance

compare old values, 5-27
send old values, 5-27

prebuilt methods, 5-4
primary site ownership, 5-12
priority groups method, 5-23
replication, 1-12, 2-7
site priority method, 5-24

as backup, 5-17, 5-21
transaction ordering, 5-3
types of conflicts, 5-2
uniqueness conflicts, 5-3
updatable materialized views

column subsetting, 5-7
update conflicts, 5-3

conflicts
avoiding, 5-12
delete, 5-3

avoiding, 5-13
detecting, 2-31, 2-40, 5-3

identifying rows, 2-40, 5-4
error queue, 5-16
ordering

avoiding, 5-14
procedural replication, 1-14
uniqueness, 5-3

avoiding, 5-13
update, 5-3

avoiding, 5-13
connection qualifiers, 2-17

diagnosing problems with, A-1
constraint violations, A-3
constraints

deferrable, 3-49
referential

self-referencing, 2-18
continuous purges

scheduling, 6-20
continuous pushes

scheduling, 6-18
CREATE TYPE statement

OID clause, 2-10, 3-28
CREATE_MVIEW_REPGROUP procedure, 3-4
CREATE_MVIEW_REPOBJECT procedure, 3-4

D
data dictionary

replication, 1-12
data integrity

parallel propagation, 2-38
serial propagation, 2-38

data propagation
and dependency maintenance, 2-38
asynchronous, 2-29
synchronous, 2-29

database links
Advanced Replication interface, 2-16
connection qualifiers, 2-17
diagnosing problems with, A-1
incomplete specifications, A-4
materialized view sites, 6-10, 6-23
replication, 2-14
scheduled links, 1-10

date expressions, 3-48, 4-14
DBA_MVIEW_REFRESH_TIMES view, 3-34
DBA_REGISTERED_MVIEWS view, 3-34
DBA_REPCATLOG view, 2-24
DBA_TYPE_VERSIONS

replication, 2-9, 3-27
DBMS_DEFER_SYS package

SCHEDULE_PUSH procedure, 6-17, 6-18
DBMS_MVIEW package, 3-35

EXPLAIN_MVIEW procedure, 3-20
REGISTER_MVIEW procedure, 3-35

DBMS_REPCAT package, 2-24, 2-25, 3-4, 6-27
COMPARE_OLD_VALUES procedure

conflict resolution, 5-27
CREATE_MVIEW_REPGROUP procedure, 3-4
DO_DEFERRED_REPCAT_ADMIN

procedure, 2-24, 2-26
SEND_OLD_VALUES procedure

conflict resolution, 5-27
DDL statements

replication, 1-12
troubleshooting problems, A-2

deadlocks
resolving

in synchronous propagation, 2-31
deferred transaction queues, 1-4, 2-22

diagnosing problems with, A-4
purging propagated transactions, 6-19
pushing, 2-22
scheduled purge, 6-11
scheduled push, 6-12

DELAY_SECONDS parameter, 2-36
dependencies

minimizing, 2-39
dependency

ordering
replicated transactions, 2-38

tracking
parallel propagation, 2-38
row level, 2-39, 6-4

Index-3

deployment templates, 1-9, 4-1
adding materialized views to, 4-11
after instantiation, 4-14
architecture, 4-10
column subsetting, 4-15
concepts, 4-2
data sets, 4-19
DDL statements, 4-11
definition storage, 4-10
design, 4-15
elements, 4-3
general template information, 4-3
instantiation, 1-9, 4-7

offline, 4-8, 4-13
online, 4-7, 4-12
options, 4-13
process, 4-11
scenarios, 4-9
troubleshooting, A-5

local control, 4-21
materialized view groups, 4-14
materialized view logs, 4-10
materialized view sites, 4-7
objects

definitions, 4-5, 4-11
packaging, 4-7

for offline instantiation, 4-12
for online instantiation, 4-12
options, 4-13
procedures, 4-9
process, 4-11

parameters, 4-6
security, 4-7

preparing materialized view sites for, 6-21
refresh groups, 4-14
row subsetting, 4-17
user authorization, 4-7
user-defined types, 4-6
WHERE clause, 4-7

direct path load
fast refresh, 3-46

discard conflict resolution method, 5-20, 5-27
distributed schema management, 1-12
distributed transactions

