ORACLE

Oracle® Database
Administrator's Guide

11gRelease 2 (11.2)
E10595-06

October 2009

Oracle Database Administrator's Guide, 11¢ Release 2 (11.2)

E10595-06

Copyright © 2001, 2009, Oracle and/ or its affiliates. All rights reserved.

Primary Author: Steve Fogel

Contributing Authors: Caroline Johnston, Sheila Moore, Tony Morales, Padmaja Potineni, Randy Urbano

Contributors: David Austin, Bharat Baddepudi, Cathy Baird, Mark Bauer, Eric Belden, Atif Chaudhry,
Jonathan Creighton, Sudip Datta, Mark Dilman, Jacco Draaijer, Marcus Fallen, Amit Ganesh, GP Gongloor,
Vira Goorah, Shivani Gupta, Bill Hodak, Pat Huey, Chandrasekharan Iyer, Bhushan Khaladkar, Balaji
Krishnan, Vasudha Krishnaswamy, Bala Kuchibhotla, Sushil Kumar, Vikram Kumar, Paul Lane, Adam Lee,
Bill Lee, Sue K. Lee, Chon Lei, Yunrui Li, Ilya Listvinsky, Bryn Llewellyn, Barb Lundhild, Scott Lynn, Raghu
Mani, Vineet Marwah, Colin McGregor, Mughees Minhas, Krishna Mohan, Sheila Moore, Valarie Moore,
Niloy Mukherjee, Sujatha Muthulingam, Gary Ngai Ananth Raghavan, Mark Ramacher, Ravi Ramkissoon,
Yair Sarig, Bipul Sinha, Deborah Steiner, Janet Stern, Michael Stewart, Mahesh Subramaniam, Anh-Tuan
Tran, Alex Tsukerman, Kothanda Umamageswaran, Eric Voss, Daniel M. Wong, Paul Youn, Wei Zhang

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Contents

PUROIACE ... ettt enaeen XXVii
AN S Lo 1= VLT RRRORRRRRRRRRN XXVii
Documentation AcCeSSIDILItYccciiiiiiiiiiiiiiiii s XXVii
Related DOCUITIEIESoovieiviiieeeeeeeeeeete ettt ettt ettt e et e esaeeteeeseeenseesaeeesseesesenseessessesenseesseeanns XXViii
(@03 4 T£=3 015 (o) 0 =IO PR ORRRRRRRRPNY XXViii

What's New in Oracle Database Administrator's Guide?...............cocooooeiecee. XXiX
Oracle Database 11¢ Release 2 (11.2) New Features in the Administrator's Guide....................... XXiX

Part1 Basic Database Administration

Getting Started with Database Administration

Types of Oracle Database USELS ...t 1-1
Database AdMUNISITATOTLSc.eccviiuiieiiciieieceeie ettt ettt ettt raesbe e e e beesbeeseess e seessesseerseseeneas 1-1
SECUTTLY OFfICOTS ...ttt 1-2
NetWOrk AdMINISITATOIS. ...ccuveiviiieticieie ettt ettt et e st e et e raesteeraebeessesbeessesseessesseessenseeseas 1-2
ApPPlication DEVELOPETS.........cciuiiiiiiiiiiiiiiiiiiicc e 1-2
Application AdmINIStrators.........ccoviiiuriiiiiiicieeci e 1-3
DAtabas@ USEIS ..c.evevieeieiieiiietieieeie ettt ettt este ettt et e ete e b e eseeaeeraebeesaesbeessesseessesseessanseessenseessenseeneas 1-3

Tasks of a Database AdmINiStrator............ccociiiiiiiiiiiiicie ettt et eveereens 1-3
Task 1: Evaluate the Database Server Hardwareccoceveveeviieienieeieieeieeeeereeee e 1-3
Task 2: Install the Oracle Database SOftWaTeccecvevieeeeiiieieieceete e 1-4
Task 3: Plan the Database...........cc.ooviiieiiciiirecieceeeeetecteettete ettt eae et et ere e seennas 1-4
Task 4: Create and Open the Database ... 1-5
Task 5: Back Up the Database............cccccovviiiiniiiiiiiiiiiiiii s 1-5
Task 6: ENroll System USETS........ccccccuiiiiiiiiiiiiiiiiiiiiiiiccics e 1-5
Task 7: Implement the Database Design..........c.ccccevuiiiiiiiiiiiiiniiiiiii, 1-5
Task 8: Back Up the Fully Functional Databasec.cccccocoviiiininnnnnnii, 1-5
Task 9: Tune Database Performanceccocvecueeueeiieiieiiereeie ettt ve e eae e seennes 1-5
Task 10: Download and Install PAtChesccooieieieeieniieieieceeeeeeee et 1-6
Task 11: Roll Out to Additional HOSESccuecveeiiiiiiiiciieiiciete ettt 1-6

Submitting Commands and SQL to the Database...............ccccccccceiiiiiiiiiiiiiiiccce 1-6
ADOUL SOLFPIUS. ...vecvieieeiieiieeete et este ettt et et e esee s e e saessesseessessaessessaessasssessesssessenseensesssessensees 1-7
Connecting to the Database with SQL*PIUScccoooiiiiiiiiiicecc 1-7

Identifying Your Oracle Database Software Release.............c.cccoocuiciiinnieiiinnccinnncccreenenes 1-12

J RS CeT= T IANR U0 1 oY) ol 20} s 0 4 V=X P 1-13

Checking Your Current Release NUMDbeTccoooiriiiiiiiiiiiic e 1-13
About Database Administrator Security and Privilegesccccccocovniiniiiniie, 1-14
The Database Administrator's Operating System Account.............ccoooeieiiineiiiiicicicinccnen, 1-14
Administrative User ACCOUNES..........ccciiiiiiiiiiiiiiic s 1-14
Database Administrator Authentication ... 1-16
Administrative Privileges ... 1-16
Selecting an Authentication Method for Database Administratorscccocceevoceieieicnnnn. 1-18
Using Operating System Authentication............cccccceiciiiiiiiinececceeeceeeeeeeeeees 1-20
Using Password File Authentication.............coooi e, 1-21
Creating and Maintaining a Password File............cccccooiiiiiiccc 1-22
Creating a Password File with ORAPWD ..o 1-23
Sharing and Disabling the Password File..............ccoooiiiii e, 1-25
Adding Users to a Password File..........ccoooiii 1-26
Maintaining a Password File ... s 1-27
Data UHLIHEScoooviiiiii s 1-28

Creating and Configuring an Oracle Database

About Creating an Oracle Database ... 2-1
Considerations Before Creating the Databasecooeuoiiiiiiiiiiiiic 2-2
Creating a Database with DBCA ... 2-5
Creating a Database with Interactive DBCA............cccoooiiie, 2-5
Creating a Database with Noninteractive/Silent DBCA............ccccceiiiiiiniiiiins 2-5
Creating a Database with the CREATE DATABASE Statementccccocoooiviniiiniiinnnn, 2-6
Step 1: Specify an Instance Identifier (SID)ccccocoveiiieiiiiiiiiiiiiiccc, 2-7
Step 2: Ensure That the Required Environment Variables Are Set...........cccoooviiiiiiiininns 2-7
Step 3: Choose a Database Administrator Authentication Method..........cccccccccciiniiinnnes 2-7
Step 4: Create the Initialization Parameter File..........cccccoooiiiiis 2-8
Step 5: (Windows Only) Create an INStance...........ccceuoviriieiiiiciiicccec e 2-9
Step 6: Connect to the INStANCe.......c.couiuiiiiiiiiccc e 2-9
Step 7: Create a Server Parameter File ..o 2-10
Step 8: Start the INStANCEc.c.cuiiiiiiiii s 2-10
Step 9: Issue the CREATE DATABASE Statement........c.ccccccceuiiiiiiieiceieiecceiceeeeeenenens 2-11
Step 10: Create Additional Tablespaces...........ccccooviiiiiiiiiiiiiiiiiiiiiiccc s 2-14
Step 11: Run Scripts to Build Data Dictionary VIeWs ..., 2-14
Step 12: Run Scripts to Install Additional Options (Optional)cccceeueuevveviivvrvnirnene 2-15
Step 13: Back Up the Database.cccccoeeviiiiiiiiiiiiiiiiiice s 2-15
Step 14: (Optional) Enable Automatic Instance Startupccooeveeeceeieiicnnincceccee, 2-15
Specifying CREATE DATABASE Statement Clausesccccccooeiiniiiinniiiiin 2-16
Protecting Your Database: Specifying Passwords for Users SYS and SYSTEM 2-16
Creating a Locally Managed SYSTEM Tablespace...........ccccoueveueieiniiciiiiiccieeiecee e, 2-17
About the SYSAUX TableSPace........c.cciiuiiuiimiiiiiiiiicceieicieneeieieiee et sesesenenens 2-17
Using Automatic Undo Management: Creating an Undo Tablespace.........ccccccooorurrerinncnen. 2-19
Creating a Default Permanent Tablespacecccccovviriiiiiiicccc, 2-19
Creating a Default Temporary Tablespace.........cccccceuvvriiirirrinireiirrreieeeeeeeeeeee s 2-19
Specifying Oracle-Managed Files at Database Creationcccocceeeiiiieiiinicicicececne, 2-20
Supporting Bigfile Tablespaces During Database Creation.............cccccceeuvuviviviiiiciriiininininene, 2-21

Specifying the Database Time Zone and Time Zone File...........ccccccocovniiiininniiiiine, 2-22

Specifying FORCE LOGGING MoOde.........ccccoiiiiiiiiiiiiiiiiiiiiiieesensnes 2-23
Specifying Initialization Parameters...............cccccooovniiiiiii 2-24
About Initialization Parameters and Initialization Parameter Files............cccccccoeviviinnnnne. 2-25
Determining the Global Database Name............c..cccoooeuiiiiiiiiiii e, 2-27
Specifying a Fast RECOVETY ATEa........ccccvvuiiiiiiiiriririiiiicrcee e 2-28
Specifying CONtrol FAlescoiiuiiiiiiiiiiic 2-29
Specifying Database BIOCK SiZeScouiiurieiiiiiiiiiccic 2-29
Specifying the Maximum Number of ProCesses.........c.cccovvrrirririrrnieiirrcccsreeeeeeeees 2-30
Specifying the DDL Lock Timeoutcc.ouiiuiiiiiiiiii 2-30
Specifying the Method of Undo Space Managementcccooiiiiiiiinecicccccce, 2-31
About The COMPATIBLE Initialization Parameterccooovvviviiiiniineiiiccn, 2-31
Setting the License Parametercoooouoiiiiieiiiiicicicc 2-32
Managing Initialization Parameters Using a Server Parameter File.....................cccooiine. 2-32
What Is a Server Parameter File? ... 2-33
Migrating to a Server Parameter Fileccoooiiiiiiiiiiiic 2-33
Creating a Server Parameter Fileccoooooiii 2-34
Storing the Server Parameter File on HARD-Enabled Storagec.cccccococeueciccrccieccncnnee. 2-35
The SPFILE Initialization Parameter ... 2-37
Changing Initialization Parameter Valuescccccooooriiiiiiiiicccc 2-38
Clearing Initialization Parameter Values...........cccccccovurviiiiininiiiricccceeecceeeeeees 2-39
Exporting the Server Parameter Fileccoooooiiiiii 2-39
Backing Up the Server Parameter Fileccccooiiiiiiiiii e, 2-40
Recovering a Lost or Damaged Server Parameter File ... 2-40
Viewing Parameter Settingsccocooiiiiiiiiiiiiieic 2-41
Managing Application Workloads with Database Servicesccccceviviiiniiiniinnn, 2-42
About Database SerVICes ... 2-42
Creating Database Services..........coccuiiiiiiiiiiieiic 2-43
Database Service Data Dictionary VIEeWS.........ccooiiiiiiiiiieiiicicec 2-44
Considerations After Creating a Database.............cccccccooiiiiiiiiiiie, 2-45
Some Security Considerations............coeeueieiiiieiiiiieiee e 2-45
Enabling Transparent Data ENCIYPHONccccccciiiiiiiiiiiiiiiccccccccnes 2-45
Creating a Secure External Password StOre ..o 2-46
Installing the Oracle Database Sample Schemas.............cccoooeieiiiiiciiiinici e, 2-46
Dropping a Database ..o 2-47
Database Data Dictionary VIEWS ... 2-47

Starting Up and Shutting Down

Starting Up a Database...............cccoiiiiiiiiiii e 3-1
About Database Startup OPtions..........cciiiiiiiiiiiic s 3-1
Specifying Initialization Parameters at Startupccccevvvrvniinininnnnninccccee 3-2
About Automatic Startup of Database SEIVICES ..o 3-5
Preparing to Start Up an INStance ... 3-5
Starting Up an INSTANCecovuiiiiiiiiiiiiccc e 3-6

Altering Database Availability ... 3-9
Mounting a Database to an INStanceccoceueviiiiieiiicicc 3-9
Opening a Closed Database............ccccccuiuiiiiiiiiiiiiiiiiiiii s 3-10

vi

Opening a Database in Read-Only Mode..........cccoouimiiiiiiiiiiii e, 3-10

Restricting Access to an Open Database..........cc.c.ooocueiiiiiciiiiiicc e 3-11
Shutting Down a Database...............ccccooviiiiiiiiiii s 3-12
Shutting Down with the Normal Mode..........cccooiii e, 3-12
Shutting Down with the Immediate Modecoooii, 3-12
Shutting Down with the Transactional Mode..........cccccocciiiiiiiiiiiiiiceccccceeeeenenens 3-13
Shutting Down with the Abort Mode ... 3-13
ShutdoWn TImMeEOULc.cuoviiiiiiiiiiii s 3-14
Quiescing a Database ... 3-14
Placing a Database into a Quiesced State ..o, 3-15
Restoring the System to Normal Operationccoceoiiiiiiiic e, 3-16
Viewing the Quiesce State of an INSTANCEccccciiiiiiiiiiiccccc e 3-16
Suspending and Resuming a Databasecccoooiiiiiiiiiiie 3-16

Configuring Automatic Restart of an Oracle Database

About Oracle ReStartccccooviiiiiiiiiiiiiiiiii 4-1
Oracle Restart OVEIVIEWccccciiiiiiiiiiiiiiiiii s 4-1
About Startup Dependenciescccccerrrririrrriiiiereeer e 4-2
About Starting and Stopping Components with Oracle Restart............cccoooviiiiiiiiinninns 4-3
About Starting and Stopping Oracle Restart............ccooviieiiiiiic 4-3
Oracle Restart CONfiguration..........cccccciiiiiiiiiiiiiiccceece e 4-4
Oracle Restart Integration with Oracle Data Guardc..coooeieiiiiiiiiiiiccc 4-5
Fast Application Notification with Oracle Restartcccooooiiiiii 4-6

Configuring Oracle Restart ... 4-10
Preparing t0 RUn SRVCTL.......cooiiiiiiii e 4-10
Obtaining Help for SRVCT L. 4-11
Adding Components to the Oracle Restart Configurationccccceeueueueverevcrvnneneenes 4-12
Removing Components from the Oracle Restart Configurationccccoeeeueiiiiricineinnnn, 4-14
Disabling and Enabling Oracle Restart Management for a Componentccccceueeeueee. 4-14
Viewing Component Status.........ccooiiiiiiiiiiiiiic s 4-15
Viewing the Oracle Restart Configuration for a Component............cccocoevveriirniicniccicenne. 4-16
Modifying the Oracle Restart Configuration for a Componentcccccooeereieiiceieinicnnnnn. 4-16
Managing Environment Variables in the Oracle Restart Configuration..........cccccccceeueueunnnene. 4-17
Creating and Deleting Database Services with SRVCTLcccooooiiiiiiiii, 4-19
Enabling FAN Events in an Oracle Restart Environment............ccccoccevivvvnnnnnnnnnnnnnes 4-20
Automating the Failover of Connections Between Primary and Standby Databases........... 4-20
Enabling Clients for Fast Connection Failover ..., 4-21

Starting and Stopping Components Managed by Oracle Restartcccooeeiinieicnnccnne. 4-25
Starting and Stopping Components Managed by Oracle Restart with SRVCTL 4-25
Starting a Database Managed by Oracle Restart with Oracle Enterprise Manager 4-26

Stopping and Restarting Oracle Restart for Maintenance Operations............ccccoceecvnnencncne. 4-27

SRVCTL Command Reference ..ottt 4-30
AA s 4-32
COMUIG ot 4-38
ISADIE ... 4-42
ENADIE ..ot 4-45
BOEEIIV oo 4-48

TEIMLOVE enutieeeuuteeeutteeautteeesteesuseesauseessseeesssteesnssaesnssaeeansteesassaeeasseesnasteessseesnsseesnssaessnsaessnseeesnnseesnsses 4-54
T2 1A SRR 4-58
517 1 SR OO O O O OO O O SO O SO OSUP PRSP PO PPN 4-60
517 14 6 T OO U OO SO SRRSO PPTRRRP 4-64
SEOP ottt 4-68
UTISEEEIIV ...ttt ettt ettt ettt e ettt e et e ettt e e abt e e e bt e e s bt ee s bbeeesabee e asteesabteeeabbeeeaabaeesuseeesabeeennbeesnneas 4-72
CRSCTL Command RefereNCeccooeeiiiiieiiiiiiiicieeieete ettt eaeste e steese s e esesraesesseessesrnenseens 4-74
CRIECK . ittt ettt ettt ettt ettt et et et e b e b e s b e s b e s b e st e st e st e s e e se et e e s e eseeb e s e b e b esbesbestestesa et e st s e s e sesensentan 4-75
CONEIZ it 4-75
AISADLE ...ttt ettt et ere et e e rt e be e rt e b e et b e beerb e beert e teereesteenaesreenaereas 4-75
LT a =1 o) L= OO U U U U TP 4-75
517 1 SR OO O O O O OO O OO O SO UPT RSO P PO R USROS POROPPPROPON 4-75
SEOD ettt bbbt 4-75

Managing Processes

About Dedicated and Shared Server Processes................ccooouiiiiriiiiiiiiiecccc 5-1
Dedicated SEIVer PrOCESSEScciviiviviviiiiiiiiiiiic s 5-1
Shared Server PrOCESSES ...t 5-2

About Database Resident Connection Pooling ..., 5-4
Comparing DRCP to Dedicated Server and Shared Server-.............cccccccccccuieeciccnnncnennns 5-5
Restrictions on Using Database Resident Connection Poolingccccoeueiirieiiiinicininnnen, 5-6

Configuring Oracle Database for Shared Server ... 5-6
Initialization Parameters for Shared Server ... 5-6
Memory Management for Shared Server ... 5-7
Enabling Shared Server ... 5-7
Configuring DISPatChers.........cciiiiiiiiiiiccccecee s 5-10
Shared Server Data Dictionary VIEWS.........ccccououiiiiiiiiiicicci s 5-15

Configuring Database Resident Connection Pooling...............cccccccoeiiiiiiiiiiiiiiiiicn, 5-15
Enabling Database Resident Connection POOLNEcccccueueiriiiiiiiiiiiiiiiiccciceeceeees 5-16
Configuring the Connection Pool for Database Resident Connection Pooling 5-17
Data Dictionary Views for Database Resident Connection Pooling...........cccccoevevvuiinininnnnn. 5-18

About Oracle Database Background Processes..............ccoviiiininiiininiiicces 5-19

Managing Processes for Parallel SQL Executioncccocovvviiiiiiiiiniiin 5-20
About Parallel EXECUION SEIVETSc.ccoovieuiuiviririiiciririeiciceeeeeceee ettt 5-21
Altering Parallel Execution fOr @ SESSION........ccccuiuiuiiiiiiiiiiiiniriciciciereeerreeeere e 5-21

Managing Processes for External Proceduresccocooviiiiiiiiiniii 5-22
About External ProCeAUIES. ..ottt 5-22
DBA Tasks to Enable External Procedure Calls.........c..ccccoooviiviiiiiiniiiicccc, 5-22

Terminating SeSSIONS...........ccccovviiiiiiiiiiiiiii s 5-23
Identifying Which Session to Terminate............cccocoeiieiiiiiiiiiiiiiiceecceeeees 5-23
Terminating an Active SESSION.........ccciiiviiiiiiii s 5-24
Terminating an INactive SESSIONccocueieiiiiiiiic 5-24

Process and Session Data Dictionary VIEWS............ccccccooeiiiiiiiiiiiiiiiccccccceeecenennas 5-25

vii

viii

Managing Memory

About Memory Management.............ccccooviviiiiiiiiiiiiiiii s 6-1
Memory Architecture OVerVIeW ... 6-2
Using Automatic Memory Management ..o 6-3
About Automatic Memory Managementcccueuoireieiiiucicieiiccie e 6-4
Enabling Automatic Memory Managementccccocceeuiiemieecueeeieeeneieeieneneenenenenenenenenes 6-4
Monitoring and Tuning Automatic Memory Managementccccoovrueuiiircieiiicieecenen, 6-6
Configuring Memory Manually ... 6-7
Using Automatic Shared Memory Managementccccooeociiiciiimiicceeeceeeneneenenenenes 6-8
Using Manual Shared Memory Management...............ccoureieiiinieieiicicicnci e 6-14
Using Automatic PGA Memory Managementc.cccoeeuiiiiiiiiiiiiiicic 6-20
Using Manual PGA Memory Managementcccceceeucucieiemeereueieeeneeneeeneieneneneeeseeeneeeeees 6-21
Configuring Database Smart Flash Cache.............ccccoooiiiiiiiii 6-21
When to Configure the Flash Cache............ccoooii 6-21
Sizing the Flash Cache.........ccccoiiiiiiiiice e 6-22
Tuning Memory for the Flash Cache...........cccooooiiiiiiii e, 6-22
Flash Cache Initialization Parameters. ..o 6-22
Flash Cache in an Oracle Real Applications Clusters Environment..........ccccccceevevvrrnnenne. 6-23
Memory Management Reference.cccoovviiiiiniiiniiis 6-23
Platforms That Support Automatic Memory Management..............cccoeueueioireieiiiccieieiccnnn. 6-23
Memory Management Data Dictionary VIews.........ccccoeiiiiiiiiiiniiiininiccee 6-23

Managing Users and Securing the Database

The Importance of Establishing a Security Policy for Your Database.................ccccccooevniinnnns 7-1
Managing Users and ReSOUTCES..............ccocoiiiiiiiiiiiiiiiiii s 7-1
Managing User Privileges and Rolescccocovviiiiii, 7-2
Auditing Database USecccccoiiiiiiiiiiiii e 7-2
Predefined User ACCOUNLSoouiiiiiiiiiiiiiiiccc s 7-2

Monitoring Database Operations

Monitoring Errors and ALerts..............cccocoviiiiiiiiiii 8-1
Monitoring Errors with Trace Files and the Alert Log ... 8-1
Monitoring Database Operations with Server-Generated Alertsccccoovvvvrrrvenrrenenc. 8-4

Monitoring Performance.............ccovviiiiiiiiii s 8-6
MONItoring LOCKSc.ccuiiiiiiiiiiicci e 8-7
Monitoring Wait EVENtScccoiiiiiiiiiiiic s 8-7
Performance Monitoring Data Dictionary VIeWs.........ccccouoieieiiiinieiciiiciciccccec e, 8-7

Managing Diagnostic Data

About the Oracle Database Fault Diagnosability Infrastructure................ccccocoovnnnnnnnnn, 9-1
Fault Diagnosability Infrastructure OVerview...........ccoovvivnininininnnnnnnnnnnssesenne 9-1
About Incidents and Problems...........ccccocvciiiiiiiiiccee e 9-3
Fault Diagnosability Infrastructure Componentscccoovvivivinninnniniinnne, 9-5
Structure, Contents, and Location of the Automatic Diagnostic Repositoryccccceueuce.. 9-7

Investigating, Reporting, and Resolving a Problemcccocooiiniinnii, 9-10
Roadmap—Investigating, Reporting, and Resolving a Problem.............ccccccceviiiiinnnnnnn 9-10

Task 1 - View Critical Error Alerts in Enterprise Managercccccocoeueveiiicicinicicicieennnen, 9-12

Task 2 —View Problem Details...........ccooiiiiiiiiiiiiiiiis 9-13
Task 3 — (Optional) Gather Additional Diagnostic Informationcccccceeeiiinnncnnnane. 9-13
Task 4 — (Optional) Create a Service Request..........c.ccoeuiiiiiiiiiiiniiiiiii 9-13
Task 5 — Package and Upload Diagnostic Data to Oracle Support.........cccccevvvviniinnnnnne 9-14
Task 6 — Track the Service Request and Implement Any Repairs.........c.cccccovueueueueucueuncucuennnne. 9-15
Task 7 — Close INCIAENLSoouivimimiiiiiiiiiiic s 9-16
Viewing Problems with the Enterprise Manager Support Workbench.................ccccccoennnn 9-17
Creating a User-Reported Problemcccccooiiiiiiiiiiiiii 9-18
Viewing the ALert LOg ..o 9-19
Finding Trace Files ... 9-20
Running Health Checks with Health Monitor..............ccccccocooiiiiiinc, 9-20
About Health MONItOTccoiuiiiiiiiiiiiiiiiccc s 9-21
Running Health Checks Manuallyccoooiiiiiiiiiic e 9-22
Viewing Checker REPOTESocociiiiiiiiiiicccece e 9-23
Health MONItOr VIEWS ..ottt 9-26
Health Check Parameters Reference ... 9-27
Repairing SQL Failures with the SQL Repair AdViSorccccccooiiniiiniiinie, 9-27
About the SQL Repair AdVISOTccoiimiiiiiiiiiiiiiiiiiec s 9-28
Running the SQL Repair AdVISOT........cccouiiiirieieiiicieieeicc e 9-28
Viewing, Disabling, or Removing a SQL Patch ..o 9-29
Repairing Data Corruptions with the Data Recovery Advisorccccoeeiiiiiiiiciiiiicnnn, 9-30
Creating, Editing, and Uploading Custom Incident Packages............cccccocoeriiiiiiiiiinnnns 9-31
About Incident PaCKages.........ccceurururiiiriririiiiiiiieecee s 9-32
Packaging and Uploading Problems with Custom Packagingccccccoooieeiiiiiiiniinnen, 9-34
Viewing and Modifying Incident Packagescccoceuoioiiiieiiiiiieiicce, 9-38
Creating, Editing, and Uploading Correlated Packagesccccccevuvuvvrrnnnrnnnnnnnccnes 9-44
Deleting Correlated Packagesccooeueueiiiiiciiiiicicc 9-44
Setting Incident Packaging Preferences.............ocooooiiiiiiiccccc 9-45

Partll Oracle Database Structure and Storage

10 Managing Control Files

What Is @ Control FIle? ...ttt 10-1
Guidelines for Control Filesccooiiiiiiiiiiicccccccccc e 10-2
Provide Filenames for the Control Files ... 10-2
Multiplex Control Files on Different Disksccccccciiiiiiiiiiiiiiiiiiiiicciccccceees 10-2
Back Up Control FILES ..ot 10-3
Manage the Size of Control Files ... 10-3
Creating Control Files ... 10-3
Creating Initial Control FILEs ... 10-3
Creating Additional Copies, Renaming, and Relocating Control Filesccccccceineniai. 10-4
Creating New Control Files ... 10-4
Troubleshooting After Creating Control Files.............c.cccccocoiiiiiiiiince, 10-7
Checking for Missing or Extra Filescccocoooiiiiiiiiiiii 10-7
Handling Errors During CREATE CONTROLFILEcccccccoviviiiiniinnnnnicicnne, 10-7

11

12

Backing Up Control Files..............ccoiiiiiiiiiics e 10-8

Recovering a Control File Using a Current COPYccooviiiiiiiiiiiiiicccccccnennas 10-8
Recovering from Control File Corruption Using a Control File Copy......ccccceceuvueurvrnrnunnne. 10-8
Recovering from Permanent Media Failure Using a Control File Copy........cccooveueinirunnnne. 10-8

Dropping Control Files ... 10-9

Control Files Data Dictionary VIEWS...........ccccoviiiiiiiiiiiiiiicns 10-9

Managing the Redo Log

What Is the Redo Log?..........ccooooiiiiiiiiiiiii s 11-1
RedO Threadsccoviiiiiiiiiiiiiiiiicic s 11-1
Redo Log CONENES.......cocviviiiiiiiiiiiic s 11-2
How Oracle Database Writes to the Redo Logccccccuiuiiiiiiiiiicrcnccreeccrcnes 11-2

Planning the Redo LOgccccoiiiiiiiiiii s 11-4
Multiplexing Redo Log Filescooiiiiiiii 11-4
Placing Redo Log Members on Different Disks.........ccccccccccuicniiiiiiniiiircccecceeeneene 11-6
Planning the Size of Redo Log Filescoooiiiiiiiiiii 11-7
Planning the Block Size of Redo Log Filesccoiiiiiiiiiii e 11-7
Choosing the Number of Redo Log Filescccccccciiiiiiiiiiiiccceecccceeeeeeeeees 11-8
Controlling Archive Lag ..o 11-9

Creating Redo Log Groups and Members...............cccoooiiiiiiiiiiiiiiiccceeennas 11-10
Creating Red0 LOg GIOUPScoveviviieiriieriiiicreccrre s 11-10
Creating Redo Log Members.............coooiiiiiriiiiii 11-11

Relocating and Renaming Redo Log Members ..., 11-11

Dropping Redo Log Groups and Members ..o 11-13
Dropping LOg GIOUPSccovviiiiiiiiiiiiiiiiiiii s s s 11-13
Dropping Redo Log Members............ccouoiiiiiiiiiicicieee i 11-13

Forcing Log SWitChes...........cccccooiiiiiiiiiii s 11-14

Verifying Blocks in Redo Log Files ... 11-14

Clearing a Redo Log File............ccocoooiiiiiiii e 11-15

Redo Log Data Dictionary VIEWSccccoceiiiiiiiiiiiiiiiiiiicccnes 11-16

Managing Archived Redo Logs

What Is the Archived Redo Log? ..o 12-1
Choosing Between NOARCHIVELOG and ARCHIVELOG Modeccccoovunrimiiiininnnnnnas 12-2
Running a Database in NOARCHIVELOG Modecccoooiiiiiiniiiiiicceececn e, 12-2
Running a Database in ARCHIVELOG Mode........cccccoecuiiiiiiininiiiiiicicceeeeeeeeeeeeeeeeeeeeees 12-3
Controlling ArchivVing ... 12-4
Setting the Initial Database Archiving Mode.........ccccooiiiiniiiiiiccc 12-4
Changing the Database Archiving Mode ..o 12-4
Performing Manual ArchiVing..........ccoeuiiiiiiiiiiicic 12-5
Adjusting the Number of Archiver Processescocovueeieiiceieieiiceieicee e, 12-6
Specifying Archive Destinations ... 12-6
Setting Initialization Parameters for Archive Destinationsccocoeueiviicieiiiiciciciicnnen, 12-6
Understanding Archive Destination Statusccccoeoiiiiiiiiic, 12-9
Specifying Alternate Destinationscooeiiririeiniiiniiccc e 12-10
About Log Transmission MoOdes.............ccccoviiiiiiiiiiic e 12-10
Normal Transmission MOde...........ccccviiiiiiniiiiiiniiii s 12-10

13

Standby Transmission MOde ... 12-10

Managing Archive Destination Failure ..., 12-11
Specifying the Minimum Number of Successful Destinations.............cccoceevrrernncnnenccaaes 12-11
Rearchiving to a Failed Destinationcccoouoiiiiiiiic 12-12

Controlling Trace Output Generated by the Archivelog Processccccccooiiiiiiiinnnn. 12-13

Viewing Information About the Archived Redo Log ..., 12-14
Archived Redo Logs VIEWScccuoiiiiiiici 12-14
The ARCHIVE LOG LIST Command........cccceuviiiinininiiiiniiicisisessiccesisesessesesennns 12-15

Managing Tablespaces

Guidelines for Managing Tablespaces..............ccccooiuiiiiiiiiiiiiiiiiic e 13-1
Using Multiple TableSpaces..........ccouiiiiiiiiiiiiicececceieeeee e senees 13-2
Assigning Tablespace Quotas t0 USErS..........cccoouiuriiiiiniicieiiccic 13-2

Creating TableSPaces ... 13-2
Locally Managed TableSpaces..........ccccucucuiiiuciiieieiiiiieieieieieieieieieieieie e seseeesseeeeeenaeesaeseseeseees 13-3
Bigfile TableSPaCescuoviuiieiiiieiiei e 13-6
Compressed TableSPacesccceueiiiiiiieiiieie s 13-8
Encrypted TableSPacesccoccuiuiuiiciiiiiciciiiecicciecieeete et 13-8
Temporary TableSpaces..........cccovviiiiiiiiiiiiiii 13-10
Multiple Temporary Tablespaces: Using Tablespace Groups.........ccccceeeeueieieicueieicinnuenennee. 13-13

Specifying Nonstandard Block Sizes for Tablespaces.............ccccocoeiiiiniiiiniiiiiniiiins 13-14

Controlling the Writing of Redo Records..............cccooiiiiiiiiiiiicccc 13-15

Altering Tablespace Availability ... 13-15
Taking Tablespaces OffliNe.........c.ccccceururiiiiiiiriiiiiirrccc e 13-16
Bringing Tablespaces ONlNe.............ccooeuiiiiiiiiiiiicic 13-17

Using Read-Only TableSPacescccoouviiiiiiiiiiiiiiiicisssccss e 13-17
Making a Tablespace Read-Onlyccccocoviiiiinniiiiir e 13-18
Making a Read-Only Tablespace Writablecccccoviiiiiiiiiiiiiiins 13-20
Creating a Read-Only Tablespace on a WORM Deviceccoceueiiiiiiiiiinnieecciceee, 13-20
Delaying the Opening of Datafiles in Read-Only Tablespacescccceeeeiiiiicciccnnes 13-20

Altering and Maintaining Tablespaces..............cccocooviiiiiiiiiii e 13-21
Altering a Locally Managed Tablespace.........c.cccccocoeueuiiiiiiniiiiiniiiiiiiiiininnnnncsnesseseenes 13-21
Altering a Bigfile Tablespace..........cccccvuruiiiiiiriiiiiiiiiircre e 13-22
Altering a Locally Managed Temporary Tablespace...........cccocoeueviiciiiniiniciiicciccie 13-22
Shrinking a Locally Managed Temporary Tablespacecccccovuvvinivinininininininiiiiiiccnnes 13-23

Renaming TableSpaces ... 13-23

Dropping TableSpaces ..o s 13-24

Managing the SYSAUX TablesSpace............cccooiiiiiiiiiiiiiiiicccceceeiee e 13-25
Monitoring Occupants of the SYSAUX Tablespacecccccviiiiiuiiicciiicceececenenes 13-25
Moving Occupants Out Of or Into the SYSAUX Tablespace.........cccccovrririininiiiiiiininnnes 13-26
Controlling the Size of the SYSAUX Tablespacecccccoevuiimeieinicciniiiiceieceecce, 13-26

Diagnosing and Repairing Locally Managed Tablespace Problems.................ccccccovvniiiiinnnns 13-27
Scenario 1: Fixing Bitmap When Allocated Blocks are Marked Free (No Overlap)............ 13-28
Scenario 2: Dropping a Corrupted Segmentccccovuvvvninninnnnninnnccceees 13-28
Scenario 3: Fixing Bitmap Where Overlap is Reported ..o 13-28
Scenario 4: Correcting Media Corruption of Bitmap Blocks.........ccccocovviiviiiiniininiinnn, 13-29
Scenario 5: Migrating from a Dictionary-Managed to a Locally Managed Tablespace...... 13-29

xi

14

15

Xii

Migrating the SYSTEM Tablespace to a Locally Managed Tablespace..............ccoooviinnnnnne. 13-29

Transporting Tablespaces Between Databasescccccooviiiiiiiiiiiices 13-30
Introduction to Transportable Tablespaces..........ccccccecucueurrreriiirirrreerereeeeeeeeeese s 13-30
About Transporting Tablespaces Across Platforms...........ccccooeeeiiiiiiiiiiinnin, 13-31
Limitations on Transportable Tablespace Use...........cccoooeueiniiiiiiniiiiiiiccc e, 13-32
Compeatibility Considerations for Transportable Tablespaces...........c.cccoeveeiriieincccicnnne. 13-34
Transporting Tablespaces Between Databases: A Procedure and Example 13-35
Using Transportable Tablespaces: SCENAriosccoooirueieiiiiecieieiiccicecee e 13-44
Moving Databases Across Platforms Using Transportable Tablespaces............c.cccccceeuneee. 13-46

Tablespace Data Dictionary VIEWS ... 13-47
Example 1: Listing Tablespaces and Default Storage Parameterscccccoovriiniennnn.. 13-48
Example 2: Listing the Datafiles and Associated Tablespaces of a Database....................... 13-48
Example 3: Displaying Statistics for Free Space (Extents) of Each Tablespace..................... 13-48

Managing Datafiles and Tempfiles

Guidelines for Managing Datafiles..............ccccoiiiiiiiiiii e 14-1
Determine the Number of Datafilescccocoiiiiiiiiiiiiiiiiii 14-2
Determine the Size of Datafiles..........cocooviiiiiiiiiiiii 14-3
Place Datafiles Appropriately ... 14-4
Store Datafiles Separate from Redo Log Files..........cccoooiiiiiiiie, 14-4

Creating Datafiles and Adding Datafiles to a Tablespace ... 14-4

Changing Datafile Sizecccoooiiiiiiiiii 14-5
Enabling and Disabling Automatic Extension for a Datafile............cccoooiiiiniinn, 14-5
Manually Resizing a Datafile ... 14-6

Altering Datafile Availabilityccccooooiiiiiiii 14-6
Bringing Datafiles Online or Taking Offline in ARCHIVELOG Mode..........ccccoovrueiirnnnnnn. 14-7
Taking Datafiles Offline in NOARCHIVELOG Mode.........cccocovuvirvniniiiirnnincnereeceeeenes 14-7
Altering the Availability of All Datafiles or Tempfiles in a Tablespacec.cccoceueuennneec.. 14-8

Renaming and Relocating Datafiles................ccoooiiiiiiiiiiiic 14-8
Procedures for Renaming and Relocating Datafiles in a Single Tablespacec.......... 14-9
Procedure for Renaming and Relocating Datafiles in Multiple Tablespaces....................... 14-10

Dropping Datafiles ... 14-11

Verifying Data Blocks in Datafiles ... 14-12

Copying Files Using the Database Serverccccococoviiiniiiiinniicas 14-12
Copying a File on a Local File System.........cccccccciiiiiiniiiiiiiiiiiiiicnicinnsses 14-13
Third-Party File TTansfer ..ot 14-14
File Transfer and the DBMS_SCHEDULER Package.........ccccocoviiiiiiiiiiiiiiiccinines 14-14
Advanced File Transfer MeChaniSms...........cccccccciririieinnieieiinineecieeeeetseene e 14-15

Mapping Files to Physical Devices...........ccccocooiiiniiiiiiiiiniiiic s 14-15
Overview of Oracle Database File Mapping Interface..........cccccoovviviiniiviininiinnn, 14-16
How the Oracle Database File Mapping Interface Works..........cccocoooeiiniiiiiiniii, 14-16
Using the Oracle Database File Mapping Interface..........cccoeevininiiiiniiiciiicccciccenens 14-19
File Mapping EXamples.........ccccoviiiiiiiiiiiiiiiiiiiiiice s 14-22

Datafiles Data Dictionary VIEWS..........ccoviiiiiiiiiiiiiiiiccccce e 14-25

Managing Undo
WRAL IS UNAO? ...ttt ettt et e e et et e et e e aeeeneeeetesereseetesenseeseeenseenseeenesenres 15-1

Introduction to Automatic Undo Management ... 15-2

Overview of Automatic Undo Managementc.cccouieiiiiicieiicciciecce e 15-2
About the Undo Retention Period ..., 15-3
Setting the Minimum Undo Retention Period ..o 15-6
Sizing a Fixed-Size Undo Tablespace..............cccoiiiiiiiiiiiiiiiiiiiiccceennnas 15-6
The Undo Advisor PL/SQL INTEIfaCEecovevieveeieerecieetecteete ettt ettt eve e eae v eeaeennes 15-7
Managing Undo TableSpacescccccovuiiiiiiiiiniiiiiiiiiccc s 15-8
Creating an Undo TableSpaceccueiiiiiiiiiie e 15-8
Altering an Undo TableSPpace.........c.ccccuiiuiiiiiiiiciiiiiiiieeiceeeieeee e aeaeees 15-9
Dropping an Undo Tablespace ... s 15-9
Switching Undo Tablespaces...........coiruiiiiiiiiice s 15-10
Establishing User Quotas for Undo Space..........ccccovuveeiririrvniniinrnrrrrereeree s 15-11
Managing Space Threshold Alerts for the Undo Tablespacecccccoouiririiiiiniciciinnnen, 15-11
Migrating to Automatic Undo Management..............ccoccoviiiiiiiiiiiiiiccccenes 15-11
Undo Space Data Dictionary VIEWSccccoeiiniiiiiiiiiiii s 15-11
16 Using Oracle-Managed Files
What Are Oracle-Managed Files?..............ccccocooiiiiiiiiiiii s 16-1
Who Can Use Oracle-Managed Files?...........ccooooiiiiiiiiiiicecc e 16-2
Benefits of Using Oracle-Managed Files..........c.ccooooiiiiiiiiiiiic e, 16-3
Oracle-Managed Files and Existing Functionalitycccccocoeiiiiinininnniirnccee 16-3
Enabling the Creation and Use of Oracle-Managed Files.............cccocooiiiiiiiiiiiiiicnns 16-3
Setting the DB_CREATE_FILE_DEST Initialization Parameter.............cccccccccevvvninnnnnnnnn. 16-4
Setting the DB_RECOVERY_FILE_DEST Parameter..........c.cccccecueueueueueuemeienieicieeiceeeeeneneees 16-5
Setting the DB_CREATE_ONLINE_LOG_DEST _n Initialization Parameters....................... 16-5
Creating Oracle-Managed Files ... 16-5
How Oracle-Managed Files Are Namedcccccococuiiiiiiiiiiiicceeeeeeieeeneeenenenenens 16-6
Creating Oracle-Managed Files at Database Creation...........ccccoovoiiiiiiiiiiiccc, 16-7
Creating Datafiles for Tablespaces Using Oracle-Managed Files............cccccooviiniinnnnn.. 16-12
Creating Tempfiles for Temporary Tablespaces Using Oracle-Managed Files 16-14
Creating Control Files Using Oracle-Managed Filescccoooiiiiiiinii, 16-15
Creating Redo Log Files Using Oracle-Managed Files...........ccococoooviiiiiiiiiniiniecnen, 16-17
Creating Archived Logs Using Oracle-Managed Files...........cccccccceviiinniinnnnncnnnne 16-17
Behavior of Oracle-Managed Files..............cccooiiiiiiiiiiiii s 16-18
Dropping Datafiles and Tempfilescccccovuviriviiiiiiiiniiiiiiiicsseceaes 16-18
Dropping Redo Log Files ..o 16-19
Renaming FAlesoouoviiiic 16-19
Managing Standby Databasescccccovviviiiiiiiniiiiii e 16-19
Scenarios for Using Oracle-Managed Filescccccccoooiiiiiiiiiniics 16-19
Scenario 1: Create and Manage a Database with Multiplexed Redo Logsc.cccccouevenie. 16-19
Scenario 2: Create and Manage a Database with Database and Fast Recovery Areas........ 16-23
Scenario 3: Adding Oracle-Managed Files to an Existing Database..........cccccccocevvirrnnnnce. 16-24
Part Il Schema Objects

xiii

17

18

Xiv

Managing Schema Objects

Creating Multiple Tables and Views in a Single Operation..............ccccccoooiiiiiiiiiiiiiinn, 17-1
Analyzing Tables, Indexes, and Clusters...............ccccoiiiiininiiiinniis 17-2
Using DBMS_STATS to Collect Table and Index Statistics...........ccccceveiviiiiininiiiiiiienne, 17-3
Validating Tables, Indexes, Clusters, and Materialized Views.........cccccoevuvviniiiinninnnnnnn 17-3
Listing Chained Rows of Tables and CIUSLETsScccccoceueuiiemiieiiieeccceceeeeeieee e 17-4
Truncating Tables and CIUSLeTSccccceviiiiiiiiiiiiiiiiic s 17-6
Using DELETEocoiiiiiiiiiiiriicc s 17-6
Using DROP and CREATEccoiiiiiicccece et eaenes 17-6
Using TRUNCATE ... 17-6
Enabling and Disabling TIigGeTS ... 17-7
ENabling TTIG@ETSc.cuiuiuiiiiiiiiiiiicicieeiccce ettt 17-9
DiSabING TTIGERTScuviieiiiicieiiiictcie et 17-9
Managing Integrity Constraints ... 17-9
Integrity Constraint States ... 17-10
Setting Integrity Constraints Upon Definition.............ccooeiiiiiii 17-11
Modifying, Renaming, or Dropping Existing Integrity Constraintscccccoeeieirennnee. 17-12
Deferring Constraint Checkscccooviiiiiiiiiinrerrrr e 17-14
Reporting Constraint EXCEPLIONS..........ccceveviviiiiiiiiiiiiiiicccccc s 17-14
Viewing Constraint Information............ccoiii e 17-16
Renaming Schema ODbjects...........ccooiiiiiiiiiiiii e 17-16
Managing Object Dependencies ... 17-17
About Object Dependencies and Object Invalidation............cceevoiriiioiiiiiiiii 17-17
Manually Recompiling Invalid Objects with DDL..........cccccccciiiiiiiiiiriccrrceerene 17-18
Manually Recompiling Invalid Objects with PL/SQL Package Procedures........................ 17-18
Managing Object Name ReSoIUtion ..o 17-19
Switching to a Different Schema ... 17-21
Managing Editions ... 17-21
About Editions and Edition-Based Redefinitioncccooviiiiii 17-21
DBA Tasks for Edition-Based Redefinitionccccvvieiiiiiiiiiiicc 17-21
Setting the Database Default EQitioncccocoviiiiiiiiiiiii 17-22
Querying the Database Default Edition...........ccocooiiiiiiiiiiicc 17-22
USINg an EdTtION ..o 17-22
Editions Data Dictionary VIEWS.........ccccueiiirieiiiiiiciecc i 17-23
Displaying Information About Schema Objectscccooiiiiiiiiiiie, 17-23
Using a PL/SQL Package to Display Information About Schema Objects...........c.ccc.......... 17-23
Schema Objects Data Dictionary VIEWS.......c.ccouiiiiiiiiiiiciiicciecci e 17-24

Managing Space for Schema Objects

Managing Tablespace ALEItSccccocviiiiiiiiiiiiiiiiiiiii s 18-1
Setting Alert ThresShOldsScccccciiiiiiiiiiiiii s 18-2
VIEWING ALETES ...t 18-3
LAMatioNsS c.cvoveveeiiieice et 18-3

Managing Resumable Space AIlocation............cccccoviviiiiiiiniiiiiiininiiiics 18-4
Resumable Space AllOcation OVETIVIEWcccciiuiuiuiimimiuimiiieieieieeere e nenenens 18-4
Enabling and Disabling Resumable Space Allocation...........ccoceueiiiieiiiiiicieieiiiccece, 18-7
Using a LOGON Trigger to Set Default Resumable Mode............cccocooiiniiniiinciiiccnen, 18-8

19

Detecting Suspended Statements.............cccouiiiiiiiiiiiiiiiii 18-8

Operation-Suspended Alert...........o.oooiiiiiiiii e 18-10
Resumable Space Allocation Example: Registering an AFTER SUSPEND Trigger............ 18-10
Reclaiming Wasted Space ... 18-12
Understanding Reclaimable Unused Space ..o 18-12
Using the Segment AdVISOT ..o 18-12
Shrinking Database Segments ONline...........cccoovoiiiiiiiiiiiiic e 18-26
Deallocating Unused SPace ...t 18-28
Understanding Space Usage of Datatypescccccoviviiiiiniiiiniicc 18-28
Displaying Information About Space Usage for Schema Objectsccccovririiiinnnn. 18-28
Using PL/SQL Packages to Display Information About Schema Object Space Usage....... 18-28
Schema Objects Space Usage Data Dictionary VIews.........cccocovvvvirrnnnnnnnnennrcenes 18-29
Capacity Planning for Database Objectscccoooiiiiiiiiiiiiic 18-32
Estimating the Space Use of @ Tableccooooioiiiii 18-33
Estimating the Space Use of an INeXcccovvviiriiiiiiiiiiicccccccccccccceeeee e 18-33
Obtaining Object Growth Trends ... 18-33
Managing Tables
ADOUL TaDBIES........cooviiiiiiicc s 19-1
Guidelines for Managing Tables...............cccoiiiiiiiiii e 19-2
Design Tables Before Creating Themcccccciiiiiiiiiiiceceeceeeeeeeeeeeeeeeeees 19-2
Specify the Type of Table to Create.........c.oooiiiiiiiiiiiii 19-3
Specify the Location of Each Table...........c.coooiiiii 19-4
Consider Parallelizing Table Creationc.cocciiciiciieeieeceieeeeneneneeereeneneneeeneneneees 19-4
Consider Using NOLOGGING When Creating Tablescccccoovoiiiiiiiiiiiiiiccee, 19-4
Consider Using Table COMPTESSION.........c.ocrieieieiiicieiiiectcie e 19-5
Consider Encrypting Columns That Contain Sensitive Datac.cccccceeeeneciicnnccnne. 19-8
Understand Deferred Segment Creation ..o 19-9
Estimate Table Size and Plan Accordingly..........cccooeoiiiiiiiiiiiicc e, 19-10
Restrictions to Consider When Creating Tables...........cccoviiiiiiiiiiiicciicceccecenenes 19-10
Creating Tables ... 19-10
Example: Creating a Table ... 19-11
Creating a Temporary Table..........ccccccciiiiiiiiiicre e 19-12
Parallelizing Table Creation ..ot 19-13
Loading Tables ..o 19-14
Improving INSERT Performance with Direct-Path Insertc.ccooevviviviinininiciiicnes 19-15
Avoiding Bulk INSERT Failures with DML Error LOggingccoceuviiirieiiiiniciiie, 19-19
Automatically Collecting Statistics on Tables.............cccocoviiiiiiiiiiiiicce, 19-22
AItering Tables.........ccooiiiiiiiiiiii s 19-23
Reasons for Using the ALTER TABLE Statementc.cccoovriniiininiiinncccce 19-24
Altering Physical Attributes of a Table...........cccccccoiiiiiiiiniica 19-24
Moving a Table to a New Segment or Tablespacecccccovvvrvvnininnnnnrnneeeeecnes 19-25
Manually Allocating Storage for a Table............ccooouiiiiiiiiii e, 19-25
Modifying an Existing Column Definition............cccccoeiiriiiinniiiiiiincneae 19-26
Adding Table COIUMISc.ccovuiiiiiiiiiiiirreccer e 19-26
Renaming Table COIUMNS..........coooouiiiiiiiii 19-27
Dropping Table COIUMNScccccoiiiiiiiiiiiiiiiiiiiir e 19-27

XV

20

XVi

Placing a Table in Read-Only Mode..........ccoeiiiiiriiiiiiic 19-28

Redefining Tables Online..............ccoooiiiiiiiiiiii e 19-29
Features of Online Table Redefinitionc.ccccocivviirirnnnnnircr e 19-30
Performing Online Redefinition with DBMS_REDEFINITION...........ccccccoovvininninininininiinne 19-31
Results of the Redefinition Process...........ccccooviiviiiiniiiiiiiiiniiiiicnn 19-35
Performing Intermediate Synchronization............ccccceoioiiiiiiiiiiiiiiccccccccccecennes 19-36
Aborting Online Table Redefinition and Cleaning Up After Errorsccccoovoirveieinnnnen, 19-36
Restrictions for Online Redefinition of Tables...........cccccccovviiiiiininiiiiiii 19-36
Online Redefinition of a Single Partition............c.cccccccciciiiiiiinicreeeeeeeeeeees 19-37
Online Table Redefinition EXamples..........cccccoovviniiiiiiiiiiicnescvcnenes 19-39
Privileges Required for the DBMS_REDEFINITION Package.........cccccccevvivininninniniiininnnnn, 19-45

Researching and Reversing Erroneous Table Changes.............ccccococoiinniiiniiiiniiins 19-45

Recovering Tables Using Oracle Flashback Table.ccccocooiiiiiiins 19-46

Dropping Tablesccccoviiiiiiiiiiiiii 19-46

Using Flashback Drop and Managing the Recycle Bin ..o, 19-47
What Is the Recycle Bin? ... s 19-48
Enabling and Disabling the Recycle Bin..........cccccccoiiiiiiiiiiiiii 19-49
Viewing and Querying Objects in the Recycle Binccoooiiiiiiiiiiiiiiicicciccnee 19-49
Purging Objects in the Recycle Bin.........cooiiiiiiii e, 19-50
Restoring Tables from the Recycle Bin..........cccooiviiiiiiiiiniii 19-50

Managing Index-Organized Tablesccccoviiiiniiiii 19-52
What Are Index-Organized Tables? ... 19-52
Creating Index-Organized Tables............cccccoviiiiiiiniiiiiii 19-53
Maintaining Index-Organized Tables ..o 19-57
Creating Secondary Indexes on Index-Organized Tables...........cccccooviiiiiiiiiiiiiinnnnns 19-59
Analyzing Index-Organized Tablesccccccoviiiiiiiiiiiiii 19-60
Using the ORDER BY Clause with Index-Organized Tables...........cccooiiiiiniiniiincnnne. 19-61
Converting Index-Organized Tables to Regular Tables...........cccccooviiiiiiiiiiiiiinns 19-61

Managing External Tables ..o 19-61
About EXternal Tablescccooiiiiiiiiiiiiicr e 19-62
Creating External Tables ... 19-63
Altering External Tables...........ccccccociiiiniiiiiiiiiii e 19-65
Preprocessing External Tables..........ccccocoiiiiiiiiiiiiiiniiiiences e 19-66
Dropping External Tables ... 19-67
System and Object Privileges for External Tables...........ccccoovoeiiiiiiiiiiicee 19-68

Tables Data Dictionary VIEWSccccociiiiiiiiiiiiiiiic s 19-68

Managing Indexes

N T 11 3 e =T ST 20-1
Guidelines for Managing Indexes ... 20-2
Create Indexes After Inserting Table Datacccccoeuviiiieieiiiiiiccee e 20-2
Index the Correct Tables and COIUIMIScccoeeiirierierierieieietetee ettt sse e eseeseeas 20-3
Order Index Columns fOr PErformanceccveveeierieeierieneesieseesieseesseeeesseseessesseessesseessesseas 20-3
Limit the Number of Indexes for Each Table.......c.cccooveeieiiiiiieciecieceeeeeeteee et 20-4
Drop Indexes That Are No Longer Requiredccccccoevvviiiiniinrncncneeeeeecene 20-4
Estimate Index Size and Set Storage Parameters.............coooueuiiirieiiiiiiciiccce, 20-4
Specify the Tablespace for Each INdeX..........cccccceueiiiiiiiiiiiniiiiiiiiiiiiccccces 20-5

21

Consider Parallelizing Index Creation...........ccocuiiiiiiieiiiiiiniciiicceee s 20-5

Consider Creating Indexes with NOLOGGINGcccoooimiiiiiiiiiiicccc 20-5
Understand When to Use Unusable or Invisible Indexescccccocoviviviiiiiniiiinnnnn, 20-5
Consider Costs and Benefits of Coalescing or Rebuilding Indexes..........ccccoovrrieiiiirncnnnen. 20-7
Consider Cost Before Disabling or Dropping Constraints............cccceevvviinnnnniiinnnnne, 20-8
Creating INAeXes............ccoiiiiiiiiii s 20-8
Creating an Index EXPLICItLYcooviuiioiiiiiei 20-8
Creating a Unique Index EXpLiCitlycccoouiiiiiiiiii 20-9
Creating an Index Associated with a Constraint............ccccceevvvirrnniinnnncereeceeeees 20-9
Collecting Incidental Statistics when Creating an IndeX..........coooieiiiiiciiiniicii, 20-10
Creating a Large INdeXccouoiiiiii e 20-11
Creating an Index Online........c.ccccciiiii e 20-11
Creating a Function-Based INdeX.........c.ccooiiiiiiiiiii 20-11
Creating a Key-Compressed INdeX..........cooocrieiiiiiiiiiiiiiicee 20-12
Creating an Unusable INAeXcccccciiiiiiiiiircc e 20-13
Creating an Invisible INA@X........cooriiiiiiii 20-14
ARering INA@XES ..o 20-14
Altering Storage Characteristics of an INdeX.........ccccooviiiiiiiiiciiiiiccccccccccecennes 20-15
Rebuilding an Existing INAeXccoiiiiiiiiiiii 20-15
Making an Index Unusable............c.o.oiiiiii 20-16
Making an Index INVISIbleccciiiiiiiiii e 20-17
Renaming an INA@Xc.vcueieiiiiiii 20-18
Monitoring INAex USAGEc.cuovururieiiiicieieiici et 20-18
Monitoring Space Use of INd@XeS ... 20-18
Dropping INAeXes.........cccooiiiiiiiiiiiiiiii s 20-19
Indexes Data Dictionary VIEWS ... 20-19
Managing Clusters
ADOUL CLUSTETS ... 21-1
Guidelines for Managing CIUSEersccccoiiiiiiiiiiiiii 21-2
Choose Appropriate Tables for the CIUStercccccovviiiiiiiiiiiiii 21-3
Choose Appropriate Columns for the Cluster Keyccccooviiiiiiii, 21-3
Specify the Space Required by an Average Cluster Key and Its Associated Rows 21-3
Specify the Location of Each Cluster and Cluster Index ROWSccccooviiiiiiiii, 21-4
Estimate Cluster Size and Set Storage Parameters...........ccocooovireieiiiccininiiceecceeeccne, 21-4
Creating CIUSEETScoiiiiiiiiii s 21-4
Creating Clustered Tables...........c.coouiiiiiii 21-5
Creating Cluster INAEXES.........cccciiiiiiiiiiiiiiiiii s 21-5
ATtering CIUSEETSc.ccooiiiiiiiiiiiiii s 21-6
Altering Clustered Tables ... 21-6
Altering Cluster INAeXeScccciuiuiiiiiiiiiiiiiiiiiii s 21-7
Dropping CIUSLEIS...........coiiiiiiiiii s 21-7
Dropping Clustered Tables............cccooiiiiiiiiiiiii s 21-8
Dropping Cluster INAEXES.........c.cciuiiiiiiiiiiiiiiiiiccc s 21-8
Clusters Data Dictionary VIEWScccoiiiiiiiiiiiiiiiii s 21-8

xvii

22 Managing Hash Clusters

About Hash CIUSEETIS............ccccoviiiiiiiiiiiiiiiic s 22-1
When to Use Hash CIUSEers.............cccoovoiiiiieiiiiiic s 22-2
Situations Where Hashing Is Useful............coooiiiii 22-2
Situations Where Hashing Is Not Advantageous ..., 22-2
Creating Hash CIUSEErs ..o 22-2
Creating a Sorted Hash CIUSteT...........cooouiiiiiii 22-3
Creating Single-Table Hash CIUSterScooiioiiiiiiiiicc 22-4
Controlling Space Use Within a Hash Cluster.........cccccccciiiiiiiiniiircncereeereceenes 22-4
Estimating Size Required by Hash Clusters..........cccoiieiiiiiiici, 22-7
Altering Hash CIUSEETSccccocoviiiiiiiiiiiiiiiiiic s 22-7
Dropping Hash CIUSters ..o 22-7
Hash Clusters Data Dictionary VIEWS..........ccccccoeviiiiiiiiiiiiics 22-8

23 Managing Views, Sequences, and Synonyms

Managing VI@WS...........cccoviiiiiiiiiiiiiicc s 23-1
ADOUL VIEWS .ot 23-1
Creating VIBWS ... s 23-2
RePlacing VIEWSouoiiiiiiiieccte ettt 23-4
Using Views in QUETIEScccoucuiiiiiiiiiii e 23-4
Updating @ JOIN VIEWc.ociiiiiiiiicccccccece et 23-6
ARETING VIEWS ..ottt bbb 23-12
Dropping VIEWS ...c.cocuoiiiiiiiee st 23-12

Managing SEQUENCEScccciviiiiiiiiiiii s 23-12
ADOUL SEQUEIICES ...t 23-12
Creating SEqUENCESccoviiiiiiieiiie s 23-13
AETING SEUETIICES.ocvviiiiiiiiicieieee et 23-13
USING SEQUENCESoveiieiiitttt et 23-14
Dropping SEQUENCESc.ceviieiiieiicieiece s 23-16

Managing SYNOMYINSccciiiiiiiiiiiiiiii e s 23-17
ADOUL SYNONYINS ..ot 23-17
Creating SYNONYIMS........ccciuiiiiiiiiiicc s 23-17
Using Synonyms in DML Statementscccccoiiiiiiiiiniiicccccnes 23-18
DIOPPINgG SYNONYINS. ...ttt 23-18

Views, Synonyms, and Sequences Data Dictionary Viewsc....ccooooiiiininicnnn 23-19

24 Repairing Corrupted Data

Options for Repairing Data Block Corruption ... 24-1
About the DBMS_REPAIR Packageccccocoiiiiiiiiiiiiiiiiniic s 24-1
DBMS_REPAIR PIrOCEAUIES.....ccooueiieeeeie ettt etee et e et esavessaaesssnaessennneesnnees 24-2
Limitations and ReStriCtONSccceeiviiiiiiiricieceecceee s 24-2
Using the DBMS_REPAIR Package............ccccccoooiiiiiiiiiiiiiiiiicnnns 24-2
Task 1: Detect and Report COrruptionsc.cccveeeiiininiiiiiiinicic s 24-3
Task 2: Evaluate the Costs and Benefits of Using DBMS_REPAIR...........ccccooovniiiinininnnnn. 24-4
Task 3: Make Objects Usableccccccuiiiiiiiiiiiccccceeeee e 24-5
Task 4: Repair Corruptions and Rebuild Lost Data ..o, 24-5

xviii

DBMS_REPAIR EXAMPLESc.orviiriiiriiiiriiiriiietiteieteieteieeeitseeststetste e seses st sse st eseaeseaeseasesensesensenes 24-5

Examples: Building a Repair Table or Orphan Key Tablec.cccccoooiiiiiiii, 24-6
Example: Detecting COrTUPHIONc.c.cuiuiuiuiiiiiiiiicieiciccceeeeeecteiee s 24-7
Example: Fixing Corrupt BIOCKSccooiiiiiiiiiiiiccccs 24-8
Example: Finding Index Entries Pointing to Corrupt Data Blocks...........cccooeviiiiiiinnnan, 24-9
Example: Skipping Corrupt BIOCKSccccccuiiiiiiiiiiiiiicecccicecieeeeeeeeeeeeeeeeee s 24-9
Part IV Database Resource Management and Task Scheduling
25 Managing Automated Database Maintenance Tasks
About Automated Maintenance Tasks............cccocoeveriiiiiiiiiiiiiiiiic s 25-1
About Maintenance WINdOWScccoviiiiiiiiiiiiii s 25-2
Configuring Automated Maintenance Tasks..............cccccoiiiiiiiiiiiiiii 25-3
Enabling and Disabling Maintenance Tasks for all Maintenance Windows............ccccccc...... 25-3
Enabling and Disabling Maintenance Tasks for Specific Maintenance Windows 25-4
Configuring Maintenance Windows.............cccoooiiiiiiiiiiiiieee e 25-4
Modifying a Maintenance WIndow.........c.ccccccvcuiiiiiiiiiiecceeeeeeeenerenenenene e 25-4
Creating a New Maintenance Window ..o 25-4
Removing a Maintenance WIindOWccciiiiiiiiiicc 25-5
Configuring Resource Allocations for Automated Maintenance Tasks..............ccccccccoevinnnnnnne. 25-5
About Resource Allocations for Automated Maintenance Tasks..........ccccoveevieiiiiieininienennn, 25-6
Changing Resource Allocations for Automated Maintenance Tasks.........c.ccccooooriieininnnan. 25-6
Automated Maintenance Tasks Referencecccocooiiiiiiiiiiiciecee e 25-7
Predefined Maintenance WIndOWsccciiiiiiiiiiiiiiiie s 25-7
Automated Maintenance Tasks Database Dictionary Views...........ccccoooiviiiiiiccicniiccnnan, 25-7
26 Managing Resource Allocation with Oracle Database Resource Manager
About Oracle Database Resource Manager..............cccocovvviviiiiininiiiiinisssssses 26-1
What Problems Does the Resource Manager Address?ocviiiiinciicnccccnecenes 26-2
How Does the Resource Manager Address These Problems?............cccoooiiiiiiiiininnn, 26-2
Elements of the Resource Managercccccccuiiiiiiiiiiiiiiiiiiiciceeeeeeeeanenes 26-3
About Resource Allocation Methods ..., 26-6
About Resource Manager Administration Privileges..........cccocooeoiiiiiiiiiiiiic, 26-10
Creating a Simple Resource PIan ... 26-10
Creating a Complex Resource Plan.............cccccoviiiiiniiiiiiiicnes 26-12
About the Pending ATeacccoeiiiiiiiiiiiiiic 26-13
Creating a Pending ATea.........cccccciiiiiiiiiiiiiiiiiiiiic e 26-13
Creating Resource Consumer GIOUPS ... 26-13
Creating a Resource Plan ... 26-14
Creating Resource Plan DireCtivesccccociiiniiiniiiiiinniiiinsessssc s 26-15
Validating the Pending ATeacccoiiiiiiiiiiiiiccccceeeecee et 26-19
Submitting the Pending Area ... 26-21
Clearing the Pending ATeacccccceviiiiiiiiiiiiiiiiiiiiiii e 26-21
Assigning Sessions to Resource Consumer Groups............ccocoeiiininiiiiiiniiiiiniieenes 26-21
Overview of Assigning Sessions to Resource Consumer Groupscccoceeeveriiviiicininnnns 26-22
Assigning an Initial Resource Consumer GIroUp.........ccccccuvuvieiiiririniiiiiiiniiinnsssceseseceaes 26-22

Xix

27

XX

Manually Switching Resource Consumer GIoups........cccceueerueieieinicieiniiieieeece e 26-22

Specifying Automatic Resource Consumer Group Switchingcccccoovviiiiiiniiniinnns 26-23
Specifying Session-to—Consumer Group Mapping Rules.............ccccooiiiiiiniiniincncene. 26-25
Enabling Users or Applications to Manually Switch Consumer Groups...........cccccevvevnnene. 26-29
Granting and Revoking the Switch Privilege..........cooooiiii, 26-30
Enabling Oracle Database Resource Manager and Switching Plans.............ccccccvvniiinns 26-32
Putting It All Together: Oracle Database Resource Manager Examplescccocoovnnin. 26-33
Multilevel Plan EXample ..ot 26-34
Examples of Using the Maximum Utilization Limit Attribute..........ccccccovvnnnnnnnnnncne. 26-36
Example of Using Several Resource Allocation Methods..........c.cooeeiiiiiiiiiiicici, 26-39
An Oracle-Supplied Mixed Workload Plan ... 26-39
Managing Multiple Database Instances on a Single Server..............cccccoviiiiiiinnncnne, 26-40
About Instance CaGingccoviiurieiiiicieic 26-40
Enabling Instance Cagingc.cooceuiiiirieieiiccieece i 26-41
Maintaining Consumer Groups, Plans, and Directives..............cccccococerinniiiniinncnne, 26-42
Updating a Consumer GIOUP........ccoeeviiiiiiiiiiiiiiiiniii s 26-42
Deleting @ CONSUMET GIOUPocovurieiiiiicieieiicie ittt et 26-42
Updating @ PLANc.ooviiiiiiiiccccceecee et 26-42
Deleting @ PLan.........ccoocuoiiiii 26-43
Updating a Resource Plan Directivecoocoioiiiiiiiiiicccccc i 26-43
Deleting a Resource Plan DireCtive ... s 26-44
Viewing Database Resource Manager Configuration and Statusccoooiiinnnn. 26-44
Viewing Consumer Groups Granted to Users or Roles ..., 26-44
Viewing Plan INfOrmation ... 26-44
Viewing Current Consumer Groups for SeSSions...........cccueviicieieiiecieieiicie e, 26-45
Viewing the Currently Active Plans...........ccoooiiiiiii e 26-45
Monitoring Oracle Database Resource Manager ..o 26-45
Interacting with Operating-System Resource Controlcccoooiiiiiiiiiiiiiin, 26-48
Guidelines for Using Operating-System Resource Control...........ccccoceviiiiiiiiiiiinennne. 26-48
Oracle Database Resource Manager Reference...............ccccooviininiiiinniiincces 26-49
Predefined Resource Plans and Consumer GIoups.........c.cccoeiviiiiminiinineniiinnenns 26-49
Predefined Consumer Group Mapping Rules...........ccccccevvviiiniininiiinnnnnnaes 26-51
Resource Manager Data Dictionary VIEWScccoeiiviniiiiiniiiiiccccs 26-52

Oracle Scheduler Concepts

Overview of Oracle SChedUIEr.............ccooieiiiieiieeeeeeee et seens 27-1
About Jobs and Supporting Scheduler Objects ..o 27-3
PIOGTAIMS ..ot s 27-4
SCREAUIES ..ottt et ettt e te e be s s e b e be b e b esbesse st ese et e eseeseeseeseseesensan 27-4
JODIS ettt bbbt b e bbbt a et e b bbb b b e 27-4
DIESTINATIONS ..oevieiiieiieeiie ettt te et e e te et esebeesbeesteeebeesaeeaseesaeesseessaesssassseessesnsaenssennsansseennses 27-6
FILE WALCRETS. .. cvicveieieieieeeettet ettt ettt ettt e e e se et e et e s besbeeb e b e b essessessassassasansesesensan 27-7
L@ <o [<3 a1 =1 TSP 27-7
CAIIIS .ttt ettt et et e et e be et et e te e beerseebeesbeeseeaseebeesbesbsenbeeseenteeseenseereenseerseseerean 27-7
JOD CLASSESvvevievieiieiietitiiesietete et ettt st teeteste st et e s essestesaesseseesaesaesess et essassassessessassasaasansensensensenes 27-9
WWINIAOWS....eetitteie ettt ettt e et et e s e e s b e e b e s aeesbesbeesbesseessassaessasaasseaseassesssensessaessensaessensenns 27-10
GIOUPS .ttt 27-14

28

MOTE ADOUL JODS....c..iiiiiieie ettt sttt st ettt et s ettt be e e 27-14

JOD Cate@OTIes ... 27-15
JOD INSEATICES. ...cuveveeeieeieiieiiee sttt ettt et te et et besb e s e ss e st eseesaese et e et e sessessessessessasaaseaseasensensas 27-21
JOD ATZUIMENES ...t 27-21
How Programs, Jobs, and Schedules are Related.............cccccoevnniinnniininn, 27-21
Scheduler Architecture.............coooooiiiiiiii 27-22
THE JOD TaDIE.....eeiieiieiitieee ettt ettt st st sttt et ebe bbb b e 27-23
The JOD COOTAINALOTeeuiiiiiiiitiiieiee ettt sttt ettt et et s be st et e st e se et et et e st ebeebees 27-23
HOW JODS EXECULE......ceieiieiieiieiee ettt sttt e s e s e e sseense s aensenseenes 27-24
JOD SIAVES ...ttt ettt b e bbbttt e ae et s ae e tes 27-24
Using the Scheduler in Real Application Clusters Environments............cccocoovoreiiiiinnnnne. 27-25
Scheduler Support for Oracle Data Guard.............cccoeeeeiniineininencceeeeeeeeeeeenene 27-26
Oracle Scheduler and Editions ... 27-26
Scheduling Jobs with Oracle Scheduler
About Scheduler Objects and Their Namingccccocovviiiiiiiiinii 28-1
Creating, Running, and Managing JObsccccooiiiiiiiiiiiie 28-2
Job Tasks and Their ProCedUIES.........coeveieirieiieririiieieieieteteteee st ste st s st sae e e esaesassenns 28-2
Creating JODS ..o 28-2
ARETING JODS .ot 28-15
RUNNING JODS ..o 28-16
SEOPPING JODS ..o 28-16
DIOPPING JODS ..o 28-18
DiSADING JODS ... 28-19
ENabNG JODS w..oviiiie 28-20
COPYING JODS .ot 28-20
Viewing stdout and stderr for External JODS........ccovoiiiiniiiiiiiiiiicccccccccceeenenens 28-20
Creating and Managing Programs to Define Jobsccccooiiiiiic, 28-21
Program Tasks and Their Procedures............c.coovriiiiiiiiiiiiiicc 28-21
Creating PrOGIamscooiiiiiiiiiiiiiicc s 28-22
AETiNG PrOZIamS.cvviieiicieiiitcie ettt b 28-23
Dropping PrOGIamsccvuiuiiiiiiiiiiiiiic s 28-23
Disabling PrOGTammSc.c.cuiuiiririiiiiiiririeiricrreeecre e 28-24
Enabling PrOgramis..........ccociuiiiiiiieiiicici e 28-24
Creating and Managing Schedules to Define Jobs..............ccccooooiiiiiiiiiiiicne, 28-24
Schedule Tasks and Their PTOCEAUIEScccviiiiiiiiiiiiiiiiec e 28-25
Creating SChedules. ... 28-25
Altering SChedULESccciiiiiii 28-25
Dropping SChedUles...........cciiiiiicrr e 28-26
Setting the Repeat Interval...........cccccoviiiiiiiii 28-26
Using Events to Start JODbS ... 28-30
ADOUL EVENLS ...ttt 28-30
Starting Jobs with Events Raised by Your Application...........ccceevviiiiiiiicniciiiiciec, 28-31
Starting a Job When a File Arrives on a System ... 28-35
Creating and Managing Job Chainsccccooiiiiiiiiia 28-41
Chain Tasks and Their Procedures.............ccocoeiiiiiiiiiii 28-42
Creating ChaiNs........ccccoiiiiiiiiiii e 28-42

XXi

29

XXii

Defining Chain StEPScviiiiiiiiiiiiicc e 28-43

Adding Rules t0 @ Chainccooiiiiiiii 28-44
Enabling CRainScccciiiiiiiiiiiiciereeer et 28-47
Creating Jobs for Chainscooiiiiiiiici 28-48
Dropping CRAINSc.c.oiiiiiece e 28-48
RUNNING CRAINS ...t 28-49
Dropping Chain RUIES............ccccoiiiiiiiiiiiiii s 28-49
Disabling CRainsc.cuoioiiieiiiceie e 28-49
Dropping Chain SEEPSc.coviviiiiiiiiiieiirrrr e 28-50
StopPINgG ChAINScvoviiiiiiicccc 28-50
Stopping Individual Chain Steps.........ccuoiiiiiiii e 28-50
Pausing CRainsccoocuiiiiiiiiiiiicrr et 28-51
SKipping Chain StePS.......ccviiiiiiiiiiiiiciicicccc 28-52
Running Part of @ Chain...........ocoi 28-52
Monitoring RUNNINg Chains.c.cccociuiiiiiiiiiiiiicceeeeeeeeeeee e 28-52
Handling Stalled Chainsccoooueioiiiiiiic 28-52
Prioritizing JODS. ... 28-53
Managing Job Priorities with Job Classes.........cccccoeueururiiieuririniiiicieircrrerceee s 28-53
Setting Relative Job Priorities Within a Job Class.........c.cccoceviiiniiiiiiiiiiiiic 28-55
Managing Job Scheduling and Job Priorities with WIndowsccccccevvviiiinnnnnnn 28-55
Managing Job Scheduling and Job Priorities with Window Groupsccceeeeiiiurnnaee 28-60
Allocating Resources Among Jobs Using Resource Managerccccoceevevircieiiniennne. 28-63
Example of Resource Allocation for JObSs........ccoiiii e, 28-64
MONItOring JODS........coiiiiiiiiiii s 28-64
Viewing the JOD LOg......ccooiiiiiiii 28-65
Monitoring Multiple Destination Jobscccociiiiiiiiiic 28-67
Monitoring Job State with Events Raised by the Scheduler ... 28-68
Monitoring Job State with E-mail Notificationsccooveviiiiieiniciic 28-70

Administering Oracle Scheduler

Configuring Oracle Scheduler..............ccocooiiiii s 29-1
Setting Oracle Scheduler Privileges...........cccciiiiiiiiiiiiiiiiicicccees 29-1
Setting Scheduler Preferencesccocciiiieiiiiiiiicceieiecceeeee et 29-2
Enabling and Disabling Remote JObSc.cccoviiiiiiiiiiiiiiiiiccccs 29-4

Monitoring and Managing the Scheduler..............c.cccooiiiiiiiiceeeceee 29-9
Viewing the Currently Active Window and Resource Plan...........cccccoioioiiiiiicccnnne 29-9
Finding Information About Currently Running Jobscccccccoviiiiiiiiiiiii, 29-9
Monitoring and Managing Window and Job Logscccccccceiiiiininiinniniinicninene 29-10
Managing Scheduler SECUTItYccocoviiiiiiircrrrr e 29-13

Import/Export and the Scheduler ... 29-13

Troubleshooting the Scheduler ..o e 29-13
N o) o2 B To == AN o) L o SRR S 29-13
A Program Becomes Disabled. ... 29-16
A Window Fails t0 Take EffeCt.......ccooiriiriiiieieieieieeeeee ettt 29-16

Examples of Using the Scheduler ... 29-16
Examples of Creating Job Classes...........cccceviiiiiiiiiiiiiiiiiciicccc s 29-16
Examples of Setting AtribULes.........cccoviiiiiiiiiiiiiiiii e 29-17

Examples of Creating Chainscccccoviiiiiiiiiiii e 29-18

Examples of Creating Jobs and Schedules Based on Events..........cccccocoviiinnnnnnnnnnn 29-20
Example of Creating a Job In an Oracle Data Guard Environment..........cccccccccvuvvirrinncnnne. 29-21
Scheduler Reference ... 29-21
Scheduler Privileges. ...t 29-22
Scheduler Data Dictionary VIEWS........ccccccuvuriiiiiiirnininiiicrrreerre s 29-23

Part V Distributed Database Management

30 Distributed Database Concepts

Distributed Database Architecture............c.cococooiiiiiiniiiiiiniceeee e 30-1
Homogenous Distributed Database Systems...........ccccooviiiiiiiiiinieiiic e, 30-1
Heterogeneous Distributed Database Systems...........cccccocvvviviiiiniininiiniinie, 30-3
Client/Server Database ArchiteCtUre.......cocoeceerrieiccirnieieiirierccnreretereee e eeesaenenes 30-4

Database LINKS.......coccviirieirieireireircncetet ettt ettt sttt ae st b et b st nn s 30-5
What Are Database LINKS?........c.ccviiiiiiriiieieece ettt 30-6
What Are Shared Database LINKS?cccoeeivrrereirnnereinineeictreneneieeseeseseeseseeresesesessenesesees 30-7
Why Use Database LINKS?..........ccoooouiiiiiiiii 30-8
Global Database Names in Database Links.........ccccoeereineinieineneinecnecnenenencneneeieeeeeene 30-8
Names for Database LiNKSccccccrrieeirninieiirinieceneeeeneneieeseneeneseesesseseseesessesesesessenesesenes 30-9
Types of Database LINKS ... 30-10
Users of Database LINKScccveoireririinniiniieeteeneeecee ettt ettt nes 30-11
Creation of Database Links: EXamples.........ccoouviviiiiiiiiiiiiicccccccecceeceneeeeeenenes 30-13
Schema Objects and Database Linkscccccoviiiiiiiiiiiiiccccnccncvcsinen 30-14
Database Link ReSTIICHONS.....c.covetrueeirieinieirietrieieetrietetctet ettt bttt eenes 30-16

Distributed Database AdminiStrationcccccoevniiiniiiiiniiceeeee e 30-16
Site AULONOMLY ...ttt 30-16
Distributed Database SeCUrity.........c.cooiriiiiiiiciiiic 30-17
Auditing Database LINKSccoovoiiiiiiiiccciccccccccceceeese e 30-21
Administration TOOLS......coccurueirieireiecceec ettt e 30-22

Transaction Processing in a Distributed System................ccocooi 30-23
Remote SQL StateIMENTScc.eeiiieiieeiiicieeiieeee ettt e e e reeveesaeebeestaeeseessaeesseeseeseseenssesseanes 30-23
Distributed SQL STatemMENTSccccvieeeciirieiereeieieeteteeeet et e stesseesseseessesssesseessessesssasseessessesses 30-24
Shared SQL for Remote and Distributed Statementscc.ooovveeeieevieeeeeciecee e 30-24
Remote TranSactions.cccoueevueirieirieiricire ettt ettt 30-24
Distributed TranSactions........cccoeerveirieirieirieirietrtetrietrteteret ettt eesee st sesee st sesesesensenes 30-25
Two-Phase Commit MeChANISINccuevveieieieieeieeee ettt ettt ese s 30-25
Database Link Name ReSOIULION ...c.coeveveuiiririeieiiiirieecirineieiitnteieeecenreneteeseeneseecseseeseseseeenen 30-25
Schema Object Name ReSOIUtiON........ccviiiiiiiiiiiiiiiiiiiccs 30-27
Global Name Resolution in Views, Synonyms, and Procedurescccocoevreiniinnnnnnee. 30-29

Distributed Database Application Development............ccocccoeoniininninninnieceereeeeeene 30-31
Transparency in a Distributed Database System............cccccooiiiiiiiiiiie, 30-31
Remote Procedure Calls (RPCS)....c.coeirieuirieirieirieinieerietrietrietetestsie sttt st 30-33
Distributed Query OptimiZation ..o 30-33

Character Set Support for Distributed Environmentscccocoooiiiiiiiiiiis 30-34
Client/Server ENVITONIMIEIIEcooouviiiiiie ettt ettt e e e eaae e e eaeesenee e e s st e seasessaaeeessaeesnees 30-34

xXiii

31

32

XXiv

Homogeneous Distributed Environmentcccccoovvniiiiniinniecs 30-35
Heterogeneous Distributed Environmentcccccocoeiiiniiininnii 30-35

Managing a Distributed Database

Managing Global Names in a Distributed Systemcccccoovviiiiinni 31-1
Understanding How Global Database Names Are Formed...........ccccocoeiivciiiccccccceenne. 31-1
Determining Whether Global Naming Is Enforced ..o, 31-2
Viewing a Global Database Name...........ccccooouiiiiiiiiiiiiiic 31-3
Changing the Domain in a Global Database Name............cccccccccciieiiiiinniiccreeeeenes 31-3
Changing a Global Database Name: SCenarioccccceeuirueieiiricieieiieiee e 31-3

Creating Database Links.............ccoooiiiiiiiii e 31-6
Obtaining Privileges Necessary for Creating Database Links..........cccccccccevvviivnnnnnnnnene. 31-6
Specifying LinK TYPeS ..ot 31-7
Specifying Link USEIS.......cccuiiiiiricieiiceie s 31-8
Using Connection Qualifiers to Specify Service Names Within Link Names...................... 31-10

Using Shared Database LinkKs............ccccocooiniiiniiiiiiincncsssnna 31-10
Determining Whether to Use Shared Database Links............ccccooiiiiiiiiiiic 31-11
Creating Shared Database Links........cccccccccciiiiiiiniiiiinecreeree s 31-12
Configuring Shared Database Linksccccoovoiiiiiiiiiiiic e, 31-12

Managing Database Links............ccccccoiviiiiiiic e 31-14
Closing Database LINKScccccceiiiiiiiriiiiiicccrrrrcr e 31-14
Dropping Database LinKsccccccviiiiiiiiiii e 31-15
Limiting the Number of Active Database Link Connectionscccccooereeiiircieinicncnen, 31-16

Viewing Information About Database Linksccccococeiiiniiiiie 31-16
Determining Which Links Are in the Database...........ccocoooiiiiiiiiii 31-16
Determining Which Link Connections Are Open ..o 31-17

Creating Location TransSparency ... 31-18
Using Views to Create Location Transparencycoeeeeecieiiiicicieiiciciescie e 31-19
Using Synonyms to Create Location Transparencycccceeueieieieieieieiecicicieiecccc 31-20
Using Procedures to Create Location Transparencyccoevvvrnnnnnenencnecceceenees 31-21

Managing Statement TranSParenCy ... 31-23

Managing a Distributed Database: Examplesc.ccccoviiiiiiiiiiiicccccccene, 31-24
Example 1: Creating a Public Fixed User Database Linkcccccccovvvnnnnnnnnnnnnccnes 31-25
Example 2: Creating a Public Fixed User Shared Database Link.............cccccoovninnininninnn 31-25
Example 3: Creating a Public Connected User Database Link...........ccccccouoiiiiiiiiiinnnn. 31-25
Example 4: Creating a Public Connected User Shared Database Link..........c.ccccceeeurenencnce. 31-26
Example 5: Creating a Public Current User Database Link............cccccoonvnnininnns 31-26

Developing Applications for a Distributed Database System

Managing the Distribution of Application Dataccccooviiiiiiiiiiii 32-1
Controlling Connections Established by Database Linkscccccccceiiiiiiiiiiiicienes 32-1
Maintaining Referential Integrity in a Distributed Systemcccococooiini. 32-2
Tuning Distributed Queries ..o 32-2
Using Collocated ININE VIEWS.......c.ccciuiiiiiiiiiiiiiiiiiiicccie s 32-3
Using Cost-Based OptimizZation..........cccoiiiiiiiiiiiiiiicceeeeee e seneees 32-3
USING HINES 1ot 32-6
Analyzing the EXxecution Plan ... 32-7

33

34

Handling Errors in Remote Procedures ..o 32-8

Distributed Transactions Concepts
What Are Distributed Transactions? ... 33-1
DML and DDL TranSactionsccccciuiiiiiiiiiiiniiiiiiiiiiiieie s ssesesssssssssenens 33-2
Transaction Control StatemMents..........cccvvviiiiiiiiiii e 33-2
Session Trees for Distributed Transactions...............cccocoiiiiiiiiiiiie 33-3
CLIENES . 33-4
Database SEIVETScceiieiiiiieieicicieeee s 33-4
Local CoOTdINatOrScouiuiiiiiiiiiiiiiiiciiece s 33-4
Global CoOrdinatorcccciuiiiiiiiiiiiiiii s 33-4
Commiit POINE SIte ..vvvviicicieiee s 33-5
Two-Phase Commit MechanisSm ... 33-7
Prepare Phase...........oc 33-8
CommMUt PRASE ..ot 33-10
FOrget PRase.........c.ooiuiii 33-11
IN-Doubt Transactions..............cccoiiiiiiiiiiii e 33-11
Automatic Resolution of In-Doubt Transactions.........c.ccccceveeeeiviinniiniiciccecenn, 33-12
Manual Resolution of In-Doubt Transactions.............cccceeeieiinieiiiinicein 33-13
Relevance of System Change Numbers for In-Doubt Transactionsccccceevvviriiininennes 33-14
Distributed Transaction Processing: Case Studyccccooeiiiniiiinniiiiics 33-14
Stage 1: Client Application Issues DML Statements..........cccccooeeeviiiiiiiiiiiinine 33-14
Stage 2: Oracle Database Determines Commit Point Sitecccooeeiiiiiiiiiiii 33-15
Stage 3: Global Coordinator Sends Prepare ReSPONSeccccccucucuvurieicivrivininerrnnerreene 33-16
Stage 4: Commit Point Site COMMULScoovuiviiiiiiiieic e 33-17
Stage 5: Commit Point Site Informs Global Coordinator of Commit..........ccccevviviiininininne 33-17
Stage 6: Global and Local Coordinators Tell All Nodes to Commit.........cccceeveervevirirerncnne. 33-17
Stage 7: Global Coordinator and Commit Point Site Complete the Commit....................... 33-18
Managing Distributed Transactions
Specifying the Commit Point Strength of a Node ... 34-1
Naming Transactions ... 34-2
Viewing Information About Distributed Transactionsccccoceceiviiiiniiinniie, 34-2
Determining the ID Number and Status of Prepared Transactionsccccooeviirieininnnnen. 34-2
Tracing the Session Tree of In-Doubt Transactionsccceeeeeeieiniieieiniceecceece, 34-4
Deciding How to Handle In-Doubt Transactions...............cccccccvviiiinniiinniiicccne, 34-5
Discovering Problems with a Two-Phase Commitcccooviiiiiiiiiiiiii 34-6
Determining Whether to Perform a Manual Override...........cccoooiiiiiiiiiiiiiiiicee, 34-6
Analyzing the Transaction Datac.ccccceiiiiiiiiiccc s 34-7
Manually Overriding In-Doubt Transactions................cccccovvviiiiiiiiiiii 34-8
Manually Committing an In-Doubt Transaction.............ccccecevvvivniiniininiininne 34-8
Manually Rolling Back an In-Doubt Transaction............c.ccccccceeeeinineinnnnennrcrseecenes 34-9
Purging Pending Rows from the Data Dictionary.............cccoooeiiiiiiiiiiiiccceas 34-9
Executing the PURGE_LOST_DB_ENTRY Procedurec.ccccovvvinininininiininiiiiciiicnnes 34-10
Determining When to Use DBMS_TRANSACTIONc.ccccoceiiiiininniirrrccrreeeeesereeeaes 34-10
Manually Committing an In-Doubt Transaction: Examplec.cccoooviiiiiin. 34-11

XXV

Step 1: Record User Feedback ..o 34-11
Step 2: Query DBA_2PC_PENDING........ccocoviiiiiiiiiiiiiiiceisse s 34-11
Step 3: Query DBA_2PC_NEIGHBORS on Local Node..........cccoouvvnininnnniiiiicccrccnnee 34-13
Step 4: Querying Data Dictionary Views on AILNoOdescccoveiiiiiiiiiiiiciccce, 34-14
Step 5: Commit the In-Doubt Transaction...........ccoooiiiiiic 34-16
Step 6: Check for Mixed Outcome Using DBA_2PC_PENDING..........ccccocovrrnnnnrnnennee 34-16
Data Access Failures Due t0 LOCKScccoiiiiiiiiiiiiiiccc s 34-17
Transaction TIMEOULS ..o 34-17
Locks from In-Doubt TTanSactionsccccceeueieiiriririiieirnrreriereeese s 34-17
Simulating Distributed Transaction Failureccccoooiiiiii, 34-17
Forcing a Distributed Transaction to Failccooooii e, 34-18
Disabling and Enabling RECOccccccccoiiiiiiiiiiinncereeeerree e 34-18
Managing Read CONSiStencyccoooviiiiiiiiiiiii e 34-19
Part Vi Appendices
A Support for DBMS_JOB in Release 11gR2
ADOut DBMS _JOBcoiiiiiiiiiiiii s A-1
Configuring DBMS_JOB.......c.ccociiiiiiiiiiiiiiiciies s A-1
Using Both DBMS_JOB and Oracle Scheduler.............ccccociiiiiiiiiiiicecceeeeeeeeenes A-1
Moving from DBMS_JOB to Oracle Scheduler................cccoiiiiiniiiniiice A-2
Creating @ JOD ..o s A-2
ARETING @ JOD ..ot A-2
Removing a Job from the Job QUeUE..........cccocoiiiiiiiiiiic s A-3

Index

XXVi

Audience

Preface

This document describes how to create, configure, and administer an Oracle database.

This document is intended for database administrators who perform the following
tasks:

» Create an Oracle database
= Ensure the smooth operation of an Oracle database
= Monitor the operation of an Oracle database

To use this document, you need to be familiar with relational database concepts. You
should also be familiar with the operating system environment under which you are
running Oracle Database.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

XXVii

Deaf/Hard of Hearing Access to Oracle Support Services

To reach Oracle Support Services, use a telecommunications relay service (TRS) to call
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle
technical issues and provide customer support according to the Oracle service request
process. Information about TRS is available at
http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone
numbers is available at http: //www. fcc.gov/cgb/dro/trsphonebk.html.

Related Documents
For more information, see these Oracle resources:
» Oracle Database 2 Day DBA
» Oracle Database Concepts
» Oracle Database SQL Language Reference
» Oracle Database Reference
» Oracle Database PL/SQL Packages and Types Reference
» Oracle Database Storage Administrator's Guide
» Oracle Database VLDB and Partitioning Guide
» Oracle Database Error Messages
» Oracle Database Net Services Administrator's Guide
» Oracle Database Backup and Recovery User's Guide
» Oracle Database Performance Tuning Guide
» Oracle Database Advanced Application Developer’s Guide
» Oracle Database PL/SQL Language Reference
» SQL*Plus User's Guide and Reference

Many of the examples in this book use the sample schemas, which are installed by
default when you select the Basic Installation option with an Oracle Database
installation. Refer to Oracle Database Sample Schemas for information on how these
schemas were created and how you can use them yourself.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

XXViii

What's New in Oracle Database
Administrator's Guide?

This section describes new features of Oracle Database 11g Release 2 (11.2) that are
documented in this guide, and provides pointers to additional information.

Oracle Database 11g Release 2 (11.2) New Features in the
Administrator's Guide

Oracle Restart improves database availability by automatically restarting the
database after a failure.

If you configure Oracle Restart, then the database, the listener, the Oracle
Automatic Storage Management instance, and other Oracle components can be
automatically restarted after a hardware or software failure or after a restart of the
database host computer.

See Chapter 4, "Configuring Automatic Restart of an Oracle Database".

Edition-based redefinition enables application developers and DBAs to upgrade
an application with little or no application down time.

A new database construct called an edition provides a privacy mechanism for
installing new code and for making data changes so that the running production
application does not see the changes. When all the required changes have been
made in private, they can be made available to users. In support of edition-based
redefinition, a new kind of view called an editioning view and a new kind of
trigger called a crossedition trigger are introduced.

See "Managing Editions" on page 17-21.
Database Smart Flash Cache

Database Smart Flash Cache is an optional memory component that you can add if
your database is running on Solaris or Oracle Enterprise Linux. It is an extension
of the SGA-resident buffer cache, providing a level 2 cache for database blocks. It
can improve response time and overall throughput.

See "Memory Architecture Overview" on page 6-2.

New SQL command syntax for specifying table compression for direct load
operations only or for all (OLTP) operations.

See "Consider Using Table Compression" on page 19-5.

The Automatic Segment Advisor can now return a recommendation to use OLTP
compression for a table.

XXiX

XXX

See "Reclaiming Wasted Space" on page 18-12.

Deferred segment creation

When creating a non-partitioned heap-organized table in a locally managed
tablespace, table segment creation is deferred until the first row is inserted.

See "Understand Deferred Segment Creation" on page 19-9.

Oracle Scheduler enhancements

Remote database jobs—You can now create a job that runs stored procedures
and anonymous PL/SQL blocks on another database instance on the same
host or on a remote host. The target database can be any release of Oracle
Database.

See "Database Jobs" on page 27-15.

Multiple-destination jobs—You can now run a job on multiple locations, and
control and monitor all instances of the job from one central database. You do
so by specifying multiple destinations when you create the job. A destination
can be the local host or local database; a remote host (for remote external jobs);
or a remote database (for remote database jobs).

See "Multiple-Destination Jobs" on page 27-18

File watchers—A new Scheduler object called a file watcher simplifies the task
of configuring the Scheduler to start a job upon the arrival of a file on the local
or a remote system.

See "Starting a Job When a File Arrives on a System" on page 28-35.

E-mail notifications—You can configure the Scheduler to automatically send
an e-mail notification to one or more recipients when a specified job state
event occurs. You can now receive an e-mail when a job completes, if it fails or
is disabled, if it exceeds its allotted run time, and so on.

See "Monitoring Job State with E-mail Notifications" on page 28-70.

Database Resource Manager Enhancements

Instance caging

Oracle Database now provides a method for managing CPU allocations on a
multi-CPU server running multiple database instances. Instance caging limits
the maximum number of CPUs that any one database instance can use. If an
instance then becomes CPU-bound, the Resource Manager begins allocating
CPU based on the current resource plan. Thus, instance caging and the
Resource Manager work together to support desired levels of service across
multiple instances.

See "Managing Multiple Database Instances on a Single Server" on page 26-40.

New MAX_UTILIZATION_LIMIT attribute of resource plan directives enables
you to impose an absolute upper limit on CPU utilization for a resource
consumer group. This absolute limit overrides any automatic redistribution of
CPU within a plan.

New ORACLE_FUNCTION consumer group mapping rule type, and new
predefined mapping rules for Data Pump and RMAN.

Sessions performing a data load with Data Pump or performing backup or
copy operations with RMAN are now automatically mapped to predefined
consumer groups.

See "Predefined Consumer Group Mapping Rules" on page 26-51.

- New sample resource plans and resource consumer groups to support data
warehousing operations with Oracle Exadata

See "Predefined Resource Plans and Consumer Groups" on page 26-49.
The Flash Recovery Area is renamed to Fast Recovery Area.
External tables can be preprocessed by user-supplied preprocessor programs.

By using a preprocessing program, users can use data from a file that is notin a
format supported by the access driver. For example, a user may want to access
data stored in a compressed format. Specifying a decompression program for the
ORACLE_LOADER access driver allows the data to be decompressed as the access
driver processes the data.

See "Preprocessing External Tables" on page 19-66.
Archive logging now supports up to 30 standby databases.
IP version 6 is now supported.

Oracle Database components and utilities now support Internet Protocol version 6
(IPv6) addresses, which are 128 bits in length. You can now specify an IPv6
address with the easy connect method in SQL*Plus.

See "Connecting to the Database with SQL*Plus" on page 1-7.

Redo logs can now be stored on disk drives with a sector size of 4K bytes without
performance degradation.

A new redo log file block size of 4K bytes enables online redo logs to be stored on
newer high-capacity disks with a 4K byte sectors size without incurring
performance degradation. The new block size ensures that log file writes are
sector-aligned.

See "Planning the Block Size of Redo Log Files" on page 11-7.

The Enterprise Manager Support Workbench, a component of the fault
diagnosability infrastructure, now supports investigating, reporting, and resolving
critical errors in Oracle Automatic Storage Management instances.

See Chapter 9, "Managing Diagnostic Data".

XXXi

XXXii

Part |

Basic Database Administration

Part I provides an overview of the responsibilities of a database administrator, and
describes how to accomplish basic database administration tasks. It contains the
following chapters:

Chapter 1, "Getting Started with Database Administration"
Chapter 2, "Creating and Configuring an Oracle Database"
Chapter 3, "Starting Up and Shutting Down"

Chapter 4, "Configuring Automatic Restart of an Oracle Database"
Chapter 5, "Managing Processes"

Chapter 6, "Managing Memory"

Chapter 7, "Managing Users and Securing the Database"

Chapter 8, "Monitoring Database Operations"

Chapter 9, "Managing Diagnostic Data"

1

Getting Started with Database
Administration

In this chapter:

= Types of Oracle Database Users

» Tasks of a Database Administrator

= Submitting Commands and SQL to the Database

s Identifying Your Oracle Database Software Release

= About Database Administrator Security and Privileges
s Database Administrator Authentication

» Creating and Maintaining a Password File

s Data Utilities

Types of Oracle Database Users

The types of users and their roles and responsibilities depend on the database site. A
small site can have one database administrator who administers the database for
application developers and users. A very large site can find it necessary to divide the
duties of a database administrator among several people and among several areas of
specialization.

Database Administrators

Each database requires at least one database administrator (DBA). An Oracle Database
system can be large and can have many users. Therefore, database administration is
sometimes not a one-person job, but a job for a group of DBAs who share
responsibility.

A database administrator's responsibilities can include the following tasks:
s Installing and upgrading the Oracle Database server and application tools

= Allocating system storage and planning future storage requirements for the
database system

» Creating primary database storage structures (tablespaces) after application
developers have designed an application

» Creating primary objects (tables, views, indexes) once application developers have
designed an application

Getting Started with Database Administration 1-1

Types of Oracle Database Users

= Modifying the database structure, as necessary, from information given by
application developers

= Enrolling users and maintaining system security

= Ensuring compliance with Oracle license agreements

= Controlling and monitoring user access to the database

= Monitoring and optimizing the performance of the database
= Planning for backup and recovery of database information
= Maintaining archived data on tape

= Backing up and restoring the database

s Contacting Oracle for technical support

Security Officers

In some cases, a site assigns one or more security officers to a database. A security
officer enrolls users, controls and monitors user access to the database, and maintains
system security. As a DBA, you might not be responsible for these duties if your site
has a separate security officer. Please refer to Oracle Database Security Guide for
information about the duties of security officers.

Network Administrators

Some sites have one or more network administrators. A network administrator, for
example, administers Oracle networking products, such as Oracle Net Services. Please
refer to Oracle Database Net Services Administrator’s Guide for information about the
duties of network administrators.

See Also: Part V, "Distributed Database Management", for
information on network administration in a distributed
environment

Application Developers

Application developers design and implement database applications. Their
responsibilities include the following tasks:

= Designing and developing the database application

= Designing the database structure for an application

» Estimating storage requirements for an application

= Specifying modifications of the database structure for an application

= Relaying this information to a database administrator

s Tuning the application during development

» Establishing security measures for an application during development

Application developers can perform some of these tasks in collaboration with DBAs.
Please refer to Oracle Database Advanced Application Developer’s Guide for information
about application development tasks.

1-2 Oracle Database Administrator's Guide

Tasks of a Database Administrator

Application Administrators

An Oracle Database site can assign one or more application administrators to
administer a particular application. Each application can have its own administrator.

Database Users

Database users interact with the database through applications or utilities. A typical
user's responsibilities include the following tasks:

= Entering, modifying, and deleting data, where permitted

= Generating reports from the data

Tasks of a Database Administrator

The following tasks present a prioritized approach for designing, implementing, and
maintaining an Oracle Database:

Task 1: Evaluate the Database Server Hardware
Task 2: Install the Oracle Database Software
Task 3: Plan the Database

Task 4: Create and Open the Database

Task 5: Back Up the Database

Task 6: Enroll System Users

Task 7: Implement the Database Design

Task 8: Back Up the Fully Functional Database
Task 9: Tune Database Performance

Task 10: Download and Install Patches

Task 11: Roll Out to Additional Hosts

These tasks are discussed in the sections that follow.

Note: When upgrading to a new release, back up your existing
production environment, both software and database, before
installation. For information on preserving your existing
production database, see Oracle Database Upgrade Guide.

Task 1: Evaluate the Database Server Hardware

Evaluate how Oracle Database and its applications can best use the available computer
resources. This evaluation should reveal the following information:

= How many disk drives are available to the Oracle products
= How many, if any, dedicated tape drives are available to Oracle products

= How much memory is available to the instances of Oracle Database you will run
(see your system configuration documentation)

Getting Started with Database Administration 1-3

Tasks of a Database Administrator

Task 2: Install the Oracle Database Software

As the database administrator, you install the Oracle Database server software and
any front-end tools and database applications that access the database. In some
distributed processing installations, the database is controlled by a central computer
(database server) and the database tools and applications are executed on remote
computers (clients). In this case, you must also install the Oracle Net components
necessary to connect the remote machines to the computer that executes Oracle
Database.

For more information on what software to install, see "Identifying Your Oracle
Database Software Release" on page 1-12.

See Also: For specific requirements and instructions for

installation, refer to the following documentation:

s The Oracle documentation specific to your operating system

s The installation guides for your front-end tools and Oracle Net
drivers

Task 3: Plan the Database

As the database administrator, you must plan:

s The logical storage structure of the database
= The overall database design

= A backup strategy for the database

It is important to plan how the logical storage structure of the database will affect
system performance and various database management operations. For example,
before creating any tablespaces for your database, you should know how many
datafiles will make up the tablespace, what type of information will be stored in each
tablespace, and on which disk drives the datafiles will be physically stored. When
planning the overall logical storage of the database structure, take into account the
effects that this structure will have when the database is actually created and running.
Consider how the logical storage structure of the database will affect:

= The performance of the computer executing running Oracle Database
» The performance of the database during data access operations
» The efficiency of backup and recovery procedures for the database

Plan the relational design of the database objects and the storage characteristics for
each of these objects. By planning the relationship between each object and its physical
storage before creating it, you can directly affect the performance of the database as a
unit. Be sure to plan for the growth of the database.

In distributed database environments, this planning stage is extremely important. The
physical location of frequently accessed data dramatically affects application
performance.

During the planning stage, develop a backup strategy for the database. You can alter
the logical storage structure or design of the database to improve backup efficiency.

It is beyond the scope of this book to discuss relational and distributed database
design. If you are not familiar with such design issues, please refer to accepted
industry-standard documentation.

1-4 Oracle Database Administrator's Guide

Tasks of a Database Administrator

Part II, "Oracle Database Structure and Storage", and Part III, "Schema Objects",
provide specific information on creating logical storage structures, objects, and
integrity constraints for your database.

Task 4: Create and Open the Database

After you complete the database design, you can create the database and open it for
normal use. You can create a database at installation time, using the Database
Configuration Assistant, or you can supply your own scripts for creating a database.

Please refer to Chapter 2, "Creating and Configuring an Oracle Database", for
information on creating a database and Chapter 3, "Starting Up and Shutting Down"
for guidance in starting up the database.

Task 5: Back Up the Database

After you create the database structure, carry out the backup strategy you planned for
the database. Create any additional redo log files, take the first full database backup
(online or offline), and schedule future database backups at regular intervals.

See Also: Oracle Database Backup and Recovery User’s Guide

Task 6: Enroll System Users

After you back up the database structure, you can enroll the users of the database in
accordance with your Oracle license agreement, and grant appropriate privileges and
roles to these users. Please refer to Chapter 7, "Managing Users and Securing the
Database" for guidance in this task.

Task 7: Implement the Database Design

After you create and start the database, and enroll the system users, you can
implement the planned logical structure database by creating all necessary
tablespaces. When you have finished creating tablespaces, you can create the database
objects.

Part II, "Oracle Database Structure and Storage" and Part III, "Schema Objects" provide
information on creating logical storage structures and objects for your database.

Task 8: Back Up the Fully Functional Database

When the database is fully implemented, again back up the database. In addition to
regularly scheduled backups, you should always back up your database immediately
after implementing changes to the database structure.

Task 9: Tune Database Performance

Optimizing the performance of the database is one of your ongoing responsibilities as
a DBA. Oracle Database provides a database resource management feature that helps
you to control the allocation of resources among various user groups. The database
resource manager is described in Chapter 26, "Managing Resource Allocation with
Oracle Database Resource Manager".

See Also: Oracle Database Performance Tuning Guide for
information about tuning your database and applications

Getting Started with Database Administration 1-5

Submitting Commands and SQL to the Database

Task 10: Download and Install Patches

After installation and on a regular basis, download and install patches. Patches are
available as single interim patches and as patchsets (or patch releases). Interim
patches address individual software bugs and may or may not be needed at your
installation. Patch releases are collections of bug fixes that are applicable for all
customers. Patch releases have release numbers. For example, if you installed Oracle
Database 11.2.0.1, the first patch release will have a release number of 11.2.0.2.

See Also: Oracle Database Installation Guide for your platform for
instructions on downloading and installing patches.

Task 11: Roll Out to Additional Hosts

After you have an Oracle Database installation properly configured, tuned, patched,
and tested, you may want to roll that exact installation out to other hosts. Reasons to
do this include the following;:

= You have multiple production database systems.

= You want to create development and test systems that are identical to your
production system.

Instead of installing, tuning, and patching on each additional host, you can clone your
tested Oracle Database installation to other hosts, saving time and avoiding
inconsistencies. There are two types of cloning available to you:

= Cloning an Oracle home—TJust the configured and patched binaries from the
Oracle home directory and subdirectories are copied to the destination host and
"fixed" to match the new environment. You can then start an instance with this
cloned home and create a database.

You can use the Enterprise Manager Clone Oracle Home tool to clone an Oracle
home to one or more destination hosts. You can also manually clone an Oracle
home using a set of provided scripts and Oracle Universal Installer.

» Cloning a database—The tuned database, including database files, initialization
parameters, and so on, are cloned to an existing Oracle home (possibly a cloned
home).

You can use the Enterprise Manager Clone Database tool to clone an Oracle
database instance to an existing Oracle home.
See Also:

» Oracle Universal Installer and OPatch User’s Guide for Windows and
UNIX for information about cloning Oracle software.

= Enterprise Manager online help for instructions for cloning a
database.

Submitting Commands and SQL to the Database

The primary means of communicating with Oracle Database is by submitting SQL
statements. Oracle Database also supports a superset of SQL, which includes
commands for starting up and shutting down the database, modifying database
configuration, and so on. There are three ways to submit these SQL statements and
commands to Oracle Database:

= Directly, using the command-line interface of SQL*Plus

= Indirectly, using the graphical user interface of Oracle Enterprise Manager

1-6 Oracle Database Administrator's Guide

Submitting Commands and SQL to the Database

With Oracle Enterprise Manager (Enterprise Manager), you use an intuitive
graphical interface to administer the database, and Enterprise Manager submits
SQL statements and commands behind the scenes.

See Oracle Database 2 Day DBA for more information.
= Directly, using SQL Developer

Developers use SQL Developer to create and test database schemas and
applications, although you can also use it for database administration tasks.

See Oracle Database 2 Day Developer’s Guide for more information.

This section focuses on using SQL*Plus to submit SQL statements and commands to
the database. It includes the following topics:

s About SQL*Plus
= Connecting to the Database with SQL*Plus

About SQL*Plus

SQL*Plus is the primary command-line interface to your Oracle database. You use
SQL*Plus to start up and shut down the database, set database initialization
parameters, create and manage users, create and alter database objects (such as tables
and indexes), insert and update data, run SQL queries, and more.

Before you can submit SQL statements and commands, you must connect to the
database. With SQL*Plus, you can connect locally or remotely. Connecting locally
means connecting to an Oracle database running on the same computer on which you
are running SQL*Plus. Connecting remotely means connecting over a network to an
Oracle database that is running on a remote computer. Such a database is referred to
as a remote database. The SQL*Plus executable on the local computer is provided by a
full Oracle Database installation, an Oracle Client installation, or an Instant Client
installation.

See Also: SQL*Plus User’s Guide and Reference

Connecting to the Database with SQL*Plus

Oracle Database includes the following components:
s The Oracle Database instance, which is a collection of processes and memory
= A set of disk files that contain user data and system data

When you connect with SQL*Plus, you are connecting to the Oracle instance. Each
instance has an instance ID, also known as a system ID (SID). Because there can be
more than one Oracle instance on a host computer, each with its own set of data files,
you must identify the instance to which you want to connect. For a local connection,
you identify the instance by setting operating system environment variables. For a
remote connection, you identify the instance by specifying a network address and a
database service name. For both local and remote connections, you must set
environment variables to help the operating system find the SQL*Plus executable and
to provide the executable with a path to its support files and scripts. To connect to an
Oracle instance with SQL*Plus, therefore, you must complete the following steps:

Step 1: Open a Command Window

Step 2: Set Operating System Environment Variables
Step 3: Start SQL*Plus

Step 4: Submit the SQL*Plus CONNECT Statement

Getting Started with Database Administration 1-7

Submitting Commands and SQL to the Database

See Also: Oracle Database Concepts for background information
about the Oracle instance

Step 1: Open a Command Window

Take the necessary action on your platform to open a window into which you can
enter operating system commands.

Step 2: Set Operating System Environment Variables

Depending on your platform, you may have to set environment variables before
starting SQL*Plus, or at least verify that they are set properly.

For example, on most platforms, ORACLE_SID and ORACLE_HOME must be set. In
addition, it is advisable to set the PATH environment variable to include the ORACLE_
HOME /bin directory. Some platforms may require additional environment variables.
On the UNIX and Linux platforms, you must set environment variables by entering
operating system commands. On the Windows platform, Oracle Universal Installer
(OUI) automatically assigns values to ORACLE_HOME and ORACLE_SID in the
Windows registry. If you did not create a database upon installation, OUI does not set
ORACLE_SID in the registry; after you create your database at a later time, you must
set the ORACLE_SID environment variable from a command window.

UNIX and Linux installations come with two scripts, oraenv and coraenv, that you
can use to easily set environment variables. For more information, see Administrator’s
Reference for UNIX Systems.

For all platforms, when switching between instances with different Oracle homes, you
must change the ORACLE_HOME environment variable. If multiple instances share the
same Oracle home, you must change only ORACLE_SID when switching instances.

Refer to the Oracle Database Installation Guide or administration guide for your
operating system for details on environment variables and for information on
switching instances.

Example 1-1 Setting Environment Variables in UNIX (C Shell)

setenv ORACLE_SID orcl
setenv ORACLE_HOME /u0l/app/oracle/product/11.2.0/db_1
setenv LD_LIBRARY_PATH $ORACLE_HOME/lib:/usr/lib:/usr/dt/lib:/usr/openwin/lib:/usr/ccs/lib

Example 1-2 Setting Environment Variables in Windows
SET ORACLE_SID=orawin2

Example 1-2 assumes that ORACLE_HOME and ORACLE_SID are set in the registry but
that you want to override the registry value of ORACLE_SID to connect to a different
instance.

On Windows, environment variable values that you set in a command prompt
window override the values in the registry.

Step 3: Start SQL*Plus
To start SQL*Plus:

1. Do one of the following:
s Ensure that the PATH environment variable contains ORACLE_HOME /bin.
s Change directory to ORACLE_HOME /bin.

1-8 Oracle Database Administrator's Guide

Submitting Commands and SQL to the Database

2. Enter the following command (case sensitive on UNIX and Linux):

sqlplus /nolog

Step 4: Submit the SQL*Plus CONNECT Statement

You submit the SQL*Plus CONNECT statement to initially connect to the Oracle
instance or at any time to reconnect as a different user. The syntax of the CONNECT

statement is as follows:

CONN[ECT] [logon] [AS {SYSOPER | SYSDBA}]

The syntax of ITogon is as follows:

{username | /}[@connect_identifier] [edition={edition_name \ DATABASE_DEFAULT}]

When you provide username, SQL*Plus prompts for a password. The password is

not echoed as you type it.

The following table describes the syntax components of the CONNECT statement.

Syntax Component

Description

/

Calls for external authentication of the connection request. A
database password is not used in this type of authentication.
The most common form of external authentication is operating
system authentication, where the database user is
authenticated by having logged in to the host operating
system with a certain host user account. External
authentication can also be performed with an Oracle wallet or
by a network service. See Oracle Database Security Guide for
more information. See also "Using Operating System
Authentication" on page 1-20.

AS {SYSOPER | SYSDBA}

Indicates that the database user is connecting with either the
SYSOPER or SYSDBA system privilege. Only certain predefined
administrative users or users who have been added to the
password file may connect with these privileges. See
"Administrative Privileges" on page 1-16 for more information.

username

A valid database user name. The database authenticates the
connection request by matching username against the data
dictionary and prompting for a user password.

connect_identifier (1)

An Oracle Net connect identifier, for a remote connection. The
exact syntax depends on the Oracle Net configuration. If
omitted, SQL*Plus attempts connection to a local instance.

A common connect identifier is a net service name. This is an
alias for an Oracle Net connect descriptor (network address
and database service name). The alias is typically resolved in
the tnsnames.ora file on the local computer, but can be
resolved in other ways.

See Oracle Database Net Services Administrator’s Guide for more
information on connect identifiers.

Getting Started with Database Administration 1-9

Submitting Commands and SQL to the Database

Syntax Component

Description

connect_identifier (2)

As an alternative, a connect identifier can use easy connect
syntax. Easy connect provides out-of-the-box TCP /IP
connectivity for remote databases without having to configure
Oracle Net Services on the client (local) computer.

Easy connect syntax for the connect identifier is as follows (the
enclosing double-quotes must be included):

"host[:port] [/service_name] [:server] [/instance_name]"
where:

» hostis the host name or IP address of the computer
hosting the remote database.

Both IP version 4 (IPv4) and IP version 6 (IPv6) addresses
are supported. IPv6 addresses must be enclosed in square
brackets. See Oracle Database Net Services Administrator’s
Guide for information about IPv6 addressing.

= portisthe TCP port on which the Oracle Net listener on
host listens for database connections. If omitted, 1521 is
assumed.

. service_name is the database service name to which to
connect. Can be omitted if the Net Services listener
configuration on the remote host designates a default
service. If no default service is configured, service_
name must be supplied. Each database typically offers a
standard service with a name equal to the global database
name, which is made up of the DB_NAME and DB_DOMAIN
initialization parameters as follows:

DB_NAME.DB_DOMAIN

If DB_DOMAIN is null, then the standard service name is
just the DB_NAME. For example, if DB_NAME is orcl and
DB_DOMAIN is us . example. com, then the standard
service name is orcl.us.example.com.

See "Managing Application Workloads with Database
Services" on page 2-42 for more information.

= serveris the type of service handler. Acceptable values
are dedicated, shared, and pooled. If omitted, the
default type of server is chosen by the listener: shared
server if configured, otherwise dedicated server.

s instance_name is the instance to which to connect. You
can specify both service name and instance name, which
you would typically do only for Oracle Real Application
Clusters (Oracle RAC) environments. For Oracle RAC or
single instance environments, if you specify only instance
name, you connect to the default database service. If there
is no default service configured in the 1istener.ora
file, an error is generated.You can obtain the instance
name from the instance_name initialization parameter.

See Oracle Database Net Services Administrator’s Guide for more
information on easy connect.

edition={edition_name |
DATABASE_DEFAULT}

Specifies the edition in which the new database session starts.
If you specify an edition, it must exist and you must have the
USE privilege on it. If this clause is not specified, the database
default edition is used for the session.

See Oracle Database Advanced Application Developer’s Guide for
information on editions and edition-based redefinition.

1-10 Oracle Database Administrator's Guide

Submitting Commands and SQL to the Database

Example 1-3

This simple example connects to a local database as user SYSTEM. SQL*Plus prompts
for the SYSTEM user password.

connect system

Example 1-4

This example connects to a local database as user SYS with the SYSDBA privilege.
SQL*Plus prompts for the SYS user password.

connect sys as sysdba

When connecting as user SYS, you must connect AS SYSDBA.

Example 1-5

This example connects locally with operating system authentication.

connect /

Example 1-6

This example connects locally with the SYSDBA privilege with operating system
authentication.

connect / as sysdba

Example 1-7

This example uses easy connect syntax to connect as user salesadmin to a remote
database running on the host dbhost . example. com. The Oracle Net listener (the
listener) is listening on the default port (1521). The database service is
sales.example.com. SQL*Plus prompts for the salesadmin user password.

connect salesadmin@"dbhost.example.com/sales.example.com"

Example 1-8

This example is identical to Example 1-7, except that the service handler type is
indicated.

connect salesadmin@"dbhost.example.com/sales.example.com:dedicated"

Example 1-9

This example is identical to Example 1-7, except that the listener is listening on the
non-default port number 1522.

connect salesadmin@"dbhost.example.com:1522/sales.example.com"”

Example 1-10

This example is identical to Example 1-7, except that the host IP address is substituted
for the host name.

connect salesadmin@"192.0.2.5/sales.example.com"

Example 1-11

This example connects using an IPv6 address. Note the enclosing square brackets.

connect salesadmin@"[2001:0DB8:0:0::200C:417A] /sales.example.com"

Getting Started with Database Administration 1-11

Identifying Your Oracle Database Software Release

Example 1-12

This example specifies the instance to which to connect and omits the database service
name. A default database service must have been specified, otherwise an error is
generated. Note that when you specify the instance only, you cannot specify the
service handler type.

connect salesadmin@"dbhost.example.com//orcl"

Example 1-13

This example connects remotely as user salesadmin to the database service
designated by the net service name salesl. SQL*Plus prompts for the salesadmin
user password.

connect salesadmin@salesl

Example 1-14

This example connects remotely with external authentication to the database service
designated by the net service name salesl.

connect /@salesl

Example 1-15

This example connects remotely with the SYSDBA privilege and with external
authentication to the database service designated by the net service name salesl.

connect /@salesl as sysdba

Example 1-16

This example connects remotely as user salesadmin to the database service
designated by the net service name salesl. The database session starts in the rev21
edition. SQL*Plus prompts for the salesadmin user password.

connect salesadmin@salesl edition=rev2l

See Also:
s "Using Operating System Authentication" on page 1-20

= "Managing Application Workloads with Database Services" on
page 2-42 for information about database services

» SQL*Plus User's Guide and Reference for more information on the
CONNECT statement

m Oracle Database Net Services Administrator’s Guide for more
information on net service names

» Oracle Database Net Services Reference for information on how to
define the default service in 1istener.ora

Identifying Your Oracle Database Software Release

Because Oracle Database continues to evolve and can require maintenance, Oracle
periodically produces new releases. Not all customers initially subscribe to a new
release or require specific maintenance for their existing release. As a result, multiple
releases of the product exist simultaneously.

As many as five numbers may be required to fully identify a release. The significance
of these numbers is discussed in the sections that follow.

1-12 Oracle Database Administrator's Guide

Identifying Your Oracle Database Software Release

Release Number Format

To understand the release nomenclature used by Oracle, examine the following
example of an Oracle Database release labeled "11.2.0.1.0".

Figure 1-1 Example of an Oracle Database Release Number

11.2.0.1.0

Major database J L Platform specific

release number release number

Database maintenance Component specific
release number release number

Application server
release number

Note: Starting with release 9.2, maintenance releases of Oracle
Database are denoted by a change to the second digit of a release
number. In previous releases, the third digit indicated a particular
maintenance release.

Major Database Release Number

The first digit is the most general identifier. It represents a major new version of the
software that contains significant new functionality.

Database Maintenance Release Number

The second digit represents a maintenance release level. Some new features may also
be included.

Application Server Release Number
The third digit reflects the release level of the Oracle Application Server (OracleAS).

Component-Specific Release Number

The fourth digit identifies a release level specific to a component. Different
components can have different numbers in this position depending upon, for example,
component patch sets or interim releases.

Platform-Specific Release Number

The fifth digit identifies a platform-specific release. Usually this is a patch set. When
different platforms require the equivalent patch set, this digit will be the same across
the affected platforms.

Checking Your Current Release Number

To identify the release of Oracle Database that is currently installed and to see the
release levels of other database components you are using, query the data dictionary
view PRODUCT_COMPONENT_VERSION. A sample query follows. (You can also query
the VSVERSION view to see component-level information.) Other product release
levels may increment independent of the database server.

COL PRODUCT FORMAT A40
COL VERSION FORMAT Al5
COL STATUS FORMAT Al5

Getting Started with Database Administration 1-13

About Database Administrator Security and Privileges

SELECT * FROM PRODUCT_COMPONENT_VERSION;

PRODUCT VERSION STATUS

NLSRTL 11.2.0.0.1 Production
Oracle Database 1lg Enterprise Edition 11.2.0.0.1 Production
PL/SQL 11.2.0.0.1 Production

It is important to convey to Oracle the results of this query when you report problems
with the software.

About Database Administrator Security and Privileges

To perform the administrative tasks of an Oracle Database DBA, you need specific
privileges within the database and possibly in the operating system of the server on
which the database runs. Access to a database administrator's account should be
tightly controlled.

This section contains the following topics:
s The Database Administrator's Operating System Account

s Administrative User Accounts

The Database Administrator's Operating System Account

To perform many of the administrative duties for a database, you must be able to
execute operating system commands. Depending on the operating system on which
Oracle Database is running, you might need an operating system account or ID to gain
access to the operating system. If so, your operating system account might require
operating system privileges or access rights that other database users do not require
(for example, to perform Oracle Database software installation). Although you do not
need the Oracle Database files to be stored in your account, you should have access to
them.

See Also: Your operating system specific Oracle documentation.
The method of creating the account of the database administrator is
specific to the operating system.

Administrative User Accounts

Two administrative user accounts are automatically created when Oracle Database is
installed:

= SYS (default password: CHANGE_ON_INSTALL)

= SYSTEM (default password: MANAGER)

1-14 Oracle Database Administrator's Guide

About Database Administrator Security and Privileges

Note: Both Oracle Universal Installer (OUI) and Database
Configuration Assistant (DBCA) now prompt for SYS and SYSTEM
passwords and do not accept the default passwords "change_on_
install" or "manager", respectively.

If you create the database manually, Oracle strongly recommends
that you specify passwords for SYS and SYSTEM at database
creation time, rather than using these default passwords. Please
refer to "Protecting Your Database: Specifying Passwords for Users
SYS and SYSTEM" on page 2-16 for more information.

Create at least one additional administrative user and grant to that user an appropriate
administrative role to use when performing daily administrative tasks. Do not use SYS
and SYSTEM for these purposes.

Note Regarding Security Enhancements: In this release of Oracle
Database and in subsequent releases, several enhancements are
being made to ensure the security of default database user
accounts. You can find a security checklist for this release in Oracle
Database Security Guide. Oracle recommends that you read this
checklist and configure your database accordingly.

SYS

When you create an Oracle database, the user SYS is automatically created and
granted the DBA role.

All of the base tables and views for the database data dictionary are stored in the
schema SYS. These base tables and views are critical for the operation of Oracle
Database. To maintain the integrity of the data dictionary, tables in the SYS schema
are manipulated only by the database. They should never be modified by any user or
database administrator, and no one should create any tables in the schema of user
SYS. (However, you can change the storage parameters of the data dictionary settings
if necessary.)

Ensure that most database users are never able to connect to Oracle Database using the
SYS account.

SYSTEM

When you create an Oracle Database, the user SYSTEM is also automatically created
and granted the DBA role.

The SYSTEM username is used to create additional tables and views that display
administrative information, and internal tables and views used by various Oracle
Database options and tools. Never use the SYSTEM schema to store tables of interest to
non-administrative users.

The DBA Role

A predefined DBA role is automatically created with every Oracle Database
installation. This role contains most database system privileges. Therefore, the DBA
role should be granted only to actual database administrators.

Getting Started with Database Administration 1-15

Database Administrator Authentication

Note: The DBA role does not include the SYSDBA or SYSOPER
system privileges. These are special administrative privileges that
allow an administrator to perform basic database administration
tasks, such as creating the database and instance startup and
shutdown. These system privileges are discussed in
"Administrative Privileges" on page 1-16.

Database Administrator Authentication

As a DBA, you often perform special operations such as shutting down or starting up
a database. Because only a DBA should perform these operations, the database
administrator usernames require a secure authentication scheme.

This section contains the following topics:

Administrative Privileges
Selecting an Authentication Method for Database Administrators
Using Operating System Authentication

Using Password File Authentication

Administrative Privileges

Administrative privileges that are required for an administrator to perform basic
database operations are granted through two special system privileges, SYSDBA and
SYSOPER. You must have one of these privileges granted to you, depending upon the
level of authorization you require.

Note: The SYSDBA and SYSOPER system privileges allow access
to a database instance even when the database is not open. Control
of these privileges is totally outside of the database itself.

The SYSDBA and SYSOPER privileges can also be thought of as
types of connections that enable you to perform certain database
operations for which privileges cannot be granted in any other
fashion. For example, you if you have the SYSDBA privilege, you
can connect to the database by specifying CONNECT AS SYSDBA.

SYSDBA and SYSOPER

The following operations are authorized by the SYSDBA and SYSOPER system
privileges:

1-16 Oracle Database Administrator's Guide

Database Administrator Authentication

System Privilege Operations Authorized

SYSDBA s Perform STARTUP and SHUTDOWN operations
= ALTER DATABASE: open, mount, back up, or change character set
L] CREATE DATABASE
L] DROP DATABASE
L] CREATE SPFILE
L] ALTER DATABASE ARCHIVELOG
L] ALTER DATABASE RECOVER
s Includes the RESTRICTED SESSION privilege

Effectively, this system privilege allows a user to connect as user SYS.

SYSOPER s Perform STARTUP and SHUTDOWN operations
= CREATE SPFILE
= ALTER DATABASE OPEN/MOUNT/BACKUP
= ALTER DATABASE ARCHIVELOG

= ALTER DATABASE RECOVER (Complete recovery only. Any form
of incomplete recovery, such as UNTIL
TIME | CHANGE | CANCEL | CONTROLFILE requires connecting as
SYSDBA.)

s Includes the RESTRICTED SESSION privilege

This privilege allows a user to perform basic operational tasks, but
without the ability to look at user data.

The manner in which you are authorized to use these privileges depends upon the
method of authentication that you use.

When you connect with SYSDBA or SYSOPER privileges, you connect with a default
schema, not with the schema that is generally associated with your username. For
SYSDBA this schema is SYS; for SYSOPER the schema is PUBLIC.

Connecting with Administrative Privileges: Example

This example illustrates that a user is assigned another schema (SYS) when connecting
with the SYSDBA system privilege. Assume that the sample user oe has been granted
the SYSDBA system privilege and has issued the following statements:

CONNECT oe
CREATE TABLE admin_test (name VARCHAR2 (20));

Later, user oe issues these statements:

CONNECT oe AS SYSDBA
SELECT * FROM admin_test;

User oe now receives the following error:

ORA-00942: table or view does not exist

Having connected as SYSDBA, user oe now references the SYS schema, but the table
was created in the oe schema.

See Also:
= "Using Operating System Authentication" on page 1-20
= "Using Password File Authentication" on page 1-21

Getting Started with Database Administration 1-17

Database Administrator Authentication

Selecting an Authentication Method for Database Administrators

Database Administrators can authenticate through the database data dictionary,
(using an account password) like other users. Keep in mind that beginning with Oracle
Database 11g Release 1, database passwords are case sensitive. (You can disable case
sensitivity and return to pre—Release 11g behavior by setting the SEC_CASE_
SENSITIVE_LOGON initialization parameter to FALSE.)

In addition to normal data dictionary authentication, the following methods are
available for authenticating database administrators with the SYSDBA or SYSOPER
privilege:

= Operating system (OS) authentication
= A password file

= Strong authentication with a network-based authentication service, such as Oracle
Internet Directory

These methods are required to authenticate a database administrator when the
database is not started or otherwise unavailable. (They can also be used when the
database is available.)

The remainder of this section focuses on operating system authentication and
password file authentication. See Oracle Database Security Guide for information about
authenticating database administrators with network-based authentication services.

Notes:

s These methods replace the CONNECT INTERNAL syntax
provided with earlier versions of Oracle Database. CONNECT
INTERNAL is no longer supported.

= Operating system authentication takes precedence over
password file authentication. If you meet the requirements for
operating system authentication, then even if you use a
password file, you will be authenticated by operating system
authentication.

Your choice will be influenced by whether you intend to administer your database
locally on the same machine where the database resides, or whether you intend to
administer many different databases from a single remote client. Figure 1-2 illustrates
the choices you have for database administrator authentication schemes.

1-18 Oracle Database Administrator's Guide

Database Administrator Authentication

Figure 1-2 Database Administrator Authentication Methods

Remote Database Local Database
Administration Administration

Do you Do you
have a secure Yes want to use OS Yes Use OS
connection? authentication? authentication

Use a
P | password file

If you are performing remote database administration, consult your Oracle Net
documentation to determine whether you are using a secure connection. Most popular
connection protocols, such as TCP/IP and DECnet, are not secure.

See Also:

» Oracle Database Security Guide for information about
authenticating database administrators with network-based
authentication services.

m Oracle Database Net Services Administrator’s Guide

Nonsecure Remote Connections

To connect to Oracle Database as a privileged user over a nonsecure connection, you
must be authenticated by a password file. When using password file authentication,
the database uses a password file to keep track of database usernames that have been
granted the SYSDBA or SYSOPER system privilege. This form of authentication is
discussed in "Using Password File Authentication" on page 1-21.

Local Connections and Secure Remote Connections

You can connect to Oracle Database as a privileged user over a local connection or a
secure remote connection in two ways:

» If the database has a password file and you have been granted the SYSDBA or
SYSOPER system privilege, then you can connect and be authenticated by a
password file.

» If the server is not using a password file, or if you have not been granted SYSDBA
or SYSOPER privileges and are therefore not in the password file, you can use
operating system authentication. On most operating systems, authentication for
database administrators involves placing the operating system username of the
database administrator in a special group, generically referred to as OSDBA. Users
in that group are granted SYSDBA privileges. A similar group, OSOPER, is used to
grant SYSOPER privileges to users.

Getting Started with Database Administration 1-19

Database Administrator Authentication

Using Operating System Authentication

This section describes how to authenticate an administrator using the operating
system.

OSDBA and OSOPER

Membership in one of two special operating system groups enables a DBA to
authenticate to the database through the operating system rather than with a database
user name and password. This is known as operating system authentication. These
operating system groups are generically referred to as OSDBA and OSOPER. The
groups are created and assigned specific names as part of the database installation
process. The default names vary depending upon your operating system, and are
listed in the following table:

Operating System Group UNIX User Group Windows User Group
OSDBA dba ORA_DBA
OSOPER oper ORA_OPER

Oracle Universal Installer uses these default names, but you can override them. One
reason to override them is if you have more than one instance running on the same
host computer. If each instance is to have a different person as the principal DBA, you
can improve the security of each instance by creating a different OSDBA group for
each instance. For example, for two instances on the same host, the OSDBA group for
the first instance could be named dbal, and OSDBA for the second instance could be
named dba2. The first DBA would be a member of dbal only, and the second DBA
would be a member of dba2 only. Thus, when using operating system authentication,
each DBA would be able to connect only to his assigned instance.

Membership in the OSDBA or OSOPER group affects your connection to the database
in the following ways:

s If you are a member of the OSDBA group and you specify AS SYSDBA when you
connect to the database, then you connect to the database with the SYSDBA system
privilege.

s If you are a member of the OSOPER group and you specify AS SYSOPER when
you connect to the database, then you connect to the database with the SYSOPER
system privilege.

= If you are not a member of either of these operating system groups and you
attempt to connect as SYSDBA or SYSOPER, the CONNECT command fails.

See Also: Your operating system specific Oracle documentation
for information about creating the OSDBA and OSOPER groups

Preparing to Use Operating System Authentication
To enable operating system authentication of an administrative user:

1. Create an operating system account for the user.

2. Add the account to the 0SDBA or OSOPER operating system defined groups.
Connecting Using Operating System Authentication

A user can be authenticated, enabled as an administrative user, and connected to a
local database by typing one of the following SQL*Plus commands:

1-20 Oracle Database Administrator's Guide

Database Administrator Authentication

CONNECT / AS SYSDBA
CONNECT / AS SYSOPER

For the Windows platform only, remote operating system authentication over a secure
connection is supported. You must specify the net service name for the remote
database:

CONNECT /@net_service _name AS SYSDBA
CONNECT /@net_service _name AS SYSOPER

Both the client computer and database host computer must be on a Windows domain.