problems with, A-4
DML statements

replication
troubleshooting problems, A-2

DO_DEFERRED_REPCAT_ADMIN
procedure, 2-24, 2-26

domain indexes
replication, 2-19

dynamic sites
ownership, 5-12

E
earliest time stamp conflict resolution method, 5-21
Enterprise Manager

Advanced Replication interface, 1-11, 2-16

errors
error queues, 2-22

conflicts, 5-16
EXISTS condition

materialized views with subqueries, 3-19
EXPLAIN_MVIEW procedure, 3-20

F
failover sites

implementing using FAILOVER option, 6-27
fast refresh, 1-8, 3-46

avoiding problems, 6-15
determining possibility of, 3-20
direct path load, 3-46
multitier materialized views, 3-47

filter columns, 6-13
flashback data archive, 6-3
force refresh, 1-8, 3-48
foreign keys

replicated tables, 6-2
function-based indexes

replication, 2-18
functions

replicating, 2-19

G
GLOBAL_NAMES initialization parameter, 6-5
group owner

materialized view groups, 3-42

H
horizontal partitioning. See row subsetting

I
Import

materialized view logs, 3-40
replication check, 6-27

indexes
materialized view sites, 3-40
on foreign keys, 6-2
replication, 2-19

indextypes
replication, 2-20

initialization parameters
editing, 6-12
GLOBAL_NAMES, 6-5
JOB_QUEUE_PROCESSES, 6-5
MEMORY_MAX_TARGET, 6-5
MEMORY_TARGET, 6-5
NLS_LENGTH_SEMANTICS, B-1
OPEN_LINKS, 2-17, 6-5
PARALLEL_MAX_SERVERS, 2-34, 6-6
PARALLEL_MIN_SERVERS, 2-34, 6-6
PROCESSES, 6-6
replication, 6-4
REPLICATION_DEPENDENCY_

TRACKING, 6-6

Index-4

SGA_TARGET, 6-7
SHARED_POOL_SIZE, 6-7

INIT.ORA parameters. See initialization parameters
instantiation

deployment templates, 1-9, 4-7
interoperability

replication, 6-16

J
job queues, 2-22
job slaves

replication, 6-12
JOB_QUEUE_PROCESSES initialization

parameter, 6-5, 6-12
jobs

checking for scheduled links, A-4
replication, 2-24

L
latest time stamp

conflict resolution method, 5-16
length semantics

replication, B-1
levels

multitier materialized views, 3-21

M
many to many subqueries

materialized views, 3-15
many to one subqueries

materialized views, 3-13
mass deployment, 3-3, 4-1
master definition site, 1-4, 2-3
master groups, 1-4, 2-26
master materialized view sites, 3-37
master materialized views, 1-5, 3-22, 3-37

materialized view logs, 3-38
master sites, 1-4

adding
circular dependencies, 2-18
self-referential constraints, 2-18

advantages of, 6-8
bulk updates, A-3
compared with materialized view sites, 6-7
constraints

violations, A-3
DDL changes not propagated, A-2
diagnosing problems with, A-1
DML changes not propagated, A-2
internal triggers, 3-37
length semantics, B-2

precreated tables, B-2
materialized view registration, 3-34
materialized views, 3-37
replicated objects not created at new, A-2
replication, 2-13
roles, 2-13

scheduled links for
guidelines, 6-17

scheduled purges for, 6-11
guidelines, 6-19

users, 2-13
master tables

materialized view logs, 3-38
materialized views, 3-37
redefining online, 3-39
reorganizing, 3-38

materialized view groups, 1-4, 3-26, 3-41
deployment templates, 4-14
group owner, 3-42
ownership, 3-26
updatable materialized views, 3-42

materialized view logs, 1-8, 3-38
adding columns to, 6-13
column logging, 3-19

many to many subqueries, 3-19
many to one subqueries, 3-19
ON PREBUILT TABLE clause, 3-19
one to many subqueries, 3-19

combination, 3-38
creating, 6-12
deployment templates, 4-10
filter columns, 6-13
Import, 3-40
join columns, 6-13
logging columns, 6-13
object ID, 3-38
object tables, 3-39
primary key, 3-38
privileges required to create, 6-12
REFs, 3-34
ROWID, 3-38
trigger, 3-37
troubleshooting, A-7
underlying table for, 3-38

materialized view sites, 1-3
adding

avoiding problems, 6-15
advantages of, 6-8
compared with master sites, 6-7
database links, 6-10, 6-23
database version, 6-22
deferred transaction queues