See Also:
= "Connecting to the Database with SQL*Plus" on page 1-7

» SQL*Plus User's Guide and Reference for syntax of the CONNECT
command

Using Password File Authentication

This section describes how to authenticate an administrative user using password file
authentication.

Preparing to Use Password File Authentication

To enable authentication of an administrative user using password file authentication
you must do the following;:

1. If not already created, create the password file using the ORAPWD utility:

ORAPWD FILE=filename ENTRIES=max_users

See "Creating and Maintaining a Password File" on page 1-22 for details.

Notes:

= When you invoke Database Configuration Assistant (DBCA) as
part of the Oracle Database installation process, DBCA creates a
password file.

= Beginning with Oracle Database 11g Release 1, passwords in the
password file are case sensitive unless you include the
IGNORECASE = Y command-line argument.

2. Set the REMOTE_LOGIN_PASSWORDFILE initialization parameter to EXCLUSIVE.
(This is the default).

Note: REMOTE_LOGIN_PASSWORDFILE is a static initialization
parameter and therefore cannot be changed without restarting the
database.

3. Connect to the database as user SYS (or as another user with the administrative
privileges).

4, If the user does not already exist in the database, create the user and assign a
password.

Getting Started with Database Administration 1-21

Creating and Maintaining a Password File

Keep in mind that beginning with Oracle Database 11g Release 1, database
passwords are case sensitive. (You can disable case sensitivity and return to
pre-Release 11¢g behavior by setting the SEC_CASE_SENSITIVE_LOGON
initialization parameter to FALSE.)

5. Grant the SYSDBA or SYSOPER system privilege to the user:

GRANT SYSDBA to oe;

This statement adds the user to the password file, thereby enabling connection AS
SYSDBA.

See Also: "Creating and Maintaining a Password File" on
page 1-22 for instructions for creating and maintaining a password
file.

Connecting Using Password File Authentication

Administrative users can be connected and authenticated to a local or remote database
by using the SQL*Plus CONNECT command. They must connect using their username
and password and the AS SYSDBA or AS SYSOPER clause. Note that beginning with
Oracle Database 11g Release 1, passwords are case-sensitive unless the password file
was created with the IGNORECASE = Y option.

For example, user oe has been granted the SYSDBA privilege, so oe can connect as
follows:

CONNECT oe AS SYSDBA
However, user oe has not been granted the SYSOPER privilege, so the following
command will fail:

CONNECT oe AS SYSOPER

Note: Operating system authentication takes precedence over
password file authentication. Specifically, if you are a member of
the OSDBA or OSOPER group for the operating system, and you
connect as SYSDBA or SYSOPER, you will be connected with
associated administrative privileges regardless of the
username/password that you specify.

If you are not in the OSDBA or OSOPER groups, and you are not in
the password file, then attempting to connect as SYSDBA or as
SYSOPER fails.

See Also:
= "Connecting to the Database with SQL*Plus" on page 1-7

» SQL*Plus User's Guide and Reference for syntax of the CONNECT
command

Creating and Maintaining a Password File

You can create a password file using the password file creation utility, ORAPWD. For
some operating systems, you can create this file as part of your standard installation.

This section contains the following topics:

s Creating a Password File with ORAPWD

1-22 Oracle Database Administrator's Guide

Creating and Maintaining a Password File

= Sharing and Disabling the Password File
= Adding Users to a Password File

= Maintaining a Password File

See Also:
= "Using Password File Authentication" on page 1-21

= "Selecting an Authentication Method for Database
Administrators" on page 1-18

Creating a Password File with ORAPWD

The syntax of the ORAPWD command is as follows:

ORAPWD FILE=filename [ENTRIES=numusers] [FORCE:{Y\N}] [IGNORECASE:{Y|N}1

Command arguments are summarized in the following table.

Argument Description

FILE Name to assign to the password file. You must supply a complete path. If
you supply only a file name, the file is written to the current directory.

ENTRIES (Optional) Maximum number of entries (user accounts) to permit in the file.

FORCE (Optional) If y, permits overwriting an existing password file.

IGNORECASE (Optional) If y, passwords are treated as case-insensitive.

There are no spaces permitted around the equal-to (=) character.

The command prompts for the SYS password and stores the password in the created
password file.

Example
The following command creates a password file named orapworcl that allows up to
30 privileged users with different passwords.

orapwd FILE=orapworcl ENTRIES=30

ORAPWD Command Line Argument Descriptions

The following sections describe the ORAPWD command line arguments.

FILE

This argument sets the name of the password file being created. You must specify the
full path name for the file. The contents of this file are encrypted, and the file cannot be
read directly. This argument is mandatory.

The file name required for the password file is operating system specific. Some
operating systems require the password file to adhere to a specific format and be
located in a specific directory. Other operating systems allow the use of environment
variables to specify the name and location of the password file.

Table 1-1 lists the required name and location for the password file on the UNIX,
Linux, and Windows platforms. For other platforms, consult your platform-specific
documentation.

Getting Started with Database Administration 1-23

Creating and Maintaining a Password File

Table 1-1 Required Password File Name and Location on UNIX, Linux, and Windows

Platform Required Name Required Location)
UNIX and orapwORACLE_SID ORACLE_HOME /dbs
Linux

Windows PWDORACLE_SID.ora ORACLE_HOME\database

For example, for a database instance with the SID orcldw, the password file must be
named orapworcldw on Linux and PWDorcldw.ora on Windows.

In an Oracle Real Application Clusters environment on a platform that requires an
environment variable to be set to the path of the password file, the environment
variable for each instance must point to the same password file.

Caution: It is critically important to the security of your system
that you protect your password file and the environment variables
that identify the location of the password file. Any user with access
to these could potentially compromise the security of the
connection.

ENTRIES

This argument specifies the number of entries that you require the password file to
accept. This number corresponds to the number of distinct users allowed to connect to
the database as SYSDBA or SYSOPER. The actual number of allowable entries can be
higher than the number of users, because the ORAPWD utility continues to assign
password entries until an operating system block is filled. For example, if your
operating system block size is 512 bytes, it holds four password entries. The number of
password entries allocated is always a multiple of four.

Entries can be reused as users are added to and removed from the password file. If
you intend to specify REMOTE_LOGIN_PASSWORDFILE=EXCLUSIVE, and to allow the
granting of SYSDBA and SYSOPER privileges to users, this argument is required.

Caution: When you exceed the allocated number of password
entries, you must create a new password file. To avoid this
necessity, allocate a number of entries that is larger than you think
you will ever need.

FORCE

This argument, if set to Y, enables you to overwrite an existing password file. An error
is returned if a password file of the same name already exists and this argument is
omitted or set to N.

IGNORECASE

If this argument is set to y, passwords are case-insensitive. That is, case is ignored
when comparing the password that the user supplies during login with the password
in the password file.

See Also: Oracle Database Security Guide for more information about
case-sensitivity in passwords.

1-24 Oracle Database Administrator's Guide

Creating and Maintaining a Password File

Sharing and Disabling the Password File

You use the initialization parameter REMOTE_LOGIN_PASSWORDFILE to control
whether or not a password file is shared among multiple Oracle Database instances.
You can also use this parameter to disable password file authentication. The values
recognized for REMOTE_LOGIN_PASSWORDFILE are:

= NONE: Setting this parameter to NONE causes Oracle Database to behave as if the
password file does not exist. That is, no privileged connections are allowed over
nonsecure connections.

s EXCLUSIVE: (The default) An EXCLUSIVE password file can be used with only
one instance of one database. Only an EXCLUSIVE file can be modified. Using an
EXCLUSIVE password file enables you to add, modify, and delete users. It also
enables you to change the SYS password with the ALTER USER command.

= SHARED: A SHARED password file can be used by multiple databases running on
the same server, or multiple instances of an Oracle Real Application Clusters
(RAC) database. A SHARED password file cannot be modified. This means that you
cannot add users to a SHARED password file. Any attempt to do so or to change
the password of SYS or other users with the SYSDBA or SYSOPER privileges
generates an error. All users needing SYSDBA or SYSOPER system privileges must
be added to the password file when REMOTE_LOGIN_PASSWORDFILE is set to
EXCLUSIVE. After all users are added, you can change REMOTE_LOGIN_
PASSWORDFILE to SHARED, and then share the file.

This option is useful if you are administering multiple databases or a RAC
database.

If REMOTE_LOGIN_PASSWORDFILE is set to EXCLUSIVE or SHARED and the password
file is missing, this is equivalent to setting REMOTE_LOGIN_PASSWORDFILE to NONE.

Note: You cannot change the password for SYS if REMOTE_
LOGIN_PASSWORDFILE is set to SHARED. An error message is
issued if you attempt to do so.

Keeping Administrator Passwords Synchronized with the Data Dictionary

If you change the REMOTE_LOGIN_PASSWORDFILE initialization parameter from
NONE to EXCLUSIVE or SHARED, or if you recreate the password file with a different
SYS password, then you must ensure that the passwords in the data dictionary and
password file for the SYS user are the same.

To synchronize the SYS passwords, use the ALTER USER statement to change the SYS
password. The ALTER USER statement updates and synchronizes both the dictionary
and password file passwords.

To synchronize the passwords for non-SYS users who log in using the SYSDBA or
SYSOPER privilege, you must revoke and then regrant the privilege to the user, as
follows:

1. Find all users who have been granted the SYSDBA privilege.

SELECT USERNAME FROM VSPWFILE_USERS WHERE USERNAME != 'SYS' AND SYSDBA='TRUE';

2. Revoke and then re-grant the SYSDBA privilege to these users.

REVOKE SYSDBA FROM non-SYS-user;
GRANT SYSDBA TO non-SYS-user;

3. Find all users who have been granted the SYSOPER privilege.

Getting Started with Database Administration 1-25

Creating and Maintaining a Password File

SELECT USERNAME FROM VSPWFILE_USERS WHERE USERNAME != 'SYS' AND SYSOPER='TRUE';

4. Revoke and regrant the SYSOPER privilege to these users.

REVOKE SYSOPER FROM non-SYS-user;
GRANT SYSOPER TO non-SYS-user;

Adding Users to a Password File

When you grant SYSDBA or SYSOPER privileges to a user, that user's name and
privilege information are added to the password file. If the server does not have an
EXCLUSIVE password file (that is, if the initialization parameter REMOTE_LOGIN_
PASSWORDFILE is NONE or SHARED, or the password file is missing), Oracle Database
issues an error if you attempt to grant these privileges.

A user's name remains in the password file only as long as that user has at least one of
these two privileges. If you revoke both of these privileges, Oracle Database removes
the user from the password file.

Creating a Password File and Adding New Users to It
Use the following procedure to create a password and add new users to it:

1. Pollow the instructions for creating a password file as explained in "Creating a
Password File with ORAPWD" on page 1-23.

2, Set the REMOTE_LOGIN_PASSWORDFILE initialization parameter to EXCLUSIVE.
(This is the default.)

Note: REMOTE_LOGIN_ PASSWORDFILE is a static initialization
parameter and therefore cannot be changed without restarting the
database.

3. Connect with SYSDBA privileges as shown in the following example, and enter the
SYS password when prompted:

CONNECT SYS AS SYSDBA
4, Start up the instance and create the database if necessary, or mount and open an
existing database.

5. Create users as necessary. Grant SYSDBA or SYSOPER privileges to yourself and
other users as appropriate. See "Granting and Revoking SYSDBA and SYSOPER
Privileges", later in this section.

Granting and Revoking SYSDBA and SYSOPER Privileges

If your server is using an EXCLUSIVE password file, use the GRANT statement to grant
the SYSDBA or SYSOPER system privilege to a user, as shown in the following
example:

GRANT SYSDBA TO oe;

Use the REVOKE statement to revoke the SYSDBA or SYSOPER system privilege from a
user, as shown in the following example:

REVOKE SYSDBA FROM oe;

Because SYSDBA and SYSOPER are the most powerful database privileges, the WITH
ADMIN OPTION is not used in the GRANT statement. That is, the grantee cannot in turn

1-26 Oracle Database Administrator's Guide

Creating and Maintaining a Password File

grant the SYSDBA or SYSOPER privilege to another user. Only a user currently
connected as SYSDBA can grant or revoke another user's SYSDBA or SYSOPER system
privileges. These privileges cannot be granted to roles, because roles are available only
after database startup. Do not confuse the SYSDBA and SYSOPER database privileges
with operating system roles.

See Also: Oracle Database Security Guide for more information on
system privileges

Viewing Password File Members

Use the VSPWFILE_USERS view to see the users who have been granted SYSDBA or
SYSOPER system privileges for a database. The columns displayed by this view are as

follows:

Column Description

USERNAME This column contains the name of the user that is recognized by the
password file.

SYSDBA If the value of this column is TRUE, then the user can log on with
SYSDBA system privileges.

SYSOPER If the value of this column is TRUE, then the user can log on with

SYSOPER system privileges.

Maintaining a Password File

This section describes how to:
= Expand the number of password file users if the password file becomes full

= Remove the password file

Expanding the Number of Password File Users

If you receive the file full error (ORA-1996) when you try to grant SYSDBA or
SYSOPER system privileges to a user, you must create a larger password file and
regrant the privileges to the users.

Replacing a Password File
Use the following procedure to replace a password file:

1. Identify the users who have SYSDBA or SYSOPER privileges by querying the
VSPWFILE_USERS view.

2. Delete the existing password file.

3. Follow the instructions for creating a new password file using the ORAPWD utility
in "Creating a Password File with ORAPWD" on page 1-23. Ensure that the
ENTRIES parameter is set to a number larger than you think you will ever need.

4. Follow the instructions in "Adding Users to a Password File" on page 1-26.

Removing a Password File

If you determine that you no longer require a password file to authenticate users, you
can delete the password file and then optionally reset the REMOTE_LOGIN_
PASSWORDFILE initialization parameter to NONE. After you remove this file, only
those users who can be authenticated by the operating system can perform SYSDBA or
SYSOPER database administration operations.

Getting Started with Database Administration 1-27

Data Utilities

Data Utilities

Oracle utilities are available to help you maintain the data in your Oracle Database.

SQL*Loader

SQL*Loader is used both by database administrators and by other users of Oracle
Database. It loads data from standard operating system files (such as, files in text or C
data format) into database tables.

Export and Import Utilities

The Data Pump utility enables you to archive data and to move data between one
Oracle Database and another. Also available are the original Import (IMP) and Export
(EXP) utilities for importing and exporting data from and to earlier releases.

See Also: Oracle Database Utilities for detailed information about
these utilities

1-28 Oracle Database Administrator's Guide

2

Creating and Configuring an Oracle
Database

In this chapter:

About Creating an Oracle Database

Creating a Database with DBCA

Creating a Database with the CREATE DATABASE Statement
Specifying CREATE DATABASE Statement Clauses

Specifying Initialization Parameters

Managing Initialization Parameters Using a Server Parameter File
Managing Application Workloads with Database Services
Considerations After Creating a Database

Dropping a Database

Database Data Dictionary Views

See Also:

s Chapter 16, "Using Oracle-Managed Files" for information
about creating a database whose underlying operating system
files are automatically created and managed by the Oracle
Database server

= Your platform-specific Oracle Real Application Clusters (RAC)
installation guide for information about creating a database in
an Oracle RAC environment

About Creating an Oracle Database

After you plan your database using some of the guidelines presented in this section,
you can create the database with a graphical tool or a SQL command. You typically
create a database during Oracle Database software installation. However, you can also
create a database after installation. Reasons to create a database after installation are as
follows:

You used Oracle Universal Installer (OUI) to install software only, and did not
create a database.

You want to create another database (and database instance) on the same host
computer as an existing Oracle database. In this case, this chapter assumes that the

Creating and Configuring an Oracle Database 2-1

About Creating an Oracle Database

new database uses the same Oracle home as the existing database. You can also
create the database in a new Oracle home by running OUI again.

= You want to make a copy of (clone) a database.

The specific methods for creating a database are:

= With Database Configuration Assistant (DBCA), a graphical tool.

See "Creating a Database with DBCA" on page 2-5

s With the CREATE DATABASE SQL statement.

See "Creating a Database with the CREATE DATABASE Statement" on page 2-6

Considerations Before Creating the Database

Database creation prepares several operating system files to work together as an
Oracle Database. You need only create a database once, regardless of how many
datafiles it has or how many instances access it. You can create a database to erase
information in an existing database and create a new database with the same name

and physical structure.

The following topics can help prepare you for database creation.

= Planning for Database Creation

= Meeting Creation Prerequisites

Planning for Database Creation

Prepare to create the database by research and careful planning. Table 2-1 lists some

recommended actions:

Table 2-1 Database Planning Tasks

Action

Additional Information

Plan the database tables and indexes and estimate the amount of
space they will require.

Part II, "Oracle Database
Structure and Storage"

Part III, "Schema Objects"

Plan the layout of the underlying operating system files your
database will comprise. Proper distribution of files can improve
database performance dramatically by distributing the I/O during
file access. You can distribute I/O in several ways when you install
Oracle software and create your database. For example, you can
place redo log files on separate disks or use striping. You can
situate datafiles to reduce contention. And you can control data
density (number of rows to a data block). If you create a Fast
Recovery Area, Oracle recommends that you place it on a storage
device that is different from that of the datafiles.

To greatly simplify this planning task, consider using
Oracle-managed files and Automatic Storage Management to create
and manage the operating system files that make up your database
storage.

Chapter 16, "Using
Oracle-Managed Files"

Oracle Database Storage
Administrator’s Guide

Oracle Database
Performance Tuning Guide

Oracle Database Backup
and Recovery User’s Guide

Your Oracle operating
system-specific
documentation,
including the
appropriate Oracle
Database installation
guide.

Select the global database name, which is the name and location of
the database within the network structure. Create the global
database name by setting both the DB_NAME and DB_DOMAIN
initialization parameters.

"Determining the Global
Database Name" on
page 2-27

2-2 Oracle Database Administrator's Guide

About Creating an Oracle Database

Table 2-1 (Cont.) Database Planning Tasks

Action

Additional Information

Familiarize yourself with the initialization parameters contained in
the initialization parameter file. Become familiar with the concept
and operation of a server parameter file. A server parameter file
lets you store and manage your initialization parameters
persistently in a server-side disk file.

"About Initialization
Parameters and
Initialization Parameter
Files" on page 2-25

"What Is a Server
Parameter File?" on
page 2-33

Oracle Database Reference

Select the database character set.

All character data, including data in the data dictionary, is stored in
the database character set. You specify the database character set
when you create the database.

See "Selecting a Character Set" on page 2-3 for details.

Oracle Database
Globalization Support
Guide

Consider what time zones your database must support.

Oracle Database uses one of two time zone files as the source of

"Specifying the Database
Time Zone File" on

valid time zones. The default time zone file is timezlrg_11.dat. page 2-23

It contains more time zones than the smaller time zone file,

timezone_11.dat.

Select the standard database block size. This is specified at database "Specifying Database

creation by the DB_BLOCK_SIZE initialization parameter and
cannot be changed after the database is created.

The SYSTEM tablespace and most other tablespaces use the
standard block size. Additionally, you can specify up to four
nonstandard block sizes when creating tablespaces.

Block Sizes" on page 2-29

If you plan to store online redo log files on disks with a 4K byte
sector size, determine whether you need to manually specify redo
log block size.

"Planning the Block Size
of Redo Log Files" on
page 11-7

Determine the appropriate initial sizing for the SYSAUX tablespace.

"About the SYSAUX
Tablespace" on page 2-17

Plan to use a default tablespace for non-SYSTEM users to prevent
inadvertent saving of database objects in the SYSTEM tablespace.

"Creating a Default
Permanent Tablespace”
on page 2-19

Plan to use an undo tablespace to manage your undo data.

Chapter 15, "Managing
Undo"

Develop a backup and recovery strategy to protect the database
from failure. It is important to protect the control file by
multiplexing, to choose the appropriate backup mode, and to
manage the online and archived redo logs.

Chapter 11, "Managing
the Redo Log"

Chapter 12, "Managing
Archived Redo Logs"

Chapter 10, "Managing
Control Files"

Oracle Database Backup
and Recovery User’s Guide

Familiarize yourself with the principles and options of starting up
and shutting down an instance and mounting and opening a
database.

Chapter 3, "Starting Up
and Shutting Down"

Selecting a Character Set Oracle recommends AL32UTF8 as the database character set.
AL32UTES is Oracle's name for the UTF-8 encoding of the Unicode standard. The
Unicode standard is the universal character set that supports most of the currently

Creating and Configuring an Oracle Database 2-3

About Creating an Oracle Database

spoken languages of the world. The use of the Unicode standard is indispensable for
any multilingual technology, including database processing.

After a database is created and accumulates production data, changing the database
character set is a time consuming and complex project. Therefore, it is very important
to select the right character set at installation time. Even if the database does not
currently store multilingual data but is expected to store multilingual data within a
few years, the choice of AL32UTES for the database character set is usually the only
good decision.

Even so, the default character set used by Oracle Universal Installer (OUI) and
Database Configuration Assistant (DBCA) for the UNIX, Linux, and Microsoft
Windows platforms is not AL32UTF8, but a Microsoft Windows character set known
as an ANSI code page. The particular character set is selected based on the current
language (locale) of the operating system session that started OUI or DBCA. If the
language is American English or one of the Western European languages, the default
character set is WESMSWIN1252. Each Microsoft Windows ANSI Code Page is
capable of storing data only from one language or a limited group of languages, like
only Western European, or only Eastern European, or only Japanese.

A Microsoft Windows character set is the default even for databases created on UNIX
and Linux platforms because Microsoft Windows is the prevalent platform for client
workstations. Oracle Client libraries automatically perform the necessary character set
conversion between the database character set and the character sets used by
non-Windows client applications.

You may also choose to use any other character set from the presented list of character
sets. You can use this option to select a particular character set required by an
application vendor, or choose a particular character set that is the common character
set used by all clients connecting to this database.

As AL32UTF8 is a multibyte character set, database operations on character data may
be slightly slower when compared to single-byte database character sets, such as
WESMSWIN1252. Storage space requirements for text in most languages that use
characters outside of the ASCII repertoire are higher in AL32UTF8 compared to legacy
character sets supporting the language. Note that the increase in storage space
concerns only character data and only data that is not in English. The universality and
flexibility of Unicode usually outweighs these additional costs.

Caution: Do not use the character set named UTFS as the database
character set unless required for compatibility with Oracle Database
clients and servers in version 8.1.7 and earlier, or unless explicitly
requested by your application vendor. Despite having a very similar
name, UTF8 is not a proper implementation of the Unicode encoding
UTF-8. If the UTF8 character set is used where UTF-8 processing is
expected, data loss and security issues may occur. This is especially
true for Web related data, such as XML and URL addresses.

Meeting Creation Prerequisites
Before you can create a new database, the following prerequisites must be met:

» The desired Oracle software must be installed. This includes setting various
environment variables unique to your operating system and establishing the
directory structure for software and database files.

= Sufficient memory must be available to start the Oracle Database instance.

2-4 Oracle Database Administrator's Guide

Creating a Database with DBCA

= Sufficient disk storage space must be available for the planned database on the
computer that runs Oracle Database.

All of these are discussed in the Oracle Database Installation Guide specific to your
operating system. If you use the Oracle Universal Installer, it will guide you through
your installation and provide help in setting environment variables and establishing
directory structure and authorizations.

Creating a Database with DBCA

Database Configuration Assistant (DBCA) is the preferred way to create a database,
because it is a more automated approach, and your database is ready to use when
DBCA completes. DBCA can be launched by the Oracle Universal Installer (OUI),
depending upon the type of install that you select. You can also launch DBCA as a
standalone tool at any time after Oracle Database installation.

You can run DBCA in interactive mode or noninteractive/silent mode. Interactive
mode provides a graphical interface and guided workflow for creating and
configuring a database. Noninteractive/silent mode enables you to script database
creation. You can run DBCA in noninteractive/silent mode by specifying
command-line arguments, a response file, or both.

Creating a Database with Interactive DBCA

See Oracle Database 2 Day DBA for detailed information about creating a database
interactively with DBCA.

Creating a Database with Noninteractive/Silent DBCA

See Appendix A of the installation guide for your platform for details on using the
noninteractive/silent mode of DBCA.

The following example creates a database by passing command-line arguments to
DBCA:

dbca -silent -createDatabase -templateName General_Purpose.dbc
-gdbname orallg -sid orallg -responseFile NO_VALUE -characterSet AL32UTF8
-memoryPercentage 30 -emConfiguration LOCAL

Enter SYSTEM user password:
password
Enter SYS user password:
password
Copying database files

% complete

% complete

To ensure completely silent operation, you can redirect stdout to a file. If you do this,
however, you must supply passwords for the administrative accounts in
command-line arguments or the response file.

To view brief help for DBCA command-line arguments, enter the following command:

dbca -help

For more detailed argument information, including defaults, view the response file
template found on your distribution media. Appendix A of your platform installation
guide provides the name and location of this file.

Creating and Configuring an Oracle Database 2-5

Creating a Database with the CREATE DATABASE Statement

Creating a Database with the CREATE DATABASE Statement

Using the CREATE DATBASE SQL statement is a more manual approach to creating a
database. One advantage of using this statement over using DBCA is that you can
create databases from within scripts.

If you use the CREATE DATABASE statement, you must complete additional actions
before you have an operational database. These actions include building views on the
data dictionary tables and installing standard PL/SQL packages. You perform these
actions by running the supplied scripts.

If you have existing scripts for creating your database, consider editing those scripts to
take advantage of new Oracle Database features.

The instructions in this section apply to single-instance installations only. Refer to the
Oracle Real Application Clusters (Oracle RAC) installation guide for your platform for
instructions for creating an Oracle RAC database.

Note: Single-instance does not mean that only one Oracle instance can
reside on a single host computer. In fact, multiple Oracle instances
(and their associated databases) can run on a single host computer. A
single-instance database is a database that is accessed by only one
Oracle instance, as opposed to an Oracle RAC database, which is
accessed concurrently by multiple Oracle instances on multiple nodes.
See Oracle Real Application Clusters Administration and Deployment
Guide for more information on Oracle RAC.

Complete the following steps to create a database with the CREATE DATABASE
statement. The examples create a database named mynewdb.

Step 1: Specify an Instance Identifier (SID)

Step 2: Ensure That the Required Environment Variables Are Set

Step 3: Choose a Database Administrator Authentication Method

Step 4: Create the Initialization Parameter File

Step 5: (Windows Only) Create an Instance

Step 6: Connect to the Instance

Step 7: Create a Server Parameter File

Step 8: Start the Instance

Step 9: Issue the CREATE DATABASE Statement

Step 10: Create Additional Tablespaces

Step 11: Run Scripts to Build Data Dictionary Views

Step 12: Run Scripts to Install Additional Options (Optional)

Step 13: Back Up the Database.

Step 14: (Optional) Enable Automatic Instance Startup
Tip: If you are using Oracle Automatic Storage Management (Oracle
ASM) to manage your disk storage, you must start the Oracle ASM
instance and configure your disk groups before performing these

steps. For information about Automatic Storage Management, see
Oracle Database Storage Administrator’s Guide.

2-6 Oracle Database Administrator's Guide

Creating a Database with the CREATE DATABASE Statement

Step 1: Specify an Instance Identifier (SID)

Decide on a unique Oracle system identifier (SID) for your instance, open a command
window, and set the ORACLE_SID environment variable. Use this command windows
for the subsequent steps.

ORACLE_SID is used to distinguish this instance from other Oracle Database instances
that you may create later and run concurrently on the same host computer. The
maximum number of characters for ORACLE_SIDis 12, and only letters and numeric
digits are permitted. On some platforms, the SID is case-sensitive.

Note: Itis common practice to set the SID to be equal to the database
name. The maximum number of characters for the database name is
eight. For more information, see the discussion of the DB_NAME
initialization parameter in Oracle Database Reference.

The following example for UNIX and Linux operating systems sets the SID for the
instance that you will connect to in Step 6: Connect to the Instance:

s Bourne, Bash, or Korn shell:
ORACLE_SID=mynewdb
export ORACLE_SID

s Cshell:

setenv ORACLE_SID mynewdb

The following example sets the SID for the Windows operating system:

set ORACLE_SID=mynewdb

See Also: Oracle Database Concepts for background information
about the Oracle instance

Step 2: Ensure That the Required Environment Variables Are Set

Depending on your platform, before you can start SQL*Plus (as required in Step 6:
Connect to the Instance), you may have to set environment variables, or at least verify
that they are set properly.

For example, on most platforms, ORACLE_SID and ORACLE_HOME must be set. In
addition, it is advisable to set the PATH variable to include the ORACLE_HOME /bin
directory. On the UNIX and Linux platforms, you must set these environment
variables manually. On the Windows platform, OUI automatically assigns values to
ORACLE_HOME and ORACLE_SID in the Windows registry. If you did not create a
database upon installation, OUI does not set ORACLE_SID in the registry, and you will
have to set the ORACLE_SID environment variable when you create your database
later.

Step 3: Choose a Database Administrator Authentication Method

You must be authenticated and granted appropriate system privileges in order to
create a database. You can authenticate as an administrator with the required
privileges in the following ways:

= With a password file

= With operating system authentication

Creating and Configuring an Oracle Database 2-7

Creating a Database with the CREATE DATABASE Statement

In this step, you decide on an authentication method.

If you decide to authenticate with a password file, create the password file as
described in "Creating and Maintaining a Password File" on page 1-22. If you decide to
authenticate with operating system authentication, ensure that you log in to the host
computer with a user account that is a member of the appropriate operating system
user group. On the UNIX and Linux platforms, for example, this is typically the dba
user group. On the Windows platform, the user installing the Oracle software is
automatically placed in the required user group.

See Also:

= "About Database Administrator Security and Privileges" on
page 1-14

= "Database Administrator Authentication" on page 1-16 for
information about password files and operating system
authentication

Step 4: Create the Initialization Parameter File

When an Oracle instance starts, it reads an initialization parameter file. This file can be
a text file, which can be created and modified with a text editor, or a binary file, which
is created and dynamically modified by the database. The binary file, which is
preferred, is called a server parameter file. In this step, you create a text initialization
parameter file. In a later step, you create a server parameter file from the text file.

One way to create the text initialization parameter file is to edit the sample presented
in "Sample Initialization Parameter File" on page 2-26.

If you create the initialization parameter file manually, ensure that it contains at least
the parameters listed in Table 2-2. All other parameters not listed have default values.

Table 2-2 Recommended Minimum Initialization Parameters

Parameter Name Mandatory Notes

DB_NAME Yes Database identifier. Must correspond to the value used in
the CREATE DATABASE statement. Maximum 8 characters.

CONTROL_FILES No Strongly recommended. If not provided, the database
instance creates one control file in the same location as the
initialization parameter file. Providing this parameter
enables you to multiplex control files. See "Creating Initial
Control Files" on page 10-3 for more information.

MEMORY_TARGET No Sets the total amount of memory used by the instance and
enables automatic memory management. You can choose
other initialization parameters instead of this one for more
manual control of memory usage. See "Configuring
Memory Manually" on page 6-7.

For convenience, store your initialization parameter file in the Oracle Database default
location, using the default file name. Then when you start your database, it will not be
necessary to specify the PFILE clause of the STARTUP command, because Oracle

Database automatically looks in the default location for the initialization parameter
file.

For more information about initialization parameters and the initialization parameter
file, including the default name and location of the initialization parameter file for
your platform, see "About Initialization Parameters and Initialization Parameter Files"
on page 2-25.

2-8 Oracle Database Administrator's Guide

Creating a Database with the CREATE DATABASE Statement

See Also:
= "Specifying Initialization Parameters" on page 2-24

» Oracle Database Reference for details on all initialization parameters

Step 5: (Windows Only) Create an Instance

On the Windows platform, before you can connect to an instance, you must manually
create it if it does not already exist. The ORADIM command creates an Oracle instance
by creating a new Windows service.

To create an instance:
= Enter the following command at a Windows command prompt:
oradim -NEW -SID sid -STARTMODE MANUAL -PFILE pfile
where sidis the desired SID (for example mynewdb) and pfileis the full path to

the text initialization parameter file. This command creates the instance but does
not start it.

Caution: Do not set the -STARTMODE argument to AUTO at this point,
because this causes the new instance to start and attempt to mount the
database, which does not exist yet. You can change this parameter to
AUTO, if desired, in Step 14.

See the section "Using ORADIM to Administer an Oracle Database Instance" in Oracle
Database Platform Guide for Microsoft Windows for more information on the ORADIM
command.

Step 6: Connect to the Instance

Start SQL*Plus and connect to your Oracle Database instance with the SYSDBA system
privilege.

s To authenticate with a password file, enter the following commands, and then
enter the SYS password when prompted:

$ sglplus /nolog
SQL> CONNECT SYS AS SYSDBA

= To authenticate with operating system authentication, enter the following
commands:

$ sqglplus /nolog
SQL> CONNECT / AS SYSDBA

SQL*Plus outputs the following message:

Connected to an idle instance.

Creating and Configuring an Oracle Database 2-9

Creating a Database with the CREATE DATABASE Statement

Note: SQL*Plus may output a message similar to the following:

Connected to:
Oracle Database 1lg Enterprise Edition Release 11.2.0.1.0 - Production
With the Partitioning, OLAP and Data Mining options

If so, this means that the instance is already started. You may have
connected to the wrong instance. Exit SQL*Plus with the EXIT command,
check that ORACLE_SID is set properly, and repeat this step.

Step 7: Create a Server Parameter File

The server parameter file enables you to change initialization parameters with the
ALTER SYSTEM command and persist the changes across a database shutdown and
startup. You create the server parameter file from your edited text initialization file.

The following SQL*Plus command reads the text initialization parameter file (PFILE)
with the default name from the default location, creates a server parameter file
(SPFILE) from the text initialization parameter file, and writes the SPFILE to the
default location with the default SPFILE name.

CREATE SPFILE FROM PFILE;

You can also supply the file name and path for both the PFILE and SPFILE if you are
not using default names and locations.

Tip: The database must be restarted before the server parameter file
takes effect.

Note: Although creating a server parameter file is optional at this
point, it is recommended. If you do not create a server parameter file,
the instance continues to read the text initialization parameter file
whenever it starts.

Important—If you are using Oracle-managed files and your
initialization parameter file does not contain the CONTROL_FILES
parameter, you must create a server parameter file now so the
database can save the names and location of the control files that it
creates during the CREATE DATABASE statement. See "Specifying
Oracle-Managed Files at Database Creation" on page 2-20 for more
information.

See Also:

= "Managing Initialization Parameters Using a Server Parameter
File" on page 2-32

» Oracle Database SQL Language Reference for more information on
the CREATE SPFILE command

Step 8: Start the Instance

Start an instance without mounting a database. Typically, you do this only during
database creation or while performing maintenance on the database. Use the STARTUP
command with the NOMOUNT clause. In this example, because the initialization

2-10 Oracle Database Administrator's Guide

Creating a Database with the CREATE DATABASE Statement

parameter file or server parameter file is stored in the default location, you are not
required to specify the PFILE clause:

STARTUP NOMOUNT

At this point, the instance memory is allocated and its processes are started. The
database itself does not yet exist.

See Also:
» Oracle Database Concepts for an overview of the Oracle instance.

= "Managing Initialization Parameters Using a Server Parameter
File" on page 2-32

s Chapter 3, "Starting Up and Shutting Down", to learn how to
use the STARTUP command

Step 9: Issue the CREATE DATABASE Statement

To create the new database, use the CREATE DATABASE statement.

Example 1

The following statement creates database mynewdb. This database name must agree
with the DB_NAME parameter in the initialization parameter file. This example assumes
the following:

» The initialization parameter file specifies the number and location of control files
with the CONTROL_FILES parameter.

» The directory /u0l/app/oracle/oradata/mynewdb exists.
s The directories /u01/logs/my and /u02/logs/my exist.

CREATE DATABASE mynewdb
USER SYS IDENTIFIED BY sys password
USER SYSTEM IDENTIFIED BY system password
LOGFILE GROUP 1 ('/u0l/logs/my/redo0Ola.log','/u02/logs/my/redo0lb.log') SIZE 100M BLOCKSIZE 512,
GROUP 2 ('/u0l/logs/my/redo02a.log','/u02/logs/my/redo02b.log') SIZE 100M BLOCKSIZE 512,
GROUP 3 ('/u0l/logs/my/redo03a.log','/u02/logs/my/redo03b.log"') SIZE 100M BLOCKSIZE 512
MAXLOGFILES 5
MAXLOGMEMBERS 5
MAXLOGHISTORY 1
MAXDATAFILES 100
CHARACTER SET US7ASCII
NATIONAL CHARACTER SET AL16UTF16
EXTENT MANAGEMENT LOCAL
DATAFILE '/ull/app/oracle/oradata/mynewdb/system0l.dbf' SIZE 325M REUSE
SYSAUX DATAFILE '/u0l/app/oracle/oradata/mynewdb/sysaux01l.dbf' SIZE 325M REUSE
DEFAULT TABLESPACE users
DATAFILE '/ull/app/oracle/oradata/mynewdb/users0l.dbf’
SIZE 500M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED
DEFAULT TEMPORARY TABLESPACE temptsl
TEMPFILE '/ulOl/app/oracle/oradata/mynewdb/temp0l.dbf"’
SIZE 20M REUSE
UNDO TABLESPACE undotbs
DATAFILE '/ul0l/app/oracle/oradata/mynewdb/undotbs0l.dbf"'
SIZE 200M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED;

A database is created with the following characteristics:

Creating and Configuring an Oracle Database 2-11

Creating a Database with the CREATE DATABASE Statement

s The database is named mynewdb. Its global database name is
mynewdb.us.oracle.com, where the domain portion (us.oracle. com)is
taken from the initialization file. See "Determining the Global Database Name" on
page 2-27.

s Three control files are created as specified by the CONTROL_FILES initialization
parameter, which was set before database creation in the initialization parameter
file. See "Sample Initialization Parameter File" on page 2-26 and "Specifying
Control Files" on page 2-29.

s The passwords for user accounts SYS and SYSTEM are set to the values that you
specified. Beginning with Release 11g, the passwords are case-sensitive. The two
clauses that specify the passwords for SYS and SYSTEM are not mandatory in this
release of Oracle Database. However, if you specify either clause, you must specify
both clauses. For further information about the use of these clauses, see "Protecting
Your Database: Specifying Passwords for Users SYS and SYSTEM" on page 2-16.

s The new database has three redo log file groups, each with two members, as
specified in the LOGFILE clause. MAXLOGFILES, MAXLOGMEMBERS, and
MAXLOGHISTORY define limits for the redo log. See "Choosing the Number of
Redo Log Files" on page 11-8. The block size for the redo logs is set to 512 bytes,
the same size as physical sectors on disk. The BLOCKSIZE clause is optional if
block size is to be the same as physical sector size (the default). Typical sector size
and thus typical block size is 512. Permissible values for BLOCKSIZE are 512, 1024,
and 4096. For newer disks with a 4K sector size, optionally specify BLOCKSIZE as
4096. See "Planning the Block Size of Redo Log Files" on page 11-7 for more
information.

= MAXDATAFILES specifies the maximum number of datafiles that can be open in
the database. This number affects the initial sizing of the control file.

Note: You can set several limits during database creation. Some of
these limits are limited by and affected by operating system limits.
For example, if you set MAXDATAFILES, Oracle Database allocates
enough space in the control file to store MAXDATAFILES filenames,
even if the database has only one datafile initially. However,
because the maximum control file size is limited and operating
system dependent, you might not be able to set all CREATE
DATABASE parameters at their theoretical maximums.

For more information about setting limits during database creation,
see the Oracle Database SQL Language Reference and your operating
system—specific Oracle documentation.

s The US7ASCITI character set is used to store data in this database.

s The AL16UTF16 character set is specified as the NATIONAL CHARACTER SET,
used to store data in columns specifically defined as NCHAR, NCLOB, or
NVARCHAR2.

» The SYSTEM tablespace, consisting of the operating system file
/u0l/app/oracle/oradata/mynewdb/system01 .dbf is created as specified
by the DATAFILE clause. If a file with that name already exists, it is overwritten.

» The SYSTEM tablespace is created as a locally managed tablespace. See "Creating a
Locally Managed SYSTEM Tablespace" on page 2-17.

2-12 Oracle Database Administrator's Guide

Creating a Database with the CREATE DATABASE Statement

= A SYSAUX tablespace is created, consisting of the operating system file
/ull/app/oracle/oradata/mynewdb/sysaux01.dbf as specified in the
SYSAUX DATAFILE clause. See "About the SYSAUX Tablespace" on page 2-17.

s The DEFAULT TABLESPACE clause creates and names a default permanent
tablespace for this database.

s The DEFAULT TEMPORARY TABLESPACE clause creates and names a default
temporary tablespace for this database. See "Creating a Default Temporary
Tablespace" on page 2-19.

s The UNDO TABLESPACE clause creates and names an undo tablespace that is used
to store undo data for this database if you have specified UNDO_
MANAGEMENT=AUTO in the initialization parameter file. If you omit this parameter,
it defaults to AUTO. See "Using Automatic Undo Management: Creating an Undo
Tablespace" on page 2-19.

= Redo log files will not initially be archived, because the ARCHIVELOG clause is not
specified in this CREATE DATABASE statement. This is customary during database
creation. You can later use an ALTER DATABASE statement to switch to
ARCHIVELOG mode. The initialization parameters in the initialization parameter
file for mynewdb relating to archiving are LOG_ARCHIVE_DEST_1 and LOG_
ARCHIVE_FORMAT. See Chapter 12, "Managing Archived Redo Logs".

Tips:

» Ensure that all directories used in the CREATE DATABASE
statement exist. The CREATE DATABASE statement does not create
directories.

= If you are not using Oracle-managed files, every tablespace clause
must include a DATAFILE or TEMPFILE clause.

= If database creation fails, you can look at the alert log to determine
the reason for the failure and to determine corrective actions. See
"Viewing the Alert Log" on page 9-19. If you receive an error
message that contains a process number, examine the trace file for
that process. Look for the trace file that contains the process
number in the trace file name. See "Finding Trace Files" on
page 9-20 for more information.

= If you want to resubmit the CREATE DATABASE statement after a
failure, you must first shut down the instance and delete any files
created by the previous CREATE DATABASE statement.

Example 2

This example illustrates creating a database with Oracle Managed Files, which enables
you to use a much simpler CREATE DATABASE statement. To use Oracle Managed
Files, the initialization parameter DB_CREATE_FILE_DEST must be set. This
parameter defines the base directory for the various database files that the database
creates and automatically names. The following statement is an example of setting this
parameter in the initialization parameter file:

DB_CREATE_FILE_DEST='/u0l/app/oracle/oradata'’

With Oracle Managed Files and the following CREATE DATABASE statement, the
database creates the SYSTEM and SYSAUX tablespaces, creates the additional
tablespaces specified in the statement, and chooses default sizes and properties for all
datafiles, control files, and redo log files. Note that these properties and the other
default database properties set by this method may not be suitable for your

Creating and Configuring an Oracle Database 2-13

Creating a Database with the CREATE DATABASE Statement

production environment, so it is recommended that you examine the resulting
configuration and modify it if necessary.

CREATE DATABASE mynewdb

USER SYS IDENTIFIED BY sys_password

USER SYSTEM IDENTIFIED BY system password
EXTENT MANAGEMENT LOCAL

DEFAULT TEMPORARY TABLESPACE temp

UNDO TABLESPACE undotbsl

DEFAULT TABLESPACE users;

Tip: If your CREATE DATABASE statement fails, and if you did not
complete Step 7, ensure that there is not a pre-existing server
parameter file (SPFILE) for this instance that is setting initialization
parameters in an unexpected way. For example, an SPFILE contains a
setting for the complete path to all control files, and the CREATE
DATABASE statement fails if those control files do not exist. Ensure
that you shut down and restart the instance (with STARTUP NOMOUNT)
after removing an unwanted SPFILE. See "Managing Initialization
Parameters Using a Server Parameter File" on page 2-32 for more
information.

See Also:

s "Specifying CREATE DATABASE Statement Clauses" on
page 2-16

= "Specifying Oracle-Managed Files at Database Creation" on
page 2-20

s Chapter 16, "Using Oracle-Managed Files"

» Oracle Database SQL Language Reference for more information
about specifying the clauses and parameter values for the
CREATE DATABASE statement

Step 10: Create Additional Tablespaces

To make the database functional, you need to create additional tablespaces for your
application data. The following sample script creates some additional tablespaces:

CREATE TABLESPACE apps_tbs LOGGING

DATAFILE '/uOl/app/oracle/oradata/mynewdb/apps01l.dbf"’

SIZE 500M REUSE AUTOEXTEND ON NEXT 1280K MAXSIZE UNLIMITED

EXTENT MANAGEMENT LOCAL;
-- create a tablespace for indexes, separate from user tablespace (optional)
CREATE TABLESPACE indx_tbs LOGGING

DATAFILE '/uOl/app/oracle/oradata/mynewdb/indx01.dbf"’

SIZE 100M REUSE AUTOEXTEND ON NEXT 1280K MAXSIZE UNLIMITED

EXTENT MANAGEMENT LOCAL;

For information about creating tablespaces, see Chapter 13, "Managing Tablespaces".

Step 11: Run Scripts to Build Data Dictionary Views

Run the scripts necessary to build data dictionary views, synonyms, and PL/SQL
packages, and to support proper functioning of SQL*Plus:

@?/rdbms/admin/catalog.sql
@?/rdbms/admin/catproc.sqgl

2-14 Oracle Database Administrator's Guide

Creating a Database with the CREATE DATABASE Statement

@?/sqglplus/admin/pupbld.sqgl
EXIT

The at-sign (@) is shorthand for the command that runs a SQL*Plus script. The
question mark (?) is a SQL*Plus variable indicating the Oracle home directory. The
following table contains descriptions of the scripts:

Script Description

CATALOG. SQL Creates the views of the data dictionary tables, the dynamic
performance views, and public synonyms for many of the views.
Grants PUBLIC access to the synonyms.

CATPROC. SQL Runs all scripts required for or used with PL/SQL.
PUPBLD. SQL Required for SQL*Plus. Enables SQL*Plus to disable commands by
user.

Step 12: Run Scripts to Install Additional Options (Optional)

You may want to run other scripts. The scripts that you run are determined by the
features and options you choose to use or install. Many of the scripts available to you
are described in the Oracle Database Reference.

If you plan to install other Oracle products to work with this database, see the
installation instructions for those products. Some products require you to create
additional data dictionary tables. Usually, command files are provided to create and
load these tables into the database data dictionary.

See your Oracle documentation for the specific products that you plan to install for
installation and administration instructions.

Step 13: Back Up the Database.

Take a full backup of the database to ensure that you have a complete set of files from
which to recover if a media failure occurs. For information on backing up a database,
see Oracle Database Backup and Recovery User’s Guide.

Step 14: (Optional) Enable Automatic Instance Startup

You might want to configure the Oracle instance to start automatically when its host
computer restarts. See your operating system documentation for instructions. For
example, on Windows, use the following command to configure the database service
to start the instance upon computer restart:

ORADIM -EDIT -SID sid -STARTMODE AUTO -SRVCSTART SYSTEM [-SPFILE]
You must use the -SPFILE argument if you want the instance to read an SPFILE upon
automatic restart.

See Also:

s Chapter 4, "Configuring Automatic Restart of an Oracle Database"

s The section "Using ORADIM to Administer an Oracle Database
Instance" in Oracle Database Platform Guide for Microsoft Windows
for more information on the ORADIM command.

Creating and Configuring an Oracle Database 2-15

Specifying CREATE DATABASE Statement Clauses

Specifying CREATE DATABASE Statement Clauses

When you execute a CREATE DATABASE statement, Oracle Database performs a
number of operations. The actual operations performed depend on the clauses that
you specify in the CREATE DATABASE statement and the initialization parameters that
you have set. Oracle Database performs at least these operations:

» Creates the datafiles for the database

» Creates the control files for the database

» Creates the redo log files for the database and establishes the ARCHIVELOG mode.
» Creates the SYSTEM tablespace

» Creates the SYSAUX tablespace

s Creates the data dictionary

= Sets the character set that stores data in the database

= Sets the database time zone

= Mounts and opens the database for use

This section discusses several of the clauses of the CREATE DATABASE statement. It
expands upon some of the clauses discussed in "Step 9: Issue the CREATE DATABASE
Statement” on page 2-11 and introduces additional ones. Many of the CREATE
DATABASE clauses discussed here can be used to simplify the creation and
management of your database.

The following topics are contained in this section:

= Protecting Your Database: Specifying Passwords for Users SYS and SYSTEM
» Creating a Locally Managed SYSTEM Tablespace

= About the SYSAUX Tablespace

= Using Automatic Undo Management: Creating an Undo Tablespace

» Creating a Default Temporary Tablespace

= Specifying Oracle-Managed Files at Database Creation

= Supporting Bigfile Tablespaces During Database Creation

= Specifying the Database Time Zone and Time Zone File

s Specifying FORCE LOGGING Mode

Protecting Your Database: Specifying Passwords for Users SYS and SYSTEM

The clauses of the CREATE DATABASE statement used for specifying the passwords for
users SYS and SYSTEM are:

m USER SYS IDENTIFIED BY password
m USER SYSTEM IDENTIFIED BY password

If you omit these clauses, these users are assigned the default passwords change_on_
install and manager, respectively. A record is written to the alert log indicating
that the default passwords were used. To protect your database, you must change
these passwords using the ALTER USER statement immediately after database
creation.

2-16 Oracle Database Administrator's Guide

Specifying CREATE DATABASE Statement Clauses

Oracle strongly recommends that you specify these clauses, even though they are
optional in this release of Oracle Database. The default passwords are commonly
known, and if you neglect to change them later, you leave database vulnerable to
attack by malicious users.

When choosing a password, keep in mind that beginning in Release 11g, passwords
are case sensitive. Also, there may be password formatting requirements for your
database. See the section entitled "How Oracle Database Checks the Complexity of
Passwords" in Oracle Database Security Guide for more information.

See Also: "Some Security Considerations" on page 2-45

Creating a Locally Managed SYSTEM Tablespace

Specify the EXTENT MANAGEMENT LOCAL clause in the CREATE DATABASE statement
to create a locally managed SYSTEM tablespace. The COMPATIBLE initialization
parameter must be set to 10.0.0 or higher for this statement to be successful. If you do
not specify the EXTENT MANAGEMENT LOCAL clause, by default the database creates a
dictionary-managed SYSTEM tablespace. Dictionary-managed tablespaces are
deprecated.

If you create your database with a locally managed SYSTEM tablespace, and if you are
not using Oracle-managed files, ensure that the following conditions are met:

= You specify the DEFAULT TEMPORARY TABLESPACE clause in the CREATE
DATABASE statement.

» Youinclude the UNDO TABLESPACE clause in the CREATE DATABASE statement.

See Also:

» Oracle Database SQL Language Reference for more specific
information about the use of the DEFAULT TEMPORARY
TABLESPACE and UNDO TABLESPACE clauses when EXTENT
MANAGEMENT LOCAL is specified for the SYSTEM tablespace

s "Locally Managed Tablespaces" on page 13-3

= "Migrating the SYSTEM Tablespace to a Locally Managed
Tablespace" on page 13-29

About the SYSAUX Tablespace

The SYSAUX tablespace is always created at database creation. The SYSAUX tablespace
serves as an auxiliary tablespace to the SYSTEM tablespace. Because it is the default
tablespace for many Oracle Database features and products that previously required
their own tablespaces, it reduces the number of tablespaces required by the database.
It also reduces the load on the SYSTEM tablespace.

You can specify only datafile attributes for the SYSAUX tablespace, using the SYSAUX
DATAFILE clause in the CREATE DATABASE statement. Mandatory attributes of the
SYSAUX tablespace are set by Oracle Database and include:

= PERMANENT
s READWRITE
s EXTENT MANAGMENT LOCAL

s SEGMENT SPACE MANAGMENT AUTO

Creating and Configuring an Oracle Database 2-17

Specifying CREATE DATABASE Statement Clauses

You cannot alter these attributes with an ALTER TABLESPACE statement, and any
attempt to do so will result in an error. You cannot drop or rename the SYSAUX
tablespace.

The size of the SYSAUX tablespace is determined by the size of the database
components that occupy SYSAUX. See Table 2-3 for a list of all SYSAUX occupants.
Based on the initial sizes of these components, the SYSAUX tablespace needs to be at
least 240 MB at the time of database creation. The space requirements of the SYSAUX
tablespace will increase after the database is fully deployed, depending on the nature
of its use and workload. For more information on how to manage the space
consumption of the SYSAUX tablespace on an ongoing basis, please refer to the
"Managing the SYSAUX Tablespace” on page 13-25.

If you include a DATAFILE clause for the SYSTEM tablespace, then you must specify
the SYSAUX DATAFILE clause as well, or the CREATE DATABASE statement will fail.
This requirement does not exist if the Oracle-managed files feature is enabled (see
"Specifying Oracle-Managed Files at Database Creation" on page 2-20).

The SYSAUX tablespace has the same security attributes as the SYSTEM tablespace.

Note: This documentation discusses the creation of the SYSAUX
database at database creation. When upgrading from a release of
Oracle Database that did not require the SYSAUX tablespace, you
must create the SYSAUX tablespace as part of the upgrade process.
This is discussed in Oracle Database Upgrade Guide.

Table 2-3 lists the components that use the SYSAUX tablespace as their default
tablespace during installation, and the tablespace in which they were stored in earlier
releases:

Table 2-3 Database Components and the SYSAUX Tablespace

Component Using SYSAUX Tablespace in Earlier Releases
Analytical Workspace Object Table SYSTEM
Enterprise Manager Repository OEM_REPOSITORY
LogMiner SYSTEM

Logical Standby SYSTEM

OLAP API History Tables CWMLITE

Oracle Data Mining ODM

Oracle Spatial SYSTEM

Oracle Streams SYSTEM

Oracle Text DRSYS

Oracle Ultra Search DRSYS

Oracle interMedia ORDPLUGINS Components SYSTEM

Oracle interMedia ORDSYS Components SYSTEM

Oracle interMedia ST_INFORMTN_SCHEMA SYSTEM
Components

Server Manageability Components

Statspack Repository User-defined

2-18 Oracle Database Administrator's Guide

Specifying CREATE DATABASE Statement Clauses

Table 2-3 (Cont.) Database Components and the SYSAUX Tablespace

Component Using SYSAUX Tablespace in Earlier Releases
Oracle Scheduler
Workspace Manager SYSTEM

See Also: "Managing the SYSAUX Tablespace" on page 13-25 for
information about managing the SYSAUX tablespace

Using Automatic Undo Management: Creating an Undo Tablespace

Automatic undo management uses an undo tablespace.To enable automatic undo
management, set the UNDO_MANAGEMENT initialization parameter to AUTO in your
initialization parameter file. Or, omit this parameter, and the database defaults to
automatic undo management. In this mode, undo data is stored in an undo tablespace
and is managed by Oracle Database. If you want to define and name the undo
tablespace yourself, you must include the UNDO TABLESPACE clause in the CREATE
DATABASE statement at database creation time. If you omit this clause, and automatic
undo management is enabled, the database creates a default undo tablespace named
SYS_UNDOTBS.

See Also:

= "Specifying the Method of Undo Space Management" on
page 2-31

s Chapter 15, "Managing Undo", for information about the
creation and use of undo tablespaces

Creating a Default Permanent Tablespace

The DEFAULT TABLESPACE clause of the CREATE DATABASE statement specifies a
default permanent tablespace for the database. Oracle Database assigns to this
tablespace any non-SYSTEM users for whom you do not explicitly specify a different
permanent tablespace. If you do not specify this clause, then the SYSTEM tablespace is
the default permanent tablespace for non-SYSTEM users. Oracle strongly recommends
that you create a default permanent tablespace.

See Also: Oracle Database SQL Language Reference for the syntax of
the DEFAULT TABLESPACE clause of CREATE DATABASE and
ALTER DATABASE

Creating a Default Temporary Tablespace

The DEFAULT TEMPORARY TABLESPACE clause of the CREATE DATABASE statement
creates a default temporary tablespace for the database. Oracle Database assigns this
tablespace as the temporary tablespace for users who are not explicitly assigned a
temporary tablespace.

You can explicitly assign a temporary tablespace or tablespace group to a user in the
CREATE USER statement. However, if you do not do so, and if no default temporary
tablespace has been specified for the database, then by default these users are assigned
the SYSTEM tablespace as their temporary tablespace. It is not good practice to store
temporary data in the SYSTEM tablespace, and it is cumbersome to assign every user a
temporary tablespace individually. Therefore, Oracle recommends that you use the
DEFAULT TEMPORARY TABLESPACE clause of CREATE DATABASE.

Creating and Configuring an Oracle Database 2-19

Specifying CREATE DATABASE Statement Clauses

Note: When you specify a locally managed SYSTEM tablespace,
the SYSTEM tablespace cannot be used as a temporary tablespace. In
this case you must create a default temporary tablespace. This
behavior is explained in "Creating a Locally Managed SYSTEM
Tablespace" on page 2-17.

See Also:

» Oracle Database SQL Language Reference for the syntax of the
DEFAULT TEMPORARY TABLESPACE clause of CREATE
DATABASE and ALTER DATABASE

= "Temporary Tablespaces" on page 13-10 for information about
creating and using temporary tablespaces

= "Multiple Temporary Tablespaces: Using Tablespace Groups"
on page 13-13 for information about creating and using
temporary tablespace groups

Specifying Oracle-Managed Files at Database Creation

You can minimize the number of clauses and parameters that you specify in your
CREATE DATABASE statement by using the Oracle-managed files feature. You do this
by specifying either a directory or Oracle Automatic Storage Management (Oracle
ASM) disk group in which your files are created and managed by Oracle Database.

By including any of the initialization parameters DB_CREATE_FILE_DEST, DB_
CREATE_ONLINE_LOG_DEST_ n, or DB_RECOVERY_FILE_DEST in your initialization
parameter file, you instruct Oracle Database to create and manage the underlying
operating system files of your database. Oracle Database will automatically create and
manage the operating system files for the following database structures, depending on
which initialization parameters you specify and how you specify clauses in your
CREATE DATABASE statement:

= Tablespaces and their datafiles
s Temporary tablespaces and their tempfiles
= Control files
= Redo log files
= Archived redo log files
» Flashback logs
= Block change tracking files
= RMAN backups
See Also: "Specifying a Fast Recovery Area" on page 2-28 for

information about setting initialization parameters that create a
Fast Recovery Area

The following CREATE DATABASE statement shows briefly how the Oracle-managed
files feature works, assuming you have specified required initialization parameters:

CREATE DATABASE mynewdb
USER SYS IDENTIFIED BY sys_password
USER SYSTEM IDENTIFIED BY system password
EXTENT MANAGEMENT LOCAL

2-20 Oracle Database Administrator's Guide

Specifying CREATE DATABASE Statement Clauses

UNDO TABLESPACE undotbs
DEFAULT TEMPORARY TABLESPACE temptsl
DEFAULT TABLESPACE users;

» The SYSTEM tablespace is created as a locally managed tablespace. Without the
EXTENT MANAGEMENT LOCAL clause, the SYSTEM tablespace is created as
dictionary managed, which is not recommended.

= No DATAFILE clause is specified, so the database creates an Oracle-managed
datafile for the SYSTEM tablespace.

= No LOGFILE clauses are included, so the database creates two Oracle-managed
redo log file groups.

» No SYSAUX DATAFILE is included, so the database creates an Oracle-managed
datafile for the SYSAUX tablespace.

= No DATAFILE subclause is specified for the UNDO TABLESPACE and DEFAULT
TABLESPACE clauses, so the database creates an Oracle-managed datafile for each
of these tablespaces.

= No TEMPFILE subclause is specified for the DEFAULT TEMPORARY TABLESPACE
clause, so the database creates an Oracle-managed tempfile.

= If no CONTROL_FILES initialization parameter is specified in the initialization
parameter file, then the database also creates an Oracle-managed control file.

= If you are using a server parameter file (see "Managing Initialization Parameters
Using a Server Parameter File" on page 2-32), the database automatically sets the
appropriate initialization parameters.

See Also:

» Chapter 16, "Using Oracle-Managed Files", for information
about the Oracle-managed files feature and how to use it

» Oracle Database Storage Administrator’s Guide. for information
about Automatic Storage Management

Supporting Bigfile Tablespaces During Database Creation

Oracle Database simplifies management of tablespaces and enables support for
ultra-large databases by letting you create bigfile tablespaces. Bigfile tablespaces can
contain only one file, but that file can have up to 4G blocks. The maximum number of
datafiles in an Oracle Database is limited (usually to 64K files). Therefore, bigfile
tablespaces can significantly enhance the storage capacity of an Oracle Database.

This section discusses the clauses of the CREATE DATABASE statement that let you
include support for bigfile tablespaces.

See Also: "Bigfile Tablespaces" on page 13-6 for more information
about bigfile tablespaces

Specifying the Default Tablespace Type

The SET DEFAULT. . .TABLESPACE clause of the CREATE DATABASE statement to
determines the default type of tablespace for this database in subsequent CREATE
TABLESPACE statements. Specify either SET DEFAULT BIGFILE TABLESPACE or
SET DEFAULT SMALLFILE TABLESPACE.If you omit this clause, the default is a
smallfile tablespace, which is the traditional type of Oracle Database tablespace. A
smallfile tablespace can contain up to 1022 files with up to 4M blocks each.

Creating and Configuring an Oracle Database 2-21

Specifying CREATE DATABASE Statement Clauses

The use of bigfile tablespaces further enhances the Oracle-managed files feature,
because bigfile tablespaces make datafiles completely transparent for users. SQL
syntax for the ALTER TABLESPACE statement has been extended to allow you to
perform operations on tablespaces, rather than the underlying datafiles.

The CREATE DATABASE statement shown in "Specifying Oracle-Managed Files at
Database Creation" on page 2-20 can be modified as follows to specify that the default
type of tablespace is a bigfile tablespace:

CREATE DATABASE mynewdb
USER SYS IDENTIFIED BY sys_password
USER SYSTEM IDENTIFIED BY system password
SET DEFAULT BIGFILE TABLESPACE
UNDO TABLESPACE undotbs
DEFAULT TEMPORARY TABLESPACE temptsl;

To dynamically change the default tablespace type after database creation, use the SET
DEFAULT TABLESPACE clause of the ALTER DATABASE statement:

ALTER DATABASE SET DEFAULT BIGFILE TABLESPACE;

You can determine the current default tablespace type for the database by querying
the DATABASE_PROPERTIES data dictionary view as follows:

SELECT PROPERTY_VALUE FROM DATABASE_PROPERTIES
WHERE PROPERTY_NAME = 'DEFAULT_TBS_TYPE';

Overriding the Default Tablespace Type

The SYSTEM and SYSAUX tablespaces are always created with the default tablespace
type. However, you can explicitly override the default tablespace type for the UNDO
and DEFAULT TEMPORARY tablespace during the CREATE DATABASE operation.

For example, you can create a bigfile UNDO tablespace in a database with the default
tablespace type of smallfile as follows:

CREATE DATABASE mynewdb

BIGFILE UNDO TABLESPACE undotbs
DATAFILE '/uOl/oracle/oradata/mynewdb/undotbs01.dbf"’
SIZE 200M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED;

You can create a smallfile DEFAULT TEMPORARY tablespace in a database with the
default tablespace type of bigfile as follows:

CREATE DATABASE mynewdb
SET DEFAULT BIGFILE TABLSPACE

SMALLFILE DEFAULT TEMPORARY TABLESPACE temptsl
TEMPFILE '/uOl/oracle/oradata/mynewdb/temp0l.dbf"'
SIZE 20M REUSE

Specifying the Database Time Zone and Time Zone File

This section contains:
= Setting the Database Time Zone
s About the Database Time Zone Files

= Specifying the Database Time Zone File

2-22 Oracle Database Administrator's Guide

Specifying CREATE DATABASE Statement Clauses

Setting the Database Time Zone

Set the database time zone when the database is created by using the SET TIME_ZONE
clause of the CREATE DATABASE statement. If you do not set the database time zone,
then it defaults to the time zone of the host operating system.

You can change the database time zone for a session by using the SET TIME_ZONE
clause of the ALTER SESSION statement.

See Also: Oracle Database Globalization Support Guide for more
information about setting the database time zone

About the Database Time Zone Files

Two time zone files are included in a subdirectory of the Oracle home directory. The
time zone files contain the valid time zone names. The following information is also
included for each time zone:

» Offset from Coordinated Universal Time (UTC)
= Transition times for Daylight Saving Time
= Abbreviations for standard time and Daylight Saving Time

The default time zone file is ORACLE_HOME/oracore/zoneinfo/timezlrg_11.dat. A
smaller time zone file with fewer time zones can be found in ORACLE_
HOME /oracore/zoneinfo/timezone_11.dat.

To view the time zone names in the file being used by your database, use the following
query:
SELECT * FROM V$TIMEZONE_NAMES;

See Also: Oracle Database Globalization Support Guide for more
information about managing and selecting time zone files

Specifying the Database Time Zone File
All databases that share information must use the same time zone datafile.

The database server always uses the large time zone file by default. If you would like
to use the small time zone file on the client and know that all your data will refer only
to regions in the small file, you can set the ORA_TZFILE environment variable on the
client to the full path name of the timezone_version.dat file on the client, where
version matches the time zone file version that is being used by the database server.

If you are already using the default larger time zone file on the client, then it is not
practical to change to the smaller time zone file, because the database may contain
data with time zones that are not part of the smaller file.

Specifying FORCE LOGGING Mode

Some data definition language statements (such as CREATE TABLE) allow the
NOLOGGING clause, which causes some database operations not to generate redo
records in the database redo log. The NOLOGGING setting can speed up operations that
can be easily recovered outside of the database recovery mechanisms, but it can
negatively affect media recovery and standby databases.

Oracle Database lets you force the writing of redo records even when NOLOGGING has
been specified in DDL statements. The database never generates redo records for
temporary tablespaces and temporary segments, so forced logging has no affect for
objects.

Creating and Configuring an Oracle Database 2-23

Specifying Initialization Parameters

See Also: Oracle Database SQL Language Reference for information
about operations that can be done in NOLOGGING mode

Using the FORCE LOGGING Clause

To put the database into FORCE LOGGING mode, use the FORCE LOGGING clause in
the CREATE DATABASE statement. If you do not specify this clause, the database is not
placed into FORCE LOGGING mode.

Use the ALTER DATABASE statement to place the database into FORCE LOGGING
mode after database creation. This statement can take a considerable time for
completion, because it waits for all unlogged direct writes to complete.

You can cancel FORCE LOGGING mode using the following SQL statement:

ALTER DATABASE NO FORCE LOGGING;

Independent of specifying FORCE LOGGING for the database, you can selectively
specify FORCE LOGGING or NO FORCE LOGGING at the tablespace level. However, if
FORCE LOGGING mode is in effect for the database, it takes precedence over the
tablespace setting. If it is not in effect for the database, then the individual tablespace
settings are enforced. Oracle recommends that either the entire database is placed into
FORCE LOGGING mode, or individual tablespaces be placed into FORCE LOGGING
mode, but not both.

The FORCE LOGGING mode is a persistent attribute of the database. That is, if the
database is shut down and restarted, it remains in the same logging mode. However, if
you re-create the control file, the database is not restarted in the FORCE LOGGING
mode unless you specify the FORCE LOGGING clause in the CREATE CONTROL FILE
statement.

See Also: "Controlling the Writing of Redo Records" on
page 13-15 for information about using the FORCE LOGGING clause
for tablespace creation.

Performance Considerations of FORCE LOGGING Mode

FORCE LOGGING mode results in some performance degradation. If the primary
reason for specifying FORCE LOGGING is to ensure complete media recovery, and
there is no standby database active, then consider the following:

= How many media failures are likely to happen?
= How serious is the damage if unlogged direct writes cannot be recovered?
= Is the performance degradation caused by forced logging tolerable?

If the database is running in NOARCHIVELOG mode, then generally there is no benefit
to placing the database in FORCE LOGGING mode. Media recovery is not possible in
NOARCHIVELOG mode, so if you combine it with FORCE LOGGING, the result may be
performance degradation with little benefit.

Specifying Initialization Parameters

This section introduces you to some of the basic initialization parameters you can add
or edit before you create your new database. The following topics are covered:

= About Initialization Parameters and Initialization Parameter Files
s Determining the Global Database Name
= Specifying a Fast Recovery Area

2-24 Oracle Database Administrator's Guide

Specifying Initialization Parameters

= Specifying Control Files

s Specifying Database Block Sizes

s Specifying the Maximum Number of Processes

s Specifying the DDL Lock Timeout

» Specifying the Method of Undo Space Management
s About The COMPATIBLE Initialization Parameter

= Setting the License Parameter

See Also:

» Oracle Database Reference for descriptions of all initialization
parameters including their default settings

s Chapter 6, "Managing Memory" for a discussion of the
initialization parameters that pertain to memory management

About Initialization Parameters and Initialization Parameter Files

When an Oracle instance starts, it reads initialization parameters from an initialization
parameter file. This file must at a minimum specify the DB_NAME parameter. All other
parameters have default values.

The initialization parameter file can be either a read-only text file, or a read /write
binary file. The binary file is called a server parameter file. A server parameter file
enables you to change initialization parameters with ALTER SYSTEM commands and
to persist the changes across a shutdown and startup. It also provides a basis for
self-tuning by Oracle Database. For these reasons, it is recommended that you use a
server parameter file. You can create one manually from your edited text initialization
file, or automatically by using Database Configuration Assistant (DBCA) to create
your database.

Before you manually create a server parameter file, you can start an instance with a
text initialization parameter file. Upon startup, the Oracle instance first searches for a
server parameter file in a default location, and if it does not find one, searches for a
text initialization parameter file. You can also override an existing server parameter
file by naming a text initialization parameter file as an argument of the STARTUP
command.

Default file names and locations for the text initialization parameter file are shown in

the following table:
Platform | Default Name Default Location
UNIX initORACLE_SID.ora ORACLE_HOME/dbs
and
Li For example, the
inux YRR .
initialization parameter file
for the mynewdb database
is named:
initmynewdb.ora
Windows | initORACLE_SID.ora ORACLE_HOME\database

If you are creating an Oracle database for the first time, Oracle suggests that you
minimize the number of parameter values that you alter. As you become more familiar
with your database and environment, you can dynamically tune many initialization

Creating and Configuring an Oracle Database 2-25

Specifying Initialization Parameters

parameters using the ALTER SYSTEM statement. If you are using a text initialization
parameter file, your changes are effective only for the current instance. To make them
permanent, you must update them manually in the initialization parameter file, or
they will be lost over the next shutdown and startup of the database. If you are using a
server parameter file, initialization parameter file changes made by the ALTER
SYSTEM statement can persist across shutdown and startup.

See Also:

= "Determining the Global Database Name" on page 2-27 for
information about the DB_NAME parameter

= "Managing Initialization Parameters Using a Server Parameter
File" on page 2-32

= "About Initialization Parameter Files and Startup” on page 3-3

Text Initialization Parameter File Format

The text initialization parameter file (PFILE) must contain name/value pairs in one of
the following forms:

» For parameters that accept only a single value:
parameter_name=value

» For parameters that accept one or more values (such as the CONTROL_FILES
parameter):
parameter_name=(valuel,value] ...)

Parameter values of type string must be enclosed in single quotes ('). Case (upper or

lower) in filenames is significant only if case is significant on the host operating
system.

For parameters that accept multiple values, to enable you to easily copy and paste
name/value pairs from the alert log, you can repeat a parameter on multiple lines,
where each line contains a different value.

control_files='/ull/app/oracle/oradata/orcl/control0l.ctl’
control_files='/u0l/app/oracle/oradata/orcl/control02.ctl’
control_files='/u0l/app/oracle/oradata/orcl/control03.ctl’

If you repeat a parameter that does not accept multiple values, only the last value
specified takes effect.
See Also:

» Oracle Database Reference for more information about the content
and syntax of the text initialization parameter file

s "Alert Log" on page 9-5

Sample Initialization Parameter File

Oracle Database provides generally appropriate values in a sample text initialization
parameter file. You can edit these Oracle-supplied initialization parameters and add
others, depending upon your configuration and options and how you plan to tune the
database.

The sample text initialization parameter file is named init.ora and is found in the
following location on most platforms:

2-26 Oracle Database Administrator's Guide

Specifying Initialization Parameters

ORACLE_HOME/dbs

The following is the content of the sample file:

S R
Example INIT.ORA file

This file is provided by Oracle Corporation to help you start by providing
a starting point to customize your RDBMS installation for your site.

NOTE: The values that are used in this file are only intended to be used

as a starting point. You may want to adjust/tune those values to your
specific hardware and needs. You may also consider using Database
Configuration Assistant tool (DBCA) to create INIT file and to size your
initial set of tablespaces based on the user input.

FhEH R R R R

HH H H H H H H H FH

Change '<ORACLE_BASE>' to point to the oracle base (the one you specify at
install time)

db_name="'ORCL"

memory_target=1G

processes = 150
audit_file_dest='<ORACLE_BASE>/admin/orcl/adump'
audit_trail ='db'

db_block_size=8192

db_domain=""
db_recovery_file_dest='<ORACLE_BASE>/flash_recovery_area'
db_recovery_file_dest_size=2G
diagnostic_dest="'<ORACLE_BASE>'

dispatchers=' (PROTOCOL=TCP) (SERVICE=ORCLXDB)'
open_cursors=300

remote_login_passwordfile='EXCLUSIVE'
undo_tablespace="'UNDOTBSL'

You may want to ensure that control files are created on separate physical
devices

control_files = (ora_controll, ora_control2)

compatible ='11.2.0"

Determining the Global Database Name

The global database name consists of the user-specified local database name and the
location of the database within a network structure. The DB_NAME initialization
parameter determines the local name component of the database name, and the DB_
DOMAIN parameter, which is optional, indicates the domain (logical location) within a
network structure. The combination of the settings for these two parameters must
form a database name that is unique within a network.

For example, to create a database with a global database name of
test.us.acme.com, edit the parameters of the new parameter file as follows:

DB_NAME = test
DB_DOMAIN = us.acme.com

You can rename the GLOBAL_NAME of your database using the ALTER DATABASE
RENAME GLOBAL_NAME statement. However, you must also shut down and restart the
database after first changing the DB_NAME and DB_DOMAIN initialization parameters
and recreating the control files. Recreating the control files is easily accomplished with
the command ALTER DATABASE BACKUP CONTROLFILE TO TRACE. See Oracle
Database Backup and Recovery User’s Guide for more information.

Creating and Configuring an Oracle Database 2-27

Specifying Initialization Parameters

See Also: Oracle Database Ultilities for information about using the
DBNEWID utility, which is another means of changing a database
name

DB_NAME Initialization Parameter

DB_NAME must be set to a text string of no more than eight characters. During database
creation, the name provided for DB_NAME is recorded in the datafiles, redo log files,
and control file of the database. If during database instance startup the value of the
DB_NAME parameter (in the parameter file) and the database name in the control file
are not the same, the database does not start.

DB_DOMAIN Initialization Parameter

DB_DOMAIN is a text string that specifies the network domain where the database is
created. If the database you are about to create will ever be part of a distributed
database system, give special attention to this initialization parameter before database
creation. This parameter is optional.

See Also: Part V, "Distributed Database Management" for more
information about distributed databases

Specifying a Fast Recovery Area

The Fast Recovery Area is a location in which Oracle Database can store and manage
files related to backup and recovery. It is distinct from the database area, which is a
location for the current database files (datafiles, control files, and online redo logs).

You specify the Fast Recovery Area with the following initialization parameters:

= DB_RECOVERY_FILE DEST: Location of the Fast Recovery Area. This can be a
directory, file system, or Automatic Storage Management (Oracle ASM) disk
group. It cannot be a raw file system.

In an Oracle Real Application Clusters (RAC) environment, this location must be
on a cluster file system, Oracle ASM disk group, or a shared directory configured
through NFS.

= DB _RECOVERY_FILE DEST_SIZE: Specifies the maximum total bytes to be used
by the Fast Recovery Area. This initialization parameter must be specified before
DB_RECOVERY_FILE_DEST is enabled.

In an Oracle RAC environment, the settings for these two parameters must be the
same on all instances.

You cannot enable these parameters if you have set values for the LOG_ARCHIVE_
DEST and LOG_ARCHIVE_DUPLEX_DEST parameters. You must disable those
parameters before setting up the Fast Recovery Area. You can instead set values for the
LOG_ARCHIVE_DEST_n parameters. The LOG_ARCHIVE_DEST 1 parameter is
implicitly set to point to the Fast Recovery Area if a local archiving location has not
been configured and LOG_ARCHIVE_DEST_1 value has not been set.

Oracle recommends using a Fast Recovery Area, because it can simplify backup and
recovery operations for your database.

See Also: Oracle Database Backup and Recovery User’s Guide to
learn how to create and use a Fast Recovery Area

2-28 Oracle Database Administrator's Guide

Specifying Initialization Parameters

Specifying Control Files

The CONTROL_FILES initialization parameter specifies one or more control filenames
for the database. When you execute the CREATE DATABASE statement, the control
files listed in the CONTROL_FILES parameter are created.

If you do not include CONTROL_FILES in the initialization parameter file, then Oracle
Database creates a control file in the same directory as the initialization parameter file,
using a default operating system—dependent filename. If you have enabled
Oracle-managed files, the database creates Oracle-managed control files.

If you want the database to create new operating system files when creating database
control files, the filenames listed in the CONTROL_FILES parameter must not match
any filenames that currently exist on your system. If you want the database to reuse or
overwrite existing files when creating database control files, ensure that the filenames
listed in the CONTROL_FILES parameter match the filenames that are to be reused,
and include a CONTROLFILE REUSE clause in the CREATE DATABASE statement.

Oracle strongly recommends you use at least two control files stored on separate
physical disk drives for each database.

See Also:
= Chapter 10, "Managing Control Files"

= "Specifying Oracle-Managed Files at Database Creation" on
page 2-20

Specifying Database Block Sizes

The DB_BLOCK_SIZE initialization parameter specifies the standard block size for the
database. This block size is used for the SYSTEM tablespace and by default in other
tablespaces. Oracle Database can support up to four additional nonstandard block
sizes.

DB_BLOCK_SIZE Initialization Parameter

The most commonly used block size should be picked as the standard block size. In
many cases, this is the only block size that you need to specify. Typically, DB_BLOCK_
SIZE is set to either 4K or 8K. If you do not set a value for this parameter, the default
data block size is operating system specific, which is generally adequate.

You cannot change the block size after database creation except by re-creating the
database. If the database block size is different from the operating system block size,
ensure that the database block size is a multiple of the operating system block size. For
example, if your operating system block size is 2K (2048 bytes), the following setting
for the DB_BLOCK_SIZE initialization parameter is valid:

DB_BLOCK_SIZE=4096

A larger data block size provides greater efficiency in disk and memory I/O (access
and storage of data). Therefore, consider specifying a block size larger than your
operating system block size if the following conditions exist:

s Oracle Database is on a large computer system with a large amount of memory
and fast disk drives. For example, databases controlled by mainframe computers
with vast hardware resources typically use a data block size of 4K or greater.

= The operating system that runs Oracle Database uses a small operating system
block size. For example, if the operating system block size is 1K and the default
data block size matches this, the database may be performing an excessive amount

Creating and Configuring an Oracle Database 2-29

Specifying Initialization Parameters

of disk I/O during normal operation. For best performance in this case, a database
block should consist of multiple operating system blocks.

See Also: Your operating system specific Oracle documentation
for details about the default block size.

Nonstandard Block Sizes

Tablespaces of nonstandard block sizes can be created using the CREATE
TABLESPACE statement and specifying the BLOCKSIZE clause. These nonstandard
block sizes can have any of the following power-of-two values: 2K, 4K, 8K, 16K or 32K.
Platform-specific restrictions regarding the maximum block size apply, so some of
these sizes may not be allowed on some platforms.

To use nonstandard block sizes, you must configure subcaches within the buffer cache
area of the SGA memory for all of the nonstandard block sizes that you intend to use.
The initialization parameters used for configuring these subcaches are described in
"Using Automatic Shared Memory Management" on page 6-8.

The ability to specify multiple block sizes for your database is especially useful if you
are transporting tablespaces between databases. You can, for example, transport a
tablespace that uses a 4K block size from an OLTP environment to a data warehouse
environment that uses a standard block size of 8K.

Caution: Oracle recommends against specifying a 2K block size
when 4K sector size disks are in use, because performance
degradation can occur. For an explanation, see "Planning the Block
Size of Redo Log Files" on page 11-7.

See Also:
s "Creating Tablespaces" on page 13-2

s "Transporting Tablespaces Between Databases" on page 13-30

Specifying the Maximum Number of Processes

The PROCESSES initialization parameter determines the maximum number of
operating system processes that can be connected to Oracle Database concurrently.
The value of this parameter must be a minimum of one for each background process
plus one for each user process. The number of background processes will vary
according the database features that you are using. For example, if you are using
Advanced Queuing or the file mapping feature, you will have additional background
processes. If you are using Automatic Storage Management, then add three additional
processes for the database instance.

If you plan on running 50 user processes, a good estimate would be to set the
PROCESSES initialization parameter to 70.

Specifying the DDL Lock Timeout

Data Definition Language (DDL) statements require exclusive locks on internal
structures. If these locks are unavailable when a DDL statement runs, the DDL
statement fails, though it might have succeeded if it had been executed subseconds
later.

To enable DDL statements to wait for locks, specify a DDL lock timeout—the number
of seconds a DDL command waits for its required locks before failing.

2-30 Oracle Database Administrator's Guide

Specifying Initialization Parameters

To specify a DDL lock timeout, use the DDL_LOCK_TIMEOUT parameter. The
permissible range of values for DDL._LOCK_TIMEOUT is 0 to 100,000. The default is 0.

You can set DDL._LOCK_TIMEOUT at the system level, or at the session level with an
ALTER SESSION statement.

Specifying the Method of Undo Space Management

Every Oracle Database must have a method of maintaining information that is used to
undo changes to the database. Such information consists of records of the actions of
transactions, primarily before they are committed. Collectively these records are called
undo data. This section provides instructions for setting up an environment for
automatic undo management using an undo tablespace.

See Also: Chapter 15, "Managing Undo"

UNDO_MANAGEMENT Initialization Parameter

The UNDO_MANAGEMENT initialization parameter determines whether or not an

instance starts in automatic undo management mode, which stores undo in an undo
tablespace. Set this parameter to AUTO to enable automatic undo management mode.
Beginning with Release 11g, AUTO is the default if the parameter is omitted or is null.

UNDO_TABLESPACE Initialization Parameter

When an instance starts up in automatic undo management mode, it attempts to select
an undo tablespace for storage of undo data. If the database was created in automatic
undo management mode, then the default undo tablespace (either the system-created
SYS_UNDOTBS tablespace or the user-specified undo tablespace) is the undo
tablespace used at instance startup. You can override this default for the instance by
specifying a value for the UNDO_TABLESPACE initialization parameter. This parameter
is especially useful for assigning a particular undo tablespace to an instance in an
Oracle Real Application Clusters environment.

If no undo tablespace is specified by the UNDO_TABLESPACE initialization parameter,
then the first available undo tablespace in the database is chosen. If no undo
tablespace is available, then the instance starts without an undo tablespace, and undo
data is written to the SYSTEM tablespace. You should avoid running in this mode.

Note: When using the CREATE DATABASE statement to create a
database, do not include an UNDO_TABLESPACE parameter in the
initialization parameter file. Instead, include an UNDO TABLESPACE
clause in the CREATE DATABASE statement.

About The COMPATIBLE Initialization Parameter

The COMPATIBLE initialization parameter enables or disables the use of features in the
database that affect file format on disk. For example, if you create an Oracle Database
11g Release 2 (11.2) database, but specify COMPATIBLE = 10.0.0 in the initialization
parameter file, then features that requires 11.2 compatibility generate an error if you
try to use them. Such a database is said to be at the 10.0.0 compatibility level.

You can advance the compatibility level of your database. If you do advance the
compatibility of your database with the COMPATIBLE initialization parameter, there is
no way to start the database using a lower compatibility level setting, except by doing
a point-in-time recovery to a time before the compatibility was advanced.

Creating and Configuring an Oracle Database 2-31

Managing Initialization Parameters Using a Server Parameter File

The default value for the COMPATIBLE parameter is the release number of the most
recent major release.

Note: For Oracle Database 11 Release 2 (11.2), the default value
of the COMPATIBLE parameter is 11.2.0. The minimum value is
10.0.0. If you create an Oracle Database using the default value, you
can immediately use all the new features in this release, and you
can never downgrade the database.

See Also:

» Oracle Database Upgrade Guide for a detailed discussion of
database compatibility and the COMPATIBLE initialization
parameter

» Oracle Database Backup and Recovery User’s Guide for information
about point-in-time recovery of your database

Setting the License Parameter

Note: Oracle no longer offers licensing by the number of
concurrent sessions. Therefore the LICENSE_MAX_ SESSIONS and
LICENSE_SESSIONS_WARNING initialization parameters are no
longer needed and have been deprecated.

If you use named user licensing, Oracle Database can help you enforce this form of
licensing. You can set a limit on the number of users created in the database. Once this
limit is reached, you cannot create more users.

Note: This mechanism assumes that each person accessing the
database has a unique user name and that no people share a user
name. Therefore, so that named user licensing can help you ensure
compliance with your Oracle license agreement, do not allow
multiple users to log in using the same user name.

To limit the number of users created in a database, set the LICENSE_MAX_USERS
initialization parameter in the database initialization parameter file, as shown in the
following example:

LICENSE_MAX USERS = 200

Managing Initialization Parameters Using a Server Parameter File

Initialization parameters for the Oracle Database have traditionally been stored in a
text initialization parameter file. For better manageability, you can choose to maintain
initialization parameters in a binary server parameter file that is persistent across
database startup and shutdown. This section introduces the server parameter file, and
explains how to manage initialization parameters using either method of storing the
parameters. The following topics are contained in this section.

s WhatIs a Server Parameter File?

= Migrating to a Server Parameter File

2-32 Oracle Database Administrator's Guide

Managing Initialization Parameters Using a Server Parameter File

s Creating a Server Parameter File

= Storing the Server Parameter File on HARD-Enabled Storage
s The SPFILE Initialization Parameter

s Changing Initialization Parameter Values

s Clearing Initialization Parameter Values

= Exporting the Server Parameter File

= Backing Up the Server Parameter File

= Recovering a Lost or Damaged Server Parameter File

= Viewing Parameter Settings

What Is a Server Parameter File?

A server parameter file can be thought of as a repository for initialization parameters
that is maintained on the machine running the Oracle Database server. It is, by design,
a server-side initialization parameter file. Initialization parameters stored in a server
parameter file are persistent, in that any changes made to the parameters while an
instance is running can persist across instance shutdown and startup. This
arrangement eliminates the need to manually update initialization parameters to make
persistent any changes effected by ALTER SYSTEM statements. It also provides a basis
for self-tuning by the Oracle Database server.

A server parameter file is initially built from a text initialization parameter file using
the CREATE SPFILE statement. (It can also be created directly by the Database
Configuration Assistant.) The server parameter file is a binary file that cannot be
edited using a text editor. Oracle Database provides other interfaces for viewing and
modifying parameter settings in a server parameter file.

Caution: Although you can open the binary server parameter file
with a text editor and view its text, do not manually edit it. Doing so
will corrupt the file. You will not be able to start your instance, and
if the instance is running, it could fail.

When you issue a STARTUP command with no PFILE clause, the Oracle instance
searches an operating system—specific default location for a server parameter file from
which to read initialization parameter settings. If no server parameter file is found, the
instance searches for a text initialization parameter file. If a server parameter file exists
but you want to override it with settings in a text initialization parameter file, you
must specify the PFILE clause when issuing the STARTUP command. Instructions for
starting an instance using a server parameter file are contained in "Starting Up a
Database" on page 3-1.

Migrating to a Server Parameter File

If you are currently using a text initialization parameter file, use the following steps to
migrate to a server parameter file.

1. If the initialization parameter file is located on a client machine, transfer the file
(for example, FTP) from the client machine to the server machine.

Creating and Configuring an Oracle Database 2-33

Managing Initialization Parameters Using a Server Parameter File

Note: If you are migrating to a server parameter file in an Oracle
Real Application Clusters environment, you must combine all of
your instance-specific initialization parameter files into a single
initialization parameter file. Instructions for doing this and other
actions unique to using a server parameter file for instances that are
part of an Oracle Real Application Clusters installation are
discussed in Oracle Real Application Clusters Administration and
Deployment Guide and in your platform-specific Oracle Real
Application Clusters Installation Guide.

2. Create a server parameter file in the default location using the CREATE SPFILE
FROM PFILE statement. See "Creating a Server Parameter File" on page 2-34 for
instructions.

This statement reads the text initialization parameter file to create a server
parameter file. The database does not have to be started to issue a CREATE
SPFILE statement.

3. Start up or restart the instance.

The instance finds the new SPFILE in the default location and starts up with it.

Creating a Server Parameter File

You use the CREATE SPFILE statement to create a server parameter file. You must
have the SYSDBA or the SYSOPER system privilege to execute this statement.

Note: When you use the Database Configuration Assistant to create
a database, it automatically creates a server parameter file for you.

The CREATE SPFILE statement can be executed before or after instance startup.
However, if the instance has been started using a server parameter file, an error is
raised if you attempt to re-create the same server parameter file that is currently being
used by the instance.

You can create a server parameter file (SPFILE) from an existing text initialization
parameter file or from memory. Creating the SPFILE from memory means copying the
current values of initialization parameters in the running instance to the SPFILE.

The following example creates a server parameter file from text initialization
parameter file /u0l/oracle/dbs/init.ora. In this example no SPFILE name is
specified, so the file is created with the platform-specific default name and location
shown in Table 2—4 on page 2-35.

CREATE SPFILE FROM PFILE='/u0l/oracle/dbs/init.ora';
The next example illustrates creating a server parameter file and supplying a name
and location.
CREATE SPFILE='/u0l/oracle/dbs/test_spfile.ora'

FROM PFILE='/uOl/oracle/dbs/test_init.ora';
The next example illustrates creating a server parameter file in the default location
from the current values of the initialization parameters in memory.

CREATE SPFILE FROM MEMORY;

2-34 Oracle Database Administrator's Guide

Managing Initialization Parameters Using a Server Parameter File

Whether you use the default SPFILE name and default location or specify an SPFILE
name and location, if an SPFILE of the same name already exists in the location, it is
overwritten without a warning message.

When you create an SPFILE from a text initialization parameter file, comments
specified on the same lines as a parameter setting in the initialization parameter file
are maintained in the SPFILE. All other comments are ignored.

Oracle recommends that you allow the database to give the SPFILE the default name
and store it in the default location. This eases administration of your database. For
example, the STARTUP command assumes this default location to read the SPFILE.

Table 24 shows the default name and location for both the text initialization
parameter file (PFILE) and server parameter file (SPFILE) for the UNIX, Linux, and
Windows platforms, both with and without the presence of Oracle Automatic Storage
Management (Oracle ASM). The table assumes that the SPFILE is a file. If it is a raw
device, the default name could be a logical volume name or partition device name, and
the default location could differ.

Table 2-4 PFILE and SPFILE Default Names and Locations on UNIX, Linux, and Windows

Platform PFILE Default Name SPFILE Default Name PFILE Default Location SPFILE Default Location
UNIXand initORACLE_SID.ora spfileORACLE_SID.ora OH/dbs or the same Without Oracle ASM:
Linux location as the datafiles' OH/dbs or the same location

as the datafiles'
When Oracle ASM is present:

In the same disk group as the
datafiles?

Windows initORACLE_SID.ora spfileORACLE_SID.ora OH\database Without Oracle ASM:
OH\database
When Oracle ASM is present:

In the same disk group as the
datafiles?

! OH represents the Oracle home directory
2 Assumes database created with DBCA

Note: Upon startup, the instance first searches for an SPFILE named
spfileORACLE_SID.ora, and if not found, searches for
spfile.ora. Using spfile.ora enables all Real Application
Cluster (RAC) instances to use the same server parameter file.

If neither SPFILE is found, the instance searches for the text
initialization parameter file init ORACLE_SID.ora.

If you create an SPFILE in a location other than the default location, you must create in
the default PFILE location a "stub" PFILE that points to the server parameter file. For
more information, see "Starting Up a Database" on page 3-1.

When you create the database with DBCA when Oracle ASM is present, DBCA places
the SPFILE in an Oracle ASM disk group, and also causes this stub PFILE to be
created.

Storing the Server Parameter File on HARD-Enabled Storage

Starting with Release 11g, the server parameter file (SPFILE) is in a new format that is
compliant with the Oracle Hardware Assisted Resilient Data (HARD) initiative.

Creating and Configuring an Oracle Database 2-35

Managing Initialization Parameters Using a Server Parameter File

HARD defines a comprehensive set of data validation algorithms, implemented at
both the software and storage hardware levels, to ensure that no corrupt data is
written to permanent storage. To fully enable HARD protection for the data in your
SPFILE, the SPFILE must reside on HARD-enabled storage, and compatibility for your
database instance must be advanced to at least 11.0.0.

You can store the HARD-compliant SPFILE on non-HARD-enabled storage. In this
case, the new SPFILE format supports only detection of corrupt SPFILE data. Storing
the SPFILE on HARD-enabled storage prevents corrupt data from being written to
storage in the first place.

For more information about HARD, and for a list of storage vendors that supply
HARD-enabled storage systems, visit:
http://www.oracle.com/technology/deploy/availability/htdocs/HARD
.html.

Follow these guidelines for full HARD protection when installing or upgrading your
Oracle database:

When Installing or Initially Creating a Release 11g Database

When first installing or creating a Release 11¢ database, the COMPATIBLE initialization
parameter defaults to 11.2.0, so this requirement for a HARD-compliant server
parameter file (SPFILE) is met. You must then ensure that the SPFILE is stored on
HARD-enabled storage. To meet this requirement, do one of the following:

= For an Oracle Real Application Clusters environment without shared storage,
when DBCA prompts for the location of the SPFILE, specify a location on
HARD-enabled storage.

= For a single-instance installation, or for an Oracle Real Application Clusters
environment with shared storage, complete these steps:

1. Complete the database installation with Database Configuration Assistant
(DBCA).

The SPFILE is created in the default location. See Table 2—4 on page 2-35 for
information on default locations.

2. Do one of the following:

- Using an operating system command or the ASMCMD utility, copy the
SPFILE to HARD-enabled storage.

- In SQL*Plus or another interactive environment such as SQL Developer,
connect to the database as user SYS and then submit the following
command:

CREATE SPFILE = 'spfile_name' FROM MEMORY;
where spfile_name is a complete path name, including file name, that
points to HARD-enabled storage.

3. Create a text initialization parameter file (PFILE) in the default location with
the following single entry:

SPFILE = spfile name

where spfile_name is the complete path to the SPFILE on HARD-enabled
storage.

See Table 2—4 on page 2-35 for default name and location information for
PFILEs and SPFILEs.

2-36 Oracle Database Administrator's Guide

Managing Initialization Parameters Using a Server Parameter File

4. Shut down the database instance.
5. Delete the SPFILE in the default location.

6. Start up the database instance.

When Upgrading to Release 11g from an Earlier Database Release

When upgrading to Release 11¢g from an earlier database release, complete these steps
to migrate your SPFILE to the HARD-compliant format and to store the SPFILE on
HARD-enabled storage:

1. Start SQL*Plus or another interactive query application, log in to the database as
user SYS or SYSTEM, and then enter the following command:

ALTER SYSTEM SET COMPATIBLE = '11.2.0' SCOPE = SPFILE;

Caution: Advancing the compatibility level to 11.2.0 enables Release
11g features and file formats and has wide repercussions. Consult
Oracle Database Upgrade Guide before proceeding

2. Restart the database instance.
The database is now at compatibility level 11.2.0.

3. If your SPFILE is not already on HARD-enabled storage, complete the following
steps:

a. In SQL*Plus or another interactive environment, connect to the database as
user SYS and then submit the following command:

CREATE SPFILE = 'spfile_name' FROM MEMORY;
where spfile_name is a complete path name, including file name, that points to

HARD-enabled storage.

b. Create a text initialization parameter file (PFILE) in the default location with
the following single entry:

SPFILE = spfile name
where spfile_name is the complete path to the SPFILE on HARD-enabled
storage.

See Table 2—4 on page 2-35 for default name and location information for
PFILEs and SPFILEs.

c. Shut down the database instance.
d. Delete the SPFILE in the default location.

e. Start up the database instance.

The SPFILE Initialization Parameter

The SPFILE initialization parameter contains the name of the current server
parameter file. When the default server parameter file is used by the database—that is,
you issue a STARTUP command and do not specify a PFILE parameter—the value of
SPFILE is internally set by the server. The SQL*Plus command SHOW PARAMETERS
SPFILE (or any other method of querying the value of a parameter) displays the name
of the server parameter file that is currently in use.

Creating and Configuring an Oracle Database 2-37

Managing Initialization Parameters Using a Server Parameter File

Changing Initialization Parameter Values

The ALTER SYSTEM statement enables you to set, change, or restore to default the
values of initialization parameters. If you are using a text initialization parameter file,
the ALTER SYSTEM statement changes the value of a parameter only for the current
instance, because there is no mechanism for automatically updating text initialization
parameters on disk. You must update them manually to be passed to a future instance.
Using a server parameter file overcomes this limitation.

There are two kinds of initialization parameters:

= Dynamic initialization parameters can be changed for the current Oracle
Database instance. The changes take effect immediately.

= Static initialization parameters cannot be changed for the current instance. You
must change these parameters in the text initialization file or server parameter file
and then restart the database before changes take effect.

Setting or Changing Initialization Parameter Values

Use the SET clause of the ALTER SYSTEM statement to set or change initialization
parameter values. The optional SCOPE clause specifies the scope of a change as
described in the following table:

SCOPE Clause Description
SCOPE = SPFILE The change is applied in the server parameter file only. The effect is
as follows:

= No change is made to the current instance.

= For both dynamic and static parameters, the change is effective
at the next startup and is persistent.

This is the only SCOPE specification allowed for static parameters.

SCOPE = MEMORY The change is applied in memory only. The effect is as follows:

s The change is made to the current instance and is effective
immediately.

= For dynamic parameters, the effect is immediate, but it is not
persistent because the server parameter file is not updated.

For static parameters, this specification is not allowed.

SCOPE

BOTH The change is applied in both the server parameter file and
memory. The effect is as follows:

= The change is made to the current instance and is effective
immediately.

= For dynamic parameters, the effect is persistent because the
server parameter file is updated.

For static parameters, this specification is not allowed.

It is an error to specify SCOPE=SPFILE or SCOPE=BOTH if the instance did not start up
with a server parameter file. The default is SCOPE=BOTH if a server parameter file was
used to start up the instance, and MEMORY if a text initialization parameter file was
used to start up the instance.

For dynamic parameters, you can also specify the DEFERRED keyword. When
specified, the change is effective only for future sessions.

2-38 Oracle Database Administrator's Guide

Managing Initialization Parameters Using a Server Parameter File

When you specify SCOPE as SPFILE or BOTH, an optional COMMENT clause lets you
associate a text string with the parameter update. The comment is written to the server
parameter file.

The following statement changes the maximum number of failed login attempts before
the connection is dropped. It includes a comment, and explicitly states that the change
is to be made only in the server parameter file.

ALTER SYSTEM SET SEC_MAX_ FAILED_LOGIN_ATTEMPTS=3
COMMENT="'Reduce from 10 for tighter security.'
SCOPE=SPFILE;

The next example sets a complex initialization parameter that takes a list of attributes.

Specifically, the parameter value being set is the LOG_ARCHIVE_DEST_n initialization
parameter. This statement could change an existing setting for this parameter or create
a new archive destination.

ALTER SYSTEM
SET LOG_ARCHIVE_DEST 4='LOCATION=/u02/oracle/rbdbl/',MANDATORY, 'REOPEN=2"
COMMENT="'Add new destimation on Nov 29'
SCOPE=SPFILE;

When a value consists of a list of parameters, you cannot edit individual attributes by
the position or ordinal number. You must specify the complete list of values each time
the parameter is updated, and the new list completely replaces the old list.

Clearing Initialization Parameter Values

You can use the ALTER SYSTEM RESET command to clear (remove) the setting of any
initialization parameter in the SPFILE that was used to start the instance. Neither
SCOPE=MEMORY nor SCOPE=BOTH are allowed. The SCOPE = SPFILE clause is not
required, but can be included.

You may want to clear a parameter in the SPFILE so that upon the next database

startup a default value is used.

See Also: Oracle Database SQL Language Reference for information
about the ALTER SYSTEM command

Exporting the Server Parameter File

You can use the CREATE PFILE statement to export a server parameter file (SPFILE)
to a text initialization parameter file. Doing so might be necessary for several reasons:

= For diagnostic purposes, listing all of the parameter values currently used by an
instance. This is analogous to the SQL*Plus SHOW PARAMETERS command or
selecting from the VSPARAMETER or VSPARAMETER2 views.

» To modify the server parameter file by first exporting it, editing the resulting text
file, and then re-creating it using the CREATE SPFILE statement

The exported file can also be used to start up an instance using the PFILE clause.

You must have the SYSDBA or the SYSOPER system privilege to execute the CREATE
PFILE statement. The exported file is created on the database server machine. It
contains any comments associated with the parameter in the same line as the
parameter setting.

The following example creates a text initialization parameter file from the SPFILE:

CREATE PFILE FROM SPFILE;

Creating and Configuring an Oracle Database 2-39

Managing Initialization Parameters Using a Server Parameter File

Because no names were specified for the files, the database creates an initialization
parameter file with a platform-specific name, and it is created from the
platform-specific default server parameter file.

The following example creates a text initialization parameter file from a server
parameter file, but in this example the names of the files are specified:

CREATE PFILE='/ul0l/oracle/dbs/test_init.ora'
FROM SPFILE='/u0l/oracle/dbs/test_spfile.ora';

Note: An alternative is to create a PFILE from the current values of
the initialization parameters in memory. The following is an example
of the required command:

CREATE PFILE='/u0l/oracle/dbs/test_init.ora' FROM MEMORY;

Backing Up the Server Parameter File

You can create a backup of your server parameter file (SPFILE) by exporting it, as
described in "Exporting the Server Parameter File". If the backup and recovery strategy
for your database is implemented using Recovery Manager (RMAN), then you can use
RMAN to create a backup of the SPFILE. The SPFILE is backed up automatically by
RMAN when you back up your database, but RMAN also enables you to specifically
create a backup of the currently active SPFILE.

See Also: Oracle Database Backup and Recovery User’s Guide

Recovering a Lost or Damaged Server Parameter File

If your server parameter file (SPFILE) becomes lost or corrupted, the current instance
may fail, or the next attempt at starting the database instance may fail. There are a
number of ways to recover the SPFILE:

= If the instance is running, issue the following command to recreate the SPFILE
from the current values of initialization parameters in memory:

CREATE SPFILE FROM MEMORY;
This command creates the SPFILE with the default name and in the default

location. You can also create the SPFILE with a new name or in a specified
location. See "Creating a Server Parameter File" on page 2-34 for examples.

s If you have a valid text initialization parameter file (PFILE), recreate the SPFILE
from the PFILE with the following command:

CREATE SPFILE FROM PFILE;
This command assumes that the PFILE is in the default location and has the
default name. See "Creating a Server Parameter File" on page 2-34 for the

command syntax to use when the PFILE is not in the default location or has a
non-default name.

= Restore the SPFILE from backup.
See "Backing Up the Server Parameter File" on page 2-40 for more information.

= If none of the previous methods are possible in your situation, perform these
steps:

1. Create a text initialization parameter file (PFILE) from the parameter value
listings in the alert log.

2-40 Oracle Database Administrator's Guide

Managing Initialization Parameters Using a Server Parameter File

When an instance starts up, the initialization parameters used for startup are
written to the alert log. You can copy and paste this section from the text
version of the alert log (without XML tags) into a new PFILE.

See "Viewing the Alert Log" on page 9-19 for more information.

2. Create the SPFILE from the PFILE.

See "Creating a Server Parameter File" on page 2-34 for instructions.

Read/Write Errors During a Parameter Update

If an error occurs while reading or writing the server parameter file during a
parameter update, the error is reported in the alert log and all subsequent parameter
updates to the server parameter file are ignored. At this point, you can take one of the

following actions:

= Shut down the instance, recover the server parameter file and described earlier in
this section, and then restart the instance.

= Continue to run the database if you do not care that subsequent parameter
updates will not be persistent.

Viewing Parameter Settings

You can view parameter settings in several ways, as shown in the following table.

Method

Description

SHOW PARAMETERS

This SQL*Plus command displays the values of initialization
parameters in effect for the current session.

SHOW SPPARAMETERS

This SQL*Plus command displays the values of initialization
parameters in the server parameter file (SPFILE).

CREATE PFILE

This SQL statement creates a text initialization parameter file
(PFILE) from the SPFILE or from the current in-memory settings.
You can then view the PFILE with any text editor.

V$PARAMETER This view displays the values of initialization parameters in
effect for the current session.
V$PARAMETER?2 This view displays the values of initialization parameters in

effect for the current session. It is easier to distinguish list
parameter values in this view because each list parameter value
appears in a separate row.

V$SYSTEM_PARAMETER

This view displays the values of initialization parameters in
effect for the instance. A new session inherits parameter values
from the instance-wide values.

V$SYSTEM_PARAMETER2

This view displays the values of initialization parameters in
effect for the instance. A new session inherits parameter values
from the instance-wide values. It is easier to distinguish list
parameter values in this view because each list parameter value
appears in a separate row.

V$SPPARAMETER

This view displays the current contents of the SPFILE. The view
returns FALSE values in the ISSPECIFIED column if an SPFILE
is not being used by the instance.

See Also: Oracle Database Reference for a complete description of

views

Creating and Configuring an Oracle Database 2-41

Managing Application Workloads with Database Services

Managing Application Workloads with Database Services
This section contains:
= About Database Services
» Creating Database Services

= Database Service Data Dictionary Views

About Database Services

Database services (services) are logical abstractions for managing workloads in Oracle
Database. Services divide workloads into mutually disjoint groupings. Each service
represents a workload with common attributes, service-level thresholds, and priorities.
The grouping is based on attributes of work that might include the application
function to be used, the priority of execution for the application function, the job class
to be managed, or the data range used in the application function or job class. For
example, the Oracle E-Business suite defines a service for each responsibility, such as
general ledger, accounts receivable, order entry, and so on. When you configure
database services, you give each service a unique global name, associated performance
goals, and associated importance. The services are tightly integrated with Oracle
Database and are maintained in the data dictionary.

Connection requests can include a database service name. Thus, middle-tier
applications and client-server applications use a service by specifying the service as
part of the connection in TNS connect data. If no service name is included and the Net
Services file listener.ora designates a default service, the connection uses the default
service.

Services enable you to configure a workload, administer it, enable and disable it, and
measure the workload as a single entity. You can do this using standard tools such as
the Database Configuration Assistant (DBCA), Net Configuration Assistant (NetCA),
and Enterprise Manager (EM). Enterprise Manager supports viewing and operating
services as a whole, with drill down to the instance-level when needed.

In an Oracle Real Application Clusters (Oracle RAC) environment, a service can span
one or more instances and facilitate workload balancing based on transaction
performance. This provides end-to-end unattended recovery, rolling changes by
workload, and full location transparency. Oracle RAC also enables you to manage a
number of service features with Enterprise Manager, the DBCA, and the Server
Control utility (SRVCTL).

Services also offer an extra dimension in performance tuning. Tuning by "service and
SQL" can replace tuning by "session and SQL" in the majority of systems where all
sessions are anonymous and shared. With services, workloads are visible and
measurable. Resource consumption and waits are attributable by application.
Additionally, resources assigned to services can be augmented when loads increase or
decrease. This dynamic resource allocation enables a cost-effective solution for
meeting demands as they occur. For example, services are measured automatically
and the performance is compared to service-level thresholds. Performance violations
are reported to Enterprise Manager, enabling the execution of automatic or scheduled
solutions.

Several Oracle Database features support services. The Automatic Workload
Repository (AWR) manages the performance of services. AWR records service
performance, including execution times, wait classes, and resources consumed by
service. AWR alerts warn when service response time thresholds are exceeded. The
dynamic views report current service performance metrics with one hour of history.

2-42 Oracle Database Administrator's Guide

Managing Application Workloads with Database Services

Each service has quality-of-service thresholds for response time and CPU
consumption.

In addition, the Database Resource Manager can map services to consumer groups.
This enables you to automatically manage the priority of one service relative to others.
You can use consumer groups to define relative priority in terms of either ratios or
resource consumption. This is described in more detail in Chapter 26, "Managing
Resource Allocation with Oracle Database Resource Manager," and specifically in
"Specifying Session-to-Consumer Group Mapping Rules" on page 26-25.

Services describe applications, application functions, and data ranges as either
functional services or data-dependent services. Functional services are the most
common mapping of workloads. Sessions using a particular function are grouped
together. In contrast, data-dependent routing routes sessions to services based on data
keys. The mapping of work requests to services occurs in the object relational mapping
layer for application servers and TP monitors. For example, in Oracle RAC, these
ranges can be completely dynamic and based on demand because the database is
shared.

You can also define preconnect application services in Oracle RAC databases.
Preconnect services span instances to support a service in the event of a failure. The
preconnect service supports TAF preconnect mode and is managed transparently
when using RAC.

In addition to services to be used by applications, Oracle Database also supports two
internal services: SYS$SBACKGROUND is used by the background processes only and
SYSSUSERS is the default service for user sessions that are not associated with
services.

Using services requires no changes to your application code. Client-side work can
connect to a named service. Server-side work, such as Oracle Scheduler, parallel
execution, and Oracle Streams Advanced Queuing, set the service name as part of the
workload definition. Work requests executing under a service inherit the performance
thresholds for the service and are measured as part of the service.

For Oracle Scheduler, you optionally assign a service when you create a job class.
During execution, jobs are assigned to job classes, and job classes can run within
services. Using services with job classes ensures that the work executed by the job
scheduler is identified for workload management and performance tuning.

For parallel query and parallel DML, the query coordinator connects to a service just
like any other client. The parallel query processes inherit the service for the duration of
the execution. At the end of query execution, the parallel execution processes revert to
the default service.

See Also:

s Chapter 28, "Scheduling Jobs with Oracle Scheduler" for more
information about the Oracle Scheduler

» Oracle Real Application Clusters Administration and Deployment
Guide for information about using services in an Oracle RAC
environment

s Oracle Database Net Services Administrator’s Guide for information
on connecting to a service

Creating Database Services

There are a few ways to create database services, depending on your database
configuration.

Creating and Configuring an Oracle Database 2-43

Managing Application Workloads with Database Services

To create a database service:

1.

If your single-instance database is being managed by Oracle Restart, use the
SRVCTL utility to create the database service.

srvctl add service -d db_unique_name -s Service_name

If your single-instance database is not being managed by Oracle Restart, do one of
the following:

= Append the desired service name to the SERVICE_NAMES parameter.

= Call the DBMS_SERVICE.CREATE_SERVICE package procedure.

(Optional) Define service attributes with Oracle Enterprise Manager or with
DBMS_SERVICE.MODIFY_SERVICE

See Also:

s Chapter 4, "Configuring Automatic Restart of an Oracle Database"
for information about Oracle Restart

s Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_SERVICE package

» Oracle Real Application Clusters Administration and Deployment
Guide for information about creating a service in an Oracle RAC
environment.

Database Service Data Dictionary Views

You can find service information in the following service-specific views:

DBA_SERVICES
ALL_SERVICES or VSSERVICES
VSACTIVE_SERVICES
VS$SERVICE_STATS
V$SERVICE_EVENTS
V$SSERVICE_WAIT_ CLASSES
V$SERV_MOD_ACT_STATS
V$SERVICE_METRICS

V$SERVICE_METRICS_HISTORY

The following additional views also contain some information about services:

V$SESSION
VSACTIVE_SESSION_HISTORY
DBA_RSRC_GROUP_MAPPINGS
DBA_SCHEDULER_JOB_CLASSES

DBA_THRESHOLDS

See Also: Oracle Database Reference for detailed information about
these views

2-44 Oracle Database Administrator's Guide

Considerations After Creating a Database

Considerations After Creating a Database

After you create a database as described in "Creating a Database with DBCA" on
page 2-5 or "Creating a Database with the CREATE DATABASE Statement” on
page 2-6, the instance is left running, and the database is open and available for
normal database use. You may want to perform other actions, some of which are
discussed in this section.

Some Security Considerations

In this release of Oracle Database, several enhancements were made to ensure the
security your database. You can find security guidelines for this release in Oracle
Database Security Guide. Oracle recommends that you read these guidelines and
configure your database accordingly.

After the database is created, you can configure it to take advantage of Oracle Identity
Management. For information on how to do this, please refer to Oracle Database
Enterprise User Security Administrator’s Guide.

A newly created database has at least three user accounts that are important for
administering your database: SYS, SYSTENM, and SYSMAN. Additional administrative
accounts are provided that should be used only by authorized users. To protect these
accounts from being used by unauthorized users familiar with their Oracle-supplied
passwords, these accounts are initially locked with their passwords expired. As the
database administrator, you are responsible for the unlocking and resetting of these
accounts.

See Oracle Database 2 Day + Security Guide for a complete list of predefined user
accounts created with each new Oracle Database installation.

Caution: To prevent unauthorized access and protect the integrity
of your database, it is important that new passwords for user
accounts SYS and SYSTEM be specified when the database is
created. This is accomplished by specifying the following CREATE
DATABASE clauses when manually creating you database, or by
using DBCA to create the database:

s USER SYS IDENTIFIED BY

s USER SYSTEM IDENTIFIED BY

See Also:

"Administrative User Accounts" on page 1-14 for more
information about the users SYS and SYSTEM

» Oracle Database Security Guide to learn how to add new users
and change passwords

» Oracle Database SQL Language Reference for the syntax of the
ALTER USER statement used for unlocking user accounts

Enabling Transparent Data Encryption

Transparent data encryption is a feature that enables encryption of individual
database columns before storing them in the datafile, or enables encryption of entire
tablespaces. If users attempt to circumvent the database access control mechanisms by

Creating and Configuring an Oracle Database 2-45

Considerations After Creating a Database

looking inside datafiles directly with operating system tools, transparent data
encryption prevents such users from viewing sensitive information.

Users who have the CREATE TABLE privilege can choose one or more columns in a
table to be encrypted. The data is encrypted in the data files and in the audit logs (if
audit is turned on). Database users with appropriate privileges can view the data in
unencrypted format. For information on enabling transparent data encryption, see
Oracle Database Advanced Security Administrator’s Guide.

See Also:

= "Consider Encrypting Columns That Contain Sensitive Data" on
page 19-8

= "Encrypted Tablespaces" on page 13-8

Creating a Secure External Password Store

For large-scale deployments where applications use password credentials to connect
to databases, it is possible to store such credentials in a client-side Oracle wallet. An
Oracle wallet is a secure software container that is used to store authentication and
signing credentials.

Storing database password credentials in a client-side Oracle wallet eliminates the
need to embed usernames and passwords in application code, batch jobs, or scripts.
This reduces the risk of exposing passwords in the clear in scripts and application
code, and simplifies maintenance because you need not change your code each time
usernames and passwords change. In addition, not having to change application code
also makes it easier to enforce password management policies for these user accounts.

When you configure a client to use the external password store, applications can use
the following syntax to connect to databases that use password authentication:

CONNECT /@database_alias

Note that you need not specify database login credentials in this CONNECT statement.
Instead your system looks for database login credentials in the client wallet.

See Also: Oracle Database Advanced Security Administrator’s Guide for
information about configuring your client to use a secure external
password store and for information about managing credentials in it.

Installing the Oracle Database Sample Schemas

The Oracle Database distribution media includes various SQL files that let you
experiment with the system, learn SQL, or create additional tables, views, or
synonymes.

Oracle Database includes sample schemas that help you to become familiar with
Oracle Database functionality. All Oracle Database documentation and training
materials are being converted to the Sample Schemas environment as those materials
are updated.

The Sample Schemas can be installed automatically by the Database Configuration
Assistant, or you can install them manually. The schemas and installation instructions
are described in detail in Oracle Database Sample Schemas.

2-46 Oracle Database Administrator's Guide

Database Data Dictionary Views

Dropping a Database

Dropping a database involves removing its datafiles, redo log files, control files, and
initialization parameter files. The DROP DATABASE statement deletes all control files
and all other database files listed in the control file. It then shuts down the database
instance.

To use the DROP DATABASE statement successfully, all of the following conditions
must apply:

» The database must be mounted and closed.

s The database must be mounted exclusively--not in shared mode.

» The database must be mounted as RESTRICTED.

An example of this statement is:

DROP DATABASE;

The DROP DATABASE statement has no effect on archived log files, nor does it have

any effect on copies or backups of the database. It is best to use RMAN to delete such
files. If the database is on raw disks, the actual raw disk special files are not deleted.

If you used the Database Configuration Assistant to create your database, you can use
that tool to delete (drop) your database and remove the files.

Database Data Dictionary Views

In addition to the views listed previously in "Viewing Parameter Settings", you can
view information about your database content and structure using the following
views:

View Description

DATABASE_PROPERTIES Displays permanent database properties

GLOBAL_NAME Displays the global database name

VS$SDATABASE Contains database information from the control file

Creating and Configuring an Oracle Database 2-47

Database Data Dictionary Views

2-48 Oracle Database Administrator's Guide

3

Starting Up and Shutting Down

In this chapter:

= Starting Up a Database

= Altering Database Availability
= Shutting Down a Database

= Quiescing a Database

= Suspending and Resuming a Database

See Also: Oracle Real Application Clusters Administration and
Deployment Guide for additional information specific to an Oracle
Real Application Clusters environment

Starting Up a Database

When you start up a database, you create an instance of that database and you
determine the state of the database. Normally, you start up an instance by mounting
and opening the database. Doing so makes the database available for any valid user to
connect to and perform typical data access operations. Other options exist, and these
are also discussed in this section.

This section contains the following topics relating to starting up an instance of a
database:

= About Database Startup Options

= About Initialization Parameter Files and Startup
= About Automatic Startup of Database Services

s Starting Up an Instance

»s Preparing to Start Up an Instance

About Database Startup Options

When Oracle Restart is not in use, you can start up a database instance with SQL*Plus,
Recovery Manager, or Enterprise Manager. If your database is being managed by
Oracle Restart, the recommended way to start the database is with SRVCTL.

See Chapter 4, "Configuring Automatic Restart of an Oracle Database" for information
about Oracle Restart.

Starting Up and Shutting Down 3-1

Starting Up a Database

Starting Up a Database Using SQL*Plus

You can start a SQL*Plus session, connect to Oracle Database with administrator
privileges, and then issue the STARTUP command. Using SQL*Plus in this way is the
only method described in detail in this book.

Starting Up a Database Using Recovery Manager

You can also use Recovery Manager (RMAN) to execute STARTUP and SHUTDOWN
commands. You may prefer to do this if your are within the RMAN environment and
do not want to invoke SQL*Plus.

See Also: Oracle Database Backup and Recovery Reference for
information about the RMAN STARTUP command

Starting Up a Database Using Oracle Enterprise Manager

You can use Oracle Enterprise Manager (EM) to administer your database, including
starting it up and shutting it down. EM combines a GUI console, agents, common
services, and tools to provide an integrated and comprehensive systems management
platform for managing Oracle products. EM Database Control, which is the portion of
EM that is dedicated to administering an Oracle database, enables you to perform the
functions discussed in this book using a GUI interface, rather than command line
operations.

See Also:

» Oracle Enterprise Manager Concepts

» Oracle Database 2 Day DBA

The remainder of this section describes using SQL*Plus to start up a database instance.

Starting Up a Database Using SRVCTL

When Oracle Restart is installed and configured for your database, Oracle
recommends that you use SRVCTL to start the database. This ensures that:

= Any components on which the database depends (such as Oracle Automatic
Storage Management and the Oracle Net listener) are automatically started first,
and in the proper order.

= The database is started according to the settings in its Oracle Restart configuration.
An example of such a setting is the server parameter file location.

» Environment variables stored in the Oracle Restart configuration for the database
are set before starting the instance.

See "srvctl start database" on page 4-61 and "Starting and Stopping Components
Managed by Oracle Restart" on page 4-25 for details.

Specifying Initialization Parameters at Startup

To start an instance, the database must read instance configuration parameters (the
initialization parameters) from either a server parameter file (SPFILE) or a text
initialization parameter file (PFILE).

The database looks for these files in a default location. You can specify non-default
locations for these files, and the method for doing so depends on whether you start the
database with SQL*Plus (when Oracle Restart is not in use) or with SRVCTL (when the
database is being managed with Oracle Restart).

3-2 Oracle Database Administrator's Guide

Starting Up a Database

The following sections provide details:

= About Initialization Parameter Files and Startup

s Starting Up with SQL*Plus with a Non-Default Server Parameter File

s Starting Up with SRVCTL with a Non-Default Server Parameter File
See Also: Chapter 2, "Creating and Configuring an Oracle

Database", for more information about initialization parameters,
initialization parameter files, and server parameter files

About Initialization Parameter Files and Startup

When you start the database instance, it attempts to read the initialization parameters
from an SPFILE in a platform-specific default location. If it finds no SPFILE, it
searches for a text initialization parameter file.

Table 2—4 on page 2-35 lists PFILE and SPFILE default names and locations.

In the platform-specific default location, Oracle Database locates your initialization
parameter file by examining file names in the following order:

1. spfileORACLE_SID.ora
2. spfile.ora
3. 1nitORACLE _SID.ora

The first two files are SPFILEs and the third is a text initialization parameter file. If
DBCA created the SPFILE in an Oracle Automatic Storage Management disk group,
the database searches for the SPFILE in the disk group.

Note: The spfile.ora fileisincluded in this search path
because in an Oracle Real Application Clusters environment one
server parameter file is used to store the initialization parameter
settings for all instances. There is no instance-specific location for
storing a server parameter file.

For more information about the server parameter file for an Oracle
Real Application Clusters environment, see Oracle Real Application
Clusters Administration and Deployment Guide.

If you (or the Database Configuration Assistant) created a server parameter file, but
you want to override it with a text initialization parameter file, you can do so with
SQL*Plus, specifying the PFILE clause of the STARTUP command to identify the
initialization parameter file:

STARTUP PFILE = /u0l/oracle/dbs/init.ora

Non-Default Server Parameter Files A non-default server parameter file (SPFILE) is
an SPFILE that is in a location other than the default location. It is not usually
necessary to start an instance with a non-default SPFILE. However, should such a
need arise, both SRVCTL (with Oracle Restart) and SQL*Plus provide ways to do so.
These are described later in this section.

Initialization Files and Oracle Automatic Storage Management A database that uses
Oracle Automatic Storage Management (Oracle ASM) usually has a non-default
SPFILE. If you use the Database Configuration Assistant (DBCA) to configure a
database to use Oracle ASM, DBCA creates an SPFILE for the database instance in an

Starting Up and Shutting Down 3-3

Starting Up a Database

Oracle ASM disk group, and then causes a text initialization parameter file (PFILE) to
be created in the default location in the local file system to point to the SPFILE, as
explained in the next section.

Starting Up with SQL*Plus with a Non-Default Server Parameter File

With SQL*Plus you can use the PFILE clause to start an instance with a non-default
server parameter file.

To start up with SQL*Plus with a non-default server parameter file:

1. Create a one-line text initialization parameter file that contains only the SPFILE
parameter. The value of the parameter is the non-default server parameter file
location.

For example, create a text initialization parameter file /u01l/oracle/dbs/spf_
init.ora that contains only the following parameter:

SPFILE = /ull/oracle/dbs/test_spfile.ora

Note: You cannot use the IFILE initialization parameter within a
text initialization parameter file to point to a server parameter file.
In this context, you must use the SPFILE initialization parameter.

2. Start up the instance pointing to this initialization parameter file.

STARTUP PFILE = /ull/oracle/dbs/spf_init.ora
The SPFILE must reside on the database host computer. Therefore, the preceding
method also provides a means for a client machine to start a database that uses an
SPFILE. It also eliminates the need for a client machine to maintain a client-side
initialization parameter file. When the client machine reads the initialization

parameter file containing the SPFILE parameter, it passes the value to the server
where the specified SPFILE is read.

Starting Up with SRVCTL with a Non-Default Server Parameter File

If your database is being managed by Oracle Restart, you can specify the location of a
non-default SPFILE by setting or modifying the SPFILE location option in the Oracle
Restart configuration for the database.

To start up with SRVCTL with a non-default server parameter file:
1. Prepare to run SRVCTL as described in "Preparing to Run SRVCTL" on page 4-10.
2. Enter the following command:

srvctl modify database -d db_unique name -p spfile_path

where db_unique_name must match the DB_UNIQUE_NAME initialization
parameter setting for the database.

3. Enter the following command:

srvctl start database -d db_unique_name [options]

See "SRVCTL Command Reference" on page 4-30 for more information.

3-4 Oracle Database Administrator's Guide

Starting Up a Database

About Automatic Startup of Database Services

When your database is managed by Oracle Restart, you can configure startup options
for each individual database service (service). If you set the management policy for a
service to AUTOMATIC (the default), the service starts automatically when you start the
database with SRVCTL. If you set the management policy to MANUAL, the service does
not automatically start, and you must manually start it with SRVCTL. A MANUAL
setting does not prevent Oracle Restart from monitoring the service when it is running
and restarting it if a failure occurs.

In an Oracle Data Guard (Data Guard) environment in which databases are managed
by Oracle Restart, you can additionally control automatic startup of services by
assigning Data Guard roles to the services in their Oracle Restart configurations. A
service automatically starts upon manual database startup only if the management
policy of the service is AUTOMATIC and if one of its assigned roles matches the current
role of the database.

See "srvctl add service" on page 4-36 and "srvctl modify service" on page 4-52 for the
syntax for setting the management policy of and Data Guard roles for a service.

Note: When using Oracle Restart, Oracle strongly recommends that
you use SRVCTL to create database services.

Preparing to Start Up an Instance

Note: The following instructions are for installations where Oracle
Restart is not in use. If your database is being managed by Oracle
Restart, follow the instructions in "Starting and Stopping Components
Managed by Oracle Restart" on page 4-25.

You must perform some preliminary steps before attempting to start an instance of
your database using SQL*Plus.

1. Ensure that any Oracle components on which the database depends are started.

For example, if the database stores data in Oracle Automatic Storage Management
(Oracle ASM) disk groups, ensure that the Oracle ASM instance is running and the
required disk groups are mounted. Also, it is preferable to start the Oracle Net
listener before starting the database.

2. If you intend to use operating system authentication, log in to the database host
computer as a member of the OSDBA group.

See "Using Operating System Authentication” on page 1-20 for more information.

3. Ensure that environment variables are set so that you connect to the desired
Oracle instance. For details, see "Submitting Commands and SQL to the Database"
on page 1-6.

4, Start SQL*Plus without connecting to the database:

SQLPLUS /NOLOG

5. Connect to Oracle Database as SYSDBA:

CONNECT username AS SYSDBA

—or—

Starting Up and Shutting Down 3-5

Starting Up a Database

CONNECT / AS SYSDBA

Now you are connected to the database and ready to start up an instance of your
database.

See Also: SQL*Plus User's Guide and Reference for descriptions and
syntax for the CONNECT, STARTUP, and SHUTDOWN commands.

Starting Up an Instance

When Oracle Restart is not in use, you use the SQL*Plus STARTUP command to start
up an Oracle Database instance. If your database is being managed by Oracle Restart,
Oracle recommends that you use the srvctl start database command.

In either case, you can start an instance in various modes:

= NOMOUNT—Start the instance without mounting a database. This does not allow
access to the database and usually would be done only for database creation or the
re-creation of control files.

m MOUNT—Start the instance and mount the database, but leave it closed. This state
allows for certain DBA activities, but does not allow general access to the
database.

= OPEN—Start the instance, and mount and open the database. This can be done in
unrestricted mode, allowing access to all users, or in restricted mode, allowing
access for database administrators only.

» FORCE—Force the instance to start after a startup or shutdown problem.

= OPEN RECOVER—Start the instance and have complete media recovery begin
immediately.

Note: You cannot start a database instance if you are connected to
the database through a shared server process.

The following scenarios describe and illustrate the various states in which you can
start up an instance. Some restrictions apply when combining clauses of the STARTUP
command or combining startup options for the srvctl start database command.

Note: It is possible to encounter problems starting up an instance
if control files, database files, or redo log files are not available. If
one or more of the files specified by the CONTROL_FILES
initialization parameter does not exist or cannot be opened when
you attempt to mount a database, Oracle Database returns a
warning message and does not mount the database. If one or more
of the datafiles or redo log files is not available or cannot be opened
when attempting to open a database, the database returns a
warning message and does not open the database.

3-6 Oracle Database Administrator's Guide

Starting Up a Database

See Also:

» SQL*Plus User's Guide and Reference for information about the
restrictions that apply when combining clauses of the STARTUP
command

= 'Starting and Stopping Components Managed by Oracle
Restart" on page 4-25 for instructions for starting a database
that is managed by Oracle Restart.

Starting an Instance, and Mounting and Opening a Database

Normal database operation means that an instance is started and the database is
mounted and open. This mode allows any valid user to connect to the database and
perform data access operations.

The following command starts an instance, reads the initialization parameters from
the default location, and then mounts and opens the database.

SQL*Plus SRVCTL (When Oracle Restart Is In Use)

STARTUP srvctl start database -d db_unique_name

where db_unigue_name matches the DB_UNIQUE_NAME initialization parameter.

Starting an Instance Without Mounting a Database

You can start an instance without mounting a database. Typically, you do so only
during database creation. Use one of the following commands:

SQL*Plus SRVCTL (When Oracle Restart Is In Use)

STARTUP NOMOUNT srvctl start database -d db_unique_name -0 nomount

Starting an Instance and Mounting a Database

You can start an instance and mount a database without opening it, allowing you to
perform specific maintenance operations. For example, the database must be mounted
but not open during the following tasks:

= Enabling and disabling redo log archiving options. For more information, please
refer to Chapter 12, "Managing Archived Redo Logs".

= Performing full database recovery. For more information, please refer to Oracle
Database Backup and Recovery User’s Guide

The following command starts an instance and mounts the database, but leaves the
database closed:

SQL*Plus SRVCTL (When Oracle Restart Is In Use)

STARTUP MOUNT srvctl start database -d db_unique name -0 mount

Restricting Access to an Instance at Startup

You can start an instance, and optionally mount and open a database, in restricted
mode so that the instance is available only to administrative personnel (not general
database users). Use this mode of instance startup when you need to accomplish one
of the following tasks:

Starting Up and Shutting Down 3-7

Starting Up a Database

s Perform an export or import of data

» Perform a data load (with SQL*Loader)

s Temporarily prevent typical users from using data
s Perform certain migration or upgrade operations

Typically, all users with the CREATE SESSION system privilege can connect to an
open database. Opening a database in restricted mode allows database access only to
users with both the CREATE SESSION and RESTRICTED SESSION system privilege.
Only database administrators should have the RESTRICTED SESSION system
privilege. Further, when the instance is in restricted mode, a database administrator
cannot access the instance remotely through an Oracle Net listener, but can only access
the instance locally from the machine that the instance is running on.

The following command starts an instance (and mounts and opens the database) in
restricted mode:

SQL*Plus SRVCTL (When Oracle Restart Is In Use)

STARTUP RESTRICT srvctl start database -d db unique_name -o restrict

You can use the restrict mode in combination with the mount, nomount, and open
modes.

Later, use the ALTER SYSTEM statement to disable the RESTRICTED SESSION
feature:

ALTER SYSTEM DISABLE RESTRICTED SESSION;

If you open the database in nonrestricted mode and later find that you need to restrict
access, you can use the ALTER SYSTEM statement to do so, as described in "Restricting
Access to an Open Database" on page 3-11.

See Also: Oracle Database SQL Language Reference for more
information on the ALTER SYSTEM statement

Forcing an Instance to Start

In unusual circumstances, you might experience problems when attempting to start a
database instance. You should not force a database to start unless you are faced with
the following:

= You cannot shut down the current instance with the SHUTDOWN NORMAL,
SHUTDOWN IMMEDIATE, or SHUTDOWN TRANSACTIONAL commands.

= You experience problems when starting an instance.

If one of these situations arises, you can usually solve the problem by starting a new
instance (and optionally mounting and opening the database) using one of these

commands:
SQL*Plus SRVCTL (When Oracle Restart Is In Use)
STARTUP FORCE srvctl start database -d db unique_name -o force

If an instance is running, the force mode shuts it down with mode ABORT before
restarting it. In this case, the alert log shows the message "Shutting down
instance (abort)" followed by "Starting ORACLE instance (normal)."

3-8 Oracle Database Administrator's Guide

Altering Database Availability

See Also: "Shutting Down with the Abort Mode" on page 3-13 to
understand the side effects of aborting the current instance

Starting an Instance, Mounting a Database, and Starting Complete Media Recovery

If you know that media recovery is required, you can start an instance, mount a
database to the instance, and have the recovery process automatically start by using
one of these commands:

SQL*Plus SRVCTL (When Oracle Restart Is In Use)

STARTUP OPEN RECOVER srvctl start database -d db unigue_name -o "open,recover"

If you attempt to perform recovery when no recovery is required, Oracle Database
issues an error message.

Automatic Database Startup at Operating System Start

Many sites use procedures to enable automatic startup of one or more Oracle Database
instances and databases immediately following a system start. The procedures for
performing this task are specific to each operating system. For information about
automatic startup, see your operating system specific Oracle documentation.

Beginning with Oracle Database 11g Release 2, the preferred (and
platform-independent) method of configuring automatic startup of a database is
Oracle Restart. See Chapter 4, "Configuring Automatic Restart of an Oracle Database"
for details.