scheduled push, 6-12
deployment templates, 4-7
length semantics, B-3

prebuilt container tables, B-3
local creation, 4-21
network connectivity, 6-22
preparing for deployment templates, 6-21
rollback segments, 6-23
schedule purge

guidelines, 6-19
scheduled links for

guidelines, 6-17
schemas, 6-23
setup, 6-22

Index-5

materialized views, 1-5, 3-1
architecture, 3-35
BUILD DEFERRED

troubleshooting, A-8
capabilities, 3-20
collection columns

restrictions, 3-32
column objects

column subsetting, 3-28
column subsetting, 1-8

column objects, 3-28
complex, 3-8, 3-9

value for PCTFREE, 3-46
value for PCTUSED, 3-46

concepts, 3-1
constraints

deferrable, 3-49
creating, 6-14
creating schemas for, 6-10
creator, 3-10
data subsetting, 3-3, 3-12
deployment templates, 1-9, 4-1

user-defined types, 4-6
disconnected computing, 3-3
index, 3-40
length semantics, B-3

prebuilt container tables, B-3
local control, 4-21
mass deployment, 3-3
master materialized view sites, 3-37
master materialized views, 3-37
master sites, 3-37
master tables, 3-37
materialized view groups, 3-41
materialized view logs, 1-8, 3-38
multitier, 1-5, 3-21, 3-26

conflict resolution, 5-5
fast refresh, 3-47
levels, 3-21
master materialized views, 3-22
restrictions, 3-25

nested tables
restrictions, 3-32

network loads, 3-2
object materialized views, 3-29

OID preservation, 3-30
object tables, 3-29
owner, 3-10
Partition Change Tracking (PCT), 3-47
preparing for, 6-9
primary key, 3-6
privileges, 3-10, 6-11
read-only, 1-6, 3-4

registration, 3-35
unregistering, 3-35

refresh groups, 1-8, 3-43
size, 3-44

refresher, 3-10
refreshing, 1-8, 3-45

complete, 3-45

failures, A-6
fast, 3-20, 3-46
force, 3-48
initiating, 3-48
interval, 3-48
on-demand, 3-49
querying for last refresh time, 3-34
retries, A-6
troubleshooting, A-6, A-7

REFs, 3-32
logging, 3-34
scoped, 3-32
unscoped, 3-33
WITH ROWID clause, 3-34

registration, 3-34
reorganizing, 3-38
row subsetting, 1-8, 3-12
rowid, 3-7
simple, 3-9
simple subquery

AND condition, 3-19
subqueries, 3-13

column logging, 3-19
EXISTS condition, 3-19
joins, 3-19
many to many, 3-15
many to one, 3-13
one to many, 3-14
OR condition, 3-19
restrictions, 3-19

trace file, A-6
transparent data encryption, 3-3
troubleshooting, A-5
types of, 3-5
unions with subqueries, 3-16

restrictions, 3-19
updatable, 1-6, 3-4

column aliases, 3-5
DELETE CASCADE constraint, 3-5, 3-50
length semantics, B-4
materialized view groups, 3-42

updatable materialized view logs, 3-40
trigger for, 3-41

user-define, 3-26
user-defined data types

ON COMMIT REFRESH clause, 3-26
uses for, 3-2
varrays

r, 3-32
writeable, 3-5

maximum conflict resolution method, 5-21
MEMORY_MAX_TARGET initialization

parameter, 6-5
MEMORY_TARGET initialization parameter, 6-5
minimum communication, 2-35
minimum conflict resolution method, 5-22
multimaster replication, 1-4, 2-1

architecture, 2-13
asynchronous, 2-5
concepts, 2-1

Index-6

disconnected materialized views, 2-4
failover, 2-3
load balancing, 2-3
synchronous, 2-5, 2-6
transaction propagation protection, 2-37
uses for, 2-3

multitier materialized views, 1-5, 3-21
conflict resolution, 5-5
fast refresh, 3-47
levels, 3-21
master materialized views, 3-22

restrictions, 3-25
materialized view groups

ownership, 3-26
restrictions, 3-25

N
NCHAR data type

Unicode, B-5
NCLOB data type

length semantics, B-6
nested tables

column groups, 5-16
conflict resolution, 5-8
materialized views, 3-30

restrictions, 3-32
replication, 2-11, 3-30

network
FAILOVER option, 6-27

NLS_LENGTH_SEMANTICS initialization
parameter, B-1

NOROWDEPENDENCIES clause, 2-39
NVARCHAR data type

Unicode, B-5
n-way replication. See multimaster replication

O
object identifiers

agreement for replication, 2-9, 3-27
object materialized views, 3-29

OID preservation, 3-30
object tables

column groups, 5-16
materialized view logs, 3-39
materialized views, 3-29
replication, 2-11

object-relational model
replication, 2-8, 3-26

objects
replicated

re-creating, A-3
OF object_type clause

object materialized views, 3-29
OID clause

CREATE TYPE statement, 2-10, 3-28
ON COMMIT REFRESH clause

of CREATE MATERIALIZED VIEW, 3-26
ON PREBUILT TABLE clause, 3-19

length semantics, B-3
one to many subqueries

materialized views, 3-14
online redefinition of tables, 3-39
OPEN_LINKS initialization parameter, 2-17, 6-5
OR condition

materialized views with subqueries, 3-19
Oracle Real Application Clusters

compared to replication, 2-4, 6-25
overwrite conflict resolution method, 5-18

P
packages

replication, 2-19
packaging deployment templates, 4-7
parallel propagation, 2-33

configuring for replication environments, 2-34
dependency

tracking, 2-38
implementing, 2-34
planning for, 6-21
replication environment, 6-21
row level SCN, 2-39
tuning, 2-35

PARALLEL_MAX_SERVERS initialization
parameter, 2-34, 6-6

PARALLEL_MIN_SERVERS initialization
parameter, 2-34, 6-6

parameters
deployment templates, 4-6

PCTFREE parameter
value for complex materialized views, 3-46

PCTUSED parameter
value for complex materialized views, 3-46

peer-to-peer replication. See multimaster replication
performance

replication, 2-33
periodic purges

scheduling, 6-19
periodic pushes

scheduling, 6-17
planning

for replication, 6-1
PRIMARY KEY constraints

materialized views, 3-6
replicated tables, 6-1

primary sites
ownership, 5-12

priority groups conflict resolution method, 5-23
privileges

materialized views, 3-10, 6-11
procedural replication, 1-13

detecting conflicts, 1-14
restrictions, 2-19
wrapper, 1-13

procedures
replicating, 2-19

PROCESSES initialization parameter, 6-6
propagation, 2-28

Index-7

initiating, 2-33
modes, 2-32
parallel, 2-33

implementing, 2-34
tuning, 2-35

security context of propagator, 2-30
propagator

replication, 2-14
purges

deferred transaction queue
scheduling continuous, 6-20
scheduling periodic, 6-19

pushes
deferred transaction queue

scheduling continuous, 6-18
scheduling periodic, 6-17

Q
quiescing, 1-5, 2-23

single master
reduced, 3-5

R
read-o, 3-35
read-only materialized views, 1-6, 3-4

registration
manual, 3-35

receiver
replication, 2-14

recovery
replication environments, 6-27

redefining tables
online

replication, 3-39
referential integrity

self-referential constraints, 2-18
refresh

automatic, 3-48
complete, 3-45
failures, A-6
fast, 3-46

determining possibility of, 3-20
force, 3-48
group, 3-48
initiating, 3-48
interval, 3-48
manual, 3-49
materialized views, 1-8, 3-45
on-demand, 3-49
retries, A-6
rollback segments

troubleshooting, A-8
scheduling, 3-48

troubleshooting, A-7
troubleshooting

ORA-12004 error, A-8
ORA-942 error, A-8

truncating materialized views

troubleshooting, A-8
refresh groups, 1-4, 1-8, 3-43

deployment templates, 4-14
size considerations, 3-44
troubleshooting, A-6

REFRESH procedure, 3-49
REFRESH_ALL_MVIEWS procedure, 3-49
REFRESH_DEPENDENT procedure, 3-49
REFs

materialized views, 3-32
replication, 2-12, 3-32

REGISTER_MVIEW procedure, 3-35
REPCAT_IMPORT_CHECK procedure, 6-27
replication

administration, 1-10, 2-22
administrative request queue, 2-25
administrative requests, 2-24

states, 2-25
applications that use, 1-2
assignment tables, 4-17
asynchronous propagation, 1-4, 2-29
availability, 6-24
character sets, B-1
checking imported data, 6-27
column groups, 2-28
column subsetting, 1-8
compared to Oracle Real Application