Starting Remote Instances

If your local Oracle Database server is part of a distributed database, you might want
to start a remote instance and database. Procedures for starting and stopping remote
instances vary widely depending on communication protocol and operating system.

Altering Database Availability

You can alter the availability of a database. You may want to do this in order to restrict
access for maintenance reasons or to make the database read only. The following
sections explain how to alter the availability of a database:

= Mounting a Database to an Instance
= Opening a Closed Database
= Opening a Database in Read-Only Mode

= Restricting Access to an Open Database

Mounting a Database to an Instance

When you need to perform specific administrative operations, the database must be
started and mounted to an instance, but closed. You can achieve this scenario by
starting the instance and mounting the database.

To mount a database to a previously started, but not opened instance, use the SQL
statement ALTER DATABASE with the MOUNT clause as follows:

ALTER DATABASE MOUNT;

Starting Up and Shutting Down 3-9

Altering Database Availability

See Also: "Starting an Instance and Mounting a Database" on
page 3-7 for a list of operations that require the database to be
mounted and closed (and procedures to start an instance and
mount a database in one step)

Opening a Closed Database

You can make a mounted but closed database available for general use by opening the
database. To open a mounted database, use the ALTER DATABASE SQL statement
with the OPEN clause:

ALTER DATABASE OPEN;

After executing this statement, any valid Oracle Database user with the CREATE
SESSION system privilege can connect to the database.

Opening a Database in Read-Only Mode

Opening a database in read-only mode enables you to query an open database while
eliminating any potential for online data content changes. While opening a database in
read-only mode guarantees that datafile and redo log files are not written to, it does
not restrict database recovery or operations that change the state of the database
without generating redo. For example, you can take datafiles offline or bring them
online since these operations do not affect data content.

If a query against a database in read-only mode uses temporary tablespace, for
example to do disk sorts, then the issuer of the query must have a locally managed
tablespace assigned as the default temporary tablespace. Otherwise, the query will fail.
This is explained in "Creating a Locally Managed Temporary Tablespace" on

page 13-12.

The following statement opens a database in read-only mode:

ALTER DATABASE OPEN READ ONLY;

You can also open a database in read /write mode as follows:

ALTER DATABASE OPEN READ WRITE;

However, read /write is the default mode.

Note: You cannot use the RESETLOGS clause with a READ ONLY
clause.

Limitations of a Read-only Database

= An application must not write database objects while executing against a
read-only database. For example, an application writes database objects when it
inserts, deletes, updates, or merges rows in a database table, including a global
temporary table. An application writes database objects when it manipulates a
database sequence. An application writes database objects when it locks rows,
when it runs EXPLAIN PLAN, or when it executes DDL. Many of the functions
and procedures in Oracle-supplied PL/SQL packages, such as DBMS_SCHEDULER,
write database objects. If your application calls any of these functions and
procedures, or if it performs any of the preceding operations, your application
writes database objects and hence is not read-only.

3-10 Oracle Database Administrator's Guide

Altering Database Availability

When executing on a read-only database, you must commit or roll back any
in-progress transaction that involves one database link before you use another
database link. This is true even if you execute a generic SELECT statement on the
tirst database link and the transaction is currently read-only.

You cannot compile or recompile PL/SQL stored procedures on a read-only
database. To minimize PL/SQL invalidation because of remote procedure calls,
use REMOTE_DEPENDENCIES_MODE=SIGNATURE in any session that does remote
procedure calls on a read-only database.

You cannot invoke a remote procedure (even a read-only remote procedure) from
a read-only database if the remote procedure has never been called on the
database. This limitation applies to remote procedure calls in anonymous PL/SQL
blocks and in SQL statements. You can either put the remote procedure call in a
stored procedure, or you can invoke the remote procedure in the database prior to
it becoming read only.

See Also: Oracle Database SQL Language Reference for more
information about the ALTER DATABASE statement

Restricting Access to an Open Database

To place an already running instance in restricted mode, use the SQL statement ALTER
SYSTEM with the ENABLE RESTRICTED SESSION clause. After this statement
successfully completes, only users with the RESTRICTED SESSION privilege can
initiate new connections. Users connecting as SYSDBA or connecting with the DBA role
have this privilege.

Placing a running instance in restricted mode has the following affect on current
sessions:

In a single-instance environment without Oracle Restart, no user sessions are
terminated or otherwise affected. Therefore, after placing an instance in restricted
mode, consider killing (terminating) all current user sessions before performing
administrative tasks.

In a single-instance environment with Oracle Restart, any database services that
are being managed by Oracle Restart go offline, and any sessions connected to
those services are killed (terminated). The standard database service for the
instance, named DB_UNIQUE_NAME.DB_DOMAIN, does not go offline because it is
not managed by Oracle Restart.

In an Oracle Real Application Clusters environment, any database services that are
running on the instance and managed by Oracle Clusterware go offline for that
instance, and any sessions connected to those services at that instance are killed.
The standard database service for the instance (DB_UNIQUE_NAME.DB _DOMAIN)
does not go offline.

To lift an instance from restricted mode, use ALTER SYSTEM with the DISABLE
RESTRICTED SESSION clause.

See Also:

s "Terminating Sessions" on page 5-23 for directions for killing
user sessions

» "Restricting Access to an Instance at Startup" on page 3-7 to
learn some reasons for placing an instance in restricted mode

Starting Up and Shutting Down 3-11

Shutting Down a Database

Shutting Down a Database

When Oracle Restart is not in use, you can shut down a database instance with
SQL*Plus by connecting as SYSOPER or SYSDBA and issuing the SHUTDOWN command.
If your database is being managed by Oracle Restart, the recommended way to shut
down the database is with the srvctl stop database command.

Control is not returned to the session that initiates a database shutdown until
shutdown is complete. Users who attempt connections while a shutdown is in
progress receive a message like the following;:

ORA-01090: shutdown in progress - connection is not permitted

Note: You cannot shut down a database if you are connected to
the database through a shared server process.

There are several modes for shutting down a database: normal, immediate,
transactional, and abort. Some shutdown modes wait for certain events to occur (such
as transactions completing or users disconnecting) before actually bringing down the
database. There is a one-hour timeout period for these events.

Details are provided in the following sections:

s Shutting Down with the Normal Mode

s Shutting Down with the Immediate Mode

s Shutting Down with the Transactional Mode
s Shutting Down with the Abort Mode

s Shutdown Timeout

See Also: Chapter 4, "Configuring Automatic Restart of an Oracle
Database" for information about Oracle Restart.

Shutting Down with the Normal Mode

To shut down a database in normal situations, use one of these commands:

SQL*Plus SRVCTL (When Oracle Restart Is In Use)

SHUTDOWN [NORMAL] srvctl stop database -d db _unique_name -0 normal

The NORMAL clause of the SQL*Plus SHUTDOWN command is optional because this is
the default shutdown method. For SRVCTL, if the -o option is omitted, the shutdown
operation proceeds according to the stop options stored in the Oracle Restart
configuration for the database. The default stop option is immediate.

Normal database shutdown proceeds with the following conditions:
s No new connections are allowed after the statement is issued.

= Before the database is shut down, the database waits for all currently connected
users to disconnect from the database.

The next startup of the database will not require any instance recovery procedures.

Shutting Down with the Inmediate Mode

Use immediate database shutdown only in the following situations:

3-12 Oracle Database Administrator's Guide

Shutting Down a Database

To initiate an automated and unattended backup
When a power shutdown is going to occur soon

When the database or one of its applications is functioning irregularly and you
cannot contact users to ask them to log off or they are unable to log off

To shut down a database immediately, use one of the following commands:

SQL*Plus SRVCTL (When Oracle Restart Is In Use)

SHUTDOWN IMMEDIATE srvctl stop database -d db_unique _name -o immediate

Immediate database shutdown proceeds with the following conditions:

No new connections are allowed, nor are new transactions allowed to be started,
after the statement is issued.

Any uncommitted transactions are rolled back. (If long uncommitted transactions
exist, this method of shutdown might not complete quickly, despite its name.)

Oracle Database does not wait for users currently connected to the database to
disconnect. The database implicitly rolls back active transactions and disconnects
all connected users.

The next startup of the database will not require any instance recovery procedures.

Shutting Down with the Transactional Mode

When you want to perform a planned shutdown of an instance while allowing active
transactions to complete first, use one of the following commands:

SQL*Plus SRVCTL (When Oracle Restart Is In Use)

SHUTDOWN TRANSACTIONAL srvctl stop database -d db_unique name -o transactional

Transactional database shutdown proceeds with the following conditions:

No new connections are allowed, nor are new transactions allowed to be started,
after the statement is issued.

After all transactions have completed, any client still connected to the instance is
disconnected.

At this point, the instance shuts down just as it would when a SHUTDOWN
IMMEDIATE statement is submitted.

The next startup of the database will not require any instance recovery procedures.

A transactional shutdown prevents clients from losing work, and at the same time,
does not require all users to log off.

Shutting Down with the Abort Mode

You can shut down a database instantaneously by aborting the database instance. If
possible, perform this type of shutdown only in the following situations:

The database or one of its applications is functioning irregularly and none of the other
types of shutdown works.

You need to shut down the database instantaneously (for example, if you know a
power shutdown is going to occur in one minute).

Starting Up and Shutting Down 3-13

Quiescing a Database

= You experience problems when starting a database instance.

When you must do a database shutdown by aborting transactions and user
connections, use one of the following commands:

SQL*Plus SRVCTL (When Oracle Restart Is In Use)

SHUTDOWN ABORT srvctl stop database -d db_unique_name -o abort

An aborted database shutdown proceeds with the following conditions:

= No new connections are allowed, nor are new transactions allowed to be started,
after the statement is issued.

» Current client SQL statements being processed by Oracle Database are
immediately terminated.

s Uncommitted transactions are not rolled back.

s Oracle Database does not wait for users currently connected to the database to
disconnect. The database implicitly disconnects all connected users.

The next startup of the database will require automatic instance recovery procedures.

Shutdown Timeout

Shutdown modes that wait for users to disconnect or for transactions to complete have
a limit on the amount of time that they wait. If all events blocking the shutdown do
not occur within one hour, the shutdown operation aborts with the following message:
ORA-01013: user requested cancel of current operation.This message
is also displayed if you interrupt the shutdown process, for example by pressing
CTRL-C. Oracle recommends that you do not attempt to interrupt an instance
shutdown. Instead, allow the shutdown process to complete, and then restart the
instance.

After ORA-01013 occurs, you must consider the instance to be in an unpredictable
state. You must therefore continue the shutdown process by resubmitting a SHUTDOWN
command. If subsequent SHUTDOWN commands continue to fail, you must submit a
SHUTDOWN ABORT command to bring down the instance. You can then restart the
instance.

Quiescing a Database

Occasionally you might want to put a database in a state that allows only DBA
transactions, queries, fetches, or PL/SQL statements. Such a state is referred to as a
quiesced state, in the sense that no ongoing non-DBA transactions, queries, fetches, or
PL/SQL statements are running in the system.

Note: In this discussion of quiesce database, a DBA is defined as
user SYS or SYSTEM. Other users, including those with the DBA
role, are not allowed to issue the ALTER SYSTEM QUIESCE
DATABASE statement or proceed after the database is quiesced.

The quiesced state lets administrators perform actions that cannot safely be done
otherwise. These actions include:

3-14 Oracle Database Administrator's Guide

Quiescing a Database

= Actions that fail if concurrent user transactions access the same object--for
example, changing the schema of a database table or adding a column to an
existing table where a no-wait lock is required.

= Actions whose undesirable intermediate effect can be seen by concurrent user
transactions--for example, a multistep procedure for reorganizing a table when the
table is first exported, then dropped, and finally imported. A concurrent user who
attempts to access the table after it was dropped, but before import, would not
have an accurate view of the situation.

Without the ability to quiesce the database, you would need to shut down the
database and reopen it in restricted mode. This is a serious restriction, especially for
systems requiring 24 x 7 availability. Quiescing a database is much a smaller
restriction, because it eliminates the disruption to users and the downtime associated
with shutting down and restarting the database.

When the database is in the quiesced state, it is through the facilities of the Database
Resource Manager that non-DBA sessions are prevented from becoming active.
Therefore, while this statement is in effect, any attempt to change the current resource
plan will be queued until after the system is unquiesced. See Chapter 26, "Managing
Resource Allocation with Oracle Database Resource Manager" for more information
about the Database Resource Manager.

Placing a Database into a Quiesced State
To place a database into a quiesced state, issue the following SQL statement:

ALTER SYSTEM QUIESCE RESTRICTED;

Non-DBA active sessions will continue until they become inactive. An active session is
one that is currently inside of a transaction, a query, a fetch, or a PL/SQL statement; or
a session that is currently holding any shared resources (for example, enqueues). No
inactive sessions are allowed to become active. For example, If a user issues a SQL
query in an attempt to force an inactive session to become active, the query will appear
to be hung. When the database is later unquiesced, the session is resumed, and the
blocked action is processed.

Once all non-DBA sessions become inactive, the ALTER SYSTEM QUIESCE
RESTRICTED statement completes, and the database is in a quiesced state. In an
Oracle Real Application Clusters environment, this statement affects all instances, not
just the one that issues the statement.

The ALTER SYSTEM QUIESCE RESTRICTED statement may wait a long time for
active sessions to become inactive. You can determine the sessions that are blocking
the quiesce operation by querying the V$BLOCKING_QUIESCE view. This view
returns only a single column: SID (Session ID). You can join it with VS SESSION to get
more information about the session, as shown in the following example:

select bl.sid, user, osuser, type, program
from vSblocking quiesce bl, vSsession se
where bl.sid = se.sid;

See Oracle Database Reference for details on these view.

If you interrupt the request to quiesce the database, or if your session terminates
abnormally before all active sessions are quiesced, then Oracle Database automatically
reverses any partial effects of the statement.

Starting Up and Shutting Down 3-15

Suspending and Resuming a Database

For queries that are carried out by successive multiple Oracle Call Interface (OCI)
fetches, the ALTER SYSTEM QUIESCE RESTRICTED statement does not wait for all
fetches to finish. It only waits for the current fetch to finish.

For both dedicated and shared server connections, all non-DBA logins after this
statement is issued are queued by the Database Resource Manager, and are not

allowed to proceed. To the user, it appears as if the login is hung. The login will
resume when the database is unquiesced.

The database remains in the quiesced state even if the session that issued the statement
exits. A DBA must log in to the database to issue the statement that specifically
unquiesces the database.

Note: You cannot perform a cold backup when the database is in
the quiesced state, because Oracle Database background processes
may still perform updates for internal purposes even while the
database is quiesced. In addition, the file headers of online datafiles
continue to appear to be accessible. They do not look the same as if
a clean shutdown had been performed. However, you can still take
online backups while the database is in a quiesced state.

Restoring the System to Normal Operation
The following statement restores the database to normal operation:

ALTER SYSTEM UNQUIESCE;

All non-DBA activity is allowed to proceed. In an Oracle Real Application Clusters
environment, this statement is not required to be issued from the same session, or
even the same instance, as that which quiesced the database. If the session issuing the
ALTER SYSTEM UNQUIESCE statement terminates abnormally, then the Oracle
Database server ensures that the unquiesce operation completes.

Viewing the Quiesce State of an Instance

You can query the ACTIVE_STATE column of the V$ INSTANCE view to see the current
state of an instance. The column values has one of these values:

= NORMAL: Normal unquiesced state.
= QUIESCING: Being quiesced, but some non-DBA sessions are still active.

m QUIESCED: Quiesced; no non-DBA sessions are active or allowed.

Suspending and Resuming a Database

The ALTER SYSTEM SUSPEND statement halts all input and output (I/O) to datafiles
(file header and file data) and control files. The suspended state lets you back up a
database without I/O interference. When the database is suspended all preexisting
I/0 operations are allowed to complete and any new database accesses are placed in a
queued state.

The suspend command is not specific to an instance. In an Oracle Real Application
Clusters environment, when you issue the suspend command on one system, internal
locking mechanisms propagate the halt request across instances, thereby quiescing all
active instances in a given cluster. However, if someone starts a new instance another
instance is being suspended, the new instance will not be suspended.

3-16 Oracle Database Administrator's Guide

Suspending and Resuming a Database

Use the ALTER SYSTEM RESUME statement to resume normal database operations.
The SUSPEND and RESUME commands can be issued from different instances. For
example, if instances 1, 2, and 3 are running, and you issue an ALTER SYSTEM
SUSPEND statement from instance 1, then you can issue a RESUME statement from
instance 1, 2, or 3 with the same effect.

The suspend /resume feature is useful in systems that allow you to mirror a disk or file
and then split the mirror, providing an alternative backup and restore solution. If you
use a system that is unable to split a mirrored disk from an existing database while
writes are occurring, then you can use the suspend /resume feature to facilitate the
split.

The suspend /resume feature is not a suitable substitute for normal shutdown
operations, because copies of a suspended database can contain uncommitted updates.

Caution: Do not use the ALTER SYSTEM SUSPEND statement as a
substitute for placing a tablespace in hot backup mode. Precede any
database suspend operation by an ALTER TABLESPACE BEGIN
BACKUP statement.

The following statements illustrate ALTER SYSTEM SUSPEND/RESUME usage. The
V$INSTANCE view is queried to confirm database status.

SQL> ALTER SYSTEM SUSPEND;

System altered

SQL> SELECT DATABASE STATUS FROM V$INSTANCE;
DATABASE_STATUS

SUSPENDED

SQL> ALTER SYSTEM RESUME;

System altered

SQL> SELECT DATABASE STATUS FROM V$INSTANCE;
DATABASE_STATUS

ACTIVE
See Also: Oracle Database Backup and Recovery User’s Guide for

details about backing up a database using the database
suspend /resume feature

Starting Up and Shutting Down 3-17

Suspending and Resuming a Database

3-18 Oracle Database Administrator's Guide

4

Configuring Automatic Restart of an Oracle
Database

Configure your Oracle database with the Oracle Restart feature to automatically restart
the database, the listener, and other Oracle components after a hardware or software
failure or whenever your database host computer restarts.

This chapter contains:

= About Oracle Restart

= Configuring Oracle Restart

s Starting and Stopping Components Managed by Oracle Restart

= Stopping and Restarting Oracle Restart for Maintenance Operations
s SRVCTL Command Reference

s CRSCTL Command Reference

About Oracle Restart

This section contains:

= Oracle Restart Overview

= About Startup Dependencies

= About Starting and Stopping Components with Oracle Restart
= About Starting and Stopping Oracle Restart

= Oracle Restart Configuration

s Oracle Restart Integration with Oracle Data Guard

= Fast Application Notification with Oracle Restart

Oracle Restart Overview

Oracle Restart improves the availability of your Oracle database. When you install
Oracle Restart, various Oracle components can be automatically restarted after a
hardware or software failure or whenever your database host computer restarts.
Table 4-1 lists these components.

Configuring Automatic Restart of an Oracle Database 4-1

About Oracle Restart

About Startup

Table 4-1 Oracle Components Automatically Restarted by Oracle Restart

Component Notes

Database instance Oracle Restart can accommodate multiple databases on a
single host computer.

Oracle Net listener -

Database services Does not include the default service created upon installation
because it is automatically managed by Oracle Database, and
does not include any default services created during database

creation.
Oracle Automatic Storage -
Management (Oracle ASM)
instance
Oracle ASM disk groups Restarting a disk group means mounting it.
Oracle Notification Services In a standalone server environment, ONS/eONS can be used
(ONS/eONS) in Oracle Data Guard installations for automating failover of

connections between primary and standby database through
Fast Application Notification (FAN). ONS/eONS is a service
for sending FAN events to integrated clients upon failover.

Oracle Restart runs periodic check operations to monitor the health of these
components. If a check operation fails for a component, the component is shut down
and restarted.

Oracle Restart is used in standalone server (non-clustered) environments only. For
Oracle Real Application Clusters (Oracle RAC) environments, the functionality to
automatically restart components is provided by Oracle Clusterware.

Oracle Restart runs out of the Oracle Grid Infrastructure home, which you install
separately from Oracle Database homes. See the Oracle Database Installation Guide for
your platform for information about installing the Oracle Grid Infrastructure home.

See Also:
s "Configuring Oracle Restart" on page 4-10

» Oracle Database Storage Administrator’s Guide for information about
Oracle Automatic Storage Management

Dependencies

Oracle Restart ensures that Oracle components are started in the proper order, in
accordance with component dependencies. For example, if database files are stored in
Oracle ASM disk groups, then before starting the database instance, Oracle Restart
ensures that the Oracle ASM instance is started and the required disk groups are
mounted. Likewise, if a component must be shut down, Oracle Restart ensures that
dependent components are cleanly shut down first.

Oracle Restart also manages the weak dependency between database instances and the
Oracle Net listener (the listener): When a database instance is started, Oracle Restart
attempts to start the listener. If the listener startup fails, then the database is still
started. If the listener later fails, Oracle Restart does not shut down and restart any
database instances.

4-2 Oracle Database Administrator's Guide

About Oracle Restart

About Starting and Stopping Components with Oracle Restart

Oracle Restart automatically restarts various Oracle components when required, and
automatically stops Oracle components in an orderly fashion when you manually shut
down your system. There may be times, however, when you want to manually start or
stop individual Oracle components. Oracle Restart includes the Server Control
(SRVCTL) utility that you use to manually start and stop Oracle Restart-managed
components. When Oracle Restart is in use, Oracle strongly recommends that you use
SRVCTL to manually start and stop components.

After you stop a component with SRVCTL, Oracle Restart does not automatically
restart that component if a failure occurs. If you then start the component with
SRVCTL, that component is again available for automatic restart.

Oracle utilities such as SQL*Plus, the Listener Control utility (LSNRCTL), and ASMCMD
are integrated with Oracle Restart. If you shut down the database with SQL*Plus,
Oracle Restart does not interpret this as a database failure and does not attempt to
restart the database. Similarly, if you shut down the Oracle ASM instance with
SQL*Plus or ASMCMD, Oracle Restart does not attempt to restart it.

An important difference between starting a component with SRVCTL and starting it
with SQL*Plus (or another utility) is the following:

s When you start a component with SRVCTL, any components on which this
component depends are automatically started first, and in the proper order.

s When you start a component with SQL*Plus (or another utility), other components
in the dependency chain are not automatically started; you must ensure that any
components on which this component depends are started.

In addition, Oracle Restart enables you to start and stop all of the components
managed by Oracle Restart in a specified Oracle home using a single command. The
Oracle home can be an Oracle Database home or an Oracle Grid Infrastructure home.
This capability is useful when you are installing a patch.

See Also: "Starting and Stopping Components Managed by Oracle
Restart" on page 4-25

About Starting and Stopping Oracle Restart

The CRSCTL utility starts and stops Oracle Restart. You can also use the CRSCTL
utility to enable or disable Oracle high availability services. Oracle Restart uses Oracle
high availability services to start and stop automatically the components managed by
Oracle Restart. For example, Oracle high availability services daemons automatically
start databases, listeners, and Oracle ASM instances. When Oracle high availability
services are disabled, none of the components managed by Oracle Restart are started
when a node is rebooted.

Typically, you use the CRSCTL utility when you need to stop all of the running Oracle
software in an Oracle installation. For example, you might need to stop Oracle Restart
when you are installing a patch or performing operating system maintenance. When
the maintenance is complete, you use the CRSCTL utility to start Oracle Restart.

See Also: "Stopping and Restarting Oracle Restart for Maintenance
Operations" on page 4-27 for information about using the CRSCTL
utility

Configuring Automatic Restart of an Oracle Database 4-3

About Oracle Restart

Oracle Restart Configuration

Oracle Restart maintains a list of all the Oracle components that it manages, and
maintains configuration information for each component. All of this information is
collectively known as the Oracle Restart configuration. When Oracle Restart starts a
component, it starts the component according to the configuration information for that
component. For example, the Oracle Restart configuration includes the location of the
server parameter file (SPFILE) for databases, and the TCP port to listen on for
listeners.

If you install Oracle Restart and then create your database with Database
Configuration Assistant (DBCA), DBCA automatically adds the database to the Oracle
Restart configuration. When DBCA then starts the database, the required
dependencies between the database and other components (for example disk groups
in which the database stores data) are established, and Oracle Restart begins to
manage the database.

You can manually add and remove components from the Oracle Restart configuration
with SRVCTL commands. For example, if you install Oracle Restart onto a host on
which a database is already running, you can use SRVCTL to add that database to the
Oracle Restart configuration. When you manually add a component to the Oracle
Restart configuration and then start it with SRVCTL, Oracle Restart begins to manage
the component, restarting it when required.

Note: Adding a component to the Oracle Restart configuration is
also referred to as "registering a component with Oracle Restart."

Other SRVCTL commands enable you to view the status and configuration of Oracle
Restart-managed components, temporarily disable and then reenable management for
components, and more.

When Oracle Restart is installed, many operations that create Oracle components
automatically add the components to the Oracle Restart configuration. Table 4-2 lists

some create operations and whether or not the created component is automatically
added.

Table 4-2 Create Operations and the Oracle Restart Configuration

Created Component
Automatically Added to Oracle

Create Operation Restart Configuration?
Create a database with OUI or DBCA Yes

Create a database with the CREATE DATABASE SQL No

statement

Create an Oracle ASM instance with OUI, DBCA, or Yes

ASMCA

Create a disk group (any method) Yes

Add a listener with NETCA Yes

Create a database service with SRVCTL Yes

Create a database service by modifying the SERVICE_ No

NAMES initialization parameter1

Create a database service with DBMS_ No
SERVICE.CREATE_SERVICE

4-4 Oracle Database Administrator's Guide

About Oracle Restart

Table 4-2 (Cont.) Create Operations and the Oracle Restart Configuration

Created Component
Automatically Added to Oracle
Create Operation Restart Configuration?

Create a standby database No

1 Not recommended when Oracle Restart is in use

Table 4-3 lists some delete/drop/remove operations and whether or not the deleted
component is also automatically removed from the Oracle Restart configuration.

Table 4-3 Delete/Drop/Remove Operations and the Oracle Restart Configuration

Deleted Component
Automatically Removed from

Operation Oracle Restart Configuration?
Delete a database with DBCA Yes

Delete a database by removing database files with No

operating system commands’

Delete a listener with NETCA Yes

Drop an Oracle ASM disk group (any method) Yes

Delete a database service with SRVCTL Yes

Delete a database service by any other means No

1 Not recommended

Oracle Restart Integration with Oracle Data Guard

Oracle Restart is integrated with Oracle Data Guard (Data Guard) and the Oracle Data
Guard Broker (the broker). When a database shutdown and restart is required in
response to a role change request, Oracle Restart shuts down and restarts the database
in an orderly fashion (taking dependencies into account), and according to the settings
in the Oracle Restart configuration. Oracle Restart also ensures that, following a Data
Guard role transition, all database services configured to run in the new database role
are active and all services not configured to run in the new role are stopped.

In addition, the Oracle Restart configuration supports Data Guard-related
configuration options for the following components:

= Databases—When you add a database to the Oracle Restart configuration, you
can specify the current Data Guard role for the database: PRIMARY, PHYSICAL_
STANDBY, LOGICAL_STANDBY, or SNAPSHOT STANDBY. If the role is later
changed using the broker, Oracle Restart automatically updates the database
configuration with the new role. If you change the database role without using the
broker, you must manually modify the database's role in the Oracle Restart
configuration to reflect the new role.

= Database Services—When adding a database service to the Oracle Restart
configuration, you can specify one or more Data Guard roles for the service. When
this configuration option is present, upon database restart Oracle Restart starts the
service only if one of the service roles matches the current database role.

Configuring Automatic Restart of an Oracle Database 4-5

About Oracle Restart

See Also:

» Oracle Data Guard Concepts and Administration for information
about Oracle Data Guard

= "Fast Application Notification with Oracle Restart" on page 4-6

= "Automating the Failover of Connections Between Primary and
Standby Databases" on page 4-20

Fast Application Notification with Oracle Restart

In a standalone server environment, Oracle Restart uses Oracle Notification Services
(ONS) and Oracle Advanced Queues to publish Fast Application Notification (FAN)
high availability events. Integrated Oracle clients use FAN to provide fast notification
to clients when the service or instance goes down. The client can automate the failover
of database connections between a primary database and a standby database.

This section describes how ONS and FAN work with Oracle Restart. It contains the
following topics:

s Overview of Fast Application Notification

= Application High Availability with Services and FAN

= Managing Unplanned Outages

= Managing Planned Outages

= Fast Application Notification High Availability Events

s Using Fast Application Notification Callouts

s Oracle Clients That Are Integrated with Fast Application Notification

See Also: Oracle Streams Advanced Queuing User’s Guide

Overview of Fast Application Notification

FAN is a notification mechanism that Oracle Restart can use to notify other processes
about configuration changes that include service status changes, such as UP or DOWN
events. FAN provides the ability to immediately terminate inflight transaction when
an instance or server fails. Integrated Oracle clients receive the events and respond.
Applications can respond either by propagating the error to the user or by
resubmitting the transactions and masking the error from the application user. When a
DOWN event occurs, integrated clients immediately clean up connections to the
terminated database. When an UP event occurs, the clients create new connections to
the new primary database instance.

Oracle Restart publishes FAN events whenever a managed instance or service goes up
or down. After a failover, the Oracle Data Guard Broker (broker) publishes FAN
events. These FAN events can be used in the following ways:

= Applications can use FAN with Oracle Restart without programmatic changes if
they use one of these Oracle integrated database clients: Oracle Database JDBC,
Universal Connection Pool for Java, Oracle Call Interface, and Oracle Database
ODP.NET. These clients can be configured for Fast Connection Failover (FCF) to
automatically connect to a new primary database after a failover.

= FAN server-side callouts can be configured on the database tier.

For DOWN events, such as a failed primary database, FAN provides immediate
notification to the clients so that they can failover as fast as possible to the new

4-6 Oracle Database Administrator's Guide

About Oracle Restart

primary database. The clients do not wait for a timeout. The clients are notified
immediately, and they must be configured to failover when they are notified.

For UP events, when services and instances are started, new connections can be created
so that the application can immediately take advantage of the extra resources.

Through server-side callouts, you can also use FAN to:
= Log status information
= Page DBAs or open support tickets when resources fail to start

= Automatically start dependent external applications that must be co-located with a
service

FAN events are published using ONS and Oracle Streams Advanced Queuing queues.
The queues are configured automatically when you configure a service. You must
configure ONS manually using SRVCTL commands.

The Connection Manager (CMAN) and Oracle Net Services listeners are integrated
with FAN events, enabling the CMAN and the listener to immediately de-register
services provided by the failed instance and to avoid erroneously sending connection
requests to a failed database.

See Also:

s Oracle Data Guard Broker for information about FAN events in an
Oracle Data Guard environment

s The Maximum Availability Architecture (MAA) white paper
about client failover:

http://www.oracle.com/technology/deploy/availability/h
tdocs/maa.htm

Application High Availability with Services and FAN

Oracle Database focuses on maintaining service availability. With Oracle Restart,
Oracle services are designed to be continuously available. Oracle Restart monitors the
database and its services and, when configured, sends event notifications using FAN.

Managing Unplanned Outages If Oracle Restart detects an outage, then it isolates the
failed component and recovers the dependent components. If the failed component is
the database instance, then after Oracle Data Guard fails over to the standby database,
Oracle Restart on the new primary database starts any services defined with the
current role.

FAN events are published by Oracle Restart and the Oracle Data Guard Broker
through ONS and Advanced Queuing. You can also perform notifications using FAN
callouts.

Note: Oracle Restart does not run callouts with guaranteed ordering.
Callouts are run asynchronously, and they are subject to scheduling
variability.

With Oracle Restart, restart and recovery are automatic, including the restarting of the
subsystems, such as the listener and the Oracle Automatic Storage Management
(Oracle ASM) processes, not just the database. You can use FAN callouts to report
faults to your fault management system and to initiate repair jobs.

Configuring Automatic Restart of an Oracle Database 4-7

About Oracle Restart

Managing Planned Outages For repairs, upgrades, and changes that require you to shut
down the primary database, Oracle Restart provides interfaces that disable and enable
services to minimize service disruption to application users. Using Oracle Data Guard
Broker with Oracle Restart allows a coordinated failover of the database service from
the primary to the standby for the duration of the planned outage. Once you complete
the operation, you can return the service to normal operation.

The management policy for a service controls whether the service starts automatically
when the database is restarted. If the management policy for a service is set to
AUTOMATIC, then it restarts automatically. If the management policy for a service is set
to MANUAL, then it must be started manually.

See Also: "Modifying the Oracle Restart Configuration for a
Component” on page 4-16

Fast Application Notification High Availability Events Table 44 describes the FAN event
record parameters and the event types, followed by name-value pairs for the event
properties. The event type is always the first entry and the timestamp is always the
last entry. In the following example, the name in the name-value pair is shown in Fan
event type (service_member), and the value in the name-value pair is shown in
Properties:

FAN event type: service_member
Properties: version=1.0 service=ERP database=FINPROD instance=FINPROD host=nodel
status=up

Table 4-4 Event Record Parameters and Descriptions

Parameter Description
VERSION Version of the event record. Used to identify release changes.
EVENT TYPE SERVICE, SERVICE_MEMBER, DATABASE, INSTANCE, NODE,

ASM, SRV_PRECONNECT. Note that database and Instance types
provide the database service, such as DB_UNIQUE_NAME.DB_
DOMAIN.

DATABASE UNIQUE NAME The unique database supporting the service; matches the
initialization parameter value for DB_UNIQUE_NAME, which
defaults to the value of the initialization parameter DB_NAME.

INSTANCE The name of the instance that supports the service; matches the
ORACLE_SID value.

NODE NAME The name of the node that supports the service or the node that
has stopped; matches the node name known to Cluster
Synchronization Services (CSS).

SERVICE The service name; matches the service in DBA_SERVICES.

STATUS Values are UP, DOWN, NOT_RESTARTING, PRECONN_UP,
PRECONN_DOWN, and UNKNOWN.

REASON Data_Guard_Failover, Failure, Dependency, User,
Autostart, Restart.

CARDINALITY The number of service members that are currently active;
included in all UP events.

TIMESTAMP The local time zone to use when ordering notification events.

A FAN record matches the database signature of each session as shown in Table 4-5.

4-8 Oracle Database Administrator's Guide

About Oracle Restart

Table 4-5 FAN Parameters and Matching Database Signatures

FAN Parameter Matching Oracle Database Signature

SERVICE sys_context ('userenv', 'service_name')
DATABASE UNIQUE NAME sys_context ('userenv', 'db_unique_name')
INSTANCE sys_context ('userenv', 'instance_name')
NODE NAME sys_context ('userenv', 'server_host')

Using Fast Application Notification Callouts FAN callouts are server-side executables that
Oracle Restart executes immediately when high availability events occur. You can use
FAN callouts to automate the following activities when events occur, such as:

= Opening fault tracking tickets

= Sending messages to pagers

= Sending e-mail

s Starting and stopping server-side applications

= Maintaining an uptime log by logging each event as it occurs

To use FAN callouts, place an executable in the directory grid_home/racg/usrco on
both the primary and the standby database servers. If you are using scripts, then set
the shell as the first line of the executable. The following is an example file for the
grid_home/racg/usrco/callout.sh callout:

#! /bin/ksh
FAN_LOGFILE= [your path name]/admin/log/ hostname'_uptime.log
echo $* "reported="‘date' >> $FAN_LOGFILE &

The following output is from the previous example:

NODE VERSION=1.0 host=sun880-2 status=nodedown reason=
timestamp=08-0ct-2004 04:02:14 reported=Fri Oct 8 04:02:14 PDT 2004

A FAN record matches the database signature of each session, as shown in Table 4-5.
Use this information to take actions on sessions that match the FAN event data.

See Also: Table 4-4 on page 4-8 for information about the callout
and event details

Oracle Clients That Are Integrated with Fast Application Notification Oracle has integrated
FAN with many of the common Oracle client drivers that are used to connect to Oracle
Restart databases. Therefore, the easiest way to use FAN is to use an integrated Oracle
Client.

You can use the CMAN session pools, Oracle Call Interface, Universal Connection
Pool for Java, JDBC simplefan API, and ODP.NET connection pools. The overall goal is
to enable applications to consistently obtain connections to the available primary
database at anytime.

See Also: "Automating the Failover of Connections Between
Primary and Standby Databases" on page 4-20

Configuring Automatic Restart of an Oracle Database 4-9

Configuring Oracle Restart

Configuring Oracle Restart

If you install Oracle Restart by installing the Oracle Grid Infrastructure for a
standalone server and then create your database, the database is automatically added
to the Oracle Restart configuration, and is then automatically restarted when required.
However, if you install Oracle Restart on a host computer on which a database already
exists, you must manually add the database, the listener, the Oracle Automatic Storage
Management (Oracle ASM) instance, and possibly other components to the Oracle
Restart configuration.

After configuring Oracle Restart to manage your database, you may want to:

= Add additional components to the Oracle Restart configuration.

= Remove components from the Oracle Restart configuration.

» Temporarily suspend Oracle Restart management for one or more components.
= Modify the Oracle Restart configuration options for an individual component.

This section describes the SRVCTL commands that you use to accomplish these and
other tasks. It contains the following topics:

s Preparing to Run SRVCTL

= Obtaining Help for SRVCTL

= Adding Components to the Oracle Restart Configuration

= Removing Components from the Oracle Restart Configuration

= Disabling and Enabling Oracle Restart Management for a Component
= Viewing Component Status

= Viewing the Oracle Restart Configuration for a Component

= Modifying the Oracle Restart Configuration for a Component

= Managing Environment Variables in the Oracle Restart Configuration
s Creating and Deleting Database Services with SRVCTL

= Enabling FAN Events in an Oracle Restart Environment

= Automating the Failover of Connections Between Primary and Standby Databases

= Enabling Clients for Fast Connection Failover

See Also: "About Oracle Restart" on page 4-1

Preparing to Run SRVCTL

The tasks in the following sections require that you run the SRVCTL utility. You must
ensure that you run SRVCTL from the correct Oracle home, and that you log in to the
host computer with the correct user account. Table 4-6 lists the components that you
can configure with SRVCTL, and for each component, lists the Oracle home from
which you must run SRVCTL.

Table 4-6 Determining the Oracle Home from which to Start SRVCTL

Component Being Configured Oracle Home from which to Start SRVCTL
Database, database service Database home

Oracle ASM instance, disk group, Oracle Grid Infrastructure home

listener!, ONS

4-10 Oracle Database Administrator's Guide

Configuring Oracle Restart

1 Assumes the listener was started from the Oracle Grid Infrastructure home. If you installed Oracle
Restart for an existing database, the listener may have been started from the database home, in
which case you start SRVCTL from the database home.

To prepare to run SRVCTL:
1. Use Table 4-6 to determine the Oracle home from which you must run SRVCTL.

2. If you intend to run a SRVCTL command that modifies the Oracle Restart
configuration (add, remove, enable, disable, and so on), then do one of the
following:

s On UNIX and Linux, log in to the database host computer as the user who
installed the Oracle home that you determined in Step 1.

= On Windows, log in as an Administrator.
Otherwise, log in to the host computer as any user.
3. Open the command window that you will use to enter the SRVCTL commands.

To enter commands, you might need to ensure that the SRVCTL program is in
your PATH environment variable. Otherwise, you can enter the absolute path to
the program.

Obtaining Help for SRVCTL
Online help is available for the SRVCTL utility.

To obtain help for SRVCTL:
1. Prepare to run SRVCTL as described in "Preparing to Run SRVCTL" on page 4-10.
2. Enter the following command:

srvctl

For more detailed help, enter the following command:

srvctl -h

For detailed help on a particular command, enter:

srvctl command -h

For example, to obtain help for the add command and the different options for each
component type, enter:

srvctl add -h

For detailed help on a particular command for a particular component type, enter:

srvctl command object -h

For example, to obtain help about adding a database service, enter the following
command:

srvctl add service -h

See Table 4-7 on page 4-30 for a list of SRVCTL commands and Table 4-8 on page 4-31
for a list of components.

Configuring Automatic Restart of an Oracle Database 4-11

Configuring Oracle Restart

Adding Components to the Oracle Restart Configuration

In most cases, creating an Oracle component on a host that is running Oracle Restart
automatically adds the component to the Oracle Restart configuration. (See Table 4-2
on page 4-4.) The component is then automatically restarted when required.

The following are occasions when you must manually add components to the Oracle
Restart configuration with SRVCTL:

= You install Oracle Restart after creating the database.

= You create an additional Oracle database on the same host computer using the
CREATE DATABASE SQL statement.

= You create a database service with DBMS_SERVICE.CREATE_SERVICE package
procedure. (The recommended way is to use SRVCTL.)

Note: Adding a component to the Oracle Restart configuration is
also referred to as "registering a component with Oracle Restart."

Adding a component to the Oracle Restart configuration does not start that
component. You must use a srvctl start command to start it.

You can also use Oracle Enterprise Manager Database Control (Database Control) to
add a database or listener to the Oracle Restart configuration. Both the SRVCTL and
Database Control methods are described in the following sections:

= Adding Components with SRVCTL

= Adding Components with Oracle Enterprise Manager Database Control
Important: When you manually add a database to the Oracle Restart
configuration, you must also add the grid infrastructure home owner
as a member of the OSDBA group of that database. This is because the

grid infrastructure components must be able to connect to the
database as SYSDBA to start and stop the database.

For example, if the host user who installed the grid infrastructure
home is named grid and the OSDBA group of the new database is
named dba, then user grid must be a member of the dba group.

See Also:

"

= 'Starting and Stopping Components Managed by Oracle Restart
on page 4-25

s "OSDBA and OSOPER" on page 1-20

Adding Components with SRVCTL

When you add a component to the Oracle Restart configuration with SRVCTL, you can
specify optional configuration settings for the component.

To add a component to the Oracle Restart configuration with SRVCTL:
1. Prepare to run SRVCTL as described in "Preparing to Run SRVCTL" on page 4-10.
2. Enter the following command:

srvcetl add object options

4-12 Oracle Database Administrator's Guide

Configuring Oracle Restart

where object is one of the components listed in Table 4-8 on page 4-31. See the
SRVCTL add command on page 4-32 for available options for each component.

Example 4-1 Adding a Database

This example adds a database with a DB_UNIQUE_NAME of dbcrm. The mandatory -o
option specifies the Oracle home location.

srvctl add database -d dbcrm -o /u0l/app/oracle/product/11.2.0/dbhome_1

Example 4-2 Adding a Database Service

For the database with the DB_UNIQUE_NAME of dbcrm, this example both creates a
new database service named crmbatch and adds it to the Oracle Restart
configuration.

srvctl add service -d dbcrm -s crmbatch

See "Creating and Deleting Database Services with SRVCTL" on page 4-19 for more
examples.

Example 4-3 Adding the Default Listener
This example adds the default listener to the Oracle Restart configuration.

srvctl add listener

See Also: "SRVCTL Command Reference" on page 4-30

Adding Components with Oracle Enterprise Manager Database Control

With Oracle Enterprise Manager Database Control (Database Control), you can add
only database instances and listeners to the Oracle Restart configuration.

To add a database instance with Database Control:
1. Access the Database Home page for the desired database instance.

See "Accessing the Database Home Page" in Oracle Database 2 Day DBA for
instructions.

2. In the High Availability section, next to the Oracle Restart label, click the Disabled
link.

High Availability
Console Details
Oracle Restart Dizabled
Instance Recovery Time (sec) 22
Last Backup nja
IUsable Flash Recovery Area (%) 100
Flashback Database Logging Disabled

Note: If the Oracle Restart label shows "Enabled," then the database
is already being managed by Oracle Restart, and there is no need to
continue.

3. If prompted for host credentials, enter credentials for the user who installed the
database Oracle home, and then click Login.

Configuring Automatic Restart of an Oracle Database 4-13

Configuring Oracle Restart

4. On the confirmation page, click Continue.
To add a listener with Database Control:
1. Access the Database Home page for the desired database instance.

See "Accessing the Database Home Page" in Oracle Database 2 Day DBA for
instructions.

2. In the General section, click the link next to the Listener label.

3. inthe High Availability section, next to the Oracle Restart label, click the Disabled
link.

Note: If the Oracle Restart label shows "Enabled,” then the listener is
already being managed by Oracle Restart and there is no need to
continue.

4. On the confirmation page, click Continue.

Removing Components from the Oracle Restart Configuration

When you use an Oracle-recommended method to delete an Oracle component, the
component is also automatically removed from the Oracle Restart configuration. For
example, if you use Database Configuration Assistant (DBCA) to delete a database,
DBCA removes the database from the Oracle Restart configuration. Likewise, if you
use Oracle Net Configuration Assistant (NETCA) to delete a listener, NETCA removes
the listener from the Oracle Restart configuration. See Table 4-3 on page 4-5 for more
examples. If you use a non-recommended or manual method to delete an Oracle
component, you must first use SRVCTL to remove the component from the Oracle
Restart configuration. Failing to do so could result in an error.

To remove a component from the Oracle Restart configuration:
1. Prepare to run SRVCTL as described in "Preparing to Run SRVCTL" on page 4-10.
2. Enter the following command:

srvctl remove object [options]

where object is one of the components listed in Table 4-8 on page 4-31. See the
SRVCTL remove command on page 4-54 for available options for each component.

Example 4-4 Removing a Database
This example removes a database with a DB_UNIQUE_NAME of dbcrm.

srvctl remove database -d dbcrm

See Also: "SRVCTL Command Reference" on page 4-30

Disabling and Enabling Oracle Restart Management for a Component

You can temporarily disable Oracle Restart management for a component. One reason
to do this is when you are performing maintenance on the component. For example, if
a component must be repaired, then you might not want it to be automatically
restarted if it fails or if the host computer is restarted.

When maintenance is complete, you can reenable management for the component.

When you disable a component:

4-14 Oracle Database Administrator's Guide

Configuring Oracle Restart

= Itis nolonger automatically restarted.
= Itis nolonger automatically started through a dependency.
s It cannot be started with SRVCTL.

= Any component dependent on this resource is no longer automatically started or
restarted.

To disable or enable automatic restart for a component:
1. Prepare to run SRVCTL, as described in "Preparing to Run SRVCTL" on page 4-10.
2. Do one of the following:

= To disable a component, enter the following command:

srvctl disable object [options]

= To enable a component, enter the following command:
srvctl enable object [options]
where object is one of the components listed in Table 4-8 on page 4-31. See the

SRVCTL disable command on page 4-42 and the enable command on page 4-45 for
available options for each component.

Example 4-5 Disabling Automatic Restart for a Database

This example disables automatic restart for a database with a DB_UNIQUE_NAME of
dbcrm.

srvctl disable database -d dbcrm

Example 4-6 Disabling Automatic Restart for an Oracle ASM Disk Group

This example disables automatic restart for the Oracle ASM disk group named
recovery.

srvctl disable diskgroup -g recovery

Example 4-7 Enabling Automatic Restart for an Oracle ASM Disk Group

This example reenables automatic restart for the disk group recovery.

srvctl enable diskgroup -g recovery

See Also: "SRVCTL Command Reference" on page 4-30

Viewing Component Status

You can use SRVCTL to view the running status (running or not running) for any
component managed by Oracle Restart. For some components, additional information
is also displayed.

To view component status:
1. Prepare to run SRVCTL as described in "Preparing to Run SRVCTL" on page 4-10.
2. Enter the following command:

srvctl status object [options]

where object is one of the components listed in Table 4-8 on page 4-31. See the
SRVCTL status command on page 4-64 for available options for each component.

Configuring Automatic Restart of an Oracle Database 4-15

Configuring Oracle Restart

Example 4-8 Viewing Status of a Database
This example displays the status of the database with a DB_UNIQUE_NAME of dbcrm.

srvctl status database -d dbcrm
Database is running.

See Also: "SRVCTL Command Reference" on page 4-30

Viewing the Oracle Restart Configuration for a Component

You can use SRVCTL to view the Oracle Restart configuration for any component.
Oracle Restart maintains different configuration information for each component type.
In one form of the SRVCTL command, you can obtain a list of components managed
by Oracle Restart.

To view component configuration:
1. Prepare to run SRVCTL as described in "Preparing to Run SRVCTL" on page 4-10.
2. Enter the following command:

srvctl config object options

where object is one of the components listed in Table 4-8 on page 4-31. See the
SRVCTL config command on page 4-38 for available options for each component.

Example 4-9 Viewing a List of All Databases Managed by Oracle Restart

srvctl config database

dbcrm
orcl

Example 4-10 Viewing the Configuration of a Particular Database

This example displays the configuration of the database with a DB_UNIQUE_NAME of
orcl.

srvctl config database -d orcl

Database unique name: orcl
Database name: orcl

Oracle home: /u0l/app/oracle/product/11.2.0/dbhome_1
Oracle user: oracle

Spfile: +DATA/orcl/spfileorcl.ora
Domain: us.example.com

Start options: open

Stop options: immediate

Database role:

Management policy: automatic

Disk Groups: DATA

Services: mfg,sales

See Also: "SRVCTL Command Reference" on page 4-30
Modifying the Oracle Restart Configuration for a Component

You can use SRVCTL to modify the Oracle Restart configuration of a component. For
example, you can modify the port number that a listener listens on when Oracle

4-16 Oracle Database Administrator's Guide

Configuring Oracle Restart

Restart starts it, or the server parameter file (SPFILE) that Oracle Restart points to
when it starts a database.

To modify the Oracle Restart configuration for a component:
1. Prepare to run SRVCTL as described in "Preparing to Run SRVCTL" on page 4-10.
2. Enter the following command:

srvctl modify object options

where object is one of the components listed in Table 4-8 on page 4-31. See the
SRVCTL modify command on page 4-50 for available options for each component.

Example 4-11 Modifying the Oracle Restart Configuration for a Database

For the database with a DB_UNIQUE_NAME of dbcrm, the following command changes
the management policy to MANUAL and the start option to NOMOUNT.

srvctl modify database -d dbcrm -y MANUAL -s NOMOUNT
With a MANUAL management policy, the database is never automatically started when
the database host computer is restarted. However, Oracle Restart continues to monitor
the database and restarts it if a failure occurs.

See Also:

= "Viewing the Oracle Restart Configuration for a Component" on
page 4-16

s "SRVCTL Command Reference" on page 4-30

Managing Environment Variables in the Oracle Restart Configuration

The Oracle Restart configuration can store name/value pairs for environment
variables. If you typically set environment variables (other than ORACLE_HOME and
ORACLE_SID) prior to starting your Oracle database, you can set these environment
variable values in the Oracle Restart configuration. You can store any number
environment variables in the individual configurations of the following components:

s Database instance
s Listener
s Oracle ASM instance

When Oracle Restart starts one of these components, it first sets environment variables
for that component to the values stored in the component configuration. Although you
can set environment variables that are used by Oracle components in this manner, this
capability is primarily intended for operating system environment variables.

The following sections provide instructions for setting, unsetting, and viewing
environment variables:

» Setting and Unsetting Environment Variables

= Viewing Environment Variables

Note: Do not use this facility to set standard environment variables
like ORACLE_HOME and ORACLE_SID; these are set automatically by
Oracle Restart.

Configuring Automatic Restart of an Oracle Database 4-17

Configuring Oracle Restart

Setting and Unsetting Environment Variables

You use SRVCTL to set and unset environment variable values in the Oracle Restart
configuration for a component.

To set or unset environment variables in the configuration:
1. Prepare to run SRVCTL as described in "Preparing to Run SRVCTL" on page 4-10.
2. Do one of the following:

= To set an environment variable in the configuration, enter the following
command:

srvctl setenv {asm|database|listener} options

= Toremove an environment variable from the configuration, enter the
following command:
srvctl unsetenv {asm|database|listener} options

See the SRVCTL setenv command on page 4-58 and the unsetenv command on
page 4-72 for available options for each component.

Example 4-12 Setting Database Environment Variables

This examples sets the NL.S_LANG and the AIX AIXTHREAD_SCOPE environment
variables in the Oracle Restart configuration for the database with a DB_UNIQUE_
NAME of dbcrm:

srvctl setenv database -d dbcrm -t "NLS_LANG=AMERICAN_AMERICA.AL32UTF8,
AIXTHREAD_SCOPE=S"

See Also: "SRVCTL Command Reference" on page 4-30

Viewing Environment Variables

You use SRVCTL to view the values of environment variables in the Oracle Restart
configuration for a component.

To view environment variable values in the configuration:
1. Prepare to run SRVCTL as described in "Preparing to Run SRVCTL" on page 4-10.
2. Enter the following command:

srvctl getenv {database|listener\asm} options

See the SRVCTL getenv command on page 4-48 for available options for each
component.

Example 4-13 Viewing All Environment Variables for a Database

This example gets and displays the environment variables in the Oracle Restart
configuration for the database with a DB_UNIQUE_NAME of dbcrm:

srvctl getenv database -d dbcrm
dbcrm:
NLS_LANG=AMERICAN_AMERICA

AIXTHREAD_SCOPE=S
GCONF_LOCAL_LOCKS=1

4-18 Oracle Database Administrator's Guide

Configuring Oracle Restart

Example 4-14 Viewing Specific Environment Variables for a Database

This example gets and displays the NLS_LANG and AIXTHREAD_SCOPE environment
variables from the Oracle Restart configuration for the same database:

srvctl getenv database -d dbcrm -t "NLS_LANG, AIXTHREAD_SCOPE"

dbcrm:
NLS_LANG=AMERICAN_AMERICA
AIXTHREAD_SCOPE=S

See Also: "SRVCTL Command Reference" on page 4-30

Creating and Deleting Database Services with SRVCTL

When managing a database with Oracle Restart, Oracle recommends that you use
SRVCTL to create and delete database services. When you use SRVCTL to add a
database service, the service is automatically added to the Oracle Restart configuration
and a dependency between the service and the database is established. Thus, if you
start the service, Oracle Restart first starts the database if it is not started.

When you use SRVCTL to delete a database service, the service is also removed from
the Oracle Restart configuration.

To create a database service with SRVCTL:
1. Prepare to run SRVCTL as described in "Preparing to Run SRVCTL" on page 4-10.
2. Enter the following command:

srvctl add service -d db_unique_name -s service_name [options]

The database service is created and added to the Oracle Restart configuration. See
the srvctl add service command on page 4-36 for available options.

Example 4-15 Creating a Database Service

For the database with the DB_UNIQUE_NAME of dbcrm, this example creates a new
database service named crmbatch.

srvctl add service -d dbcrm -s crmbatch

Example 4-16 Creating a Role-Based Database Service

This example creates the crmbatch database service and assigns it the Data Guard
role of PHYSICAL_STANDBY. The service is automatically started only if the current
role of the dbcrm database is physical standby.

srvctl add service -d dbcrm -s crmbatch -1 PHYSICAL_STANDBY

To delete a database service with SRVCTL:
1. Prepare to run SRVCTL as described in "Preparing to Run SRVCTL" on page 4-10.
2. Enter the following command:

srvctl remove service -d db_unique name -s service_name [-f]

The database service is removed from the Oracle Restart configuration. If the - £
(force) flag is present, the service is removed even if it is still running. Without this
flag, an error occurs if the service is running.

See Also: "SRVCTL Command Reference" on page 4-30

Configuring Automatic Restart of an Oracle Database 4-19

Configuring Oracle Restart

Enabling FAN Events in an Oracle Restart Environment

To enable Oracle Restart to publish Fast Application Notification (FAN) events, you
must create an Oracle Notification Services (ONS) network that includes the Oracle
Restart servers and the integrated clients. These clients can include Oracle Connection
Manager (CMAN), Java Database Connectivity (JDBC), and Universal Connection
Pool (UCP) clients. If you are using Oracle Call Interface or ODP.NET clients, then you
must enable Oracle Advanced Queuing (AQ) HA notifications for your services. In
addition, ONS and eONS must be running on the server.

To enable FAN events in an Oracle Restart environment:
1. Prepare to run SRVCTL as described in "Preparing to Run SRVCTL" on page 4-10.

2, Add the database to the Oracle Restart Configuration if it is not already managed
by Oracle Restart. See "Adding Components to the Oracle Restart Configuration"
on page 4-12.

3. Add ONS and eONS to the configuration:

srvctl add ons
srvctl add eons

ONS and eONS are enabled when they are added.
4. Start ONS and eONS:

srvctl start ons
srvctl start eons

5. Add the service to the Oracle Restart Configuration.

For Oracle Call Interface and ODP.NET clients, ensure that the -g option is set to
TRUE to enable the database queue.

See "Creating and Deleting Database Services with SRVCTL" on page 4-19.

6. Enable each client for fast connection failover. See "Enabling Clients for Fast
Connection Failover" on page 4-21.

See Also: "SRVCTL Command Reference" on page 4-30

Automating the Failover of Connections Between Primary and Standby Databases

In a configuration that uses Oracle Restart and Oracle Data Guard primary and
standby databases, the database services fail over automatically from the primary to
the standby during either a switchover or failover. You can use Oracle Notification
Services (ONS) to immediately notify clients of the failover of services between the
primary and standby databases. The Oracle Data Guard Broker uses Fast Application
Notification (FAN) to send notifications to clients when a failover occurs. Integrated
Oracle clients automatically failover connections and applications can mask the failure
from end-users.

To automate connection failover, you must create an ONS network that includes the
Oracle Restart servers and the integrated clients (CMAN, listener, JDBC, and UCP). If
you are using Oracle Call Interface or ODP.NET clients, you must enable the Oracle
Advanced Queuing queue. The database and the services must be managed by Oracle
Restart and the Oracle Data Guard Broker to automate the failover of services.

To automate the failover of services between primary and standby databases:

4-20 Oracle Database Administrator's Guide

Configuring Oracle Restart

1. Configure the primary and standby database with the Oracle Data Guard Broker.
See Oracle Data Guard Broker.

2, Prepare to run SRVCTL as described in "Preparing to Run SRVCTL" on page 4-10.

3. Add the primary database to the Oracle Restart configuration on the primary
server if it has not been added. Ensure that you specify PRIMARY for the database
role. See "Adding Components to the Oracle Restart Configuration" on page 4-12.

4. Add the standby database to the Oracle Restart configuration on the standby
server if it has not been added. Ensure that you specify the appropriate standby
database role.

5. Enable FAN events on both the primary database server and the standby database
server. "Enabling FAN Events in an Oracle Restart Environment" on page 4-20.

6. Add the services that clients will use to connect to the databases to the Oracle
Restart configuration on the primary database and the standby database. When
you add a service, ensure that:

= The -1 option is set to the proper role for each service
s The -g option is set to TRUE if you are using ODP.NET or Oracle Call Interface
See "Creating and Deleting Database Services with SRVCTL" on page 4-19.

7. Enable each client for fast connection failover. See "Enabling Clients for Fast
Connection Failover" on page 4-21.

See Also: "SRVCTL Command Reference" on page 4-30

Enabling Clients for Fast Connection Failover

In a configuration with a standby database, after you have added Oracle Notification
Services (ONS) to your Oracle Restart configurations and enabled Oracle Advanced
Queuing (AQ) HA notifications for your services, you can enable clients for fast
connection failover. The clients receive Fast Application Notification (FAN) events and
can relocate connections to the current primary database after an Oracle Data Guard
failover. See "Automating the Failover of Connections Between Primary and Standby
Databases" on page 4-20 for information about adding ONS.

For databases with no standby database configured, you can still configure the client
FAN events. When there is a failure, you can configure the client to retry the
connection to the database. Since Oracle Restart will restart the failed database, the
client can reconnect when the database restarts. Ensure that you program the
appropriate delay and retries on the connection string, as illustrated in the examples in
this section.

You can enable fast connection failover for the following types of clients in an Oracle
Restart configuration:

= Enabling Fast Connection Failover for JDBC Clients
= Enabling Fast Connection Failover for Oracle Call Interface Clients

= Enabling Fast Connection Failover for ODP.NET Clients

Enabling Fast Connection Failover for JDBC Clients

Enabling FAN for the Oracle Universal Connection Pool enables Fast Connection
Failover (FCF) for the client. Your application can use either thick or thin JDBC clients
to use FCE.

Configuring Automatic Restart of an Oracle Database 4-21

Configuring Oracle Restart

To configure the JDBC client, set the FastConnectionFailoverEnabled property
before making the first getConnection () request to a data source. When you enable
Fast Connection Failover, the failover applies to every connection in the connection
cache. If your application explicitly creates a connection cache using the Connection
Cache Manager, then you must first set FastConnectionFailoverEnabled.

This section describes how to enable FCF for JDBC with the Universal Connection
Pool. For thick JDBC clients, if you enable Fast Connection Failover, do not enable
Transparent Application Failover (TAF), either on the client or for the service. Enabling
FCF with thin or thick JDBC clients enables the connection pool to receive and react to
all FAN events.

To enable Fast Connection Failover for JDBC clients:

1. On a cache enabled DataSource, set the DataSource property
FastConnectionFailoverEnabled to true as in the following example to
enable FAN for the Oracle JDBC Implicit Connection Cache:

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource() ;
pds.setONSConfiguration ("nodes=primaryhost:6200, standbyhost:6200") ;
pds.setFastConnectionFailoverEnabled (true) ;
pds.setURL("jdbc:oracle:thin: @ (DESCRIPTION=

(LOAD_BALANCE=o0n)

(ADDRESS= (PROTOCOL=TCP) (HOST=primaryhost) (PORT=1521))

(ADDRESS= (PROTOCOL=TCP) (HOST=standbyhost) (PORT=1521))

(CONNECT_DATA= (service_name=service_name)))");

In this example, primaryhost is the server for the primary database, and
standbyhost is the server for the standby database.

Applications must have both ucp.jar and ons jar in their CLASSPATH.

Note: Use the following system property to enable FAN without
making data source changes: -D
oracle.jdbc.FastConnectionFailover=true.

2. When you start the application, ensure that the ons jar file is located on the
application CLASSPATH. The ons jar file is part of the Oracle client installation.

See Also: Oracle Database JDBC Developer's Guide

Enabling Fast Connection Failover for Oracle Call Interface Clients

Oracle Call Interface clients can enable Fast Connection Failover (FCF) by registering
to receive notifications about Oracle Restart high availability FAN events and respond
when events occur. This improves the session failover response time in Oracle Call
Interface and removes terminated connections from connection and session pools. This
feature works on Oracle Call Interface applications, including those that use
Transparent Application Failover (TAF), connection pools, or session pools.

First, you must enable a service for high availability events to automatically populate
the Advanced Queuing ALERT_QUEUE. If your application is using TAF, then enable
the TAF settings for the service. Configure client applications to connect to an Oracle
Restart database. Clients can register callbacks that are used whenever an event
occurs. This reduces the time that it takes to detect a connection failure.

During DOWN event processing, Oracle Call Interface:

4-22 Oracle Database Administrator's Guide

Configuring Oracle Restart

s Terminates affected connections at the client and returns an error

= Removes connections from the Oracle Call Interface connection pool and the
Oracle Call Interface session pool

The session pool maps each session to a physical connection in the connection
pool, and there can be multiple sessions for each connection.

= Fails over the connection if you have configured TAF

If TAF is not configured, then the client only receives an error.

Note: Oracle Call Interface does not manage UP events.

To Enable Fast Connection Failover for an Oracle Call Interface client:

1. Ensure that the service that you are using has Advanced Queuing notifications
enabled by setting the services' values using the SRVCTL modi fy command. For
example:

srvctl modify service -d proddb -s gl.us.oracle.com -g true -1 primary -e
select -m basic -z 5 -w 180 -j long

2. Enable OCI_EVENTS at environment creation time on the client as follows:

(OCIEnvCreate(...))

3. Link client applications with the client thread or operating system library.
4. Optionally, register a client EVENT callback.

5. Ensure that the client uses an Oracle Net connect descriptor that includes all
primary and standby hosts in the ADDRESS_LIST. For example:

gl =
(DESCRIPTION =
(CONNECT_TIMEOUT=10) (RETRY_COUNT=3)
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL TCP) (HOST BOSTON1) (PORT = 1521))
(ADDRESS = (PROTOCOL = TCP) (HOST = CHICAGO1l) (PORT = 1521))
(LOAD_BALANCE = yes)

)
(CONNECT_DATA=
(SERVICE_NAME=gl.us.oracle.com)

To see the alert information, query the views DBA_OUTSTANDING_ALERTS and DBA_
ALERT_HISTORY.

See Also:
» Oracle Call Interface Programmer’s Guide

m Oracle Database Net Services Administrator’s Guide for information
about configuring TAF

Enabling Fast Connection Failover for ODP.NET Clients

Oracle Data Provider for NET (ODP.NET) connection pools can subscribe to
notifications that indicate when services are down. After a DOWN event, Oracle
Database cleans up sessions in the connection pool that go to the instance that stops,
and ODP.NET proactively disposes connections that are no longer valid.

Configuring Automatic Restart of an Oracle Database 4-23

Configuring Oracle Restart

To enable Fast Connection Failover for ODP.NET clients:

1.

Enable Advanced Queuing notifications by using SRVCTL modify service
command, as in the following example:

srvctl modify service -d dbname -s gl -g true, -j long

Execute the following for the users that will be connecting by way of the .Net
Application, where user_name is the user name:

execute DBMS_AQADM.GRANT QUEUE_PRIVILEGE ('DEQUEUE', 'SYS.SYS$SERVICE_METRICS',
user_name) ;

Enable Fast Connection Failover for ODP.NET connection pools by subscribing to
FAN high availability events. Set the HA events connection string attribute to true
at connection time. The pooling attribute must be set to true, which is the default.
The following example illustrates these settings, where user_name is the name of
the user and password is the user password:

// C#
using System;
using Oracle.DataAccess.Client;

class HAEventEnablingSample
{

static void Main()

{

OracleConnection con = new OracleConnection();

// Open a connection using ConnectionString attributes

// Also, enable "load balancing"

con.ConnectionString =
"User Id=user_name;Password=password;Data Source=oracle;" +
"Min Pool Size=10;Connection Lifetime=120;Connection Timeout=60;" +
"HA Events=true;Incr Pool Size=5;Decr Pool Size=2";

con.Open() ;
// Create more connections and carry out work against the DB here.

// Dispose OracleConnection object
con.Dispose();

}
Ensure that the client uses an Oracle Net connect descriptor that includes all
primary and standby hosts in the ADDRESS_LIST. For example:

gl =
(DESCRIPTION =
(CONNECT_TIMEOUT=10) (RETRY_COUNT=3)
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL TCP) (HOST BOSTON1) (PORT = 1521))
(ADDRESS = (PROTOCOL = TCP) (HOST = CHICAGO1l) (PORT = 1521))
(LOAD_BALANCE = yes)

)
(CONNECT_DATA=
(SERVICE_NAME=gl.us.oracle.com)

4-24 Oracle Database Administrator's Guide

Starting and Stopping Components Managed by Oracle Restart

See Also:

» Oracle Data Provider for NET Developer’s Guide for information
about ODP.NET

s "SRVCTL Command Reference" on page 4-30

Starting and Stopping Components Managed by Oracle Restart

When Oracle Restart is in use, Oracle strongly recommends that you use the SRVCTL
utility to start and stop components, for the following reasons:

When starting a component with SRVCTL, Oracle Restart can first start any
components on which this component depends. When stopping a component with
SRVCTL, Oracle Restart can stop any dependent components first.