Clusters, 2-4, 6-25
conflict resolution, 1-12, 2-7, 2-40
conflicts

detecting, 2-40
procedural replication, 1-14

connection qualifiers, 2-17
data requirements, 5-2
database links, 2-14

Advanced Replication interface, 2-16
CONNECT TO clause, 2-15
USING clause, 2-15

DDL statements, 1-12
deferred transaction queues, 2-22

diagnosing problems with, A-4
deferred transactions, 1-4, 2-22
defined, 1-1
DELAY_SECONDS parameter, 2-36
dependencies

minimizing, 2-39
dependency tracking, 2-39
deployment templates, 1-9, 4-1

user-defined types, 4-6
distributed schema management, 1-12
error queues, 2-22
failover, 6-26
filter columns, 6-13
groups, 1-3, 2-26
hybrid configurations, 1-9
Import check, 6-27
indextypes, 2-20
initialization parameters, 6-4
internal procedures, 2-22
internal triggers, 2-21

Index-8

interoperability, 6-16
introduction, 1-1
job queues, 2-22
job slaves, 6-12
jobs, 2-24
mass deployment, 4-1
master, 1-5
master definition site, 1-4
master groups, 1-4, 2-26
master materialized views, 1-5
master sites, 1-4, 2-13

advantages, 6-8
materialized view groups, 1-4
materialized view logs, 1-8
materialized view sites

advantages, 6-8
materialized views, 1-5, 3-1
minimum communication, 2-35
modes, 2-23
multimaster, 1-4, 2-1
multitier materialized views, 1-5
objects, 2-17
performance, 2-33
planning for, 6-1
problems

troubleshooting, A-1
procedural replication, 1-13
procedures

troubleshooting, A-4
propagation, 2-28
propagator, 2-14
quiesce, 1-5, 2-23
real-time replication. See synchronous replication
receiver, 2-14
refresh, 1-8
refresh groups, 1-4, 1-8
replication administrator, 2-14
replication management API, 1-11
resuming, 2-23
row subsetting, 1-8
scheduled links, 1-10
See Also materialized views
single master, 2-2
sites, 1-3

choosing, 6-7
survivability, 6-24
suspending, 2-23
synchronous, 1-13, 2-29
tables, 6-1

and DML incompatibility, A-3
dependency tracking, 6-4
DML incompatibility, A-3

transaction propagation protection, 2-37
transactions

dependency ordering, 2-38
triggers

troubleshooting, A-4
troubleshooting, A-1
Unicode, B-5
unsupported data types

BFILE, 6-2
LONG, 6-2

unsupported table types, 6-3
user-defined data types, 2-8, 3-26
uses of, 1-1
virtual private database (VPD), 6-11

replication catalog, 1-12
DBA_MVIEW_REFRESH_TIMES, 3-34
DBA_REGISTERED_MVIEWS, 3-34
DBA_REPCATLOG, 2-24
incorrect views, A-5
USER_REFRESH, A-6
USER_REFRESH_CHILDREN, A-6

replication management API, 1-11, 2-24
replication objects, 1-3, 2-20

at materialized view sites
problems creating, A-5

functions, 2-19
indexes, 2-19

function-based, 2-18
on foreign keys, 6-2

packages, 2-19
procedures, 2-19
re-creating, A-3
sequences, 2-21
tables, 2-18, 6-1

dependency tracking, 6-4
DML incompatibility, A-3
foreign keys, 6-2
primary keys, 6-1
unable to generate support for, A-3

triggers, 2-20
REPLICATION_DEPENDENCY_TRACKING

initialization parameter, 6-6
restrictions

procedural replication, 2-19
rollback segments

materialized view sites, 6-23
row subsetting, 1-8

deployment templates, 4-17
materialized views, 3-12

ROWDEPENDENCIES clause, 2-39
creating tables, 6-4

rowids
rowid materialized views, 3-7

rows
identifying during conflict detection, 2-40

S
SCHEDULE_PUSH procedure, 6-17, 6-18
scheduled links, 1-10, 6-12

continuous pushes, 6-18
guidelines, 6-17
parallel propagation, 6-21
periodic pushes, 6-17
serial propagation, 6-21

scheduled purges
guidelines, 6-19
periodic purges, 6-19

Index-9

schemas
creating for materialized views, 6-10

security
deployment templates, 4-7

SEND_OLD_VALUES procedure, 5-27
sequences

replication, 2-21
SGA_TARGET initialization parameter, 6-7
shadow column groups, 5-15
SHARED_POOL_SIZE initialization parameter, 6-7
simple materialized views, 3-9
site priority conflict resolution method, 5-24

as a backup method, 5-17, 5-21
snapshots. See materialized views
store-and-forward replication. See asynchronous