SRVCTL always starts a component according to its Oracle Restart configuration.
Starting a component by other means may not.

For example, if you specified a server parameter file (SPFILE) location when you
added a database to the Oracle Restart configuration, and that location is not the
default location for SPFILEs, if you start the database with SQL*Plus, the SPFILE
specified in the configuration may not be used.

See the srvctl add database command on page 4-33 for a table of configuration
options for a database instance.

When you start a component with SRVCTL, environment variables stored in the
Oracle Restart configuration for the component are set.

See "Managing Environment Variables in the Oracle Restart Configuration" on
page 4-17 for more information.

You can also use Oracle Enterprise Manager Database Control (Database Control) to
start a database managed by Oracle Restart. Both the SRVCTL and Database Control
methods are described in the following sections:

Starting and Stopping Components Managed by Oracle Restart with SRVCTL
Starting a Database Managed by Oracle Restart with Oracle Enterprise Manager

Starting and Stopping Components Managed by Oracle Restart with SRVCTL
You can start and stop any component managed by Oracle Restart with SRVCTL.

To start or stop a component managed by Oracle Restart with SRVCTL:

1.
2

Prepare to run SRVCTL as described in "Preparing to Run SRVCTL" on page 4-10.
Do one of the following:
= To start a component, enter the following command:

srvctl start object [options]

= To stop a component, enter the following command:
srvctl stop object [options]
where object is one of the components listed in Table 4-8 on page 4-31. See the

SRVCTL start command on page 4-60 and the stop command on page 4-68 for
available options for each component.

Configuring Automatic Restart of an Oracle Database 4-25

Starting and Stopping Components Managed by Oracle Restart

Example 4-17 Starting a Database
This example starts the database with a DB_UNIQUE_NAME of dbcrm:

srvctl start database -d dbcrm

Example 4-18 Starting a Database NOMOUNT

This example starts the database instance without mounting the database:

srvctl start database -d dbcrm -o nomount

Example 4-19 Starting the Default Listener

This example starts the default listener:

srvctl start listener

Example 4-20 Starting a Specified Listener

This example starts the listener named crmlistener:

srvctl start listener -1 crmlistener

Example 4-21 Starting Database Services

This example starts the database services bizdev and support for the database with
a DB_UNIQUE_NAME of dbcrm. If the database is not started, Oracle Restart first starts
the database.

srvctl start service -d dbcrm -s "bizdev, support"

Example 4-22 Starting (Mounting) Oracle ASM Disk Groups

This example starts (mounts) the Oracle ASM disk groups data and recovery. The
user running this command must be a member of the OSASM group.

srvctl start diskgroup -g "data,recovery"

Example 4-23 Shutting Down a Database

This example stops (shuts down) the database with a DB_UNIQUE_NAME of dbcrm.
Because a stop option (-0) is not provided, the database shuts down according to the
stop option in its Oracle Restart configuration. The default stop option is IMMEDIATE.

srvctl stop database -d dbcrm

Example 4-24 Shutting Down a Database with the ABORT option

This example does a SHUTDOWN ABORT of the database with a DB_UNIQUE_NAME of
dbcrm.

srvctl stop database -d dbcrm -o abort

See Also: The SRVCTL start command on page 4-60

Starting a Database Managed by Oracle Restart with Oracle Enterprise Manager

With Oracle Enterprise Manager Database Control (Database Control), you can use
Oracle Restart to start a database.

To start a database managed by Oracle Restart with Oracle Enterprise Manager:

1. Access the Database Home page for the desired database instance.

4-26 Oracle Database Administrator's Guide

Stopping and Restarting Oracle Restart for Maintenance Operations

See "Accessing the Database Home Page" in Oracle Database 2 Day DBA for
instructions.

Click Startup.
The Startup /Shutdown Credentials page appears.
Enter credentials as follows:

a. Enter the host computer credentials for the user who installed the database
Oracle home.

b. Enter the database credentials consisting of the user name SYS and the
password that you assigned to SYS during the installation.

c. In the Connect As list, choose the value SYSOPER.

(Optional) Select the Save as Preferred Credential option if you want these
credentials to be automatically filled in for you the next time that this page
appears.

Click OK.
The Select Startup Type page appears.

To start the database with Oracle Restart, select Start database along with
dependent resources.

This ensures that resources on which the database depends, such as the Oracle
Automatic Storage Management instance, are successfully started before the
database is started.

Click OK.
A confirmation page appears.
Click Yes.

The Startup /Shutdown: Activity Information page appears, indicating that the
database is being started up. When startup is complete, the Login page appears.

Log in to the database (and to Database Control).

The Database Home page appears indicating that the database instance status is
Up.

Stopping and Restarting Oracle Restart for Maintenance Operations

When several components in an Oracle home are managed by Oracle Restart, you can
stop Oracle Restart and the components managed by Oracle Restart in the Oracle
home. You can also disable Oracle Restart so that it is not restarted if the node reboots.
You might need to do this when you are performing maintenance that includes the
Oracle home, such as installing a patch. When the maintenance operation is complete,
you can enable and restart Oracle Restart, and you can restart the components
managed by Oracle Restart in the Oracle home.

Use both the SRVCTL utility and the CRSCTL utility for the stop and start operations:

The stop home SRVCTL command stops all of the components that are managed
by Oracle Restart in the specified Oracle home. The start home SRVCTL
command starts these components. The Oracle home can be an Oracle Database
home or an Oracle Grid Infrastructure home.

Configuring Automatic Restart of an Oracle Database 4-27

Stopping and Restarting Oracle Restart for Maintenance Operations

When you use the home object, a state file, specified in the -s option, tracks the
state of each component. The stop and status commands create the state file.
The start command uses the state file to identify the components to restart.

In addition, you can check the status of the components managed by Oracle
Restart using the status home command.

s The stop CRSCTL command stops Oracle Restart, and the disable CRSCTL
command ensures that the components managed by Oracle Restart do not restart
automatically. The enable CRSCTL command enables automatic restart and the
start CRSCTL command restarts Oracle Restart.

To stop and start the components in an Oracle home while installing a patch:
1. Prepare to run SRVCTL as described in "Preparing to Run SRVCTL" on page 4-10.

2. Use the SRVCTL utility to stop the components managed by Oracle Restart in an
Oracle home:

srvctl stop home -o oracle home -s state file [-t stop_options] [-f]
where oracle_home is the complete path of the Oracle home and state_fileis
the complete path to the state file. State information for the Oracle home is

recorded in the specified state file. Make a note of the state file location because it
must be specified in Step 7.

Before stopping the components in an Oracle Grid Infrastructure home, ensure
that you first stop the components in a dependent Oracle Database home.

3. If you are patching an Oracle Grid Infrastructure home, then disable and stop
Oracle Restart. Otherwise, go to Step 4.

To disable and stop Oracle Restart, use the CRSCTL utility to run the following
commands:

crsctl disable has
crsctl stop has

4, Perform the maintenance operation.

5. Use the CRSCTL utility to enable automatic restart of the components managed by
Oracle Restart:

crsctl enable has

6. Use the CRSCTL utility to start Oracle Restart:

crsctl start has

7. Use the SRVCTL utility to start the components that were stopped in Step 2:

srvctl start home -o oracle _home -s state_file

The state file must match the state file specified in Step 2.

8. Optionally, use the SRVCTL utility to check the status of the components managed
by Oracle Restart in the Oracle home:

srvctl status home -o oracle home -s state_file

Example 4-25 Stopping Components Managed by Oracle Restart in an Oracle Home

srvctl stop home -o /ul0l/app/oracle/product/11.2.0/dbhome_1 -s /usrl/or_state

4-28 Oracle Database Administrator's Guide

Stopping and Restarting Oracle Restart for Maintenance Operations

Example 4-26 Starting Components Managed by Oracle Restart in an Oracle Home
srvctl start home -o /u0l/app/oracle/product/11.2.0/dbhome_1 -s /usrl/or_state

Example 4-27 Displaying the Status of Components Managed by Oracle Restart in an
Oracle Home

srvctl status home -o /ull/app/oracle/product/11.2.0/dbhome_1 -s /usrl/or_state
See Also:
» The srvctl stop home command on page 4-70
» The srvctl status home command on page 4-65
» The srvctl start home command on page 4-62

s "CRSCTL Command Reference" on page 4-74

Configuring Automatic Restart of an Oracle Database 4-29

SRVCTL Command Reference

SRVCTL Command Reference

This section provides details about the syntax and options for all SRVCTL commands.

SRVCTL Command Syntax and Options Overview
SRVCTL expects the following command syntax:

srvctl command object options

where:

» commandis a verb such as start, stop, or remove. See Table 4-7 on page 4-30
for a complete list.

= object is the component on which SRVCTL performs the command, such as
database, listener, and so on. You can also use component abbreviations. See
Table 4-8 on page 4-31 for a complete list of components and their abbreviations.

= options extend the use of a preceding command combination to include
additional parameters for the command. For example, the -d option indicates that
a database unique name follows, and the -s option indicates that a
comma-delimited list of database service names follows.

Note: On the Windows platform, when specifying a
comma-delimited list, you must enclose the list within double-quotes
("...,..."). You must also use double-quotes on the UNIX and Linux
platforms if any list member contains shell metacharacters.

Case Sensitivity SRVCTL commands and components are case insensitive. Options
are case sensitive. Database and database service names are case insensitive and case
preserving.

Table 4-7 Summary of SRVCTL Commands

Command Description
add on page 4-32 Adds a component to the Oracle Restart configuration.
config on page 4-38 Displays the Oracle Restart configuration for a component.

disable on page 4-42 Disables management by Oracle Restart for a component.
enable on page 4-45 Reenables management by Oracle Restart for a component.

getenv on page 4-48 Displays environment variables in the Oracle Restart configuration
for a database, Oracle ASM instance, or listener.

modify on page 4-50 Modifies the Oracle Restart configuration for a component.

remove on page 4-54 Removes a component from the Oracle Restart configuration.

setenv on page 4-58 Sets environment variables in the Oracle Restart configuration for a
database, Oracle ASM instance, or listener.

start on page 4-60 Starts the specified component.

status on page 4-64 Displays the running status of the specified component.

stop on page 4-68 Stops the specified component.

unsetenv on page 4-72 Unsets environment variables in the Oracle Restart configuration for a
database, Oracle ASM instance, or listener.

4-30 Oracle Database Administrator's Guide

SRVCTL Command Reference

SRVCTL Components Summary

Table 4-8 lists the keywords that can be used for the object portion of SRVCTL
commands. You can use either the full name or the abbreviation for each component
keyword.

Table 4-8 Component Keywords and Abbreviations

Component Abbreviation Description

asm asm Oracle ASM instance
database db Database instance
diskgroup d9 Oracle ASM disk group

filesystem filesystem Oracle ASM file system

home home Oracle home or Oracle Clusterware home
listener lsnr Oracle Net listener

service serv Database service

ons, eons ons, eons Oracle Notification Services (ONS)

See Also: Table 4-1, " Oracle Components Automatically Restarted
by Oracle Restart" on page 4-2

Configuring Automatic Restart of an Oracle Database 4-31

add

add

The srvctl add command adds the specified component to the Oracle Restart
configuration, and optionally sets Oracle Restart configuration parameters for the
component. After a component is added, Oracle Restart begins to manage it, restarting
it when required.

To perform srvctl add operations, you must be logged in to the database host
computer with the proper user account. See "Preparing to Run SRVCTL" on page 4-10
for more information.

Table 4-9 srvctl add Summary

Command Description

srvctl add asm on page 4-32 Adds an Oracle ASM instance.

srvctl add database on page 4-33 Adds a database.

srvctl add eons on page 4-34 Adds an eONS (used by Oracle Enterprise
Manager).

srvctl add listener on page 4-35 Adds a listener.

srvctl add ons on page 4-35 Adds an ONS (used by Oracle Data Guard
configurations with Oracle Data Guard Broker).

srvctl add service on page 4-36 Iédds a database service managed by Oracle

estart.

Note: Thereisno srvctl add command for Oracle ASM disk
groups. Disk groups are automatically added to the Oracle Restart
configuration when they are first mounted. If you remove a disk
group from the Oracle Restart configuration and later want to add it
back, connect to the Oracle ASM instance with SQL*Plus and use an
ALTER DISKGROUP ... MOUNT command.

srvctl add asm

Adds an Oracle ASM instance to the Oracle Restart configuration.

Syntax and Options
Use the srvctl add asm command with the following syntax:

srvctl add asm [-1 listener _name [-p spfile] [-d asm_diskstring]

]

Table 4-10 srvctl add asm Options

Option Description

-1 listener_name Name of the listener with which Oracle ASM should register.
A weak dependency is established with this listener. (Before
starting the Oracle ASM instance, Oracle Restart attempts to
start the listener. If the listener does not start, the Oracle ASM
instance is still started. If the listener later fails, Oracle Restart
does not restart Oracle ASM.)

If omitted, defaults to the listener named 1istener.

-p spfile The full path of the server parameter file for the database. If
omitted, the default SPFILE is used.

4-32 Oracle Database Administrator's Guide

SRVCTL Command Reference

Table 4-10 (Cont.) srvctl add asm Options

Option Description

-d asm_diskstring Oracle ASM disk group discovery string. An Oracle ASM
discovery string is a comma-delimited list of strings that limits
the set of disks that an Oracle ASM instance discovers. The
discovery strings can include wildcard characters. Only disks
that match one of the strings are discovered.

Example
An example of this command is:

srvctl add asm -1 crmlistener

See Also: Oracle Database Storage Administrator’s Guide for more
information about Oracle ASM disk group discovery strings

srvctl add database
Adds a database to the Oracle Restart configuration.

After adding a database to the Oracle Restart configuration, if the database then
accesses data in an Oracle ASM disk group, a dependency between the database that
disk group is created. Oracle Restart then ensures that the disk group is mounted
before attempting to start the database.

However, if the database and Oracle ASM instance are not running when you add the
database to the Oracle Restart configuration, you must manually establish the
dependency between the database and its disk groups by specifying the -a option in
the SRVCTL command. See the example later in this section.

Important: When you manually add a database to the Oracle Restart
configuration, you must also add the grid infrastructure home owner
as a member of the OSDBA group of that database. This is because the
grid infrastructure components must be able to connect to the
database as SYSDBA to start and stop the database.

For example, if the host user who installed the grid infrastructure
home is named grid and the OSDBA group of the new database is
named dba, then user grid must be a member of the dba group.

Syntax and Options
Use the srvctl add database command with the following syntax:

srvctl add database -d db_unique_name -o oracle_home [-m domain_name]

[-n db_name] [-p spfile] [-s start_options] [-t stop_options]
[-r {PRIMARY | PHYSICAL_STANDBY | LOGICAL_STANDBY ‘ SNAPSHOT _STANDBY}]
[-y {automatic | manual}] [-a disk group list]

Table 4-11 srvctl add database Options

Syntax Description

-d db_unique name Unique name for the database. Must match the DB_
UNIQUE_NAME initialization parameter setting. If DB_
UNIQUE_NAME is unspecified, then this option must
match the DB_NAME initialization parameter setting.
The default setting for DB_UNIQUE_NAME uses the
setting for DB_NAME.

-0 Oracle_home The full path of Oracle home for the database.

Configuring Automatic Restart of an Oracle Database 4-33

add

srvctl add eons

Table 4-11 (Cont.) srvctl add database Options

Syntax

Description

-m domalin_name

-n db_name

-p spfile
-s start_options

-t stop_options

-r {PRIMARY | PHYSICAL_STANDBY |
LOGICAL_STANDBY | SNAPSHOT_
STANDBY}

-y {AUTOMATIC | MANUAL}

-a disk_group list

The domain for the database. Must match the DB_
DOMAIN initialization parameter

If provided, must match the DB_NAME initialization
parameter setting. You must include this option if
DB_NAME is different from the unique name given by
the -d option

The full path of the server parameter file for the
database. If omitted, the default SPFILE is used.

Startup options for the database (OPEN, MOUNT, or
NOMOUNT). If omitted, defaults to OPEN.

Shutdown options for the database (NORMAL,
IMMEDIATE, TRANSACTIONAL, or ABORT). If
omitted, defaults to IMMEDIATE.

The current role of the database (PRIMARY,
PHYSICAL_STANDBY, SNAPSHOT_STANDBY, or
LOGICAL_STANDBY). Applicable in Oracle Data
Guard environments only.

Management policy for the database. If AUTOMATIC
(the default), the database is automatically restored to
its previous running condition (started or stopped)
upon restart of the database host computer. If
MANUAL, the database is never automatically restarted
upon restart of the database host computer. A
MANUAL setting does not prevent Oracle Restart from
monitoring the database while it is running and
restarting it if a failure occurs.

List of disk groups upon which the database is
dependent. When starting the database, Oracle
Restart first ensures that these disk groups are
mounted. This option is required only if the database
instance and the Oracle ASM instance are not started
when adding the database. Otherwise, the
dependency is recorded automatically between the
database and its disk groups.

Examples

This example adds the database with the DB_UNIQUE_NAME dbcrm:

srvctl add database -d dbcrm -o /ull/app/oracle/product/11.2.0/dbhome_1

This example adds the same database and also establishes a dependency between the
database and the disk groups DATA and RECOVERY.

srvctl add database -d dbcrm -o /u0l/app/oracle/product/11.2.0/dbhome_1

-a "DATA,RECOVERY"

See Also:

= "Oracle Restart Integration with Oracle Data Guard" on page 4-5

» Oracle Data Guard Concepts and Administration

Adds an eONS to an Oracle Restart configuration.

4-34 Oracle Database Administrator's Guide

SRVCTL Command Reference

The eONS is used by Oracle Enterprise Manager to receive notification of change in
status of components managed by Oracle Restart.

Syntax and Options
Use the srvctl add eons command with the following syntax:

srvctl add eons [-p portnum] [-m multicast_ip address] [-e eons_listen_port] [-v]

Table 4-12 srvctl add eons Options

Option Description

-p portnum The port number for eONS
-m multicast_ip_address The multicast IP address for eONS
-e eons_listen_port Local listen port for eONS. The default port number is 2016.

-v Verbose output

srvctl add listener

Adds a listener to the Oracle Restart configuration.

Syntax and Options
Use the srvetl add listener command with the following syntax:

srvctl add listener [-1 listener _name] [-p endpoints] [-s] [-o Oracle_home]

Table 4-13 srvctl add listener Options

Option Description

-1 listener_name Listener name. If omitted, defaults to LISTENER

-p endpoints Comma separated TCP ports or listener endpoints. If omitted,
defaults to TCP:1521. endpoints syntax is:
"[TCP:]port[, ...] [/IPC:key] [/NMP:pipe_ name]
[/TCPS:s_port] [/SDP:port]"

-s Skip checking for port conflicts with the supplied endpoints

-0 Oracle_home Oracle home for the listener. If omitted, the Oracle Grid

Infrastructure home is assumed.

Example
The following command adds a listener (named LISTENER) running out of the
database Oracle home and listening on TCP port 1522:

srvctl add listener -p TCP:1522 -o /ull/app/oracle/product/11.2.0/dbhome_1

srvctl add ons
Adds an ONS to an Oracle Restart configuration.

ONS must be added to an Oracle Restart configuration to enable the sending of Fast
Application Notification (FAN) events after an Oracle Data Guard failover.

Syntax and Options
Use the srvctl add ons command with the following syntax:

srvctl add ons [-1 ons_local_port] [-r ons_remote_port] [-t
host|[:port], [host[:port]...1] [-V]

Configuring Automatic Restart of an Oracle Database 4-35

add

Table 4-14 srvctl add ons Options

Option Description

-1 ons_local_port ONS listening port for local client connections. The default is
6100.

-r ons_remote_port ONS listening port for connections from remote hosts. The
default is 6200.

-t A list of host : port pairs of remote hosts that are part of the

host [:port], [host[:port] ONS network

1. Note: If port is not specified for a remote host, then ons_
remote_port is used.

-v Verbose output

srvctl add service

Adds a database service to the Oracle Restart configuration. Creates the database
service if it does not exist. This method of creating a service is preferred over using the
DBMS_SERVICE PL/SQL package.

Syntax and Options
Use the srvctl add service command with the following syntax:

srvctl add service -d db_unique_name -s service_name
[-1 [PRIMARY][,PHYSICAL_STANDBY] [, LOGICAL_STANDBY] [, SNAPSHOT STANDBY]]
[-y {AUTOMATIC | MANUAL}] [-e {NONE | SESSION | SELECT}] [-m {NONE | BASIC}]
[-w integer] [-z integer] [-j {SHORT | LONG}]
[-B {SERVICE_TIME | THROUGHPUT | NONE}] [-q {TRUE | FALSE}]

Table 4-15 srvctl add service Options

Option Description

-d db_unique_name Unique name for the database. Must match the DB_UNIQUE_
NAME initialization parameter setting. If DB_ UNIQUE_NAME is
unspecified, then this option must match the DB_NAME
initialization parameter setting. The default setting for DB_
UNIQUE_NAME uses the setting for DB_NAME.

-s service_name The database service name
-1 [PRIMARY] [, PHYSICAL_ A list of service roles. Applicable in Oracle Data Guard
STANDBY] [, LOGICAL_ environments only. When this option is present, upon

STANDBY] [, SNAPSHOT STANDBY] database startup, the service is started only when one of its
service roles matches the current database role.

-y {AUTOMATIC | MANUAL} Management policy for the service. If AUTOMATIC (the
default), the service is automatically started upon restart of
the database, either by a planned restart (with SRVCTL) or
after a failure. Automatic restart is also subject to the service
role, however (the -1 option). If MANUAL, the service is never
automatically restarted upon planned restart of the database
(with SRVCTL). A MANUAL setting does not prevent Oracle
Restart from monitoring the service when it is running and
restarting it if a failure occurs.

-e {NONE |SESSION | SELECT} Failover type. For standalone servers, applicable in Oracle
Data Guard environments only.

-m {NONE | BASIC} Failover method. For standalone servers, applicable in Oracle
Data Guard environments only.

-w integer Failover delay. For standalone servers, applicable in Oracle
Data Guard environments only.

4-36 Oracle Database Administrator's Guide

SRVCTL Command Reference

Table 4-15 (Cont.) srvctl add service Options

Option

Description

-z linteger

-j {SHORT | LONG}

-B {SERVICE_TIME |
THROUGHPUT | NONE}

-q {TRUE | FALSE}

Failover retries. For standalone servers, applicable in Oracle
Data Guard environments only.

Connection load balancing goal

Runtime load balancing goal

Send Oracle Advanced Queuing (AQ) HA notifications. For
standalone servers, applicable in Oracle Data Guard
environments only.

Example

This example adds the sales service for the database with DB_UNIQUE_NAME dbcrm.
The service is started only when dbcrmis in PRIMARY mode.

srvctl add service -d dbcrm -s sales -1 PRIMARY

See Also:

» The section in Oracle Database PL/SQL Packages and Types Reference
on the DBMS_SERVICE package for more information about the
options for this command

» "Oracle Restart Integration with Oracle Data Guard" on page 4-5

» Oracle Data Guard Concepts and Administration

Configuring Automatic Restart of an Oracle Database 4-37

config

config

The srvctl config command displays the Oracle Restart configuration of the
specified component or set of components.

Table 4-16 srvctl config Summary

Command Description

srvctl config asm on page 4-38 Displays the Oracle Restart configuration information
for the Oracle ASM instance

srvctl config database on page 4-38 Displays the Oracle Restart configuration information
for the specified database, or lists all databases managed

by Oracle Restart

srvctl config eons on page 4-39 Displays the current configuration information for
eONS.

srvctl config listener on page 4-39 Displays the Oracle Restart configuration information

for all listeners or for the specified listener
srvctl config ons on page 4-40 Displays the current configuration information for ONS.

srvctl config service on page 4-40 For the specified database, displays the Oracle Restart
configuration information for the specified database
service or for all database services

srvctl config asm

Displays the Oracle Restart configuration information for the Oracle ASM instance.

Syntax and Options
Use the srvctl config asm command with the following syntax:

srvctl config asm [-a]

Table 4-17 srvctl config asm Options

Option Description
-a Display enabled/disabled status also
Example

An example of this command is:

srvctl config asm -a

asm home: /u0l/app/oracle/product/11.2.0/grid
ASM is enabled.

srvctl config database

Displays the Oracle Restart configuration information for the specified database, or
lists all databases managed by Oracle Restart.

Syntax and Options
Use the srvctl config database command with the following syntax:

srvctl config database [-d db_unique name [-a]]

4-38 Oracle Database Administrator's Guide

SRVCTL Command Reference

Table 4-18 srvctl config database Options

Option Description

-d db_unique_name Unique name for the database. Must match the DB_UNIQUE_NAME
initialization parameter setting. If DB_ UNIQUE_NAME is
unspecified, then this option must match the DB_NAME
initialization parameter setting. The default setting for DB_
UNIQUE_NAME uses the setting for DB_NAME.

-a Display enabled/disabled status also

Examples
An example of this command to list all Oracle Restart-managed databases is:

srvctl config database

dbcrm
orcl

An example of this command to display configuration and enabled /disabled status for
the database with the DB_UNIQUE_ID orcl is:

srvctl config database -d orcl -a

Database unique name: orcl
Database name: orcl

Oracle home: /u0l/app/oracle/product/11.2.0/dbhome_1
Oracle user: oracle

Spfile: +DATA/orcl/spfileorcl.ora
Domain: us.example.com

Start options: open

Stop options: immediate

Database role:

Management policy: automatic

Disk Groups: DATA

Services: mfg,sales

Database is enabled

srvctl config eons

Displays the current configuration information for eONS.

Syntax and Options
Use the srvctl config eons command with the following syntax:

srvctl config eons

srvctl config listener

Displays the Oracle Restart configuration information for all Oracle Restart-managed
listeners or for the specified listener.

Syntax and Options
Use the srvectl config listener command with the following syntax:

srvctl config listener [-1 listener_name]

Configuring Automatic Restart of an Oracle Database 4-39

config

Table 4-19 srvctl config listener Options

Option Description

-1 listener_name Listener name. If omitted, configuration information for all Oracle
Restart-managed listeners is displayed.

Example
This example displays the configuration information and enabled /disabled status for
the default listener:

srvctl config listener

Name: LISTENER

Home: /ull/app/oracle/product/11.2.0/dbhome_1
End points: TCP:1521

Listener is enabled.

srvctl config ons

Displays the current configuration information for ONS.

Syntax and Options
Use the srvctl config ons command with the following syntax:

srvctl config ons

srvctl config service

For the specified database, displays the Oracle Restart configuration information for
the specified database service or for all Oracle Restart-managed database services.

Syntax and Options
Use the srvctl config service command with the following syntax:

srvctl config service -d db_unique name [-s service_name] [-al]

Table 4-20 srvctl config service Options

Option Description

-d db_unique name Unique name for the database. Must match the DB_UNIQUE_NAME
initialization parameter setting. If DB_ UNIQUE_NAME is unspecified,
then this option must match the DB_NAME initialization parameter
setting. The default setting for DB_UNIQUE_NAME uses the setting
for DB_NAME.

-s service_name Database service name. If omitted, SRVCTL displays configuration
information for all Oracle Restart-managed services for the
database

-a Display detailed configuration information

Example

An example of this command is:

srvctl config service -d dbcrm -s sales

Service name: sales
Service is enabled
Cardinality: SINGLETON
Disconnect: true
Service role: PRIMARY

4-40 Oracle Database Administrator's Guide

SRVCTL Command Reference

Management policy: automatic

DTP transaction: false

AQ HA notifications: false

Failover type: NONE

Failover method: NONE

TAF failover retries: 0

TAF failover delay: 0

Connection Load Balancing Goal: NONE
Runtime Load Balancing Goal: NONE
TAF policy specification: NONE

Configuring Automatic Restart of an Oracle Database 4-41

disable

disable

Disables a component, which suspends management of that component by Oracle
Restart. The srvetl disable command is intended to be used when a component
must be repaired or shut down for maintenance, and should not be restarted
automatically. When you disable a component:

» Itis nolonger automatically restarted.
= Itis no longer automatically started through a dependency.
= It cannot be started with SRVCTL.

To perform srvctl disable operations, you must be logged in to the database host
computer with the proper user account. See "Preparing to Run SRVCTL" on page 4-10
for more information.

See Also: The enable command on page 4-45

Table 4-21 srvctl disable Summary

Command Description
srvctl disable asm on page 4-42 Disables the Oracle ASM instance
srvctl disable database on page 4-42 Disables a database

srvctl disable diskgroup on page 4-43 Disables an Oracle ASM disk group

srvctl disable eons on page 4-43 Disables eONS

srvctl disable listener on page 4-43 Disables the specified listener or all listeners
srvctl disable ons on page 4-44 Disables ONS

srvctl disable service on page 4-44 Disables one or more database services for the

specified database

srvctl disable asm
Disables the Oracle ASM instance.

Syntax and Options
Use the srvctl disable asm command with the following syntax:

srvctl disable asm
srvctl disable database
Disables the specified database.

Syntax and Options
Use the srvctl disable database command with the following syntax:

srvctl disable database -d db_unique name

4-42 Oracle Database Administrator's Guide

SRVCTL Command Reference

Table 4-22 srvctl disable database Options

Option Description

-d db_unique_name Unique name for the database. Must match the DB_UNIQUE_
NAME initialization parameter setting. If DB_UNIQUE_NAME is
unspecified, then this option must match the DB_NAME
initialization parameter setting. The default setting for DB_
UNIQUE_NAME uses the setting for DB_NAME.

Example
An example of this command is:

srvctl disable database -d dbcrm

srvctl disable diskgroup
Disables an Oracle ASM disk group.

Syntax and Options
Use the srvctl disable diskgroup command with the following syntax:

srvctl disable diskgroup -g diskgroup_name

Table 4-23 srvctl disable diskgroup Options

Option Description
-g diskgroup_name Disk group name
Example

An example of this command is:

srvctl disable diskgroup -g DATA

srvctl disable eons
Disables eONS.

Syntax and Options
Use the srvctl disable eons command with the following syntax:

srvctl disable eons -v

Table 4-24 srvctl disable eons Options

Option Description

-v Verbose output

srvctl disable listener

Disables the specified listener or all listeners.

Syntax and Options
Use the srvctl disable listener command with the following syntax:

srvctl disable listener [-1 listener_name]

Table 4-25 srvctl disable listener Options

Option Description

-1 listener_name Listener name. If omitted, all listeners are disabled.

Configuring Automatic Restart of an Oracle Database 4-43

disable

Example
An example of this command is:

srvctl disable listener -1 crmlistener

srvctl disable ons
Disables ONS.

Syntax and Options
Use the srvctl disable ons command with the following syntax:

srvctl disable ons -v

Table 4-26 srvctl disable ons Options

Option Description

-v Verbose output

srvctl disable service

Disables one or more database services.

Syntax and Options
Use the srvctl disable service command with the following syntax:

srvctl disable service -d db unique_name -s service_name list

Table 4-27 srvctl disable service Options

Option Description

-d db_unique_name Unique name for the database. Must match the
DB_UNIQUE_NAME initialization parameter
setting. If DB_ UNIQUE_NAME is unspecified,
then this option must match the DB_NAME
initialization parameter setting. The default
setting for DB_UNIQUE_NAME uses the setting
for DB_NAME.

-s service_name_list Comma-delimited list of database service
names

Example
The following example disables the database service sales and mfg:

srvctl disable service -d dbcrm -s sales,mfg

4-44 Oracle Database Administrator's Guide

SRVCTL Command Reference

enable

The srvctl enable command reenables the specified disabled component so that:
s Oracle Restart can automatically restart it.

= It can be automatically started through a dependency.

= You can start it manually with SRVCTL.

If the component is already enabled, then the command is ignored.

When you add a component to the Oracle Restart configuration, it is enabled by
default.

To perform srvctl enable operations, you must be logged in to the database host
computer with the proper user account. See "Preparing to Run SRVCTL" on page 4-10
for more information.

Table 4-28 srvctl enable Summary

Command Description

srvctl enable asm on page 4-45 Enables an Oracle ASM instance.
srvctl enable database on page 4-45 Enables a database.

srvctl enable diskgroup on page 4-46 Enables an Oracle ASM disk group.

srvctl enable eons on page 4-46 Enables eONS.

srvctl enable listener on page 4-46 Enables the specified listener or all listeners.

srvctl enable ons on page 4-47 Enables ONS.

srvctl enable service on page 4-47 Enables one or more database services for the specified
database.

See Also: The disable command on page 4-42

srvctl enable asm

Enables an Oracle ASM instance.

Syntax and Options
Use the srvctl enable asm command with the following syntax:

srvctl enable asm
srvctl enable database
Enables the specified database.

Syntax and Options
Use the srvctl enable database command with the following syntax:

srvctl enable database -d db_unique name

Configuring Automatic Restart of an Oracle Database 4-45

enable

Table 4-29 srvctl enable database Options

Option Description

-d db_unique_name Unique name for the database. Must match the DB_UNIQUE_
NAME initialization parameter setting. If DB_UNIQUE_NAME is
unspecified, then this option must match the DB_NAME
initialization parameter setting. The default setting for DB_
UNIQUE_NAME uses the setting for DB_NAME.

Example
An example of this command is:

srvctl enable database -d dbcrm

srvctl enable diskgroup
Enables an Oracle ASM disk group.

Syntax and Options
Use the srvctl enable diskgroup command with the following syntax:

srvctl enable diskgroup -g diskgroup_name

Table 4-30 srvctl enable diskgroup Options

Option Description
-g diskgroup_name Disk group name
Example

An example of this command is:

srvctl enable diskgroup -g DATA

srvctl enable eons
Enables eONS.

Syntax and Options
Use the srvctl enable eons command with the following syntax:

srvctl enable eons -v

Table 4-31 srvctl enable eons Options

Option Description

-v Verbose output

srvctl enable listener

Enables the specified listener or all listeners.

Syntax and Options
Use the srvctl enable listener command with the following syntax:

srvctl enable listener [-1 listener_ name]

Table 4-32 srvctl enable listener Options

Option Description

-1 listener_name Listener name. If omitted, all listeners are enabled.

4-46 Oracle Database Administrator's Guide

SRVCTL Command Reference

Example
An example of this command is:

srvctl enable listener -1 crmlistener

srvctl enable ons
Enables ONS.

Syntax and Options
Use the srvctl enable ons command with the following syntax:

srvctl enable ons -v

Table 4-33 srvctl enable ons Options

Option Description

-v Verbose output

srvctl enable service
Enables one or more database services for the specified database.

Syntax and Options
Use the srvctl enable service command with the following syntax:

srvctl enable service -d db_unique_name -s service_name_list

Table 4-34 srvctl enable service Options

Option Description

-d db_unique_name Unique name for the database. Must match the DB_UNIQUE_
NAME initialization parameter setting. If DB_UNIQUE_NAME is
unspecified, then this option must match the DB_NAME
initialization parameter setting. The default setting for DB_
UNIQUE_NAME uses the setting for DB_NAME.

-s service_name_list Comma-delimited list of database service names

Examples
The following example enables the database services sales and mfg in the database
with DB_UNIQUE_NAME dbcrm:

srvctl enable service -d dbcrm -s "sales,mfg"

Configuring Automatic Restart of an Oracle Database 4-47

getenv

getenv

Gets and displays environment variables and their values from the Oracle Restart
configuration for a database, listener, or Oracle ASM instance.

Table 4-35 srvctl getenv Summary

Command Description

srvctl getenv asm on page 4-48 Displays the configured environment variables for
the Oracle ASM instance

srvctl getenv database on page 4-48 Displays the configured environment variables for

the specified database instance

srvctl getenv listener on page 4-49 Displays the configured environment variables for
the specified listener

See Also:

= setenv command on page 4-58

= unsetenv command on page 4-72

= "Managing Environment Variables in the Oracle Restart

Configuration" on page 4-17

srvctl getenv asm

Displays the configured environment variables for the Oracle ASM instance.

Syntax and Options
Use the srvctl getenv asm command with the following syntax:

srvctl getenv asm [-t name list]

Table 4-36 srvctl getenv asm Options

Options Description

-t name_list Comma-delimited list of names of environment variables to
display. If omitted, SRVCTL displays all configured environment
variables for Oracle ASM.

Example
The following example displays all configured environment variables for the Oracle
ASM instance:

srvctl getenv asm
srvctl getenv database
Displays the configured environment variables for the specified database.

Syntax and Options
Use the srvctl getenv database command with the following syntax:

srvctl getenv database -d db unique_name [-t name_list]

4-48 Oracle Database Administrator's Guide

SRVCTL Command Reference

Table 4-37 srvctl getenv database Options

Options Description

-d db_unique_name Unique name for the database. Must match the DB_UNIQUE_NAME
initialization parameter setting. If DB_ UNIQUE_NAME is
unspecified, then this option must match the DB_NAME
initialization parameter setting. The default setting for DB_
UNIQUE_NAME uses the setting for DB_NAME.

-t name list Comma-delimited list of names of environment variables to
display. If omitted, SRVCTL displays all configured environment
variables.

Example

The following example displays all configured environment variables for the database
with DB_UNIQUE_NAME dbcrm:

srvctl getenv database -d dbcrm
srvctl getenv listener
Displays the configured environment variables for the specified listener.

Syntax and Options
Use the srvctl getenv listener command with the following syntax:

srvctl getenv listener [-1 listener_name] [-t name_ list]

Table 4-38 srvctl getenv listener Options

Options Description

-1 listener name Listener name. If omitted, SRVCTL lists environment variables for
all listeners.

-t name_list Comma-delimited list of names of environment variables to
display. If omitted, SRVCTL displays all configured environment
variables.

Example

The following example displays all configured environment variables for the listener
named crmlistener:

srvctl getenv listener -1 crmlistener

Configuring Automatic Restart of an Oracle Database 4-49

modify

modify

Modifies the Oracle Restart configuration of a component. The change takes effect
when the component is next restarted.

To perform srvctl modify operations, you must be logged in to the database host
computer with the proper user account. See "Preparing to Run SRVCTL" on page 4-10
for more information.

Table 4-39 srvctl modify Summary

Command Description

srvctl modify asm on page 4-50 Modifies the configuration for Oracle ASM

srvctl modify database on page 4-51 Modifies the configuration for a database

srvctl modify eons on page 4-51 Modifies eONS

srvctl modify listener on page 4-51 Modifies the configuration for the specified listener or
all listeners

srvctl modify ons on page 4-52 Modifies ONS

srvctl modify service on page 4-52 Modifies the configuration for a database service

srvctl modify asm

Modifies the Oracle Restart configuration for the Oracle ASM instance.

Syntax and Options
Use the srvctl modify asm command with the following syntax:

srvctl modify asm [-1 listener _name] [-p spfile] [-d asm diskstring]

Table 4-40 srvctl modify asm Options

Option Description

-1 listener_name Name of the listener with which Oracle ASM must register. A
weak dependency is established with this listener. (Before Oracle
ASM is started, Oracle Restart ensures that this listener is
started.)

-p spfile The full path of the server parameter file for the database. If
omitted, the default SPFILE is used.

-d asm_diskstring Oracle ASM disk group discovery string. An Oracle ASM
discovery string is a comma-delimited list of strings that limits
the set of disks that an Oracle ASM instance discovers. The
discovery strings can include wildcard characters. Only disks
that match one of the strings are discovered.

Example
An example of this command is:

srvctl modify asm -1 crmlistener

See Also: Oracle Database Storage Administrator’s Guide for more
information about Oracle ASM disk group discovery strings

4-50 Oracle Database Administrator's Guide

SRVCTL Command Reference

srvctl modify database
Modifies the Oracle Restart configuration for a database.
Syntax and Options
Use the srvetl modify database command with the following syntax:

srvctl modify database -d db_unique name [-o oracle_home] [-u oracle user]
[-m domain_name] [-n db_name] [-p spfile] [-s start_options]
[-t stop_options] [-r {PRIMARY | PHYSICAL_STANDBY | LOGICAL_STANDBY |
SNAPSHOT STANDBY}] [-y {automatic | manual}] [-a disk_group_list] [-z]

Table 4-41 srvctl modify database Options

Option Description

-d db_unique_name Unique name for the database. Must match the DB_UNIQUE_
NAME initialization parameter setting. If DB_ UNIQUE_NAME is
unspecified, then this option must match the DB_NAME
initialization parameter setting. The default setting for DB_
UNIQUE_NAME uses the setting for DB_NAME.

-u oracle_user Name of the Oracle user who owns the Oracle home directory
-z Remove the database's dependency on Oracle ASM disk groups
(Other options) See Table 4-11 on page 4-33

Example

The following example changes the role of the database with DB_UNIQUE_NAME
dbcrm to LOGICAL_STANDBY:

srvctl modify database -d dbcrm -r logical_standby

See Also:
= "Oracle Restart Integration with Oracle Data Guard" on page 4-5

» Oracle Data Guard Concepts and Administration

srvctl modify eons
Modifies eONS.

Syntax and Options
Use the srvctl modify eons command with the following syntax:
srvctl modify eons [-p portnum] [-m multicast_ip address] [-e eons_listen_port]

[-v]

Table 4-42 srvctl modify eons Options

Option Description

-p portnum The port number for eONS
-m multicast_ip_address The multicast IP address for eONS
-e eons_listen_ port Local listen port for eONS. The default port number is 2016.

-v Verbose output

srvctl modify listener

Modifies the Oracle Restart configuration for the specified listener or all listeners.

Configuring Automatic Restart of an Oracle Database 4-51

modify

Syntax and Options
Use the srvetl modify listener command with the following syntax:

srvctl modify listener [-1 listener _name] [-p endpoints] [-o Oracle_home]

Table 4-43 srvctl modify listener Options

Option Description

-1 listener name Listener name. If omitted, all listener configurations are
modified.

-p endpoints Comma separated TCP ports or listener endpoints. endpoints
syntax is:
"[TCP:]port[, ...] [/IPC:key] [/NMP:pipe name]
[/TCPS:s_port] [/SDP:port]"

-0 Oracle_home New Oracle home for the listener

Example

This example modifies the TCP port on which the listener named crmlistener

listens:

srvctl modify listener -1 crmlistener -p TCP:1522

srvctl modify ons
Modifies ONS.

Syntax and Options
Use the srvctl modify ons command with the following syntax:

srvctl modify ons [-1 ons_local_port] [-r ons_remote port] [-t
host|[:port], [host[:port]...1] [-V]

Table 4-44 srvctl modify ons Options

Option Description

-1 ons_local_port ONS listening port for local client connections

-r ons_remote_port ON:S listening port for connections from remote hosts

-t A list of host : port pairs of remote hosts that are part of the

host [:port], [host[:port] ONS network

1o Note: If port is not specified for a remote host, then ons_
remote_port is used.

-v Verbose output

srvctl modify service
Modifies the Oracle Restart configuration of a database service.

Important: Oracle recommends that you limit configuration
changes to the minimum requirement and that you not perform
other service operations while the online service modification is in
progress.

Syntax and Options
Use the srvctl modify service command with the following syntax:

4-52 Oracle Database Administrator's Guide

SRVCTL Command Reference

srvctl modify service -d db unique_name -s service_name]
[-1 [PRIMARY][,PHYSICAL_STANDBY] [, LOGICAL_STANDBY] [, SNAPSHOT STANDBY]]
[-y {AUTOMATIC | MANUAL}] [-e {NONE | SESSION | SELECT}] [-m {NONE | BASIC}]
[-w integer] [-z integer] [-j {SHORT | LONG}]
[-B {SERVICE_TIME | THROUGHPUT | NONE}] [-g {TRUE | FALSE}]

Table 4-45 srvctl modify service Options

Option Description

-d db_unique name Unique name for the database. Must match the DB_UNIQUE_
NAME initialization parameter setting. If DB_ UNIQUE_NAME is
unspecified, then this option must match the DB_NAME
initialization parameter setting. The default setting for DB_
UNIQUE_NAME uses the setting for DB_NAME.

-s service_name Service name
(other options) See Table 4-15 on page 4-36
Example

For the database with a DB_UNIQUE_NAME of dbcrm, the following command changes
the Oracle Data Guard role of the database service named support to standby:

srvctl modify service -d dbcrm -s support -1 standby

Configuring Automatic Restart of an Oracle Database 4-53

remove

remove

Removes the specified component from the Oracle Restart configuration. Oracle
Restart no longer manages the component. Any environment variable settings for the
component are also removed.

Before you remove a component from the Oracle Restart configuration, you must use
SRVCTL to stop it. Oracle recommends that you disable the component before
removing it, but this is not required.

To perform srvctl remove operations, you must be logged in to the database host
computer with the proper user account. See "Preparing to Run SRVCTL" on page 4-10
for more information.

Table 4-46 srvctl remove Summary

Command Description

srvctl remove asm on page 4-54 Removes the Oracle ASM instance

srvctl remove database on page 4-54 Removes a database

srvctl remove diskgroup on page 4-55 Removes an Oracle ASM disk group

srvctl remove eons on page 4-55 Removes an eONS

srvctl remove listener on page 4-56 Removes a listener

srvctl remove ons on page 4-56 Removes an ONS

srvctl remove service on page 4-56 Removes one or more database services
See Also:

= stop command on page 4-68

= disable command on page 4-42
srvctl remove asm
Removes an Oracle ASM instance.

Syntax and Options
Use the srvctl remove asm command with the following syntax:

srvctl remove asm [-f]

Table 4-47 srvctl remove asm Options

Options Description

-f Force remove, even when disk groups and databases that use
Oracle ASM exist or when the Oracle ASM instance is running.

Example
An example of this command is:

srvctl remove asm

srvctl remove database

Removes a database. Prompts for confirmation first.

4-54 Oracle Database Administrator's Guide

SRVCTL Command Reference

Syntax and Options
Use the srvctl remove database command with the following syntax:

srvctl remove database -d db_unique_name [-f] [-y] [-V]

Table 4-48 srvctl remove database Options

Options Description

-d db_unique_name Unique name for the database. Must match the DB_UNIQUE_
NAME initialization parameter setting. If DB_ UNIQUE_NAME is
unspecified, then this option must match the DB_NAME
initialization parameter setting. The default setting for DB_
UNIQUE_NAME uses the setting for DB_NAME.

-f Force. Removes the database even if it is running.

-y Suppresses the confirmation prompt and removes immediately
-v Verbose output. A success or failure message is displayed.
Example

An example of this command is:

srvctl remove database -d dbcrm
srvctl remove diskgroup
Removes an Oracle ASM disk group.

Syntax and Options
Use the srvctl remove diskgroup command with the following syntax:

srvctl remove diskgroup -g diskgroup name [-f]

Table 4-49 srvctl remove diskgroup Options

Option Description

-g diskgroup_name Disk group name

-f Force. Removes the disk group even if files are open on it.
Examples

This example removes the disk group named DATA. An error is returned if files are
open on this disk group.

srvctl remove diskgroup -g DATA

srvctl remove eons
Removes eONS.

Syntax and Options
Use the srvctl remove eons command as follows:

srvctl remove eons -f -v

Table 4-50 srvctl remove eons Options

Options Description
-f Force. Removes eONS even if it is enabled.
-v Verbose output

Configuring Automatic Restart of an Oracle Database 4-55

remove

srvctl remove listener

Removes the specified listener or all listeners.

Syntax and Options
Use the srvctl remove listener command with the following syntax:

srvctl remove listener [-1 Ilistener name] [-a] [-f]

Table 4-51 srvctl remove listener Options

Options Description

-1 listener_name Name of the listener that you want to remove. If omitted, then
the default is LISTENER.

-a Remove all listeners

-f Force. Removes the listener even if databases are using it.

Example

The following command removes the listener 1snr01:

srvctl remove listener -1 1lsnr01

srvctl remove ons
Removes ONS.

Syntax and Options
Use the srvctl remove ons command as follows:

srvctl remove ons -f -v

Table 4-52 srvctl remove ons Options

Options Description
-f Force. Removes ONS even if it is enabled.
-v Verbose output

srvctl remove service

Removes the specified database service.

Syntax and Options
Use the srvctl remove service command as follows:

srvctl remove service -d db unique_name -s service_name] [-f]

Table 4-53 srvctl remove service Options

Options Description

-d db_unique_name Unique name for the database. Must match the DB_UNIQUE_
NAME initialization parameter setting. If DB_UNIQUE_NAME is
unspecified, then this option must match the DB_NAME
initialization parameter setting. The default setting for DB_
UNIQUE_NAME uses the setting for DB_NAME.

-8 service name Service name

-f Force. Removes the service even if the service is running.
Transactions in any active sessions that are connected to the
service are rolled back and sessions are disconnected.

4-56 Oracle Database Administrator's Guide

SRVCTL Command Reference

Example
An example of this command is:

srvctl remove service -d dbcrm -s sales

Configuring Automatic Restart of an Oracle Database 4-57

setenv

setenv

The setenv command sets values of environment variables in the Oracle Restart
configuration for a database, a listener, or the Oracle ASM instance.

To perform srvctl setenv operations, you must be logged in to the database host
computer with the proper user account. See "Preparing to Run SRVCTL" on page 4-10
for more information.

Table 4-54 srvctl setenv and unsetenv Summary

Command Description
srvctl setenv asm on Sets environment variables in the Oracle Restart configuration for
page 4-58 an Oracle ASM instance
srvctl setenv database on Sets environment variables in the Oracle Restart configuration for a
page 4-58 database instance
srvctl setenv listener on Sets environment variables in the Oracle Restart configuration for
page 4-59 the specified listener or all listeners

See Also:

= getenv command on page 4-48
= unsetenv command on page 4-72

= "Managing Environment Variables in the Oracle Restart
Configuration" on page 4-17

srvctl setenv asm

Sets the values of environment variables in the Oracle Restart configuration for the
Oracle ASM instance. Before starting the instance, Oracle Restart sets environment
variables to the values stored in the configuration.

Syntax and Options
Use the srvctl setenv asm command with the following syntax:

srvctl setenv asm {-t name=vall,name=val, ...] | -T name=val}

Table 4-55 srvctl setenv database Options

Options Description

-t name=vall[,name=val, ...] Comma-delimited list of name/value pairs of environment
variables

-T name=val Enables single environment variable to be set to a value

that contains commas or other special characters

Example
The following example sets the AIX operating system environment variable
AIXTHREAD_SCOPE in the Oracle ASM instance configuration:

srvctl setenv asm -t AIXTHREAD_SCOPE=S

srvctl setenv database

Sets the values of environment variables in the Oracle Restart configuration for a
database instance. Before starting the instance, Oracle Restart sets environment
variables to the values stored in the configuration.

4-58 Oracle Database Administrator's Guide

SRVCTL Command Reference

Syntax and Options
Use the srvctl setenv database command with the following syntax:

srvctl setenv database -d db_unigue_name {-t name=vall,name=val,...] |
-T name=val}

Table 4-56 srvctl setenv database Options

Options Description

-d db_unique_name Unique name for the database. Must match the DB_
UNIQUE_NAME initialization parameter setting. If DB_
UNIQUE_NAME is unspecified, then this option must match
the DB_NAME initialization parameter setting. The default
setting for DB_UNIQUE_NAME uses the setting for DB_

NAME.

-t name=vall,name=val, ...] Comma-delimited list of name/value pairs of environment
variables

-T name=val Enables single environment variable to be set to a value

that contains commas or other special characters

Example
The following example sets the LANG environment variable in the configuration of the
database with a DB_UNIQUE_NAME of dbcrm:

srvctl setenv database -d dbcrm -t LANG=en

srvctl setenv listener

Sets the values of environment variables in the Oracle Restart configuration for a
listener. Before starting the listener, Oracle Restart sets environment variables to the
values stored in the configuration.

Syntax and Options
Use the srvctl setenv listener command with the following syntax:

srvctl setenv listener [-1 listener name]l {-t name=vall,name=val,...] |
-T name=val}

Table 4-57 srvctl setenv listener Options

Options Description

-1 listener_name Listener name. If omitted, sets the specified environment
variables in all listener configurations.

-t name=vall,name=val, ...] Comma-delimited list of name/value pairs of environment
variables

-T name=val Enables single environment variable to be set to a value

that contains commas or other special characters

Example
The following example sets the AIX operating system environment variable
AIXTHREAD_SCOPE in the configuration of the listener named crmlistener:

srvctl setenv listener -1 crmlistener -t AIXTHREAD SCOPE=S

Configuring Automatic Restart of an Oracle Database 4-59

start

start

srvctl start asm

Starts the specified component or components.

Table 4-58 srvctl start Summary

Command Description

srvctl start asm on page 4-60 Starts the Oracle ASM instance

srvctl start database on page 4-61 Starts the specified database

srvctl start diskgroup on page 4-61 Starts (mounts) the specified Oracle ASM disk
group

srvctl start eons on page 4-61 Starts eONS

srvctl start home on page 4-62 Starts all of the components managed by Oracle
Restart in the specified Oracle home

srvctl start listener on page 4-62 Starts the specified listener or all Oracle
Restart-managed listeners

srvctl start ons on page 4-62 Starts ONS

srvctl start service on page 4-63 Starts the specified database service or services

See Also: "Starting and Stopping Components Managed by Oracle
Restart" on page 4-25

Starts the Oracle ASM instance.

For this command, SRVCTL connects "/ as sysasm" to perform the operation. To run
such operations, the owner of the executables in the Oracle Grid Infrastructure home
must be a member of the OSASM group, and users running the commands must also
be in the OSASM group.

Syntax and Options
Use the srvctl start asm command with the following syntax:

srvctl start asm [-o0 start_options]

Table 4-59 srvctl start asm Option

Option Description

-0 start_options Comma-delimited list of options for the startup command (OPEN,
MOUNT, NOMOUNT, or FORCE). If omitted, defaults to normal
startup (OPEN).

Examples
This example starts the Oracle ASM instance, which then mounts any disk groups
named in the ASM_DISKGROUPS initialization parameter:

srvctl start asm

This example starts the Oracle ASM instance without mounting any disk groups:

srvctl start asm -o nomount

4-60 Oracle Database Administrator's Guide

SRVCTL Command Reference

srvctl start database

Starts the specified database instance.

For this command, SRVCTL connects "/ as sysdba" to perform the operation. To run
such operations, the owner of the Oracle executables in the database Oracle home
must be a member of the OSDBA group (for example, the dba group on UNIX and
Linux), and users running the commands must also be in the OSDBA group.

Syntax and Options
Use the srvctl start database command with the following syntax:

srvctl start database -d db_unique name [-0 start_options]

Table 4-60 srvctl start database Options

Option Description

-d db_unique name Unique name for the database. Must match the DB_UNIQUE_
NAME initialization parameter setting. If DB_UNIQUE_NAME is
unspecified, then this option must match the DB_NAME
initialization parameter setting. The default setting for DB_
UNIQUE_NAME uses the setting for DB_NAME.

-0 start_options Comma-delimited list of options for the startup command (for
example: OPEN, MOUNT, NOMOUNT, RESTRICT, PFILE=path, and
SO on)

Example

An example of this command is:

srvctl start database -d dbcrm -o pfile=testparm,nomount

srvctl start diskgroup

srvctl start eons

Starts (mounts) an Oracle ASM disk group.

Syntax and Options
Use the srvectl start diskgroup command with the following syntax:

srvctl start diskgroup -g diskgroup_name

Table 4-61 srvctl start diskgroup Options

Option Description
-g diskgroup_name Disk group name
Example

An example of this command is:

srvctl start diskgroup -g DATA

Starts eONS.

Syntax and Options
Use the srvctl start eons command with the following syntax:

srvctl start eons -v

Configuring Automatic Restart of an Oracle Database 4-61

start

Table 4-62 srvctl start eons Options

Option Description

-v Verbose output

srvctl start home

Starts all of the components that are managed by Oracle Restart in the specified Oracle
home. The Oracle home can be an Oracle Database home or an Oracle Grid
Infrastructure home.

This command starts the components that were stopped by a srvctl stop home.
This command uses the information in the specified state file to identify the
components to start.

Note: Use this command to restart components after you install a
patch in an Oracle home.

Syntax and Options
Use the srvctl start home command with the following syntax:

srvctl start home -o oracle home -s state file

Table 4-63 srvctl start home Options

Option Description
-0 Complete path of the Oracle home
-S Complete path of the state file. The state file contains the current

state information for the components in the Oracle home and is
created when the srvctl stop home command or the srvetl
status home command is run.

srvctl start listener

srvctl start ons

Starts the specified listener or all listeners.

Syntax and Options
Use the srvctl start listener command with the following syntax:

srvctl start listener [-1 listener name]

Table 4-64 srvctl start listener Options

Option Description

-1 listener name Listener name. If omitted, all Oracle Restart-managed listeners
are started.

Example
An example of this command is:

srvctl start listener -1 listener

Starts ONS.

4-62 Oracle Database Administrator's Guide

SRVCTL Command Reference

Syntax and Options
Use the srvctl start ons command with the following syntax:

srvctl start ons -v

Table 4-65 srvctl start ons Options

Option Description

-v Verbose output

srvctl start service

Starts the specified database service or services.

Syntax and Options
Use the srvctl start service command with the following syntax:

srvctl start service -d db unique_name [-s service_name 1ist] [-o start_options]

Table 4-66 srvctl start service Options

Option Description

-d db_unique_name Unique name for the database. Must match the DB_UNIQUE_NAME
initialization parameter setting. If DB_ UNIQUE_NAME is
unspecified, then this option must match the DB_NAME
initialization parameter setting. The default setting for DB_
UNIQUE_NAME uses the setting for DB_NAME.

-s service name_list Comma-delimited list of service names. The service name list is
optional and if not provided, SRVCTL starts all of the database's
services

-0 start_options Options for database startup (for example: OPEN, MOUNT,

NOMOUNT and so on) if the database must be started first

Example
For the database with a DB_UNIQUE_NAME of dbcrm, the following example starts the
sales database service:

srvctl start service -d dbcrm -s sales

Configuring Automatic Restart of an Oracle Database 4-63

status

status

Displays the running status of the specified component or set of components.

Table 4-67 srvctl status Summary

Command Description

srvctl status asm on page 4-64 Displays the running status of the Oracle ASM
instance

srvctl status database on page 4-64 Displays the running status of a database

srvctl status diskgroup on page 4-65 Displays the running status of an Oracle ASM disk

group
srvctl status eons on page 4-65 Displays the running status of eONS
srvctl status home on page 4-65 Displays the running status of all of the components

that are managed by Oracle Restart in the specified
Oracle home

srvctl status listener on page 4-66 Displays the running status of the specified listener
or all Oracle Restart-managed listeners

srvctl status ons on page 4-66 Displays the running status of ONS

srvctl status service on page 4-66 Displays the running status of one or more services

srvctl status asm
Displays the running status of the Oracle ASM instance.

Syntax and Options
Use the srvctl status asm command with the following syntax:

srvctl status asm [-a]

Table 4-68 srvctl status asm Options

Option Description
-a Display enabled/disabled status also
Example

An example of this command is:

srvctl status asm
ASM is running on dbhost
srvctl status database
Displays the running status of the specified database.

Syntax and Options
Use the srvctl status database command with the following syntax:

srvctl status database -d db_unique name [-f] [-V]

4-64 Oracle Database Administrator's Guide

SRVCTL Command Reference

Table 4-69 srvctl status database Options

Option Description

-d db_unique_name Unique name for the database. Must match the DB_UNIQUE_
NAME initialization parameter setting. If DB_UNIQUE_NAME is
unspecified, then this option must match the DB_NAME
initialization parameter setting. The default setting for DB_
UNIQUE_NAME uses the setting for DB_NAME.

-f Display a message if the database is disabled
-v Verbose output. Lists the database services that are running.
Example

An example of this command is:

srvctl status database -d dbcrm -v

Database dbcrm is running with online services mfg,sales
srvctl status diskgroup

Displays the running status of an Oracle ASM disk group.

Syntax and Options
Use the srvctl status diskgroup command with the following syntax:

srvctl status diskgroup -g diskgroup_name [-a]

Table 4-70 srvctl status diskgroup Options

Option Description

-g diskgroup_name Disk group name

-a Display enabled/disabled status also
Example

An example of this command is:

srvctl status diskgroup -g DATA

Disk Group DATA is running on dbhost

srvctl status eons
Displays the running status of eONS.

Syntax and Options
Use the srvctl status eons command with the following syntax:

srvctl status eons

srvctl status home

Displays the running status of all of the components that are managed by Oracle
Restart in the specified Oracle home. The Oracle home can be an Oracle Database
home or an Oracle Grid Infrastructure home.

This command writes the current status of the components to the specified state file.

Syntax and Options
Use the srvctl status home command with the following syntax:

Configuring Automatic Restart of an Oracle Database 4-65

status

srvctl status home -o oracle home -s state_file

Table 4-71 srvctl status home Options

Option Description
-0 Complete path of the Oracle home
-5 Complete path of the state file

srvctl status listener

Displays the running status of the specified listener or of all Oracle Restart-managed
listeners.

Syntax and Options
Use the srvctl status listener command with the following syntax:

srvctl status listener -1 listener _name

Table 4-72 srvctl status listener Options

Option Description
-1 listener_name Listener name. If omitted, the status of all listeners is displayed.
Example

An example of this command is:

srvctl status listener -1 crmlistener

Listener CRMLISTENER is running on dbhost
srvctl status ons

Displays the running status of ONS.

Syntax and Options
Use the srvctl status ons command with the following syntax:

srvctl status ons
srvctl status service
Displays the running status of one or more database services.

Syntax and Options
Use the srvctl status service command with the following syntax:

srvctl status service -d db_unique name [-s service_name list] [-f] [-V]

Table 4-73 srvctl status service Options

Option Description

-d db_unique name Unique name for the database. Must match the DB_
UNIQUE_NAME initialization parameter setting. If DB_
UNIQUE_NAME is unspecified, then this option must match
the DB_NAME initialization parameter setting. The default
setting for DB_UNIQUE_NAME uses the setting for DB_NAME.

-s service name_list Comma-delimited list of service names. If omitted, status is
listed for all database services for the designated database.

-f Display a message if a service is disabled

4-66 Oracle Database Administrator's Guide

SRVCTL Command Reference

Table 4-73 (Cont.) srvctl status service Options

Option Description
-v Verbose output
Example

For the database with the DB_UNIQUE_NAME of dbcrm, the following example
displays the running status of the service sales:

srvctl status service -d dbcrm -s sales

Service sales is running on dbhost

Configuring Automatic Restart of an Oracle Database 4-67

stop

stop

Stops the specified component or components.

If you want a component to remain stopped after you issue a srvctl stop command,
disable the component. See the disable command on page 4-42.

Note: If a component is stopped and is not disabled, it could
restart as a result of another planned operation. That is, although a
stopped component will not restart as a result of a failure, it might
be started if a dependent component is started with a srvectl
start command.

Table 4-74 srvctl stop Summary

Command Description
srvctl stop asm on page 4-68 Stops the Oracle ASM instance
srvctl stop database on page 4-69 Stops the specified database instance

srvctl stop diskgroup on page 4-69 Stops (dismounts) the specified Oracle ASM disk group

srvctl stop eons on page 4-69 Stops eONS

srvctl stop home on page 4-70 Stops all of the components managed by Oracle Restart
in the specified Oracle home

srvctl stop listener on page 4-70 Stops the specified listener or all listeners

srvctl stop ons on page 4-71 Stops ONS

srvctl stop service on page 4-71 Stops the specified database service or services

See Also: "Starting and Stopping Components Managed by Oracle
Restart" on page 4-25

srvctl stop asm
Stops the Oracle ASM instance.

Syntax and Options
Use the srvctl stop asm command with the following syntax:

srvctl stop asm [-0 stop_options] [-f]

Table 4-75 srvctl stop asm Option

Option Description

-0 stop_options Options for the shutdown operation, for example, NORMAL,
TRANSACTIONAL, IMMEDIATE, or ABORT

-f Force. Must be present if disk groups are currently started
(mounted). This option enables SRVCTL to stop the disk groups
before stopping Oracle ASM. Each dependent database instance is
also stopped according to its stop options, or with the ABORT option
if the configured stop options fail.

Example
An example of this command is:

4-68 Oracle Database Administrator's Guide

SRVCTL Command Reference

srvctl stop asm -o abort -f
srvctl stop database
Stops a database.

Syntax and Options
Use the srvctl stop database command with the following syntax:

srvctl stop database -d db unique_name [-o0 stop _options] [-f]

Table 4-76 srvctl stop database Options

Option Description

-d db_unique_name Unique name for the database. Must match the DB_UNIQUE_
NAME initialization parameter setting. If DB_UNIQUE_NAME is
unspecified, then this option must match the DB_NAME
initialization parameter setting. The default setting for DB_
UNIQUE_NAME uses the setting for DB_NAME.

-0 stop_options SHUTDOWN command options (for example: NORMAL,
TRANSACTIONAL, IMMEDIATE, or ABORT). Default is
IMMEDIATE.

-f Force. Performs a SHUTDOWN ABORT of the database.

Example

An example of this command is:

srvctl stop database -d dbcrm
srvctl stop diskgroup
Stops (dismounts) an Oracle ASM disk group.

Syntax and Options
Use the srvctl stop diskgroup command with the following syntax:

srvctl stop diskgroup -g diskgroup_name [-f]

Table 4-77 srvctl stop diskgroup Options

Option Description
-g diskgroup_name Disk group name
-f Force. Dismount the disk group even if some files in the disk

group are open.

Examples
This example stops the disk group named DATA. An error is returned if files are open
on this disk group.

srvctl stop diskgroup -g DATA

srvctl stop eons
Stops eONS.

Syntax and Options
Use the srvctl stop eons command with the following syntax:

srvctl stop eons -v

Configuring Automatic Restart of an Oracle Database 4-69

stop

Table 4-78 srvctl stop eons Options

Option Description

-v Verbose output

srvctl stop home

Stops all of the components that are managed by Oracle Restart in the specified Oracle
home. The Oracle home can be an Oracle Database home or an Oracle Grid
Infrastructure home.

This command identifies the components that it stopped in the specified state file.

Note:

= Before stopping the components in an Oracle Grid Infrastructure
home, stop the components in a dependent Oracle Database
home.

= Use this command to stop components before you install a patch
in an Oracle home.

Syntax and Options
Use the srvctl stop home command with the following syntax:

srvctl stop home -o oracle home -s state file [-t stop_options] [-f]

Table 4-79 srvctl stop home Options

Option Description

-0 Complete path of the Oracle home

-s Complete path of the state file

-t stop_options SHUTDOWN command options for the database (for example:
NORMAL, TRANSACTIONAL, IMMEDIATE, or ABORT). Default is
IMMEDIATE.

-f Force stop each component

srvctl stop listener

Stops the designated listener or all Oracle Restart-managed listeners. Stopping a
listener does not cause databases that are registered with the listener to be stopped.

Syntax and Options
Use the srvctl stop listener command with the following syntax:

srvctl stop listener [-1 listener name] [-f]

Table 4-80 srvctl stop listener Options

Option Description

-1 listener name Listener name. If omitted, all Oracle Restart-managed listeners
are stopped.

-f Force. Passes the stop command with the - f option to Oracle

Clusterware. See Oracle Clusterware Administration and
Deployment Guide for more information about the Oracle
Clusterware - f option.

4-70 Oracle Database Administrator's Guide

SRVCTL Command Reference

Example
An example of this command is:

srvctl stop listener -1 crmlistener

srvctl stop ons
Stops ONS.

Syntax and Options
Use the srvctl stop ons command with the following syntax:

srvctl stop ons -v

Table 4-81 srvctl stop ons Options

Option Description

-v Verbose output

srvctl stop service

Stops one or more database services.

Syntax and Options
Use the srvctl stop service command with the following syntax:

srvctl stop service -d db unique_name [-s service name_list] [-f]

Table 4-82 srvctl stop service Options

Option Description

-d db_unique name Unique name for the database. Must match the DB_UNIQUE_
NAME initialization parameter setting. If DB_UNIQUE_NAME is
unspecified, then this option must match the DB_NAME
initialization parameter setting. The default setting for DB_
UNIQUE_NAME uses the setting for DB_NAME.

-s service name_list Comma-delimited list of database service names. If you do not
provide a service name list, then SRVCTL stops all services on
the database

-f Force. This option disconnects all of the stopped services’

sessions immediately. Uncommitted transactions are rolled back.
If this option is omitted, active sessions remain connected to the
services, but no further connections to the services can be made.

Examples
The following example stops the sales database service on the database with a DB_
UNIQUE_NAME of dbcrm:

srvctl stop service -d dbcrm -s sales

Configuring Automatic Restart of an Oracle Database 4-71

unsetenv

unsetenv

The unsetenv command deletes one or more environment variables from the Oracle
Restart configuration for a database, a listener, or an Oracle ASM instance.

To perform srvctl unsetenv operations, you must be logged in to the database host
computer with the proper user account. See "Preparing to Run SRVCTL" on page 4-10
for more information.

Table 4-83 srvctl unsetenv Command Summary

Command Description

srvctl unsetenv asm on page 4-72 Removes the specified environment variables from
the Oracle Restart configuration for the Oracle ASM
instance

srvctl unsetenv database on page 4-72 Removes the specified environment variables from
the Oracle Restart configuration for a database

srvctl unsetenv listener on page 4-73 Removes the specified environment variables from
the Oracle Restart configuration for a listener or all
listeners

See Also:

= setenv command on page 4-58
= getenv command on page 4-48
= "Managing Environment Variables in the Oracle Restart

Configuration" on page 4-17

srvctl unsetenv asm

Removes the specified environment variables from the Oracle Restart configuration for
the Oracle ASM instance.

Syntax and Options
Use the srvctl unsetenv asm command with the following syntax:

srvctl unsetenv asm -t name list

Table 4-84 srvctl unsetenv asm Options

Options Description
-t name_list Comma-delimited list of environment variables to remove
Example

The following example removes the AIX operating system environment variable
AIXTHREAD_SCOPE from the Oracle ASM instance configuration:

srvctl unsetenv asm -t AIXTHREAD SCOPE

srvctl unsetenv database

Removes the specified environment variables from the Oracle Restart configuration for
the specified database.

Syntax and Options
Use the srvctl unsetenv database command as follows:

4-72 Oracle Database Administrator's Guide

SRVCTL Command Reference

srvctl unsetenv database -d db_unique _name -t name_list

Table 4-85 srvctl unsetenv database Options

Options Description

-d db_unique_name Unique name for the database. Must match the DB_UNIQUE_
NAME initialization parameter setting. If DB_UNIQUE_NAME is
unspecified, then this option must match the DB_NAME
initialization parameter setting. The default setting for DB_
UNIQUE_NAME uses the setting for DB_NAME.

-t name list Comma-delimited list of environment variables to remove

Example
The following example deletes the AIXTHREAD_SCOPE environment variable from the
Oracle Restart configuration for the database with a DB_UNIQUE_NAME of dbcrm:

srvctl unsetenv database -d dbcrm -t AIXTHREAD_SCOPE

srvctl unsetenv listener

Removes the specified environment variables from the Oracle Restart configuration for
the specified listener or all listeners.

Syntax and Options
Use the srvctl unsetenv listener command with the following syntax:

srvctl unsetenv listener [-1 listener name] -t name list

Table 4-86 srvctl unsetenv listener Options

Options Description

-1 listener name Listener name. If omitted, the specified environment
variables are removed from the configurations of all
listeners.

-t name_list Comma-delimited list of environment variables to remove

Example

The following example removes the AIX operating system environment variable
AIXTHREAD_SCOPE from the listener configuration for the listener named
crmlistener:

srvctl unsetenv listener -1 crmlistener -t AIXTHREAD_SCOPE

Configuring Automatic Restart of an Oracle Database 4-73

CRSCTL Command Reference

CRSCTL Command Reference

This section provides details about the syntax for the CRSCTL commands that are
relevant for Oracle Restart.

CRSCTL Command Syntax Overview
CRSCTL expects the following command syntax:

crsctl command has

where command is a verb such as start, stop, or enable. The has object indicates
Oracle high availability services. See Table 4-87 on page 4-74 for a complete list.

Case Sensitivity
CRSCTL commands and components are case insensitive.

Table 4-87 Summary of CRSCTL Commands

Command Description

check on page 4-75 Displays the Oracle Restart status.

config on page 4-75 Displays the Oracle Restart configuration.
disable on page 4-75 Disables automatic restart of Oracle Restart.
enable on page 4-75 Enables automatic restart of Oracle Restart.
start on page 4-75 Starts Oracle Restart.

stop on page 4-75 Stops Oracle Restart.

Note: You must be the root user or Oracle user to run the these
CRSCTL commands.

4-74 Oracle Database Administrator's Guide

CRSCTL Command Reference

check

Displays the Oracle Restart status.
Syntax and Options

crsctl check has
config

Displays the Oracle Restart configuration.
Syntax and Options

crsctl config has
disable

Disables automatic restart of Oracle Restart.
Syntax and Options

crsctl disable has
enable

Enables automatic restart of Oracle Restart.
Syntax and Options

crsctl enable has
start

Starts Oracle Restart.
Syntax and Options

crsctl start has
StOp

Stops Oracle Restart.
Syntax and Options

crsctl stop has [-f]

Configuring Automatic Restart of an Oracle Database 4-75

stop

Table 4-88 crsctl stop has Options

Options

Description

-f

Force. If any resources that are managed by Oracle Restart are
still running, then try to stop these resources gracefully. If a
resource cannot be stopped gracefully, then try to force the
resource to stop.

For example, if an Oracle ASM instance is running, then
SHUTDOWN IMMEDIATE attempts to stop the Oracle ASM
instance gracefully, while SHUTDOWN ABORT attempts to force
the Oracle ASM instance to stop.

When the - £ option is not specified, this command tries to stop
resources managed by Oracle Restart gracefully but does not try
to force them to stop.

4-76 Oracle Database Administrator's Guide

O

Managing Processes

In this chapter:

= About Dedicated and Shared Server Processes

= About Database Resident Connection Pooling

s Configuring Oracle Database for Shared Server

= Configuring Database Resident Connection Pooling
= About Oracle Database Background Processes

= Managing Processes for Parallel SQL Execution

= Managing Processes for External Procedures

s Terminating Sessions

» Process and Session Data Dictionary Views

About Dedicated and Shared Server Processes

Oracle Database creates server processes to handle the requests of user processes
connected to an instance. A server process can be either of the following:

= A dedicated server process, which services only one user process
= A shared server process, which can service multiple user processes

Your database is always enabled to allow dedicated server processes, but you must
specifically configure and enable shared server by setting one or more initialization
parameters.

Dedicated Server Processes

Figure 5-1, "Oracle Database Dedicated Server Processes" illustrates how dedicated
server processes work. In this diagram two user processes are connected to the
database through dedicated server processes.

In general, it is better to be connected through a dispatcher and use a shared server
process. This is illustrated in Figure 5-2, "Oracle Database Shared Server Processes". A
shared server process can be more efficient because it keeps the number of processes
required for the running instance low.

In the following situations, however, users and administrators should explicitly
connect to an instance using a dedicated server process:

= To submit a batch job (for example, when a job can allow little or no idle time for
the server process)

Managing Processes 5-1

About Dedicated and Shared Server Processes

s To use Recovery Manager (RMAN) to back up, restore, or recover a database

To request a dedicated server connection when Oracle Database is configured for
shared server, users must connect using a net service name that is configured to use a
dedicated server. Specifically, the net service name value should include the
SERVER=DEDICATED clause in the connect descriptor.

See Also: Oracle Database Net Services Administrator’s Guide for
more information about requesting a dedicated server connection

Figure 5-1 Oracle Database Dedicated Server Processes

User User
Process Process

Application Application

Code Code

N Client Workstation
Database Server
Dedicated
Server
Process

Oracle Oracle

Server Code Server Code

Program
Interface

System Global Area

Shared Server Processes

Consider an order entry system with dedicated server processes. A customer phones
the order desk and places an order, and the clerk taking the call enters the order into
the database. For most of the transaction, the clerk is on the telephone talking to the
customer. A server process is not needed during this time, so the server process
dedicated to the clerk's user process remains idle. The system is slower for other clerks
entering orders, because the idle server process is holding system resources.

Shared server architecture eliminates the need for a dedicated server process for each
connection (see Figure 5-2).

5-2 Oracle Database Administrator's Guide

About Dedicated and Shared Server Processes

Figure 5-2 Oracle Database Shared Server Processes

User
Process

Application
Code

0 Client Workstation

Database Server

Dispatcher Processes |«

Shared
server
processes
Oracle
Server Code

7 o\

9 System Global Area

(5]

Request

Queue

Response
Queues

—

In a shared server configuration, client user processes connect to a dispatcher. The
dispatcher can support multiple client connections concurrently. Each client
connection is bound to a virtual circuit, which is a piece of shared memory used by
the dispatcher for client database connection requests and replies. The dispatcher
places a virtual circuit on a common queue when a request arrives.

An idle shared server process picks up the virtual circuit from the common queue,
services the request, and relinquishes the virtual circuit before attempting to retrieve
another virtual circuit from the common queue. This approach enables a small pool of
server processes to serve a large number of clients. A significant advantage of shared
server architecture over the dedicated server model is the reduction of system
resources, enabling the support of an increased number of users.

For even better resource management, shared server can be configured for connection
pooling. Connection pooling lets a dispatcher support more users by enabling the
database server to time-out protocol connections and to use those connections to
service an active session. Further, shared server can be configured for session
multiplexing, which combines multiple sessions for transmission over a single
network connection in order to conserve the operating system's resources.

Managing Processes 5-3

About Database Resident Connection Pooling

Shared server architecture requires Oracle Net Services. User processes targeting the
shared server must connect through Oracle Net Services, even if they are on the same
machine as the Oracle Database instance.

See Also: Oracle Database Net Services Administrator’s Guide for
more detailed information about shared server, including features
such as connection pooling and session multiplexing

About Database Resident Connection Pooling

Database Resident Connection Pooling (DRCP) provides a connection pool in the
database server for typical Web application usage scenarios where the application
acquires a database connection, works on it for a relatively short duration, and then
releases it. DRCP pools "dedicated" servers. A pooled server is the equivalent of a
server foreground process and a database session combined.

DRCP complements middle-tier connection pools that share connections between
threads in a middle-tier process. In addition, DRCP enables sharing of database
connections across middle-tier processes on the same middle-tier host and even across
middle-tier hosts. This results in significant reduction in key database resources
needed to support a large number of client connections, thereby reducing the database
tier memory footprint and boosting the scalability of both middle-tier and database
tiers. Having a pool of readily available servers also has the additional benefit of
reducing the cost of creating and tearing down client connections.

DRCP is especially relevant for architectures with multi-process single threaded
application servers (such as PHP /Apache) that cannot perform middle-tier connection
pooling. The database can still scale to tens of thousands of simultaneous connections
with DRCP.

See Also:
» Oracle Database Concepts for more details on DRCP
» Oracle Call Interface Programmer’s Guide for information about

options that are available when obtaining a DRCP session

When To Use Database Resident Connection Pooling

Database resident connection pooling is useful when multiple clients access the
database and when any of the following apply:

= A large number of client connections need to be supported with minimum
memory usage.

s The client applications are similar and can share or reuse sessions.

Applications are similar if they connect with the same database credentials and
use the same schema.

s The client applications acquire a database connection, work on it for a relatively
short duration, and then release it.

= Session affinity is not required across client requests.

s There are multiple processes and multiple hosts on the client side.

Advantages of Database Resident Connection Pooling
Using database resident connection pooling provides the following advantages:

5-4 Oracle Database Administrator's Guide

About Database Resident Connection Pooling

= Enables resource sharing among multiple middle-tier client applications.

= Improves scalability of databases and applications by reducing resource usage.

Comparing DRCP to Dedicated Server and Shared Server

Table 5-1 lists the differences between dedicated server, shared server, and database
resident connection pooling.

Table 5-1 Differences Between Dedicated Servers, Shared Servers, and Database Resident Connection
Pooling

Database Resident Connection
Dedicated Server Shared Server Pooling

When a client request is received, a ~ When the first request is received When the first request is received

new server process and a session are from a client, the Dispatcher process from a client, the Connection Broker

created for the client. places this request on a common picks an available pooled server and
queue. The request is picked up by hands off the client connection to
an available shared server process. the pooled server.
The Dispatcher process then
manages the communication
between the client and the shared
server process.

If no pooled servers are available,
the Connection Broker creates one.
If the pool has reached its maximum
size, the client request is placed on
the wait queue until a pooled server
is available.

Releasing database resources Releasing database resources Releasing database resources
involves terminating the session involves terminating the session. involves releasing the pooled server
and server process. to the pool.

Memory requirement is Memory requirement is Memory requirement is
proportional to the number of proportional to the sum of the proportional to the number of
server processes and sessions. There shared servers and sessions. There ~ pooled servers and their sessions.

is one server and one session for is one session for each client. There is one session for each pooled
each client. server.

Session memory is allocated from Session memory is allocated from Session memory is allocated from
the PGA. the SGA. the PGA.

Example of Memory Usage for Dedicated Server, Shared Server, and Database
Resident Connection Pooling

Consider an application in which the memory required for each session is 400 KB and
the memory required for each server process is 4 MB. The pool size is 100 and the
number of shared servers used is 100.

If there are 5000 client connections, the memory used by each configuration is as
follows:

s Dedicated Server
Memory used = 5000 X (400 KB + 4 MB) = 22 GB

= Shared Server
Memory used = 5000 X 400 KB + 100 X 4 MB = 2.5 GB
Out of the 2.5 GB, 2 GB is allocated from the SGA.

= Database Resident Connection Pooling

Memory used = 100 X (400 KB + 4 MB) + (5000 X 35KB)= 615 MB

Managing Processes 5-5

Configuring Oracle Database for Shared Server

Restrictions on Using Database Resident Connection Pooling

You cannot perform the following activities with pooled servers:

Shut down the database

Stop the database resident connection pool

Change the password for the connected user

Use shared database links to connect to a database resident connection pool

Use Advanced Security Option (ASO) options such as encryption, certificates, and
so on

Use migratable sessions on the server side directly by using the OCI_MIGRATE
option or indirectly via OCIConnectionPool

DDL statements that pertain to database users in the pool need to be performed
carefully, as the pre-DDL sessions in the pool can still be given to clients post-DDL. For
example, while dropping users, ensure that there are no sessions of that user in the
pool and no connections to the Broker that were authenticated as that user.

Sessions with explicit roles enabled, that are released to the pool, can be later handed
out to connections (of the same user) that need the default logon role. Avoid releasing
sessions with explicit roles, and instead terminate them.

Configuring Oracle Database for Shared Server

This section discusses how to enable shared server and how to set or alter shared
server initialization parameters. It contains the following topics:

Initialization Parameters for Shared Server
Memory Management for Shared Server
Enabling Shared Server

Configuring Dispatchers

Shared Server Data Dictionary Views

See Also:
= "About Dedicated and Shared Server Processes" on page 5-1

» Oracle Database SQL Language Reference for further information
about the ALTER SYSTEM statement

Initialization Parameters for Shared Server

The following initialization parameters control shared server operation:

SHARED_SERVERS: Specifies the initial number of shared servers to start and the
minimum number of shared servers to keep. This is the only required parameter
for using shared servers.

MAX_SHARED_SERVERS: Specifies the maximum number of shared servers that
can run simultaneously.

SHARED_SERVER_SESSIONS: Specifies the total number of shared server user
sessions that can run simultaneously. Setting this parameter enables you to reserve
user sessions for dedicated servers.

DISPATCHERS: Configures dispatcher processes in the shared server architecture.

5-6 Oracle Database Administrator's Guide

Configuring Oracle Database for Shared Server

s MAX DISPATCHERS: Specifies the maximum number of dispatcher processes that
can run simultaneously. This parameter can be ignored for now. It will only be
useful in a future release when the number of dispatchers is auto-tuned according
to the number of concurrent connections.

s CIRCUITS: Specifies the total number of virtual circuits that are available for
inbound and outbound network sessions.

See Also: Oracle Database Reference for more information about
these initialization parameters

Memory Management for Shared Server

Shared server requires some user global area (UGA) in either the shared pool or large
pool. For installations with a small number of simultaneous sessions, the default sizes
for these system global area (SGA) components are generally sufficient. However, if
you expect a large number of sessions for your installation, you may have to tune
memory to support shared server.

See the "Configuring and Using Memory" section of Oracle Database Performance Tuning
Guide for guidelines.

Enabling Shared Server

Shared server is enabled by setting the SHARED_SERVERS initialization parameter to a
value greater than 0. The other shared server initialization parameters need not be set.
Because shared server requires at least one dispatcher in order to work, a dispatcher is
brought up even if no dispatcher has been configured. Dispatchers are discussed in
"Configuring Dispatchers" on page 5-10.

Shared server can be started dynamically by setting the SHARED_ SERVERS parameter
to a nonzero value with the ALTER SYSTEM statement, or SHARED_SERVERS can be
included at database startup in the initialization parameter file. If SHARED_SERVERS is
not included in the initialization parameter file, or is included but is set to 0, then
shared server is not enabled at database startup.

Note: If SHARED_SERVERS is not included in the initialization
parameter file at database startup, but DISPATCHERS is included
and it specifies at least one dispatcher, shared server is enabled. In
this case, the default for SHARED_SERVERS is 1.

If neither SHARED_SERVERS nor DISPATCHERS is included in the
initialization file, you cannot start shared server after the instance is
brought up by just altering the DISPATCHERS parameter. You must
specifically alter SHARED_SERVERS to a nonzero value to start
shared server.

Managing Processes 5-7

Configuring Oracle Database for Shared Server

Note: If you create your Oracle database with Database
Configuration Assistant (DBCA), DBCA configures a dispatcher for
Oracle XML DB (XDB). This is because XDB protocols like HTTP and
FTP require shared server. This results in a SHARED_SERVER value of
1. Although shared server is enabled, this configuration permits only
sessions that connect to the XDB service to use shared server. To
enable shared server for regular database sessions (for submitting SQL
statements), you must add an additional dispatcher configuration, or
replace the existing configuration with one that is not specific to XDB.
See "Configuring Dispatchers” on page 5-10 for instructions.

Determining a Value for SHARED_SERVERS

The SHARED_SERVERS initialization parameter specifies the minimum number of
shared servers that you want created when the instance is started. After instance
startup, Oracle Database can dynamically adjust the number of shared servers based
on how busy existing shared servers are and the length of the request queue.

In typical systems, the number of shared servers stabilizes at a ratio of one shared
server for every ten connections. For OLTP applications, when the rate of requests is
low, or when the ratio of server usage to request is low, the connections-to-servers
ratio could be higher. In contrast, in applications where the rate of requests is high or
the server usage-to-request ratio is high, the connections-to-server ratio could be
lower.

The PMON (process monitor) background process cannot terminate shared servers
below the value specified by SHARED_SERVERS. Therefore, you can use this
parameter to stabilize the load and minimize strain on the system by preventing
PMON from terminating and then restarting shared servers because of coincidental
fluctuations in load.

If you know the average load on your system, you can set SHARED_SERVERS to an
optimal value. The following example shows how you can use this parameter:

Assume a database is being used by a telemarketing center staffed by 1000 agents. On
average, each agent spends 90% of the time talking to customers and only 10% of the
time looking up and updating records. To keep the shared servers from being
terminated as agents talk to customers and then spawned again as agents access the
database, a DBA specifies that the optimal number of shared servers is 100.

However, not all work shifts are staffed at the same level. On the night shift, only 200
agents are needed. Since SHARED_SERVERS is a dynamic parameter, a DBA reduces
the number of shared servers to 20 at night, thus allowing resources to be freed up for
other tasks such as batch jobs.

Decreasing the Number of Shared Server Processes

You can decrease the minimum number of shared servers that must be kept active by
dynamically setting the SHARED_SERVERS parameter to a lower value. Thereafter,
until the number of shared servers is decreased to the value of the SHARED_ SERVERS
parameter, any shared servers that become inactive are marked by PMON for
termination.

The following statement reduces the number of shared servers:

ALTER SYSTEM SET SHARED_SERVERS = 5;

5-8 Oracle Database Administrator's Guide

Configuring Oracle Database for Shared Server

Setting SHARED_SERVERS to 0 disables shared server. For more information, please
refer to "Disabling Shared Servers" on page 5-14.

Limiting the Number of Shared Server Processes

The MAX_SHARED_SERVERS parameter specifies the maximum number of shared
servers that can be automatically created by PMON. It has no default value. If no value
is specified, then PMON starts as many shared servers as is required by the load,
subject to these limitations:

s The process limit (set by the PROCESSES initialization parameter)

= A minimum number of free process slots (at least one-eighth of the total process
slots, or two slots if PROCESSES is set to less than 24)

= System resources

Note: On Windows NT, take care when setting MAX_SHARED_
SERVERS to a high value, because each server is a thread in a
common process.

The value of SHARED_SERVERS overrides the value of MAX_SHARED_SERVERS.
Therefore, you can force PMON to start more shared servers than the MAX_SHARED_
SERVERS value by setting SHARED_ SERVERS to a value higher than MAX_SHARED_
SERVERS. You can subsequently place a new upper limit on the number of shared
servers by dynamically altering the MAX_SHARED_SERVERS to a value higher than
SHARED_SERVERS.

The primary reason to limit the number of shared servers is to reserve resources, such
as memory and CPU time, for other processes. For example, consider the case of the
telemarketing center discussed previously:

The DBA wants to reserve two thirds of the resources for batch jobs at night. He sets
MAX_SHARED_SERVERS to less than one third of the maximum number of processes
(PROCESSES). By doing so, the DBA ensures that even if all agents happen to access
the database at the same time, batch jobs can connect to dedicated servers without
having to wait for the shared servers to be brought down after processing agents'
requests.

Another reason to limit the number of shared servers is to prevent the concurrent run
of too many server processes from slowing down the system due to heavy swapping,
although PROCESSES can serve as the upper bound for this rather than MAX_SHARED_
SERVERS.

Still other reasons to limit the number of shared servers are testing, debugging,
performance analysis, and tuning. For example, to see how many shared servers are
needed to efficiently support a certain user community, you can vary MAX_SHARED_
SERVERS from a very small number upward until no delay in response time is noticed
by the users.

Limiting the Number of Shared Server Sessions

The SHARED_SERVER_SESSIONS initialization parameter specifies the maximum
number of concurrent shared server user sessions. Setting this parameter, which is a
dynamic parameter, lets you reserve database sessions for dedicated servers. This in
turn ensures that administrative tasks that require dedicated servers, such as backing
up or recovering the database, are not preempted by shared server sessions.

Managing Processes 5-9

Configuring Oracle Database for Shared Server

This parameter has no default value. If it is not specified, the system can create shared
server sessions as needed, limited by the SESSTONS initialization parameter.

Protecting Shared Memory

The CIRCUITS parameter sets a maximum limit on the number of virtual circuits that
can be created in shared memory. This parameter has no default. If it is not specified,
then the system can create circuits as needed, limited by the DISPATCHERS
initialization parameter and system resources.

Configuring Dispatchers

The DISPATCHERS initialization parameter configures dispatcher processes in the
shared server architecture. At least one dispatcher process is required for shared server
to work.If you do not specify a dispatcher, but you enable shared server by setting
SHARED_SERVER to a nonzero value, then by default Oracle Database creates one
dispatcher for the TCP protocol. The equivalent DISPATCHERS explicit setting of the
initialization parameter for this configuration is:

dispatchers=" (PROTOCOL=tcp) "

You can configure more dispatchers, using the DISPATCHERS initialization parameter,
if either of the following conditions apply:

= You need to configure a protocol other than TCP/IP. You configure a protocol
address with one of the following attributes of the DISPATCHERS parameter:

— ADDRESS
— DESCRIPTION
— PROTOCOL

= You want to configure one or more of the optional dispatcher attributes:

DISPATCHERS
— CONNECTIONS
— SESSIONS

— TICKS

— LISTENER

— MULTIPLEX

- POOL

— SERVICE

Note: Database Configuration Assistant helps you configure this
parameter.

DISPATCHERS Initialization Parameter Attributes

This section provides brief descriptions of the attributes that can be specified with the
DISPATCHERS initialization parameter.

A protocol address is required and is specified using one or more of the following
attributes:

5-10 Oracle Database Administrator's Guide

Configuring Oracle Database for Shared Server

Attribute Description

ADDRESS Specify the network protocol address of the endpoint on which
the dispatchers listen.

DESCRIPTION Specify the network description of the endpoint on which the
dispatchers listen, including the network protocol address. The
syntax is as follows:

(DESCRIPTION= (ADDRESS=...))

PROTOCOL Specify the network protocol for which the dispatcher
generates a listening endpoint. For example:
(PROTOCOL=tcp)

See the Oracle Database Net Services Reference for further
information about protocol address syntax.

The following attribute specifies how many dispatchers this configuration should
have. It is optional and defaults to 1.

Attribute Description

DISPATCHERS Specify the initial number of dispatchers to start.

The following attributes tell the instance about the network attributes of each
dispatcher of this configuration. They are all optional.

Attribute Description

CONNECTIONS Specify the maximum number of network connections to allow
for each dispatcher.

SESSIONS Specify the maximum number of network sessions to allow for
each dispatcher.

TICKS Specify the duration of a TICK in seconds. A TICK is a unit of

time in terms of which the connection pool timeout can be
specified. Used for connection pooling.

LISTENER Specify an alias name for the listeners with which the PMON
process registers dispatcher information. Set the alias to a name
that is resolved through a naming method.

MULTIPLEX Used to enable the Oracle Connection Manager session
multiplexing feature.

POOL Used to enable connection pooling.

SERVICE Specify the service names the dispatchers register with the
listeners.

You can specify either an entire attribute name a substring consisting of at least the
first three characters. For example, you can specify SESSIONS=3, SES=3, SESS=3, or
SESSI=3, and so forth.

See Also: Oracle Database Reference for more detailed descriptions
of the attributes of the DISPATCHERS initialization parameter

Managing Processes 5-11

Configuring Oracle Database for Shared Server

Determining the Number of Dispatchers

Once you know the number of possible connections for each process for the operating
system, calculate the initial number of dispatchers to create during instance startup,
for each network protocol, using the following formula:

Number of dispatchers =
CEIL (max. concurrent sessions / connections for each dispatcher)

CEIL returns the result roundest up to the next whole integer.

For example, assume a system that can support 970 connections for each process, and
that has:

= A maximum of 4000 sessions concurrently connected through TCP/IP and
= A maximum of 2,500 sessions concurrently connected through TCP/IP with SSL

The DISPATCHERS attribute for TCP/IP should be set to a minimum of five
dispatchers (4000 / 970), and for TCP/IP with SSL three dispatchers (2500 / 970:

DISPATCHERS=' (PROT=tcp) (DISP=5)"', '(PROT-tcps) (DISP=3)'

Depending on performance, you may need to adjust the number of dispatchers.

Setting the Initial Number of Dispatchers

You can specify multiple dispatcher configurations by setting DISPATCHERS to a
comma separated list of strings, or by specifying multiple DISPATCHERS parameters
in the initialization file. If you specify DISPATCHERS multiple times, the lines must be
adjacent to each other in the initialization parameter file. Internally, Oracle Database
assigns an INDEX value (beginning with zero) to each DISPATCHERS parameter. You
can later refer to that DISPATCHERS parameter in an ALTER SYSTEM statement by its
index number.

Some examples of setting the DISPATCHERS initialization parameter follow.

Example: Typical This is a typical example of setting the DISPATCHERS initialization
parameter.

DISPATCHERS=" (PROTOCOL=TCP) (DISPATCHERS=2) "

Example: Forcing the IP Address Used for Dispatchers The following hypothetical
example will create two dispatchers that will listen on the specified IP address. The
address must be a valid IP address for the host that the instance is on. (The host may
be configured with multiple IP addresses.)

DISPATCHERS=" (ADDRESS= (PROTOCOL=TCP) (HOST=144.25.16.201)) (DISPATCHERS=2) "

Example: Forcing the Port Used by Dispatchers To force the dispatchers to use a
specific port as the listening endpoint, add the PORT attribute as follows:

DISPATCHERS=" (ADDRESS= (PROTOCOL=TCP) (PORT=5000))"
DISPATCHERS=" (ADDRESS= (PROTOCOL=TCP) (PORT=5001))"

Altering the Number of Dispatchers

You can control the number of dispatcher processes in the instance. Unlike the number
of shared servers, the number of dispatchers does not change automatically. You
change the number of dispatchers explicitly with the ALTER SYSTEM statement. In
this release of Oracle Database, you can increase the number of dispatchers to more
than the limit specified by the MAX_DISPATCHERS parameter. It is planned that MAX_
DISPATCHERS will be taken into consideration in a future release.

5-12 Oracle Database Administrator's Guide

Configuring Oracle Database for Shared Server

Monitor the following views to determine the load on the dispatcher processes:
m VSQUEUE
s VSDISPATCHER
m VSDISPATCHER_RATE
See Also: Oracle Database Performance Tuning Guide for

information about monitoring these views to determine dispatcher
load and performance

If these views indicate that the load on the dispatcher processes is consistently high,
then performance may be improved by starting additional dispatcher processes to
route user requests. In contrast, if the load on dispatchers is consistently low, reducing
the number of dispatchers may improve performance.

To dynamically alter the number of dispatchers when the instance is running, use the
ALTER SYSTEM statement to modify the DISPATCHERS attribute setting for an
existing dispatcher configuration. You can also add new dispatcher configurations to
start dispatchers with different network attributes.

When you reduce the number of dispatchers for a particular dispatcher configuration,
the dispatchers are not immediately removed. Rather, as users disconnect, Oracle
Database terminates dispatchers down to the limit you specify in DISPATCHERS,

For example, suppose the instance was started with this DISPATCHERS setting in the
initialization parameter file:

DISPATCHERS=' (PROT=tcp) (DISP=2)', ' (PROT=tcps) (DISP=2)'
To increase the number of dispatchers for the TCP/IP protocol from 2 to 3, and

decrease the number of dispatchers for the TCP/IP with SSL protocol from 2 to 1, you
can issue the following statement:

ALTER SYSTEM SET DISPATCHERS = ' (INDEX=0) (DISP=3)', '(INDEX=1) (DISP=1)";

or

ALTER SYSTEM SET DISPATCHERS

' (PROT=tcp) (DISP=3) "', ' (PROT-tcps) (DISP=1)"';

Note: You need not specify (DISP=1). It is optional because 1 is
the default value for the DISPATCHERS parameter.

If fewer than three dispatcher processes currently exist for TCP/IP, the database
creates new ones. If more than one dispatcher process currently exists for TCP/IP with
SSL, then the database terminates the extra ones as the connected users disconnect.

Suppose that instead of changing the number of dispatcher processes for the TCP/IP
protocol, you want to add another TCP/IP dispatcher that supports connection
pooling. You can do so by entering the following statement:

ALTER SYSTEM SET DISPATCHERS = ' (INDEX=2) (PROT=tcp) (POOL=on)';

The INDEX attribute is needed to add the new dispatcher configuration. If you omit
(INDEX=2) in the preceding statement, then the TCP/IP dispatcher configuration at
INDEX 0 will be changed to support connection pooling, and the number of
dispatchers for that configuration will be reduced to 1, which is the default when the
number of dispatchers (attribute DISPATCHERS) is not specified.

Managing Processes 5-13

Configuring Oracle Database for Shared Server

Notes on Altering Dispatchers

s The INDEX keyword can be used to identify which dispatcher configuration to
modify. If you do not specify INDEX, then the first dispatcher configuration
matching the DESCRIPTION, ADDRESS, or PROTOCOL specified will be modified.
If no match is found among the existing dispatcher configurations, then a new
dispatcher will be added.

s The INDEX value can range from 0 to n-1, where n is the current number of
dispatcher configurations. If your ALTER SYSTEM statement specifies an INDEX
value equal to n, where n is the current number of dispatcher configurations, a
new dispatcher configuration will be added.

= To see the values of the current dispatcher configurations--that is, the number of
dispatchers, whether connection pooling is on, and so forth--query the
V$DISPATCHER_CONFIG dynamic performance view. To see which dispatcher
configuration a dispatcher is associated with, query the CONF_INDX column of the
VSDISPATCHER view.

= When you Change the DESCRIPTION, ADDRESS, PROTOCOL, CONNECTIONS,
TICKS, MULTIPLEX, and POOL attributes of a dispatcher configuration, the change
does not take effect for existing dispatchers but only for new dispatchers.
Therefore, in order for the change to be effective for all dispatchers associated with
a configuration, you must forcibly kill existing dispatchers after altering the
DISPATCHERS parameter, and let the database start new ones in their place with
the newly specified properties.

The attributes LISTENER and SERVICES are not subject to the same constraint.
They apply to existing dispatchers associated with the modified configuration.
Attribute SESSIONS applies to existing dispatchers only if its value is reduced.
However, if its value is increased, it is applied only to newly started dispatchers.

Shutting Down Specific Dispatcher Processes

With the ALTER SYSTEM statement, you leave it up to the database to determine
which dispatchers to shut down to reduce the number of dispatchers. Alternatively, it
is possible to shut down specific dispatcher processes. To identify the name of the
specific dispatcher process to shut down, use the V$DISPATCHER dynamic
performance view.

SELECT NAME, NETWORK FROM V$DISPATCHER;

Each dispatcher is uniquely identified by a name of the form Dnnn.
To shut down dispatcher D002, issue the following statement:

ALTER SYSTEM SHUTDOWN IMMEDIATE 'D002';

The IMMEDIATE keyword stops the dispatcher from accepting new connections and
the database immediately terminates all existing connections through that dispatcher.
After all sessions are cleaned up, the dispatcher process shuts down. If IMMEDIATE
were not specified, the dispatcher would wait until all of its users disconnected and all
of its connections terminated before shutting down.

Disabling Shared Servers

You disable shared server by setting SHARED_ SERVERS to 0. No new client can
connect in shared mode. However, when you set SHARED_SERVERS to 0, Oracle
Database retains some shared servers until all shared server connections are closed.
The number of shared servers retained is either the number specified by the preceding

5-14 Oracle Database Administrator's Guide

Configuring Database Resident Connection Pooling

setting of SHARED_SERVERS or the value of the MAX SHARED_SERVERS parameter,
whichever is smaller. If both SHARED_SERVERS and MAX_SHARED_SERVERS are set to
0, then all shared servers will terminate and requests from remaining shared server
clients will be queued until the value of SHARED_SERVERS or MAX_SHARED_SERVERS
is raised again.

To terminate dispatchers once all shared server clients disconnect, enter this statement:

ALTER SYSTEM SET DISPATCHERS = '';

Shared Server Data Dictionary Views

The following views are useful for obtaining information about your shared server
configuration and for monitoring performance.

View Description

V$SDISPATCHER Provides information on the dispatcher processes,
including name, network address, status, various usage

statistics, and index number.

VS$SDISPATCHER_CONFIG Provides configuration information about the dispatchers.

VS$SDISPATCHER_RATE Provides rate statistics for the dispatcher processes.

VSQUEUE

Contains information on the shared server message
queues.

V$SHARED_SERVER

Contains information on the shared servers.

V$CIRCUIT

Contains information about virtual circuits, which are

user connections to the database through dispatchers and
servers.

V$SHARED_SERVER_MONITOR Contains information for tuning shared server.

V$SGA Contains size information about various system global
area (SGA) groups. May be useful when tuning shared
server.

VS$SGASTAT Contains detailed statistical information about the SGA,

useful for tuning.

V$SHARED_POOL_RESERVED Lists statistics to help tune the reserved pool and space

within the shared pool.

See Also:

» Oracle Database Reference for detailed descriptions of these
views

» Oracle Database Performance Tuning Guide for specific
information about monitoring and tuning shared server

Configuring Database Resident Connection Pooling

The database server is preconfigured to allow database resident connection pooling.
However, you must explicitly enable this feature by starting the connection pool.

This section contains the following topics:
= Enabling Database Resident Connection Pooling
= Configuring the Connection Pool for Database Resident Connection Pooling

= Data Dictionary Views for Database Resident Connection Pooling

Managing Processes 5-15

Configuring Database Resident Connection Pooling

See Also: "About Database Resident Connection Pooling" on
page 5-4

Enabling Database Resident Connection Pooling

Oracle Database includes a default connection pool called SYS_DEFAULT_
CONNECTION_POOL. By default, this pool is created, but not started. To enable
database resident connection pooling, you must explicitly start the connection pool.

To enable database resident connection pooling:

1. Start the database resident connection pool, as described in "Starting the Database
Resident Connection Pool" on page 5-16.

2. Route the client connection requests to the connection pool, as described in
"Routing Client Connection Requests to the Connection Pool" on page 5-16.

Starting the Database Resident Connection Pool
To start the connection pool, use the following steps:

1. Start SQL*Plus and connect to the database as the SYS user.
2. Issue the following command:
SQL> EXECUTE DBMS_CONNECTION_POOL.START_POOL () ;
Once started, the connection pool remains in this state until it is explicitly stopped. The

connection pool is automatically restarted when the database instance is restarted if
the pool was active at the time of instance shutdown.

In an Oracle Real Application Clusters (RAC) environment, you can use any instance
to manage the connection pool. Any changes you make to the pool configuration are
applicable on all Oracle RAC instances.

Routing Client Connection Requests to the Connection Pool
In the client application, the connect string must specify the connect type as POOLED.

The following example shows an easy connect string that enables clients to connect to
a database resident connection pool:

oraclehost.company.com: 1521 /books.company .com: POOLED
The following example shows a TNS connect descriptor that enables clients to connect
to a database resident connection pool:

(DESCRIPTION= (ADDRESS=(PROTOCOL=tcp) (HOST=myhost)
(PORT=1521)) (CONNECT_DATA= (SERVICE_NAME=sales)
(SERVER=POOLED)))

Disabling Database Resident Connection Pooling

To disable database resident connection pooling, you must explicitly stop the
connection pool. Use the following steps:

1. Start SQL*Plus and connect to the database as the SYS user.
2. Issue the following command:

SQL> EXECUTE DBMS_CONNECTION_POOL.STOP_POOL () ;

See Also: Oracle Database PL/SQL Packages and Types Reference for
more information on the DBMS_CONNECTION_POOL package.

5-16 Oracle Database Administrator's Guide

Configuring Database Resident Connection Pooling

Note: The operation of disabling the database resident connection
pool can be completed only when all client requests that have been
handed off to a server are completed.

Configuring the Connection Pool for Database Resident Connection Pooling

The connection pool is configured using default parameter values. You can use the
procedures in the DBMS_CONNECTION_POOL package to configure the connection pool
according to your usage. In an Oracle Real Application Clusters (RAC) environment,
the configuration parameters are applicable to each Oracle RAC instance.

Table 5-2 lists the parameters that you can configure for the connection pool.

Table 5-2 Configuration Parameters for Database Resident Connection Pooling

Parameter Name

Description

MINSIZE

MAXSIZE

INCRSIZE

SESSION_CACHED_CURSORS

INACTIVITY_TIMEOUT

MAX_THINK_TIME

MAX_USE_SESSION

MAX LIFETIME_SESSION

NUM_CBROK

MAXCONN_CBROK

The minimum number of pooled servers in the pool. The
default value is 4.

The maximum number of pooled servers in the pool. The
default value is 40.

The number of pooled servers by which the pool is
incremented if servers are unavailable when a client
application request is received. The default value is 3.

The number of session cursors to cache in each pooled server
session. The default value is 20.

The maximum time, in seconds, the pooled server can stay idle
in the pool. After this time, the server is terminated. The
default value is 300.

This parameter does not apply if the pool is at MINSIZE.

The maximum time of inactivity, in seconds, for a client after it
obtains a pooled server from the pool. After obtaining a pooled
server from the pool, if the client application does not issue a
database call for the time specified by MAX_THINK_TIME, the
pooled server is freed and the client connection is terminated.
The default value is 30.

The number of times a pooled server can be taken and released
to the pool. The default value is 5000.

The time, in seconds, to live for a pooled server in the pool.
The default value is 3600.

The number of Connection Brokers that are created to handle
client requests. The default value is 1.

Creating multiple Connection Broker processes helps
distribute the load of client connection requests if there are a
large number of client applications.

The maximum number of connections that each Connection
Broker can handle.

The default value is 40000. But if the maximum connections
allowed by the platform on which the database is installed is
lesser than the default value, this value overrides the value set
using MAXCONN_CBROK.

Set the per-process file descriptor limit of the operating system
sufficiently high so that it supports the number of connections
specified by MAXCONN_CBROK.

Managing Processes 5-17

Configuring Database Resident Connection Pooling

Using the CONFIGURE_POOL Procedure

The CONFIGURE_POOL procedure of the DBMS_CONNECTION_POOL package enables
you to configure the connection pool with advanced options. This procedure is usually
used when you need to modify all the parameters of the connection pool.

Using the ALTER_PARAM Procedure
The ALTER_PARAM procedure of the DBMS_CONNECTION_POOL package enables you
to alter a specific configuration parameter without affecting other parameters.

For example, the following command changes the minimum number of pooled servers
used:

SQL> EXECUTE DBMS_CONNECTION_POOL.ALTER_PARAM ('', 'MINSIZE', '10');

The following example, changes the maximum number of connections that each
connection broker can handle to 50000.

SQL> EXECUTE DBMS_CONNECTION_POOL.ALTER_PARAM ('', 'MAXCONN_CBROK', '50000");

Before you execute this command, ensure that the maximum number of connections
allowed by the platform on which your database is installed is not less than the value
you set for MAXCONN_CBROK.

For example, in Linux, the following entry in the /etc/security/limits.conf file
indicates that the maximum number of connections allowed for the user test_user
is 30000.

test_user HARD NOFILE 30000

To set the maximum number of connections that each connection broker can allow to
50000, first change the value in the 1imits. conf file to a value not less than 50000.

Restoring the Connection Pool Default Settings

If you have made changes to the connection pool parameters, but you want to revert to
the default pool settings, use the RESTORE_DEFAULT procedure of the DBMS_
CONNECTION_POOL package. The command to restore the connection pool to its
default settings is:

SQL> EXECUTE DBMS_CONNECTION_POOL.RESTORE_DEFAULTS () ;

See Also: Oracle Database PL/SQL Packages and Types Reference for
more information on the DBMS_CONNECTION_POOL package.

Data Dictionary Views for Database Resident Connection Pooling

Table 5-3 lists the data dictionary views that provide information about database
resident connection pooling. Use these views to obtain information about your
connection pool and to monitor the performance of database resident connection
pooling.

Table 5-3 Data Dictionary Views for Database Resident Connection Pooling

View Description

DBA_CPOOL_INFO Contains information about the connection pool such as the pool
status, the maximum and minimum number of connections, and
timeout for idle sessions.

V$CPOOL_CONN_INFO Contains information about each connection to the connection
broker.

5-18 Oracle Database Administrator's Guide

About Oracle Database Background Processes

Table 5-3 (Cont.) Data Dictionary Views for Database Resident Connection Pooling

View Description

V$CPOOL_STATS Contains pool statistics such as the number of session requests,
number of times a session that matches the request was found in
the pool, and total wait time for a session request.

V$CPOOL_CC_STATS Contains connection class level statistics for the pool.

See Also: Oracle Database Reference for more information about these
views.

About Oracle Database Background Processes

To maximize performance and accommodate many users, a multiprocess Oracle
Database system uses background processes. Background processes consolidate
functions that would otherwise be handled by multiple database programs running
for each user process. Background processes asynchronously perform I/O and
monitor other Oracle Database processes to provide increased parallelism for better
performance and reliability.

Table 54 describes the fundamental background processes, many of which are
discussed in more detail elsewhere in this book. The use of additional database
features or options can cause more background processes to be present. For example:

= When you use Oracle Streams Advanced Queuing, the queue monitor (QMNn)
background process is present.

= When you specify the FILE_ MAPPING initialization parameter for mapping
datafiles to physical devices on a storage subsystem, then the FMON process is
present.

= If you use Oracle Automatic Storage Management (Oracle ASM), then additional
Oracle ASM-specific background processes are present.

Table 5-4 Oracle Database Background Processes

Process Name

Description

Database writer (DBWn)

Log writer (LGWR)

Checkpoint (CKPT)

The database writer writes modified blocks from the database buffer cache to the
datafiles. Oracle Database allows a maximum of 20 database writer processes
(DBW0-DBW9 and DBWa-DBWj). The DB_WRITER_PROCESSES initialization
parameter specifies the number of DBWn processes. The database selects an
appropriate default setting for this initialization parameter or adjusts a user-specified
setting based on the number of CPUs and the number of processor groups.

For more information about setting the DB_WRITER_PROCESSES initialization
parameter, see the Oracle Database Performance Tuning Guide.

The log writer process writes redo log entries to disk. Redo log entries are generated
in the redo log buffer of the system global area (SGA). LGWR writes the redo log
entries sequentially into a redo log file. If the database has a multiplexed redo log,
then LGWR writes the redo log entries to a group of redo log files. See Chapter 11,
"Managing the Redo Log" for information about the log writer process.

At specific times, all modified database buffers in the system global area are written
to the datafiles by DBWn. This event is called a checkpoint. The checkpoint process is
responsible for signalling DBWn at checkpoints and updating all the datafiles and
control files of the database to indicate the most recent checkpoint.

Managing Processes 5-19

Managing Processes for Parallel SQL Execution

Table 5-4 (Cont.) Oracle Database Background Processes

Process Name Description

System monitor (SMON) The system monitor performs recovery when a failed instance starts up again. In an
Oracle Real Application Clusters database, the SMON process of one instance can
perform instance recovery for other instances that have failed. SMON also cleans up
temporary segments that are no longer in use and recovers dead transactions skipped
during system failure and instance recovery because of file-read or offline errors.
These transactions are eventually recovered by SMON when the tablespace or file is
brought back online.

Process monitor (PMON) The process monitor performs process recovery when a user process fails. PMON is
responsible for cleaning up the cache and freeing resources that the process was
using. PMON also checks on the dispatcher processes (described later in this table)
and server processes and restarts them if they have failed.

Archiver (ARCn) One or more archiver processes copy the redo log files to archival storage when they
are full or a log switch occurs. Archiver processes are the subject of Chapter 12,
"Managing Archived Redo Logs".

Recoverer (RECO) The recoverer process is used to resolve distributed transactions that are pending
because of a network or system failure in a distributed database. At timed intervals,
the local RECO attempts to connect to remote databases and automatically complete
the commit or rollback of the local portion of any pending distributed transactions.
For information about this process and how to start it, see Chapter 34, "Managing
Distributed Transactions".

Dispatcher (Dnnn) Dispatchers are optional background processes, present only when the shared server
configuration is used. Shared server was discussed previously in "Configuring Oracle
Database for Shared Server" on page 5-6.

See Also: Oracle Database Reference for a complete list of Oracle
Database background processes

Managing Processes for Parallel SQL Execution

Note: The parallel execution feature described in this section is
available with the Oracle Database Enterprise Edition.

This section describes how to manage parallel processing of SQL statements. In this
configuration Oracle Database can divide the work of processing an SQL statement
among multiple parallel processes.

The execution of many SQL statements can be parallelized. The degree of parallelism
is the number of parallel execution servers that can be associated with a single
operation. The degree of parallelism is determined by any of the following;:

s A PARALLEL clause in a statement

= For objects referred to in a query, the PARALLEL clause that was used when the
object was created or altered

= A parallel hint inserted into the statement
= A default determined by the database

An example of using parallel SQL execution is contained in "Parallelizing Table
Creation" on page 19-13.

The following topics are contained in this section:

s About Parallel Execution Servers

5-20 Oracle Database Administrator's Guide

Managing Processes for Parallel SQL Execution

= Altering Parallel Execution for a Session

See Also:

» Oracle Database Performance Tuning Guide for information about
using parallel hints

About Parallel Execution Servers

When an instance starts up, Oracle Database creates a pool of parallel execution
servers which are available for any parallel operation. A process called the parallel
execution coordinator dispatches the execution of a pool of parallel execution servers
and coordinates the sending of results from all of these parallel execution servers back
to the user.

The parallel execution servers are enabled by default, because by default the value for
PARALLEL_MAX_SERVERS initialization parameter is set >0. The processes are
available for use by the various Oracle Database features that are capable of exploiting
parallelism. Related initialization parameters are tuned by the database for the
majority of users, but you can alter them as needed to suit your environment. For ease
of tuning, some parameters can be altered dynamically.

Parallelism can be used by a number of features, including transaction recovery,
replication, and SQL execution. In the case of parallel SQL execution, the topic
discussed in this book, parallel server processes remain associated with a statement
throughout its execution phase. When the statement is completely processed, these
processes become available to process other statements.

See Also: Oracle Database VLDB and Partitioning Guide for more
information about using parallel execution

Altering Parallel Execution for a Session

You control parallel SQL execution for a session using the ALTER SESSION statement.

Disabling Parallel SQL Execution

You disable parallel SQL execution with an ALTER SESSION DISABLE PARALLEL
DML | DDL | QUERY statement. All subsequent DML (INSERT, UPDATE, DELETE), DDL
(CREATE, ALTER), or query (SELECT) operations are executed serially after such a
statement is issued. They will be executed serially regardless of any parallel attribute
associated with the table or indexes involved. However, statements with a PARALLEL
hint override the session settings.

The following statement disables parallel DDL operations:

ALTER SESSION DISABLE PARALLEL DDL;

Enabling Parallel SQL Execution

You enable parallel SQL execution with an ALTER SESSION ENABLE PARALLEL
DML | DDL | QUERY statement. Subsequently, when a PARALLEL clause or parallel hint is
associated with a statement, those DML, DDL, or query statements will execute in
parallel. By default, parallel execution is enabled for DDL and query statements.

A DML statement can be parallelized only if you specifically issue an ALTER
SESSION statement to enable parallel DML:

ALTER SESSION ENABLE PARALLEL DML;

Managing Processes 5-21

Managing Processes for External Procedures

Forcing Parallel SQL Execution

You can force parallel execution of all subsequent DML, DDL, or query statements for
which parallelization is possible with the ALTER SESSION FORCE PARALLEL

DML | DDL | QUERY statement. Additionally you can force a specific degree of
parallelism to be in effect, overriding any PARALLEL clause associated with
subsequent statements. If you do not specify a degree of parallelism in this statement,
the default degree of parallelism is used. Forcing parallel execution overrides any
parallel hints in SQL statements.

The following statement forces parallel execution of subsequent statements and sets
the overriding degree of parallelism to 5:

ALTER SESSION FORCE PARALLEL DDL PARALLEL 5;

Managing Processes for External Procedures
This section contains:
s About External Procedures

s DBA Tasks to Enable External Procedure Calls

About External Procedures

External procedures are procedures that are written in C, C++, Java, or other language,
compiled and stored outside the database, and then called by user sessions. For
example, a PL/SQL program unit could call one or more C routines that are required
to perform special-purpose processing.

These callable routines are stored in a dynamic link library (DLL), or a libunit in the
case of a Java class method, and are registered with the base language. Oracle
Database provides a special-purpose interface, the call specification (call spec), that
enables users to call external procedures in other languages.

When a user session calls an external procedure, the database starts an external
procedure agent on the database host computer. The default name of the agent is
extproc. Each session has its own dedicated agent. When a session terminates, the
database terminates its agent.

User applications pass to the external procedure agent the name of the DLL or libunit,
the name of the external procedure, and any relevant parameters. The external
procedure agent then loads the DLL or libunit, runs the external procedure, and passes
back to the application any values returned by the external procedure.

See Also: Oracle Database Advanced Application Developer’s Guide
for information about external procedures

DBA Tasks to Enable External Procedure Calls

Enabling external procedure calls may involve the following DBA tasks:
= Configuring the listener to start the extproc agent

By default, the database starts the extproc process. Under the following
circumstances, you must change this default configuration so that the listener
starts the extproc process:

- You want to use a multithreaded extproc agent

— The database is running in shared server mode on Windows

5-22 Oracle Database Administrator's Guide

Terminating Sessions

— An AGENT clause in the LIBRARY specification or an AGENT IN clause in the
PROCEDURE or FUNCTION specification redirects external procedures to a
different extproc agent

Instructions for changing the default configuration are found in the subsection
entitled "Set Up the Environment" in the chapter "Developing Applications with
Multiple Programming Languages" in Oracle Database Advanced Application
Developer’s Guide.

s Creating libraries or granting CREATE LIBRARY privileges

The database requires DLLs to be accessed through a schema object called a
library. For security purposes, by default, only users with the DBA role can create
and manage libraries. Therefore, you may be asked to:

— Use the CREATE LIBRARY statement to create the library objects that the
developers need.

- Grant the CREATE LIBRARY or CREATE ANY LIBRARY privileges to
developers.

See Also: Oracle Database PL/SQL Language Reference for information
about the CREATE LIBRARY statement

Terminating Sessions

Sometimes it is necessary to terminate current user sessions. For example, you might
want to perform an administrative operation and need to terminate all
non-administrative sessions. This section describes the various aspects of terminating
sessions, and contains the following topics:

s Identifying Which Session to Terminate
s Terminating an Active Session
s Terminating an Inactive Session

When a session is terminated, any active transactions of the session are rolled back,
and resources held by the session (such as locks and memory areas) are immediately
released and available to other sessions.

You terminate a current session using the SQL statement ALTER SYSTEM KILL
SESSION. The following statement terminates the session whose system identifier is 7
and serial number is 15:

ALTER SYSTEM KILL SESSION '7,15';

Identifying Which Session to Terminate

To identify which session to terminate, specify the session index number and serial
number. To identify the system identifier (SID) and serial number of a session, query
the V$SESSION dynamic performance view. For example, the following query
identifies all sessions for the user jward:

SELECT SID, SERIAL#, STATUS
FROM VS$SESSION
WHERE USERNAME = 'JWARD';

SID SERIAL# STATUS

7 15 ACTIVE
12 63 INACTIVE

Managing Processes 5-23

Terminating Sessions

A session is ACTIVE when it is making a SQL call to Oracle Database. A session is
INACTIVE if it is not making a SQL call to the database.

See Also: Oracle Database Reference for a description of the status
values for a session

Terminating an Active Session

If a user session is processing a transaction (ACTIVE status) when you terminate the
session, the transaction is rolled back and the user immediately receives the following
message:

ORA-00028: your session has been killed

If, after receiving the ORA-00028 message, a user submits additional statements
before reconnecting to the database, Oracle Database returns the following message:

ORA-01012: not logged on

An active session cannot be interrupted when it is performing network I/O or rolling
back a transaction. Such a session cannot be terminated until the operation completes.
In this case, the session holds all resources until it is terminated. Additionally, the
session that issues the ALTER SYSTEM statement to terminate a session waits up to 60
seconds for the session to be terminated. If the operation that cannot be interrupted
continues past one minute, the issuer of the ALTER SYSTEM statement receives a
message indicating that the session has been marked to be terminated. A session
marked to be terminated is indicated in VS SESSION with a status of KILLED and a
server that is something other than PSEUDO.

Terminating an Inactive Session

If the session is not making a SQL call to Oracle Database (is INACTIVE) when it is
terminated, the ORA-00028 message is not returned immediately. The message is not
returned until the user subsequently attempts to use the terminated session.

When an inactive session has been terminated, the STATUS of the session in the
V$SESSION view is KILLED. The row for the terminated session is removed from
V$SESSION after the user attempts to use the session again and receives the
ORA-00028 message.

In the following example, an inactive session is terminated. First, V$ SESSION is
queried to identify the SID and SERIAL# of the session, and then the session is
terminated.

SELECT SID, SERIAL#, STATUS, SERVER
FROM VSSESSION
WHERE USERNAME = 'JWARD';

SID SERIAL# STATUS SERVER
7 15 INACTIVE DEDICATED
12 63 INACTIVE DEDICATED

2 rows selected.

ALTER SYSTEM KILL SESSION '7,15';
Statement processed.

SELECT SID, SERIAL#, STATUS, SERVER
FROM VSSESSION

5-24 Oracle Database Administrator's Guide

Process and Session Data Dictionary Views

WHERE USERNAME = 'JWARD';

SID SERIAL# STATUS
7 15 KILLED
12 63 INACTIVE
2 rows selected.

SERVER

PSEUDO
DEDICATED

Process and Session Data Dictionary Views

The following are the data dictionary views that can help you manage processes and

sessions.
View Description
V$PROCESS Contains information about the currently active processes
VS$SESSION Lists session information for each current session
V$SESS_IO Contains I/O statistics for each user session

V$SESSION_LONGOPS

Displays the status of various operations that run for longer
than 6 seconds (in absolute time). These operations currently
include many backup and recovery functions, statistics
gathering, and query execution. More operations are added
for every Oracle Database release.

VSSESSION_WAIT

Displays the current or last wait for each session

VSSESSION_WAIT_HISTORY

Lists the last ten wait events for each active session

VSWAIT_CHAINS

Displays information about blocked sessions

V$SYSSTAT

Contains session statistics

VSRESOURCE_LIMIT

Provides information about current and maximum global
resource utilization for some system resources

VSSQLAREA

Contains statistics about shared SQL areas. Contains one row
for each SQL string. Provides statistics about SQL statements
that are in memory, parsed, and ready for execution

Managing Processes 5-25

Process and Session Data Dictionary Views

5-26 Oracle Database Administrator's Guide

6

Managing Memory

In this chapter:

= About Memory Management

= Memory Architecture Overview

s Using Automatic Memory Management
s Configuring Memory Manually

s Configuring Database Smart Flash Cache

= Memory Management Reference

About Memory Management

Memory management involves maintaining optimal sizes for the Oracle Database
instance memory structures as demands on the database change. The memory
structures that must be managed are the system global area (SGA) and the instance
program global area (instance PGA).

Oracle Database supports various memory management methods, which are chosen
by initialization parameter settings. Oracle recommends that you enable the method
known as automatic memory management.

Automatic Memory Management

Beginning with Release 11g, Oracle Database can manage the SGA memory and
instance PGA memory completely automatically. You designate only the total memory
size to be used by the instance, and Oracle Database dynamically exchanges memory
between the SGA and the instance PGA as needed to meet processing demands. This
capability is referred to as automatic memory management. With this memory
management method, the database also dynamically tunes the sizes of the individual
SGA components and the sizes of the individual PGAs.

Manual Memory Management

If you prefer to exercise more direct control over the sizes of individual memory
components, you can disable automatic memory management and configure the
database for manual memory management. There are a few different methods
available for manual memory management. Some of these methods retain some
degree of automation. The methods therefore vary in the amount of effort and
knowledge required by the DBA. These methods are:

= Automatic shared memory management - for the SGA

» Manual shared memory management - for the SGA

Managing Memory 6-1

Memory Architecture Overview

= Automatic PGA memory management - for the instance PGA
= Manual PGA memory management - for the instance PGA

These memory management methods are described later in this chapter.

Note: The easiest way to manage memory is to use the graphical
user interface of Oracle Enterprise Manager.

To manage memory with Enterprise Manager:

1. Do one of the following;:

- If you are using Oracle Enterprise Manager Database Control, access the
Database Home page. See Oracle Database 2 Day DBA for instructions.

- If you are using Oracle Enterprise Manager Grid Control, go to the
desired database target. The Database Home page is displayed.

2. At the top of the page, click Server to display the Server page.

3. In the Database Configuration section, click Memory Advisors.

See Also: Oracle Database Concepts for an introduction to the various
automatic and manual methods of managing memory.

Memory Architecture Overview

The basic memory structures associated with Oracle Database include:
= System Global Area (SGA)

The SGA is a group of shared memory structures, known as SGA components, that
contain data and control information for one Oracle Database instance. The SGA is
shared by all server and background processes. Examples of data stored in the
SGA include cached data blocks and shared SQL areas.

= Program Global Area (PGA)

A PGA is a memory region that contains data and control information for a server
process. It is nonshared memory created by Oracle Database when a server
process is started. Access to the PGA is exclusive to the server process. There is
one PGA for each server process. Background processes also allocate their own
PGAs. The total PGA memory allocated for all background and server processes
attached to an Oracle Database instance is referred to as the total instance PGA
memory, and the collection of all individual PGAs is referred to as the total
instance PGA, or just instance PGA.

Figure 6-1 illustrates the relationships among these memory structures.

6-2 Oracle Database Administrator's Guide

Using Automatic Memory Management

Figure 6—1 Oracle Database Memory Structures

! ! {

Server Server Server
Process 1 Process 2 Process 3

! ! !

System Global Area
Java Redo Buffer > Flash
Pool Buffer Cache <+ Cache
Shared Streams Large Other
Pool Pool Pool Components
Background Background
Process Process

$ ¢

If your database is running on Solaris or Oracle Enterprise Linux, you can optionally
add another memory component: Database Smart Flash Cache (the flash cache). The
flash cache is an extension of the SGA-resident buffer cache, providing a level 2 cache
for database blocks. It can improve response time and overall throughput, especially
for read-intensive online transaction processing (OLTP) workloads. The flash cache
resides on one or more flash disk devices, which are solid state storage devices that use
flash memory.

The flash cache is typically more economical than additional main memory, and is an
order of magnitude faster than disk drives.

See Also:

» Oracle Database Concepts for more information on memory
architecture in an Oracle Database instance

s "Configuring Database Smart Flash Cache" on page 6-21

Using Automatic Memory Management

This section provides background information on the automatic memory management
feature of Oracle Database, and includes instructions for enabling this feature. The
following topics are covered:

= About Automatic Memory Management
= Enabling Automatic Memory Management

= Monitoring and Tuning Automatic Memory Management

Managing Memory 6-3

Using Automatic Memory Management

About Automatic Memory Management

The simplest way to manage instance memory is to allow the Oracle Database instance
to automatically manage and tune it for you. To do so (on most platforms), you set
only a target memory size initialization parameter (MEMORY_TARGET) and optionally a
maximum memory size initialization parameter (MEMORY_MAX_TARGET). The total
memory that the instance uses remains relatively constant, based on the value of
MEMORY_TARGET, and the instance automatically distributes memory between the
system global area (SGA) and the instance program global area (instance PGA). As
memory requirements change, the instance dynamically redistributes memory
between the SGA and instance PGA.

When automatic memory management is not enabled, you must size both the SGA
and instance PGA manually.

Because the MEMORY_TARGET initialization parameter is dynamic, you can change
MEMORY_TARGET at any time without restarting the database. MEMORY_MAX_TARGET,
which is not dynamic, serves as an upper limit so that you cannot accidentally set
MEMORY_TARGET too high, and so that enough memory is set aside for the database
instance in case you do want to increase total instance memory in the future. Because
certain SGA components either cannot easily shrink or must remain at a minimum
size, the instance also prevents you from setting MEMORY_TARGET too low.

If you create your database with Database Configuration Assistant (DBCA) and choose
the basic installation option, automatic memory management is enabled. If you choose
advanced installation, Database Configuration Assistant (DBCA) enables you to select
automatic memory management.

Note: You cannot enable automatic memory management if the
LOCK_SGA initialization parameter is TRUE. See Oracle Database
Reference for information about this parameter.

See Also:

s 'Platforms That Support Automatic Memory Management" on
page 6-23

Enabling Automatic Memory Management

If you did not enable automatic memory management upon database creation (either
by selecting the proper options in DBCA or by setting the appropriate initialization
parameters for the CREATE DATABASE SQL statement), you can enable it at a later
time. Enabling automatic memory management involves a shutdown and restart of the
database.

To enable automatic memory management
1. Start SQL*Plus and connect to the database as SYSDBA.

See "Connecting to the Database with SQL*Plus" on page 1-7 and "Database
Administrator Authentication" on page 1-16 for instructions.

2. Calculate the minimum value for MEMORY_TARGET as follows:

a. Determine the current sizes of SGA_TARGET and PGA_AGGREGATE_TARGET
by entering the following SQL*Plus command:

SHOW PARAMETER TARGET

6-4 Oracle Database Administrator's Guide

Using Automatic Memory Management

SQL*Plus displays the values of all initialization parameters with the string
TARGET in the parameter name.

NAME TYPE VALUE
archive_lag_target integer 0
db_flashback_retention_target integer 1440
fast_start_io_target integer 0
fast_start_mttr_target integer 0
memory_max_target big integer 0
memory_target big integer 0
pga_aggregate_target big integer 90M
sga_target big integer 272M

b. Run the following query to determine the maximum instance PGA allocated
since the database was started:

select value from v$pgastat where name='maximum PGA allocated';

c. Compute the maximum value between the query result from step 2b and
PGA_AGGREGATE_TARGET. Add SGA_TARGET to this value.
memory_target = sga_target + max(pga_aggregate_target, maximum PGA

allocated)

For example, if SGA_TARGET is 272M and PGA_AGGREGATE_TARGET is 90M as
shown above, and if the maximum PGA allocated is determined to be 120M, then
MEMORY_TARGET should be at least 392M (272M + 120M).

Choose the value for MEMORY_TARGET that you want to use.

This can be the minimum value that you computed in step 2, or you can choose to
use a larger value if you have enough physical memory available.

For the MEMORY_MAX_ TARGET initialization parameter, decide on a maximum
amount of memory that you would want to allocate to the database for the
foreseeable future. That is, determine the maximum value for the sum of the SGA
and instance PGA sizes. This number can be larger than or the same as the
MEMORY_TARGET value that you chose in the previous step.

Do one of the following:

= If you started your Oracle Database instance with a server parameter file,
which is the default if you created the database with the Database
Configuration Assistant (DBCA), enter the following command:

ALTER SYSTEM SET MEMORY_MAX_ TARGET = nM SCOPE = SPFILE;

where 7 is the value that you computed in Step 4.

The SCOPE = SPFILE clause sets the value only in the server parameter file,
and not for the running instance. You must include this SCOPE clause because
MEMORY_MAX_TARGET is not a dynamic initialization parameter.

= If you started your instance with a text initialization parameter file, manually
edit the file so that it contains the following statements:

memory_max_target = nM
memory_target = mM

where 7 is the value that you determined in Step 4, and m is the value that you
determined in step 3.

Managing Memory 6-5

Using Automatic Memory Management

Note: In a text initialization parameter file, if you omit the line for
MEMORY_MAX_TARGET and include a value for MEMORY_TARGET, the
database automatically sets MEMORY_MAX_TARGET to the value of
MEMORY_TARGET. If you omit the line for MEMORY_TARGET and
include a value for MEMORY_MAX_TARGET, the MEMORY_TARGET
parameter defaults to zero. After startup, you can then dynamically
change MEMORY_TARGET to a nonzero value, provided that it does not
exceed the value of MEMORY_MAX_TARGET.