replication
subqueries

in unions
materialized views, 3-16

materialized views, 3-13, 3-19
AND condition, 3-19
column logging, 3-19
EXISTS condition, 3-19
joins, 3-19
many to many, 3-15
many to one, 3-13
one to many, 3-14
restrictions, 3-19

subsetting
materialized views, 3-12

column objects, 3-28
survivability, 6-24

design considerations, 6-26
implementing, 6-26
Oracle Real Application Clusters and, 6-25

synchronous replication, 1-13, 2-29
of destination of transactions, 2-31

synonyms, 2-20
replication, 2-20

system change numbers
row level, 2-39, 6-4

T
table compression, 6-3
tables

length semantics, B-2
precreated

length semantics, B-2
problems generating replication support for, A-3
redefining online

replication, 3-39
replicating, 2-18, 6-1

dependency tracking, 6-4
DML incompatibility, A-3

temporary tables, 6-3
trace files

materialized views, A-6
transactions

propagation

protection mechanisms, 2-37
transparent data encryption, 6-3

materialized views, 3-3
triggers

for materialized view log, 3-37
for updatable materialized view logs, 3-41
replicating, 2-20

troubleshooting
replication problems, A-1

U
Unicode

NCHAR data type, B-5
NVARCHAR data type, B-5
replication, B-5

unions
with subqueries

materialized views, 3-16
restrictions for materialized views, 3-19

UNREGISTER_MVIEW procedure, 3-35
updatable, 5-7
updatable materialized view logs, 3-40

trigger for, 3-41
updatable materialized views, 1-6, 3-4

column subsetting, 5-7
DELETE CASCADE constraint, 3-5, 3-50
length semantics, B-4
materialized view groups, 3-42

us, 3-28
USER_REFRESH view, A-6
USER_REFRESH_CHILDREN view, A-6
user-defined data types

materialized views, 3-26
collections, 3-30
object tables, 3-29
ON COMMIT REFRESH clause, 3-26
REFs, 3-32
type agreement, 3-27

replication, 2-8, 3-26
collections, 2-11, 3-30
column objects, 2-8, 3-26
object tables, 2-11
REFs, 2-12, 3-32
type agreement, 2-9, 3-27

USLOG$_, 3-40

V
varrays

materialized, 3-30
materialized views

restrictions, 3-32
replication, 2-11, 3-30

vertical partitioning. See column subsetting
views, 2-20

replication, 2-20
virtual columns, 6-3
virtual private database (VPD)

Advanced Replication requirements, 6-11

Index-10

W
WHERE clause

deployment templates, 4-7
WITH ROWID clause

REFs, 3-34
wrapper

procedural replication, 1-13
writeable materialized views, 3-5

	Contents
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction to Advanced Replication
	Overview of Replication
	Applications that Use Replication
	Replication Objects, Groups, and Sites
	Replication Objects
	Replication Groups
	Replication Sites

	Types of Replication Environments
	Multimaster Replication
	Master Group Quiesce

	Materialized View Replication
	Overview of Read-Only Materialized Views
	Overview of Updatable Materialized Views
	Overview of Writeable Materialized Views
	Overview of Row and Column Subsetting with Materialized Views
	Materialized View Refresh
	Refresh Groups
	Materialized View Log
	Deployment Templates

	Multimaster and Materialized View Hybrid Configurations
	Scheduled Links

	Administration Tools for a Replication Environment
	Advanced Replication Interface in Oracle Enterprise Manager
	Replication Management API
	Replication Catalog
	Distributed Schema Management

	Replication Conflicts
	Other Options for Multimaster Replication
	Synchronous Replication
	Procedural Replication
	Conflict Detection and Procedural Replication

	2 Master Replication Concepts and Architecture
	Master Replication Concepts
	What is Master Replication?
	Multimaster Replication
	Single Master Replication
	Master Sites

	Why Use Multimaster Replication?
	Failover
	Load Balancing
	Support for Disconnected Materialized View Environments
	Oracle Real Application Clusters Compared with Replication

	Multimaster Replication Process
	Asynchronous Replication
	Synchronous Replication

	Conflict Resolution Concepts
	How Replication Works with Object Types and Collections
	Type Agreement at Replication Sites
	Object Tables and Replication
	Tables with Collection Columns
	Tables with REF Columns

	Master Replication Architecture
	Master Site Mechanisms
	Master Site Roles/Users
	Database Links and Replication
	Replication Objects
	Alternatives to Replicating Sequences
	Internal Triggers
	Deferred Transactions
	Internal Procedure
	Queues

	Administrative Mechanisms
	Replication Modes of Operation
	Replication Mode Control
	Administrative Requests
	Administrative Request Queue

	Organizational Mechanisms
	Master Group
	Column Groups

	Propagation Mechanism
	Propagation Types
	Synchronous Data Propagation
	Understanding Mixed-Mode Multimaster Systems
	Initiating Propagation

	Performance Mechanisms
	Parallel Propagation
	Minimum Communication
	Delay Seconds

	Replication Protection Mechanisms
	Data Propagation Dependency Maintenance

	Conflict Resolution Mechanisms
	Row Identification During Conflict Detection
	Resolution of Data Conflicts

	3 Materialized View Concepts and Architecture
	Materialized View Concepts
	What is a Materialized View?
	Why Use Materialized Views?
	Ease Network Loads
	Create a Mass Deployment Environment
	Enable Data Subsetting
	Enable Disconnected Computing

	Read-Only, Updatable, and Writeable Materialized Views
	Read-Only Materialized Views
	Updatable Materialized Views
	Writeable Materialized Views

	Available Materialized Views
	Primary Key Materialized Views
	Object Materialized Views
	ROWID Materialized Views
	Complex Materialized Views

	Required Privileges for Materialized View Operations
	Creator Is Owner
	Creator Is Not Owner
	Refresher Is Owner
	Refresher Is Not Owner

	Data Subsetting with Materialized Views
	Materialized Views with Subqueries
	Restrictions for Materialized Views with Subqueries
	Restrictions for Materialized Views with Unions Containing Subqueries

	Determining the Fast Refresh Capabilities of a Materialized View
	Multitier Materialized Views
	Scenario for Using Multitier Materialized Views
	Restrictions for Using Multitier Materialized Views

	How Materialized Views Work with Object Types and Collections
	Type Agreement at Replication Sites
	Column Subsetting of Masters with Column Objects
	Materialized Views Based on Object Tables
	Materialized Views with Collection Columns
	Materialized Views with REF Columns

	Materialized View Registration at a Master Site or Master Materialized View Site
	Viewing Information about Registered Materialized Views
	Internal Mechanisms
	Manual Materialized View Registration

	Materialized View Architecture
	Master Site and Master Materialized View Site Mechanisms
	Master Table or Master Materialized View
	Internal Trigger for the Materialized View Log
	Materialized View Log

	Materialized View Site Mechanisms
	Index
	Updatable Materialized View Log
	Internal Trigger for the Updatable Materialized View Log

	Organizational Mechanisms
	Materialized View Groups
	Refresh Groups
	Refresh Group Size

	Refresh Process
	Refresh Types
	Initiating a Refresh
	Constraints and Refresh

	4 Deployment Templates Concepts and Architecture
	Mass Deployment Challenge
	Deployment Templates and the Mass Deployment Goal

	Oracle Deployment Templates Concepts
	Deployment Template Elements
	General Template Information
	Template Object Definitions
	Template Parameters
	Template Parameters in the WHERE Clause and Security
	User Authorization
	Deployment Sites

	Deployment Template Packaging and Instantiation
	Online Instantiation
	Offline Instantiation
	Scenarios for Instantiating a Deployment Template

	Deployment Template Architecture
	Template Definitions Stored in System Tables
	Use of Standard DDL

	Packaging and Instantiation Process
	Packaging a Deployment Template for Online Instantiation
	Packaging a Deployment Template for Offline Instantiation
	Online Instantiation
	Offline Instantiation
	Packaging and Instantiation Options

	After Instantiation
	Materialized View Groups
	Refresh Groups

	Deployment Template Design
	Column Subsetting with Deployment Templates
	Row Subsetting
	Row Subsetting with an Assignment Table

	Data Sets
	Additional Design Considerations

	Local Control of Materialized View Creation
	Local Materialized View Control

	5 Conflict Resolution Concepts and Architecture
	Conflict Resolution Concepts
	Understanding Your Data and Application Requirements
	Examples of Conflict Detection and Resolution

	Types of Replication Conflicts
	Update Conflicts
	Uniqueness Conflicts
	Delete Conflicts

	Data Conflicts and Transaction Ordering
	Conflict Detection
	How Oracle Detects Different Types of Conflicts
	Identifying Rows During Conflict Detection

	Conflict Resolution
	Multitier Materialized Views and Conflict Resolution
	Column Subsetting of Updatable Materialized Views and Conflict Resolution
	Nested Tables and Conflict Resolution

	Techniques for Avoiding Conflicts
	Use Column Groups
	Use Primary Site and Dynamic Site Ownership Data Models
	Avoiding Specific Types of Conflicts

	Conflict Resolution Architecture
	Support Mechanisms
	Column Groups
	Error Queue

	Common Update Conflict Resolution Methods
	Latest Timestamp
	Overwrite

	Additional Update Conflicts Resolution Methods
	Additive
	Average
	Discard
	Earliest Timestamp
	Maximum
	Minimum
	Priority Groups
	Site Priority

	Uniqueness Conflicts Resolution Methods
	Append Site Name
	Append Sequence
	Discard

	Delete Conflict Resolution Methods
	Send and Compare Old Values
	Send and Compare Example
	Send and Compare When Using Column Objects

	6 Planning Your Replication Environment
	Considerations for Replicated Tables
	Primary Keys and Replicated Tables
	Foreign Keys and Replicated Tables
	Data Type Considerations for Replicated Tables
	Unsupported Table Types
	Row-Level Dependency Tracking

	Initialization Parameters
	Master Sites and Materialized View Sites
	Advantages of Master Sites
	Advantages of Materialized View Sites
	Preparing for Materialized Views
	Create Materialized View Site Users
	Create Master Site Users
	Create Schemas at Materialized View Site
	Create Database Links
	Assign Privileges
	Schedule Purge at Master Site
	Schedule Push
	Allocate Job Slaves

	Creating a Materialized View Log
	Logging Columns in the Materialized View Log

	Creating a Materialized View Environment
	Creating a Materialized View Environment Using the Replication Management Interface
	Creating a Materialized View Environment Using the Replication Management API

	Avoiding Problems When Adding a New Materialized View Site

	Interoperability in an Advanced Replication Environment
	Guidelines for Scheduled Links
	Scheduling Periodic Pushes
	Scheduling Continuous Pushes

	Guidelines for Scheduled Purges of a Deferred Transaction Queue
	Scheduling Periodic Purges
	Scheduling Continuous Purges

	Serial and Parallel Propagation
	Deployment Templates
	Preparing Materialized View Sites for Instantiation of Deployment Templates
	Network Connectivity
	Database Version
	Materialized View Site Setup
	Create Necessary Schemas
	Create Database Links
	Online or Offline Instantiation
	Create Necessary Rollback Segments

	Conflict Resolution
	Security and Replication
	Designing for Survivability
	Oracle Real Application Clusters versus Replication
	Designing a Replication Environment for Survivability
	Implementing a Survivable System
	Database Recovery in Replication Environments

	A Troubleshooting Replication Problems
	Diagnosing Problems with Database Links
	Diagnosing Problems with Master Sites
	Replicated Objects Not Created at New Master Site
	DDL Changes Not Propagated to Master Site
	DML Changes Not Asynchronously Propagated to Other Sites
	DML Cannot be Applied to Replicated Table
	Bulk Updates and Constraint Violations
	Re-creating a Replicated Object
	Unable to Generate Replication Support for a Table
	Problems with Replicated Procedures or Triggers

	Diagnosing Problems with the Deferred Transaction Queue
	Check Jobs for Scheduled Links
	Distributed Transaction Problems with Synchronous Replication
	Incomplete Database Link Specifications
	Incorrect Replication Catalog Views

	Diagnosing Problems with Materialized Views
	Problems Creating Replicated Objects at Materialized View Site
	Problems Performing Offline Instantiation of a Deployment Template
	Refresh Problems
	Common Refresh Problems
	Automatic Refresh Retries
	Fast Refresh Errors at New Materialized View Sites
	Materialized Views Continually Refreshing
	Materialized View Logs Growing Too Large

	Advanced Troubleshooting of Refresh Problems

	B Column Length Semantics and Unicode
	Column Length Semantics for Replication Sites and Table Columns
	Multimaster Support for Column Length Semantics
	Column Length Semantics Support for Tables Generated by Advanced Replication
	Column Length Semantics Support for Precreated Tables

	Materialized View Support for Column Length Semantics
	Materialized Views with Prebuilt Container Tables
	Column Length Semantics Support for Updatable Materialized Views

	DDL Propagation and Column Length Semantics
	Replication Support for Unicode
	Replication of NCLOB Data Type Columns

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