6. Shut down and restart the database.
See Chapter 3, "Starting Up and Shutting Down" on page 3-1 for instructions.

7. If you started your Oracle Database instance with a server parameter file, enter the
following commands:

ALTER SYSTEM SET MEMORY_TARGET = nM;
ALTER SYSTEM SET SGA_TARGET = 0;
ALTER SYSTEM SET PGA_AGGREGATE_TARGET = 0;

where 7 is the value that you determined in step 3.

Note: The preceding steps instruct you to set SGA_TARGET and
PGA_AGGREGATE_TARGET to zero so that the sizes of the SGA and
instance PGA are tuned up and down as required, without
restrictions. You can omit the statements that set these parameter
values to zero and leave either or both of the values as positive
numbers. In this case, the values act as minimum values for the sizes
of the SGA or instance PGA.

See Also:
= "About Automatic Memory Management" on page 6-4
= "Memory Architecture Overview" on page 6-2

» Oracle Database SQL Language Reference for information on the
ALTER SYSTEM SQL statement

Monitoring and Tuning Automatic Memory Management

The dynamic performance view VSMEMORY_DYNAMIC_COMPONENTS shows the
current sizes of all dynamically tuned memory components, including the total sizes of
the SGA and instance PGA.

The view VSMEMORY_TARGET_ADVICE provides tuning advice for the MEMORY_
TARGET initialization parameter.

SQL> select * from vSmemory_target_advice order by memory_size;

MEMORY_SIZE MEMORY SIZE_FACTOR ESTD_DB_TIME ESTD_DB_TIME_FACTOR VERSION

180 5 458 1.344 0
270 75 367 1.0761 0
360 1 341 1 0
450 1.25 335 L9817 0
540 1.5 335 .9817 0
630 1.75 335 .9817 0

6-6 Oracle Database Administrator's Guide

Configuring Memory Manually

720 2 335 L9817 0

The row with the MEMORY_SIZE_FACTOR of 1 shows the current size of memory, as
set by the MEMORY_TARGET initialization parameter, and the amount of DB time
required to complete the current workload. In previous and subsequent rows, the
results show a number of alternative MEMORY_TARGET sizes. For each alternative size,
the database shows the size factor (the multiple of the current size), and the estimated
DB time to complete the current workload if the MEMORY_TARGET parameter were
changed to the alternative size. Notice that for a total memory size smaller than the
current MEMORY_TARGET size, estimated DB time increases. Notice also that in this
example, there is nothing to be gained by increasing total memory size beyond 450MB.
However, this situation might change if a complete workload has not yet been run.

Enterprise Manager provides an easy-to-use graphical memory advisor to help you
select an optimal size for MEMORY_TARGET. See Oracle Database 2 Day DBA for details.

See Also:

» Oracle Database Reference for more information about these
dynamic performance views

» Oracle Database Performance Tuning Guide for a definition of DB
time.

Configuring Memory Manually

If you prefer to exercise more direct control over the sizes of individual memory
components, you can disable automatic memory management and configure the
database for manual memory management. There are two different manual memory
management methods for the SGA, and two for the instance PGA.

The two manual memory management methods for the SGA vary in the amount of
effort and knowledge required by the DBA. With automatic shared memory management,
you set target and maximum sizes for the SGA. The database then sets the total size of
the SGA to your designated target, and dynamically tunes the sizes of many SGA
components. With manual shared memory management, you set the sizes of several
individual SGA components, thereby determining the overall SGA size. You then
manually tune these individual SGA components on an ongoing basis.

For the instance PGA, there is automatic PGA memory management, in which you set a
target size for the instance PGA. The database then sets the size of the instance PGA to
your target, and dynamically tunes the sizes of individual PGAs. There is also manual
PGA memory management, in which you set maximum work area size for each type of
SQL operator (such as sort or hash-join). This memory management method, although
supported, is not recommended.

The following sections provide details on all of these manual memory management
methods:

= Using Automatic Shared Memory Management
» Using Manual Shared Memory Management

s Using Automatic PGA Memory Management

s Using Manual PGA Memory Management

See Also: Oracle Database Concepts for an overview of Oracle
Database memory management methods.

Managing Memory 6-7

Configuring Memory Manually

Using Automatic Shared Memory Management

This section contains the following topics:

= About Automatic Shared Memory Management

s Components and Granules in the SGA

= Setting Maximum SGA Size

» Setting SGA Target Size

= Enabling Automatic Shared Memory Management

= Automatic Shared Memory Management Advanced Topics

See Also:

» Oracle Database Performance Tuning Guide for information about
tuning the components of the SGA

About Automatic Shared Memory Management

Automatic Shared Memory Management simplifies SGA memory management. You
specify the total amount of SGA memory available to an instance using the SGA_
TARGET initialization parameter and Oracle Database automatically distributes this
memory among the various SGA components to ensure the most effective memory
utilization.

When automatic shared memory management is enabled, the sizes of the different
SGA components are flexible and can adapt to the needs of a workload without
requiring any additional configuration. The database automatically distributes the
available memory among the various components as required, allowing the system to
maximize the use of all available SGA memory.

If you are using a server parameter file (SPFILE), the database remembers the sizes of
the automatically tuned SGA components across instance shutdowns. As a result, the
database instance does not need to learn the characteristics of the workload again each
time the instance is started. The instance can begin with information from the previous
instance and continue evaluating workload where it left off at the last shutdown.

Components and Granules in the SGA

The SGA comprises a number of memory components, which are pools of memory
used to satisfy a particular class of memory allocation requests. Examples of memory
components include the shared pool (used to allocate memory for SQL and PL/SQL
execution), the java pool (used for java objects and other java execution memory), and
the buffer cache (used for caching disk blocks). All SGA components allocate and
deallocate space in units of granules. Oracle Database tracks SGA memory use in
internal numbers of granules for each SGA component.

The memory for dynamic components in the SGA is allocated in the unit of granules.
Granule size is determined by total SGA size. Generally speaking, on most platforms,
if the total SGA size is equal to or less than 1 GB, then granule size is 4 MB. For SGAs
larger than 1 GB, granule size is 16 MB. Some platform dependencies may arise. For
example, on 32-bit Windows NT, the granule size is 8 MB for SGAs larger than 1 GB.
Consult your operating system specific documentation for more details.

You can query the VS SGAINFO view to see the granule size that is being used by an
instance. The same granule size is used for all components in the SGA.

If you specify a size for a component that is not a multiple of granule size, Oracle
Database rounds the specified size up to the nearest multiple. For example, if the

6-8 Oracle Database Administrator's Guide

Configuring Memory Manually

granule size is 4 MB and you specify DB_CACHE_SIZE as 10 MB, the database actually
allocates 12 MB.

Setting Maximum SGA Size

The sGA_MAX_SIZE initialization parameter specifies the maximum size of the System
Global Area for the lifetime of the instance. You can dynamically alter the initialization
parameters affecting the size of the buffer caches, shared pool, large pool, Java pool,
and streams pool but only to the extent that the sum of these sizes and the sizes of the
other components of the SGA (fixed SGA, variable SGA, and redo log buffers) does not
exceed the value specified by SGA_MAX_SIZE.

If you do not specify SGA_MAX_SIZE, then Oracle Database selects a default value that
is the sum of all components specified or defaulted at initialization time. If you do
specify SGA_MAX_SIZE, and at the time the database is initialized the value is less
than the sum of the memory allocated for all components, either explicitly in the
parameter file or by default, then the database ignores the setting for SGA_MAX_SIZE
and chooses a correct value for this parameter.

Setting SGA Target Size

You enable the automatic shared memory management feature by setting the SGA_
TARGET parameter to a nonzero value. This parameter sets the total size of the SGA. It
replaces the parameters that control the memory allocated for a specific set of
individual components, which are now automatically and dynamically resized (tuned)
as needed.

Note: The STATISTICS_LEVEL initialization parameter must be set
to TYPICAL (the default) or ALL for automatic shared memory
management to function.

Table 6-1 lists the SGA components that are automatically sized when SGA_TARGET is
set. For each SGA component, its corresponding initialization parameter is listed.

Table 6-1 Automatically Sized SGA Components and Corresponding Parameters

SGA Component Initialization Parameter

Fixed SGA and other internal allocations needed by the Oracle = N/A
Database instance

The shared pool SHARED_POOL_SIZE
The large pool LARGE_POOL_SIZE
The Java pool JAVA_POOL_SIZE
The buffer cache DB_CACHE_SIZE

The Streams pool STREAMS_POOL_SIZE

The manually sized parameters listed in Table 6-2, if they are set, take their memory
from SGA_TARGET, leaving what is available for the components listed in Table 6-1.

Table 6-2 Manually Sized SGA Components that Use SGA_TARGET Space

SGA Component Initialization Parameter

The log buffer LOG_BUFFER

Managing Memory 6-9

Configuring Memory Manually

Table 6-2 (Cont.) Manually Sized SGA Components that Use SGA_TARGET Space

SGA Component Initialization Parameter

The keep and recycle buffer caches DB_KEEP_CACHE_SIZE
DB_RECYCLE_CACHE_SIZE

Nonstandard block size buffer caches DB_nK_CACHE_SIZE

In addition to setting SGA_TARGET to a nonzero value, you must set to zero all
initialization parameters listed in Table 61 to enable full automatic tuning of the
automatically sized SGA components.

Alternatively, you can set one or more of the automatically sized SGA components to a
nonzero value, which is then used as the minimum setting for that component during
SGA tuning. This is discussed in detail later in this section.

Note: An easier way to enable automatic shared memory
management is to use Oracle Enterprise Manager (EM). When you
enable automatic shared memory management and set the Total SGA
Size, EM automatically generates the ALTER SYSTEM statements to
set SGA_TARGET to the specified size and to set all automatically sized
SGA components to zero.

If you use SQL*Plus to set SGA_TARGET, you must then set the
automatically sized SGA components to zero or to a minimum value.

SGA and Virtual Memory For optimal performance in most systems, the entire SGA
should fit in real memory. If it does not, and if virtual memory is used to store parts of
it, then overall database system performance can decrease dramatically. The reason for
this is that portions of the SGA are paged (written to and read from disk) by the
operating system.

See your operating system documentation for instructions for monitoring paging
activity. You can also view paging activity from the Performance property page of the
Host page of Enterprise Manager.

Monitoring and Tuning SGA Target Size The V$SGAINFO view provides information on the
current tuned sizes of various SGA components.

The V$SGA_TARGET_ADVICE view provides information that helps you decide on a
value for SGA_TARGET.

SQL> select * from vS$Ssga_target_advice order by sga_size;

SGA_SIZE SGA_SIZE_FACTOR ESTD_DB_TIME ESTD_DB_TIME_FACTOR ESTD_PHYSICAL_READS

290 .5 448176 1.6578 1636103
435) 339336 1.2552 1636103
580 1 270344 1 1201780
725 1.25 239038 .8842 907584
870 1.5 211517 .7824 513881
1015 1.75 201866 L7467 513881
1160 2 200703 L7424 513881

The information in this view is similar to that provided in the VSMEMORY_TARGET_
ADVICE view for automatic memory management. See "Monitoring and Tuning
Automatic Memory Management" on page 6-6 for an explanation of that view.

6-10 Oracle Database Administrator's Guide

Configuring Memory Manually

Enterprise Manager provides an easy-to-use graphical memory advisor to help you
select an optimal size for SGA_TARGET. See Oracle Database 2 Day DBA for details.

See Also: Oracle Database Reference for more information about these
dynamic performance views

Enabling Automatic Shared Memory Management

The procedure for enabling automatic shared memory management (ASMM) differs
depending on whether you are changing to ASMM from manual shared memory
management or from automatic memory management.

To change to ASMM from manual shared memory management:

1.

Run the following query to obtain a value for SGA_TARGET:

SELECT (
(SELECT SUM(value) FROM VS$SSGA) -
(SELECT CURRENT_SIZE FROM V$SGA_DYNAMIC_FREE_MEMORY)
) "SGA_TARGET"

FROM DUAL;

Set the value of SGA_TARGET, either by editing the text initialization parameter
file and restarting the database, or by issuing the following statement:

ALTER SYSTEM SET SGA_TARGET=value [SCOPE:{SPFILE|MEMORY‘BOTH}}

where value is the value computed in step 1 or is some value between the sum of
all SGA component sizes and SGA_MAX_SIZE. For more information on the
ALTER SYSTEM statement and its SCOPE clause, see Oracle Database SQL Language
Reference.

Do one of the following:

= For more complete automatic tuning, set the values of the automatically sized
SGA components listed in Table 6—1 to zero. Do this by editing the text
initialization parameter file or by issuing ALTER SYSTEM statements.

= To control the minimum size of one or more automatically sized SGA
components, set those component sizes to the desired value. (See the next
section for details.) Set the values of the other automatically sized SGA
components to zero. Do this by editing the text initialization parameter file or
by issuing ALTER SYSTEM statements.

To change to ASMM from automatic memory management:

1.

Set the MEMORY_ TARGET initialization parameter to 0.

ALTER SYSTEM SET MEMORY_TARGET = 0;

The database sets SGA_TARGET based on current SGA memory allocation.
Do one of the following:

= For more complete automatic tuning, set the sizes of the automatically sized
SGA components listed in Table 6-1 to zero. Do this by editing the text
initialization parameter file or by issuing ALTER SYSTEM statements.

= To control the minimum size of one or more automatically sized SGA
components, set those component sizes to the desired value. (See the next
section for details.) Set the sizes of the other automatically sized SGA

Managing Memory 6-11

Configuring Memory Manually

components to zero. Do this by editing the text initialization parameter file or
by issuing ALTER SYSTEM statements.

Example For example, suppose you currently have the following configuration of
parameters for an instance configured for manual shared memory management and
with SGA_MAX_SIZE set to 1200M:

s SHARED_POOL_SIZE =200M
s DB_CACHE_SIZE =500M
s LARGE_POOL_SIZE=200M

Also assume the following query results:

Query Result
SELECT SUM(value) FROM V$SGA 1200M
SELECT CURRENT_SIZE FROM VS$SGA_DYNAMIC_FREE_MEMORY 208M

You can take advantage of automatic shared memory management by setting Total
SGA Size to 992M in Oracle Enterprise Manager, or by issuing the following
statements:

ALTER SYSTEM SET SGA_TARGET = 992M;
ALTER SYSTEM SET SHARED_POOL_SIZE = 0;
ALTER SYSTEM SET LARGE_POOL_SIZE = 0;
ALTER SYSTEM SET JAVA_POOL_SIZE = 0;
ALTER SYSTEM SET DB_CACHE_SIZE = 0;
ALTER SYSTEM SET STREAMS_POOL_SIZE = 0;

where 992M = 1200M minus 208M.

Automatic Shared Memory Management Advanced Topics

This section provides a closer look at automatic shared memory management. It
includes the following topics:

= Setting Minimums for Automatically Sized SGA Components
= Automatic Tuning and the Shared Pool

= Dynamic Modification of SGA_TARGET

= Modifying Parameters for Automatically Sized Components

= Modifying Parameters for Manually Sized Components

Setting Minimums for Automatically Sized SGA Components You can exercise some control
over the size of the automatically sized SGA components by specifying minimum
values for the parameters corresponding to these components. Doing so can be useful
if you know that an application cannot function properly without a minimum amount
of memory in specific components. You specify the minimum amount of SGA space
for a component by setting a value for its corresponding initialization parameter.

Manually limiting the minimum size of one or more automatically sized components
reduces the total amount of memory available for dynamic adjustment. This reduction
in turn limits the ability of the system to adapt to workload changes. Therefore, this
practice is not recommended except in exceptional cases. The default automatic
management behavior maximizes both system performance and the use of available
resources.

6-12 Oracle Database Administrator's Guide

Configuring Memory Manually

Automatic Tuning and the Shared Pool When the automatic shared memory management
feature is enabled, the internal tuning algorithm tries to determine an optimal size for
the shared pool based on the workload. It usually converges on this value by
increasing in small increments over time. However, the internal tuning algorithm
typically does not attempt to shrink the shared pool, because the presence of open
cursors, pinned PL/SQL packages, and other SQL execution state in the shared pool
make it impossible to find granules that can be freed. Therefore, the tuning algorithm
only tries to increase the shared pool in conservative increments, starting from a
conservative size and stabilizing the shared pool at a size that produces the optimal
performance benefit.

Dynamic Modification of SGA_TARGET The SGA_TARGET parameter can be dynamically
increased up to the value specified for the SGA_MAX SIZE parameter, and it can also
be reduced. If you reduce the value of SGA_TARGET, the system identifies one or more
automatically tuned components for which to release memory. You can reduce SGA_
TARGET until one or more automatically tuned components reach their minimum size.
Oracle Database determines the minimum allowable value for SGA_TARGET taking
into account several factors, including values set for the automatically sized
components, manually sized components that use SGA_TARGET space, and number of
CPUs.

The change in the amount of physical memory consumed when SGA_TARGET is
modified depends on the operating system. On some UNIX platforms that do not
support dynamic shared memory, the physical memory in use by the SGA is equal to
the value of the SGA_MAX_SIZE parameter. On such platforms, there is no real benefit
in setting SGA_TARGET to a value smaller than SGA_MAX_SIZE. Therefore, setting
SGA_MAX_SIZE on those platforms is not recommended.

On other platforms, such as Solaris and Windows, the physical memory consumed by
the SGA is equal to the value of SGA_TARGET.

For example, suppose you have an environment with the following configuration:
s SGA_MAX_SIZE =1024M

s SGA_TARGET =512M

s DB_8K_CACHE_SIZE = 128M

In this example, the value of SGA_TARGET can be resized up to 1024M and can also be
reduced until one or more of the automatically sized components reaches its minimum
size. The exact value depends on environmental factors such as the number of CPUs
on the system. However, the value of DB_8K_CACHE_SIZE remains fixed at all times
at 128M

Note: When enabling automatic shared memory management, it is
best to set SGA_TARGET to the desired nonzero value before starting
the database. Dynamically modifying SGA_TARGET from zero to a
nonzero value may not achieve the desired results because the shared
pool may not be able to shrink. After startup, you can dynamically
tune SGA_TARGET up or down as required.

Modifying Parameters for Automatically Sized Components When SGA_TARGET is not set, the
automatic shared memory management feature is not enabled. Therefore the rules
governing resize for all component parameters are the same as in earlier releases.
However, when automatic shared memory management is enabled, the manually
specified sizes of automatically sized components serve as a lower bound for the size

Managing Memory 6-13

Configuring Memory Manually

of the components. You can modify this limit dynamically by changing the values of
the corresponding parameters.

If the specified lower limit for the size of a given SGA component is less than its
current size, there is no immediate change in the size of that component. The new
setting only limits the automatic tuning algorithm to that reduced minimum size in the
future. For example, consider the following configuration:

m SGA_TARGET =512M
s LARGE_POOL_SIZE =256M
s Current actual large pool size = 284M

In this example, if you increase the value of LARGE_POOL_SIZE to a value greater
than the actual current size of the component, the system expands the component to
accommodate the increased minimum size. For example, if you increase the value of
LARGE_POOL_SIZE to 300M, then the system increases the large pool incrementally
until it reaches 300M. This resizing occurs at the expense of one or more automatically
tuned components.

If you decrease the value of LARGE_POOL_SIZE to 200, there is no immediate change
in the size of that component. The new setting only limits the reduction of the large
pool size to 200 M in the future.

Modifying Parameters for Manually Sized Components Parameters for manually sized
components can be dynamically altered as well. However, rather than setting a
minimum size, the value of the parameter specifies the precise size of the
corresponding component. When you increase the size of a manually sized
component, extra memory is taken away from one or more automatically sized
components. When you decrease the size of a manually sized component, the memory
that is released is given to the automatically sized components.

For example, consider this configuration:
] SGA_TARGET = 512M
] DB_8K_CACHE_SIZE =128M

In this example, increasing DB_8K_CACHE_SIZE by 16M to 144M means that the 16M
is taken away from the automatically sized components. Likewise, reducing DB_8K_
CACHE_SIZE by 16M to 112M means that the 16M is given to the automatically sized
components.

Using Manual Shared Memory Management

If you decide not to use automatic memory management or automatic shared memory
management, you must manually configure several SGA component sizes, and then
monitor and tune these sizes on an ongoing basis as the database workload changes.
This section provides guidelines on setting the parameters that control the sizes of
these SGA components.

If you create your database with DBCA and choose manual shared memory
management, DBCA provides fields where you must enter sizes for the buffer cache,
shared pool, large pool, and Java pool. It then sets the corresponding initialization
parameters in the server parameter file (SPFILE) that it creates. If you instead create
the database with the CREATE DATABASE SQL statement and a text initialization
parameter file, you can do one of the following;:

s Provide values for the initialization parameters that set SGA component sizes.

6-14 Oracle Database Administrator's Guide

Configuring Memory Manually

s Omit SGA component size parameters from the text initialization file. Oracle
Database chooses reasonable defaults for any component whose size you do not
set.

This section contains the following topics:

= Enabling Manual Shared Memory Management

= Setting the Buffer Cache Initialization Parameters
s Specifying the Shared Pool Size

= Specifying the Large Pool Size

= Specifying the Java Pool Size

= Specifying the Streams Pool Size

s Specifying the Result Cache Maximum Size

= Specifying Miscellaneous SGA Initialization Parameters

Enabling Manual Shared Memory Management

There is no initialization parameter that in itself enables manual shared memory
management. You effectively enable manual shared memory management by
disabling both automatic memory management and automatic shared memory
management.

To enable manual shared memory management:
1. Set the MEMORY_TARGET initialization parameter to 0.
2. Set the SGA_TARGET initialization parameter to 0.

You must then set values for the various SGA components, as described in the
following sections.

Setting the Buffer Cache Initialization Parameters

The buffer cache initialization parameters determine the size of the buffer cache
component of the SGA. You use them to specify the sizes of caches for the various
block sizes used by the database. These initialization parameters are all dynamic.

The size of a buffer cache affects performance. Larger cache sizes generally reduce the
number of disk reads and writes. However, a large cache may take up too much
memory and induce memory paging or swapping.

Oracle Database supports multiple block sizes in a database. If you create tablespaces
with non-standard block sizes, you must configure non-standard block size buffers to
accommodate these tablespaces. The standard block size is used for the SYSTEM
tablespace. You specify the standard block size by setting the initialization parameter
DB_BLOCK_SIZE. Legitimate values are from 2K to 32K.

If you intend to use multiple block sizes in your database, you must have the DB_
CACHE_SIZE and at least one DB_nK_CACHE_SIZE parameter set. Oracle Database
assigns an appropriate default value to the DB_CACHE_SIZE parameter, but the DB_
nK_CACHE_SIZE parameters default to 0, and no additional block size caches are
configured.

The sizes and numbers of non-standard block size buffers are specified by the
following parameters:

DB_2K_CACHE_SIZE
DB_4K_CACHE_SIZE

Managing Memory 6-15

Configuring Memory Manually

DB_8K_CACHE_SIZE
DB_16K_CACHE_SIZE
DB_32K_CACHE_SIZE

Each parameter specifies the size of the cache for the corresponding block size.

Note: Platform-specific restrictions regarding the maximum block
size apply, so some of these sizes might not be allowed on some
platforms.

See Also: "Specifying Nonstandard Block Sizes for Tablespaces" on
page 13-14

Example of Setting Block and Cache Sizes

DB_BLOCK_SIZE=4096
DB_CACHE_SIZE=1024M
DB_2K_CACHE_SIZE=256M
DB_8K_CACHE_SIZE=512M

In the preceding example, the parameter DB_BLOCK_SIZE sets the standard block size
of the database to 4K. The size of the cache of standard block size buffers is 1024MB.
Additionally, 2K and 8K caches are also configured, with sizes of 256MB and 512MB,
respectively.

Note: The DB_nK_CACHE_SIZE parameters cannot be used to size
the cache for the standard block size. If the value of DB_BLOCK_SIZE
is 1K, it is invalid to set DB_ nK_CACHE_SIZE. The size of the cache
for the standard block size is always determined from the value of
DB_CACHE_SIZE.

The cache has a limited size, so not all the data on disk can fit in the cache. When the
cache is full, subsequent cache misses cause Oracle Database to write dirty data
already in the cache to disk to make room for the new data. (If a buffer is not dirty, it
does not need to be written to disk before a new block can be read into the buffer.)
Subsequent access to any data that was written to disk and then overwritten results in
additional cache misses.

The size of the cache affects the likelihood that a request for data results in a cache hit.
If the cache is large, it is more likely to contain the data that is requested. Increasing
the size of a cache increases the percentage of data requests that result in cache hits.

You can change the size of the buffer cache while the instance is running, without
having to shut down the database. Do this with the ALTER SYSTEM statement.

Use the fixed view V$BUFFER_POOL to track the sizes of the different cache
components and any pending resize operations.

Multiple Buffer Pools You can configure the database buffer cache with separate buffer
pools that either keep data in the buffer cache or make the buffers available for new
data immediately after using the data blocks. Particular schema objects (tables,
clusters, indexes, and partitions) can then be assigned to the appropriate buffer pool to
control the way their data blocks age out of the cache.

= The KEEP buffer pool retains the schema object's data blocks in memory.

6-16 Oracle Database Administrator's Guide

Configuring Memory Manually

s The RECYCLE buffer pool eliminates data blocks from memory as soon as they are
no longer needed.

s The DEFAULT buffer pool contains data blocks from schema objects that are not
assigned to any buffer pool, as well as schema objects that are explicitly assigned
to the DEFAULT pool.

The initialization parameters that configure the KEEP and RECYCLE buffer pools are
DB_KEEP_CACHE_ SIZE and DB_RECYCLE_CACHE_ SIZE.

Note: Multiple buffer pools are only available for the standard block
size. Non-standard block size caches have a single DEFAULT pool.

See Also: Oracle Database Performance Tuning Guide for information
about tuning the buffer cache and for more information about
multiple buffer pools

Specifying the Shared Pool Size

The SHARED_POOL_SIZE initialization parameter is a dynamic parameter that lets
you specify or adjust the size of the shared pool component of the SGA. Oracle
Database selects an appropriate default value.

In releases before Oracle Database 10g Release 1, the amount of shared pool memory
that was allocated was equal to the value of the SHARED_POOL_SIZE initialization
parameter plus the amount of internal SGA overhead computed during instance
startup. The internal SGA overhead refers to memory that is allocated by Oracle
Database during startup, based on the values of several other initialization parameters.
This memory is used to maintain state for different server components in the SGA. For
example, if the SHARED_POOL_SIZE parameter is set to 64MB and the internal SGA
overhead is computed to be 12MB, the real size of the shared pool is 64+12=76MB,
although the value of the SHARED_POOL_SIZE parameter is still displayed as 64MB.

Starting with Oracle Database 10g Release 1, the size of the internal SGA overhead is
included in the user-specified value of SHARED_POOL_SIZE. If you are not using
automatic memory management or automatic shared memory management, the
amount of shared pool memory that is allocated at startup is equal to the value of the
SHARED_ POOL_SIZE initialization parameter, rounded up to a multiple of the granule
size. You must therefore set this parameter so that it includes the internal SGA
overhead in addition to the desired value for shared pool size. In the previous
example, if the SHARED_POOL_SIZE parameter is set to 64MB at startup, then the
available shared pool after startup is 64-12=52MB, assuming the value of internal SGA
overhead remains unchanged. In order to maintain an effective value of 64MB for
shared pool memory after startup, you must set the SHARED_POOL_SIZE parameter
to 64+12=76MB.

When migrating from a release that is earlier than Oracle Database 10g Release 1, the
Oracle Database 11¢ migration utilities recommend a new value for this parameter
based on the value of internal SGA overhead in the pre-upgrade environment and
based on the old value of this parameter. Beginning with Oracle Database 10g, the
exact value of internal SGA overhead, also known as startup overhead in the shared
pool, can be queried from the V$ SGAINFO view. Also, in manual shared memory
management mode, if the user-specified value of SHARED_POOL_SIZE is too small to
accommodate even the requirements of internal SGA overhead, then Oracle Database
generates an ORA-371 error during startup, with a suggested value to use for the
SHARED_POOL_SIZE parameter.

Managing Memory 6-17

Configuring Memory Manually

When you use automatic shared memory management in Oracle Database 11g, the
shared pool is automatically tuned, and an ORA-371 error would not be generated.

The Result Cache and Shared Pool Size The result cache takes its memory from the shared
pool. Therefore, if you expect to increase the maximum size of the result cache, take
this into consideration when sizing the shared pool.

See Also: "Specifying the Result Cache Maximum Size" on page 6-18

Specifying the Large Pool Size

The LARGE_POOL_SIZE initialization parameter is a dynamic parameter that lets you
specify or adjust the size of the large pool component of the SGA. The large pool is an
optional component of the SGA. You must specifically set the LARGE_POOL_SIZE
parameter if you want to create a large pool. Configuring the large pool is discussed in
Oracle Database Performance Tuning Guide.

Specifying the Java Pool Size

The JAVA_POOL_SIZE initialization parameter is a dynamic parameter that lets you
specify or adjust the size of the java pool component of the SGA. Oracle Database
selects an appropriate default value. Configuration of the java pool is discussed in
Oracle Database Java Developer’s Guide.

Specifying the Streams Pool Size

The STREAMS_POOL_SIZE initialization parameter is a dynamic parameter that lets
you specify or adjust the size of the Streams Pool component of the SGA. If STREAMS_
POOL_SIZE is set to 0, then the Oracle Streams product transfers memory from the
buffer cache to the Streams Pool when it is needed. For details, see the discussion of
the Streams Pool in Oracle Streams Replication Administrator’s Guide.

Specifying the Result Cache Maximum Size

The RESULT_CACHE_MAX_SIZE initialization parameter is a dynamic parameter that
enables you to specify the maximum size of the result cache component of the SGA.
Typically, there is no need to specify this parameter, because the default maximum size
is chosen by the database based on total memory available to the SGA and on the
memory management method currently in use. You can view the current default
maximum size by displaying the value of the RESULT_CACHE_MAX_SIZE parameter.
If you want to change this maximum size, you can set RESULT_CACHE_MAX_SIZE
with an ALTER SYSTEM statement or you can specify this parameter in the text
initialization parameter file. In each case, the value is rounded up to the nearest
multiple of 32K.

If RESULT_CACHE_MAX_SIZE is 0 upon instance startup, the result cache is disabled.
To reenable it you must set RESULT_CACHE_MAX_SIZE to a nonzero value (or remove
this parameter from the text initialization parameter file to get the default maximum
size) and then restart the database.

Note that after starting the database with the result cache disabled, if you use an
ALTER SYSTEM statement to set RESULT_CACHE_MAX_SIZE to a nonzero value but
do not restart the database, querying the value of the RESULT_CACHE_MAX_ SIZE
parameter returns a nonzero value even though the result cache is still disabled. The
value of RESULT_CACHE_MAX_SIZE is therefore not the most reliable way to
determine if the result cache is enabled. You can use the following query instead:

SELECT dbms_result_cache.status() FROM dual;

6-18 Oracle Database Administrator's Guide

Configuring Memory Manually

DBMS_RESULT_CACHE.STATUS ()

ENABLED

The result cache takes its memory from the shared pool, so if you increase the
maximum result cache size, consider also increasing the shared pool size.

The view VSRESULT_CACHE_STATISTICS and the PL/SQL package procedure
DBMS_RESULT_CACHE . MEMORY_REPORT display information to help you determine
the amount of memory currently allocated to the result cache.

The PL/SQL package function DBMS_RESULT_CACHE . FLUSH clears the result cache
and releases all the memory back to the shared pool.

See Also:

» Oracle Database Performance Tuning Guide for more information
about the result cache

» Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_RESULT_CACHE package procedures
and functions.

» Oracle Database Reference for more information about the
VSRESULT_CACHE_STATISTICS view.

» Oracle Real Application Clusters Administration and Deployment
Guide for information on setting RESULT_CACHE_MAX_SIZE fora
cluster database.

Specifying Miscellaneous SGA Initialization Parameters

You can set a few additional initialization parameters to control how the SGA uses
memory.

Physical Memory The LOCK_SGA parameter, when set to TRUE, locks the entire SGA into
physical memory. This parameter cannot be used in conjunction with automatic
memory management or automatic shared memory management.

SGA Starting Address The SHARED_ MEMORY_ADDRESS and HI_ SHARED_ MEMORY__
ADDRESS parameters specify the SGA's starting address at runtime. These parameters
are rarely used. For 64-bit platforms, HI_ SHARED_MEMORY_ADDRESS specifies the
high order 32 bits of the 64-bit address.

Extended Buffer Cache Mechanism The USE_INDIRECT_DATA_ BUFFERS parameter
enables the use of the extended buffer cache mechanism for 32-bit platforms that can
support more than 4 GB of physical memory. On platforms that do not support this
much physical memory, this parameter is ignored. This parameter cannot be used in
conjunction with automatic memory management or automatic shared memory
management.

See Also:

» Oracle Database Reference for more information on these
initialization parameters

s "Using Automatic Memory Management" on page 6-3

s "Using Automatic Shared Memory Management" on page 6-8

Managing Memory 6-19

Configuring Memory Manually

Using Automatic PGA Memory Management

By default, Oracle Database automatically and globally manages the total amount of
memory dedicated to the instance PGA. You can control this amount by setting the
initialization parameter PGA_AGGREGATE_TARGET. Oracle Database then tries to
ensure that the total amount of PGA memory allocated across all database server
processes and background processes never exceeds this target.

If you create your database with DBCA, you can specify a value for the total instance
PGA. DBCA then sets the PGA_AGGREGATE_TARGET initialization parameters in the
server parameter file (SPFILE) that it creates. If you do not specify the total instance
PGA, DBCA chooses a reasonable default.

If you create the database with the CREATE DATABASE SQL statement and a text
initialization parameter file, you can provide a value for PGA_ AGGREGATE_TARGET. If
you omit this parameter, the database chooses a default value.

With automatic PGA memory management, sizing of SQL work areas for all dedicated
server sessions is automatic and all *_AREA_SIZE initialization parameters are
ignored for these sessions. At any given time, the total amount of PGA memory
available to active work areas on the instance is automatically derived from the
parameter PGA_AGGREGATE_TARGET. This amount is set to the value of PGA_
AGGREGATE_TARGET minus the PGA memory allocated for other purposes (for
example, session memory). The resulting PGA memory is then allotted to individual
active work areas based on their specific memory requirements.

There are dynamic performance views that provide PGA memory use statistics. Most
of these statistics are enabled when PGA_AGGREGATE_TARGET is set.

= Statistics on allocation and use of work area memory can be viewed in the
following dynamic performance views:

V$SYSSTAT

V$SESSTAT

V$PGASTAT
V$SQL_WORKAREA
V$SQL_WORKAREA_ACTIVE

s The following three columns in the V$PROCESS view report the PGA memory
allocated and used by an Oracle Database process:

PGA_USED_MEM
PGA_ALLOCATED_MEM
PGA_MAX MEM

Note: The automatic PGA memory management method applies to
work areas allocated by both dedicated and shared server process. See
Oracle Database Concepts for information about PGA memory
allocation in dedicated and shared server modes.

See Also:

» Oracle Database Reference for information about views mentioned
in this section

» Oracle Database Performance Tuning Guide for information about
using these views

6-20 Oracle Database Administrator's Guide

Configuring Database Smart Flash Cache

Using Manual PGA Memory Management

Oracle Database supports manual PGA memory management, in which you manually
tune SQL work areas.

In releases earlier than Oracle Database 10g, the database administrator controlled the
maximum size of SQL work areas by setting the following parameters: SORT_AREA_
SIZE, HASH_AREA_SIZE, BITMAP_MERGE_AREA_SIZE and CREATE_BITMAP_
AREA_SIZE. Setting these parameters is difficult, because the maximum work area
size is ideally selected from the data input size and the total number of work areas
active in the system. These two factors vary greatly from one work area to another and
from one time to another. Thus, the various *_AREA_SIZE parameters are difficult to
tune under the best of circumstances.

For this reason, Oracle strongly recommends that you leave automatic PGA memory
management enabled.

If you decide to tune SQL work areas manually, you must set the WORKAREA_SIZE_
POLICY initialization parameter to MANUAL.

Note: The initialization parameter WORKAREA_SIZE_POLICY isa
session- and system-level parameter that can take only two values:
MANUAL or AUTO. The default is AUTO. You can set PGA_AGGREGATE_
TARGET, and then switch back and forth from auto to manual memory
management mode. When WORKAREA_SIZE_POLICY is set to AUTO,
your settings for *_AREA_SIZE parameters are ignored.

Configuring Database Smart Flash Cache

This section contains the following topics on configuring Database Smart Flash Cache
(the flash cache):

= When to Configure the Flash Cache

= Sizing the Flash Cache

s Tuning Memory for the Flash Cache
= Flash Cache Initialization Parameters

= Flash Cache in an Oracle Real Applications Clusters Environment

See Also: "Memory Architecture Overview" on page 6-2 for a
description of the flash cache

When to Configure the Flash Cache

Consider adding the flash cache when all of the following are true:

= Your database is running on the Solaris or Oracle Enterprise Linux operating
systems. The flash cache is supported on these operating systems only.

= The Buffer Pool Advisory section of your Automatic Workload Repository (AWR)
report or STATSPACK report indicates that doubling the size of the buffer cache
would be beneficial.

» dbfile sequential readis a top wait event.

= You have spare CPU.

Managing Memory 6-21

Configuring Database Smart Flash Cache

Note: You cannot share the flash cache among multiple instances.

Sizing the Flash Cache

As a general rule, size the flash cache to be between 2 times and 10 times the size of the
buffer cache. Any multiplier less than two would not provide any benefit. If you are
using automatic shared memory management, make the flash cache between 2 times
and 10 times the size of SGA_TARGET. Using 80% of the size of SGA_TARGET instead
of the full size would also suffice for this calculation.

Tuning Memory for the Flash Cache

For each database block moved from the buffer cache to the flash cache, a small
amount of metadata about the block is kept in the buffer cache. For a single instance
database, the metadata consumes approximately 100 bytes. For an Oracle Real
Application Clusters (Oracle RAC) database, it is closer to 200 bytes. You must
therefore take this extra memory requirement into account when adding the flash
cache.

= If you are managing memory manually, increase the size of the buffer cache by an
amount approximately equal to the number of database blocks that fit into the
flash cache multiplied by 100 (or 200 for Oracle RAC).

s If you are using automatic memory management, increase the size of MEMORY_
TARGET using the algorithm described above. You may first have to increase the
size of MEMORY_MAX_TARGET.

= If you are using automatic shared memory management, increase the size of SGA_
TARGET.

Note: You can choose to not increase the buffer cache size to account
for the flash cache. In this case, the effective size of the buffer cache is
reduced. However, you can offset this loss by using a larger flash
cache.

See Also: "About Memory Management" on page 6-1

Flash Cache Initialization Parameters

Table 6-3 describes the initialization parameters that you use to configure the flash
cache.

Table 6-3 Flash Cache Initialization Parameters

Parameter Description

db_flash_cache_file Specifies the path and file name for the file to contain the flash
cache, in either the operating system file system or an Oracle
Automatic Storage Management disk group. If the file does not
exist, the database creates it during startup. The file must reside
on a flash disk device. If you configure the flash cache on a disk
drive (spindle), performance may suffer.

The following is an example of a valid value for db_flash_
cache_file:

/dev/fioal

6-22 Oracle Database Administrator's Guide

Memory Management Reference

Table 6-3 (Cont.) Flash Cache Initialization Parameters

Parameter Description

db_flash_cache_size Specifies the size of the flash cache. Must be less than or equal to

the physical memory size of the flash disk device. Expressed as
nG, indicating the number of gigabytes (GB). For example, to
specify a 16 GB flash cache, set db_flash_cache_size to 16G.

You can use ALTER SYSTEM to set db_flash_cache_size to zero to disable the flash

C

ache. You can also use ALTER SYSTEM to set the flash cache back to its original size to

reenable it. However, dynamically changing the size of the flash cache is not
supported.

Flash Cache in an Oracle Real Applications Clusters Environment

You must configure a flash cache on either all or none of the instances in an Oracle
Real Application Clusters environment.

Memory Management Reference

This section contains the following reference topics for memory management:

Platforms That Support Automatic Memory Management

Memory Management Data Dictionary Views

Platforms That Support Automatic Memory Management

The following platforms support automatic memory management—the Oracle
Database ability to automatically tune the sizes of the SGA and PGA, redistributing
memory from one to the other on demand to optimize performance:

Linux
Solaris
Windows
HP-UX
AIX

Memory Management Data Dictionary Views

The following dynamic performance views provide information on memory

management:

View Description

V$SGA Displays summary information about the system
global area (SGA).

V$SGAINFO Displays size information about the SGA, including
the sizes of different SGA components, the granule
size, and free memory.

V$SGASTAT Displays detailed information about how memory is
allocated within the shared pool, large pool, Java
pool, and Streams pool.

Managing Memory 6-23

Memory Management Reference

View

Description

V$SPGASTAT

Displays PGA memory usage statistics as well as
statistics about the automatic PGA memory manager
when it is enabled (that is, when PGA_AGGREGATE_
TARGET is set). Cumulative values in VSPGASTAT are
accumulated since instance startup.

VSMEMORY_DYNAMIC_COMPONENTS

Displays information on the current size of all
automatically tuned and static memory components,
with the last operation (for example, grow or shrink)
that occurred on each.

V$SGA_DYNAMIC_COMPONENTS

Displays the current sizes of all SGA components, and
the last operation for each component.

V$SGA_DYNAMIC_FREE_MEMORY

Displays information about the amount of SGA
memory available for future dynamic SGA resize
operations.

V$SMEMORY_CURRENT_RESIZE_OPS

Displays information about resize operations that are
currently in progress. A resize operation is an
enlargement or reduction of the SGA, the instance
PGA, or a dynamic SGA component.

V$SGA_CURRENT_RESIZE_OPS

Displays information about dynamic SGA component
resize operations that are currently in progress.

VSMEMORY_RESIZE_OPS

Displays information about the last 800 completed
memory component resize operations, including
automatic grow and shrink operations for SGA_
TARGET and PGA_AGGREGATE_TARGET.

V$SGA_RESIZE_OPS

Displays information about the last 800 completed
SGA component resize operations.

VSMEMORY_TARGET_ADVICE

Displays information that helps you tune MEMORY_
TARGET if you enabled automatic memory
management.

V$SGA_TARGET_ADVICE

Displays information that helps you tune SGA_
TARGET.

VSPGA_TARGET_ADVICE

Displays information that helps you tune PGA_
AGGREGATE_TARGET.

See Also: Oracle Database Reference for detailed information on
memory management views.

6-24 Oracle Database Administrator's Guide

7

Managing Users and Securing the Database

In this chapter:

s The Importance of Establishing a Security Policy for Your Database
= Managing Users and Resources

» Managing User Privileges and Roles

= Auditing Database Use

s Predefined User Accounts

The Importance of Establishing a Security Policy for Your Database

It is important to develop a security policy for every database. The security policy
establishes methods for protecting your database from accidental or malicious
destruction of data or damage to the database infrastructure.

Each database can have an administrator, referred to as the security administrator,
who is responsible for implementing and maintaining the database security policy If
the database system is small, the database administrator can have the responsibilities
of the security administrator. However, if the database system is large, a designated
person or group of people may have sole responsibility as security administrator.

For information about establishing security policies for your database, see Oracle
Database Security Guide.

Managing Users and Resources

To connect to the database, each user must specify a valid user name that has been
previously defined to the database. An account must have been established for the
user, with information about the user being stored in the data dictionary.

When you create a database user (account), you specify the following attributes of the
user:

s User name

= Authentication method

» Default tablespace

= Temporary tablespace

» Other tablespaces and quotas

= User profile

Managing Users and Securing the Database 7-1

Managing User Privileges and Roles

To learn how to create and manage users, see Oracle Database Security Guide.

Managing User Privileges and Roles

Privileges and roles are used to control user access to data and the types of SQL
statements that can be executed. The table that follows describes the three types of
privileges and roles:

Type Description

System privilege A system-defined privilege usually granted only by
administrators. These privileges allow users to perform specific
database operations.

Object privilege A system-defined privilege that controls access to a specific
object.
Role A collection of privileges and other roles. Some system-defined

roles exist, but most are created by administrators. Roles group
together privileges and other roles, which facilitates the granting
of multiple privileges and roles to users.

Privileges and roles can be granted to other users by users who have been granted the
privilege to do so. The granting of roles and privileges starts at the administrator level.
At database creation, the administrative user SYS is created and granted all system
privileges and predefined Oracle Database roles. User SYS can then grant privileges
and roles to other users, and also grant those users the right to grant specific privileges
to others.

To learn how to administer privileges and roles for users, see Oracle Database Security
Guide.

Auditing Database Use

You can monitor and record selected user database actions, including those performed
by administrators. There are several reasons why you might want to implement
database auditing. Complete background information and instructions for database
auditing are found in Oracle Database Security Guide.

Predefined User Accounts

Oracle Database includes a number of predefined user accounts. The three types of
predefined accounts are:

s Administrative accounts (SYS, SYSTEM, SYSMAN, and DBSNMP)

SYS and SYSTEM are described in "About Database Administrator Security and
Privileges" on page 1-14. SYSMAN is used to perform Oracle Enterprise Manager
administration tasks. The management agent of Enterprise Manager uses the
DBSNMP account to monitor and manage the database. You must not delete these
accounts.

= Sample schema accounts

These accounts are used for examples in Oracle Database documentation and
instructional materials. Examples are HR, SH, and OE. You must unlock these
accounts and reset their passwords before using them.

s Internal accounts.

7-2 Oracle Database Administrator's Guide

Predefined User Accounts

These accounts are created so that individual Oracle Database features or
components can have their own schemas. You must not delete internal accounts,
and you must not attempt to log in with them.

See Also: Oracle Database 2 Day + Security Guide for a table of
predefined accounts.

Managing Users and Securing the Database 7-3

Predefined User Accounts

7-4 Oracle Database Administrator's Guide

8

Monitoring Database Operations

It is important that you monitor the operation of your database on a regular basis.
Doing so not only informs you of errors that have not yet come to your attention but
also gives you a better understanding of the normal operation of your database. Being
familiar with normal behavior in turn helps you recognize when something is wrong.

In this chapter:
= Monitoring Errors and Alerts

= Monitoring Performance

Monitoring Errors and Alerts

The following sections explain how to monitor database errors and alerts. It contains
the following topics:

= Monitoring Errors with Trace Files and the Alert Log

= Monitoring Database Operations with Server-Generated Alerts

Note: The easiest and best way to monitor the database for errors
and alerts is with the Database Home page in Enterprise Manager.
This section provides alternate methods for monitoring, using data
dictionary views, PL/SQL packages, and other command-line
facilities.

Monitoring Errors with Trace Files and the Alert Log

Each server and background process can write to an associated trace file. When an
internal error is detected by a process, it dumps information about the error to its trace
file. Some of the information written to a trace file is intended for the database
administrator, and other information is for Oracle Support Services. Trace file
information is also used to tune applications and instances.

Note: Critical errors also create incidents and incident dumps in the
Automatic Diagnostic Repository. See Chapter 9, "Managing
Diagnostic Data" on page 9-1 for more information.

The alert log is a chronological log of messages and errors, and includes the following
items:

Monitoring Database Operations 8-1

Monitoring Errors and Alerts

= Allinternal errors (ORA-600), block corruption errors (ORA-1578), and deadlock
errors (ORA-60) that occur

s Administrative operations, such as CREATE, ALTER, and DROP statements and
STARTUP, SHUTDOWN, and ARCHIVELOG statements

= Messages and errors relating to the functions of shared server and dispatcher
processes

= Errors occurring during the automatic refresh of a materialized view

s The values of all initialization parameters that had nondefault values at the time
the database and instance start

Oracle Database uses the alert log to record these operations as an alternative to
displaying the information on an operator's console (although some systems also
display information on the console). If an operation is successful, a "completed"
message is written in the alert log, along with a timestamp.

The alert log is maintained as both an XML-formatted file and a text-formatted file.
You can view either format of the alert log with any text editor or you can use the
ADRCT utility to view the XML-formatted version of the file with the XML tags
stripped.

Check the alert log and trace files of an instance periodically to learn whether the
background processes have encountered errors. For example, when the log writer
process (LGWR) cannot write to a member of a log group, an error message indicating
the nature of the problem is written to the LGWR trace file and the alert log. Such an
error message means that a media or I/O problem has occurred and should be
corrected immediately.

Oracle Database also writes values of initialization parameters to the alert log, in
addition to other important statistics.

The alert log and all trace files for background and server processes are written to the
Automatic Diagnostic Repository, the location of which is specified by the
DIAGNOSTIC_DEST initialization parameter. The names of trace files are operating
system specific, but each file usually includes the name of the process writing the file
(such as LGWR and RECO).

See Also:

= Chapter 9, "Managing Diagnostic Data" on page 9-1 for
information on the Automatic Diagnostic Repository.

= "Alert Log" on page 9-5 for additional information about the
alert log.

= "Viewing the Alert Log" on page 9-19
s Oracle Database Utilities for information on the ADRCI utility.

= Your operating system specific Oracle documentation for
information about the names of trace files

Controlling the Size of Trace Files

You can control the maximum size of all trace files (excluding the alert log) using the
initialization parameter MAX_DUMP_FILE_SIZE, which limits the file to the specified
number of operating system blocks. To control the size of an alert log, you must
manually delete the file when you no longer need it. Otherwise the database continues
to append to the file.

8-2 Oracle Database Administrator's Guide

Monitoring Errors and Alerts

You can safely delete the alert log while the instance is running, although you should
consider making an archived copy of it first. This archived copy could prove valuable
if you should have a future problem that requires investigating the history of an
instance.

Controlling When Oracle Database Writes to Trace Files

Background processes always write to a trace file when appropriate. In the case of the
ARCn background process, it is possible, through an initialization parameter, to
control the amount and type of trace information that is produced. This behavior is
described in "Controlling Trace Output Generated by the Archivelog Process" on
page 12-13. Other background processes do not have this flexibility.

Trace files are written on behalf of server processes whenever critical errors occur.
Additionally, setting the initialization parameter SQIL._ TRACE = TRUE causes the SQL
trace facility to generate performance statistics for the processing of all SQL statements
for an instance and write them to the Automatic Diagnostic Repository.

Optionally, you can request that trace files be generated for server processes.
Regardless of the current value of the SQL_TRACE initialization parameter, each
session can enable or disable trace logging on behalf of the associated server process
by using the SQL statement ALTER SESSION SET SQL_TRACE. This example
enables the SQL trace facility for a specific session:

ALTER SESSION SET SQL_TRACE TRUE;

Use the DBMS_SESSION or the DBMS_MONITOR packages if you want to control SQL
tracing for a session.

Caution: The SQL trace facility for server processes can cause
significant system overhead resulting in severe performance
impact, so you should enable this feature only when collecting
statistics.

See Also:

= Chapter 9, "Managing Diagnostic Data" on page 9-1 for more
information on how the database handles critical errors,
otherwise known as "incidents."

Reading the Trace File for Shared Server Sessions

If shared server is enabled, each session using a dispatcher is routed to a shared server
process, and trace information is written to the server trace file only if the session has
enabled tracing (or if an error is encountered). Therefore, to track tracing for a specific
session that connects using a dispatcher, you might have to explore several shared
server trace files. To help you, Oracle provides a command line utility program,
trcsess, which consolidates all trace information pertaining to a user session in one
place and orders the information by time.

See Also: Oracle Database Performance Tuning Guide for
information about using the SQL trace facility and using TKPROF
and trcsess to interpret the generated trace files

Monitoring Database Operations 8-3

Monitoring Errors and Alerts

Monitoring Database Operations with Server-Generated Alerts

A server-generated alert is a notification from the Oracle Database server of an
impending problem. The notification may contain suggestions for correcting the
problem. Notifications are also provided when the problem condition has been
cleared.

Alerts are automatically generated when a problem occurs or when data does not
match expected values for metrics, such as the following:

= Physical Reads Per Second
s User Commits Per Second
= SQL Service Response Time

Server-generated alerts can be based on threshold levels or can issue simply because
an event has occurred. Threshold-based alerts can be triggered at both threshold
warning and critical levels. The value of these levels can be customer-defined or
internal values, and some alerts have default threshold levels which you can change if
appropriate. For example, by default a server-generated alert is generated for
tablespace space usage when the percentage of space usage exceeds either the 85%
warning or 97% critical threshold level. Examples of alerts not based on threshold
levels are:

m Snapshot Too 01d
m Resumable Session Suspended
n Recovery Area Space Usage

An alert message is sent to the predefined persistent queue ALERT_QUE owned by the
user SYS. Oracle Enterprise Manager reads this queue and provides notifications
about outstanding server alerts, and sometimes suggests actions for correcting the
problem. The alerts are displayed on the Enterprise Manager Database Home page
and can be configured to send email or pager notifications to selected administrators.
If an alert cannot be written to the alert queue, a message about the alert is written to
the Oracle Database alert log.

Background processes periodically flush the data to the Automatic Workload
Repository to capture a history of metric values. The alert history table and ALERT
QUE are purged automatically by the system at regular intervals.

Setting and Retrieving Thresholds for Server-Generated Alerts

You can view and change threshold settings for the server alert metrics using the SET_
THRESHOLD and GET_THRESHOLD procedures of the DBMS_SERVER_ALERTS
PL/SQL package. Examples of using these procedures are provided in the following
sections:

= Setting Threshold Levels

= Retrieving Threshold Information

Note: The most convenient way to set and retrieve threshold values
is to use the graphical interface of Enterprise Manager. See Oracle
Database 2 Day DBA for instructions.

See Also: Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_SERVER_ALERTS package

8-4 Oracle Database Administrator's Guide

Monitoring Errors and Alerts

Setting Threshold Levels The following example shows how to set thresholds with the
SET_THRESHOLD procedure for CPU time for each user call for an instance:

DBMS_SERVER_ALERT.SET_THRESHOLD (
DBMS_SERVER_ALERT.CPU_TIME_PER_CALL, DBMS_SERVER_ALERT.OPERATOR_GE, '8000',
DBMS_SERVER_ALERT.OPERATOR_GE, '10000', 1, 2, 'instl'
DBMS_SERVER_ALERT.OBJECT_TYPE_SERVICE, 'main.regress.rdbms.dev.us.oracle.com');

In this example, a warning alert is issued when CPU time exceeds 8000 microseconds
for each user call and a critical alert is issued when CPU time exceeds 10,000
microseconds for each user call. The arguments include:

s CPU_TIME_ PER CALL specifies the metric identifier. For a list of support metrics,
see Oracle Database PL/SQL Packages and Types Reference.

» The observation period is set to 1 minute. This period specifies the number of
minutes that the condition must deviate from the threshold value before the alert
is issued.

s The number of consecutive occurrences is set to 2. This number specifies how
many times the metric value must violate the threshold values before the alert is
generated.

s The name of the instance is set to inst1.

s The constant DBMS_ALERT.OBJECT_TYPE_SERVICE specifies the object type on
which the threshold is set. In this example, the service name is
main.regress.rdbms.dev.us.oracle.com.

Retrieving Threshold Information To retrieve threshold values, use the GET_THRESHOLD
procedure. For example:

DECLARE
warning_operator BINARY_INTEGER;
warning_value VARCHAR2 (60) ;
critical_operator BINARY_ INTEGER;
critical_value VARCHAR2 (60) ;
observation_period BINARY_ INTEGER;
consecutive_occurrences BINARY INTEGER;
BEGIN

DBMS_SERVER_ALERT .GET_THRESHOLD (

DBMS_SERVER_ALERT.CPU_TIME_PER_CALL, warning_operator, warning_value,
critical_operator, critical_value, observation_period,
consecutive_occurrences, 'instl',

DBMS_SERVER_ALERT.OBJECT_TYPE_SERVICE, 'main.regress.rdbms.dev.us.oracle.com');

DBMS_OUTPUT. PUT_LINE ('Warning operator: " || warning_operator) ;

DBMS_OUTPUT . PUT_LINE ('Warning value: " || warning_value);

DBMS_OUTPUT.PUT_LINE('Critical operator: " || critical_operator);

DBMS_OUTPUT.PUT_LINE('Critical value: " || critical_value);

DBMS_OUTPUT. PUT_LINE ('Observation_period: " || observation_period);

DBMS_OUTPUT. PUT_LINE (|| consecutive_occurrences);

END;
/

'Consecutive occurrences:'

You can also check specific threshold settings with the DBA_ THRESHOLDS view. For
example:

SELECT metrics_name, warning value, critical_value, consecutive_occurrences
FROM DBA_THRESHOLDS
WHERE metrics_name LIKE '%CPU Time%';

Monitoring Database Operations 8-5

Monitoring Performance

Viewing Server-Generated Alerts

The easiest way to view server-generated alerts is by accessing the Database Home
page of Enterprise Manager. The following discussion presents other methods of
viewing these alerts.

If you use your own tool rather than Enterprise Manager to display alerts, you must
subscribe to the ALERT_QUE, read the ALERT_QUE, and display an alert notification
after setting the threshold levels for an alert. To create an agent and subscribe the
agent to the ALERT_QUE, use the CREATE_AQ_AGENT and ADD_SUBSCRIBER
procedures of the DBMS_AQADM package.

Next you must associate a database user with the subscribing agent, because only a
user associated with the subscribing agent can access queued messages in the secure
ALERT_QUE. You must also assign the enqueue privilege to the user. Use the ENABLE_
DB_ACCESS and GRANT_QUEUE_PRIVILEGE procedures of the DBMS_AQADM
package.

Optionally, you can register with the DBMS_AQ . REGISTER procedure to receive an
asynchronous notification when an alert is enqueued to ALERT_QUE. The notification
can be in the form of email, HTTP post, or PL/SQL procedure.

To read an alert message, you can use the DBMS_AQ . DEQUEUE procedure or
OCIAQDeq call. After the message has been dequeued, use the DBMS_SERVER_
ALERT . EXPAND_MESSAGE procedure to expand the text of the message.

See Also: Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_AQ, and DBMS_AQADM packages

Server-Generated Alerts Data Dictionary Views
The following data dictionary views provide information about server-generated

alerts.
View Description
DBA_THRESHOLDS Lists the threshold settings defined for the instance

DBA_OUTSTANDING_ALERTS Describes the outstanding alerts in the database

DBA_ALERT_HISTORY Lists a history of alerts that have been cleared

V$ALERT_TYPES Provides information such as group and type for each alert

VSMETRICNAME Contains the names, identifiers, and other information
about the system metrics

VSMETRIC Contains system-level metric values

VS$METRIC_HISTORY Contains a history of system-level metric values

See Also: Oracle Database Reference for information on static data
dictionary views and dynamic performance views

Monitoring Performance

Monitoring database performance is covered in detail in Oracle Database Performance
Tuning Guide. Here are some additional topics with details that are not covered in that
guide:

= Monitoring Locks

= Monitoring Wait Events

8-6 Oracle Database Administrator's Guide

Monitoring Performance

= Performance Monitoring Data Dictionary Views

Monitoring Locks

Locks are mechanisms that prevent destructive interaction between transactions
accessing the same resource. The resources can be either user objects, such as tables
and rows, or system objects not visible to users, such as shared data structures in
memory and data dictionary rows. Oracle Database automatically obtains and
manages necessary locks when executing SQL statements, so you need not be
concerned with such details. However, the database also lets you lock data manually.

A deadlock can occur when two or more users are waiting for data locked by each
other. Deadlocks prevent some transactions from continuing to work. Oracle Database
automatically detects deadlock situations and resolves them by rolling back one of the
statements involved in the deadlock, thereby releasing one set of the conflicting row
locks.

Oracle Database is designed to avoid deadlocks, and they are not common. Most often
they occur when transactions explicitly override the default locking of the database.
Deadlocks can affect the performance of your database, so Oracle provides some
scripts and views that enable you to monitor locks.

The utllockt. sql script displays, in a tree fashion, the sessions in the system that
are waiting for locks and the locks that they are waiting for. The location of this script
file is operating system dependent.

A second script, catblock. sql, creates the lock views that ut1lockt. sgl needs, so
you must run it before running ut 1lockt . sql.

See Also:
= '"Performance Monitoring Data Dictionary Views" on page 8-7

» Oracle Database Concepts contains more information about locks.

Monitoring Wait Events

Wait events are statistics that are incremented by a server process to indicate that it
had to wait for an event to complete before being able to continue processing. A
session could wait for a variety of reasons, including waiting for more input, waiting
for the operating system to complete a service such as a disk write, or it could wait for
a lock or latch.

When a session is waiting for resources, it is not doing any useful work. A large
number of waits is a source of concern. Wait event data reveals various symptoms of
problems that might be affecting performance, such as latch contention, buffer
contention, and I/O contention.

Oracle provides several views that display wait event statistics. A discussion of these
views and their role in instance tuning is contained in Oracle Database Performance
Tuning Guide.

Performance Monitoring Data Dictionary Views

This section lists some of the data dictionary views that you can use to monitor an
Oracle Database instance. These views are general in their scope. Other views, more
specific to a process, are discussed in the section of this book where the process is
described.

Monitoring Database Operations 8-7

Monitoring Performance

View

Description

VSLOCK

Lists the locks currently held by Oracle Database and outstanding
requests for a lock or latch

DBA_BLOCKERS

Displays a session if it is holding a lock on an object for which
another session is waiting

DBA_WAITERS

Displays a session if it is waiting for a locked object

DBA_DDL_LOCKS

Lists all DDL locks held in the database and all outstanding
requests for a DDL lock

DBA_DML_LOCKS

Lists all DML locks held in the database and all outstanding
requests for a DML lock

DBA_LOCK

Lists all locks or latches held in the database and all outstanding
requests for a lock or latch

DBA_LOCK_INTERNAL

Displays a row for each lock or latch that is being held, and one
row for each outstanding request for a lock or latch

VSLOCKED_OBJECT

Lists all locks acquired by every transaction on the system

VSSESSION_WAIT

Lists the resources or events for which active sessions are waiting

V$SYSSTAT

Contains session statistics

VSRESOURCE_LIMIT

Provides information about current and maximum global resource
utilization for some system resources

V$SQLAREA Contains statistics about shared SQL area and contains one row for
each SQL string. Also provides statistics about SQL statements that
are in memory, parsed, and ready for execution

VSLATCH Contains statistics for nonparent latches and summary statistics for

parent latches

See Also: Oracle Database Reference for detailed descriptions of

these views

8-8 Oracle Database Administrator's Guide

9

Managing Diagnostic Data

Beginning with Release 11g, Oracle Database includes an advanced fault
diagnosability infrastructure for collecting and managing diagnostic data. Diagnostic
data includes the trace files, dumps, and core files that are also present in previous
releases, plus new types of diagnostic data that enable customers and Oracle Support
to identify, investigate, track, and resolve problems quickly and effectively.

In this chapter:

= About the Oracle Database Fault Diagnosability Infrastructure
= Investigating, Reporting, and Resolving a Problem

= Viewing Problems with the Enterprise Manager Support Workbench
» Creating a User-Reported Problem

= Viewing the Alert Log

= Finding Trace Files

= Running Health Checks with Health Monitor

= Repairing SQL Failures with the SQL Repair Advisor

= Repairing Data Corruptions with the Data Recovery Advisor
s Creating, Editing, and Uploading Custom Incident Packages

About the Oracle Database Fault Diagnosability Infrastructure

This section contains background information on the Oracle Database fault
diagnosability infrastructure. It contains the following topics:

= Fault Diagnosability Infrastructure Overview
= About Incidents and Problems
= Fault Diagnosability Infrastructure Components

s Structure, Contents, and Location of the Automatic Diagnostic Repository

Fault Diagnosability Infrastructure Overview

The fault diagnosability infrastructure aids in preventing, detecting, diagnosing, and
resolving problems. The problems that are targeted in particular are critical errors such
as those caused by code bugs, metadata corruption, and customer data corruption.

When a critical error occurs, it is assigned an incident number, and diagnostic data for
the error (such as trace files) are immediately captured and tagged with this number.

Managing Diagnostic Data 9-1

About the Oracle Database Fault Diagnosability Infrastructure

The data is then stored in the Automatic Diagnostic Repository (ADR)—a file-based
repository outside the database—where it can later be retrieved by incident number
and analyzed.

The goals of the fault diagnosability infrastructure are the following:

First-failure diagnosis

Problem prevention

Limiting damage and interruptions after a problem is detected
Reducing problem diagnostic time

Reducing problem resolution time

Simplifying customer interaction with Oracle Support

The keys to achieving these goals are the following technologies:

Automatic capture of diagnostic data upon first failure—For critical errors, the
ability to capture error information at first-failure greatly increases the chance of a
quick problem resolution and reduced downtime. An always-on memory-based
tracing system proactively collects diagnostic data from many database
components, and can help isolate root causes of problems. Such proactive
diagnostic data is similar to the data collected by airplane "black box" flight
recorders. When a problem is detected, alerts are generated and the fault
diagnosability infrastructure is activated to capture and store diagnostic data. The
data is stored in a repository that is outside the database (and therefore available
when the database is down), and is easily accessible with command line utilities
and Enterprise Manager.

Standardized trace formats—Standardizing trace formats across all database
components enables DBAs and Oracle Support personnel to use a single set of
tools for problem analysis. Problems are more easily diagnosed, and downtime is
reduced.

Health checks—Upon detecting a critical error, the fault diagnosability
infrastructure can run one or more health checks to perform deeper analysis of a
critical error. Health check results are then added to the other diagnostic data
collected for the error. Individual health checks look for data block corruptions,
undo and redo corruption, data dictionary corruption, and more. As a DBA, you
can manually invoke these health checks, either on a regular basis or as required.

Incident packaging service (IPS) and incident packages—The IPS enables you to
automatically and easily gather the diagnostic data—traces, dumps, health check
reports, and more—pertaining to a critical error and package the data into a zip
file for transmission to Oracle Support. Because all diagnostic data relating to a
critical error are tagged with that error's incident number, you do not have to
search through trace files and other files to determine the files that are required for
analysis; the incident packaging service identifies the required files automatically
and adds them to the zip file. Before creating the zip file, the IPS first collects
diagnostic data into an intermediate logical structure called an incident package
(package). Packages are stored in the Automatic Diagnostic Repository. If you
choose to, you can access this intermediate logical structure, view and modify its
contents, add or remove additional diagnostic data at any time, and when you are
ready, create the zip file from the package and upload it to Oracle Support.

Data Recovery Advisor—The Data Recovery Advisor integrates with database
health checks and RMAN to display data corruption problems, assess the extent of
each problem (critical, high priority, low priority), describe the impact of a

9-2 Oracle Database Administrator's Guide

About the Oracle Database Fault Diagnosability Infrastructure

problem, recommend repair options, conduct a feasibility check of the
customer-chosen option, and automate the repair process.

= SQL Test Case Builder—For many SQL-related problems, obtaining a
reproducible test case is an important factor in problem resolution speed. The SQL
Test Case Builder automates the sometimes difficult and time-consuming process
of gathering as much information as possible about the problem and the
environment in which it occurred. After quickly gathering this information, you
can upload it to Oracle Support to enable support personnel to easily and
accurately reproduce the problem.

See Also:

» Oracle Database Performance Tuning Guide for more information on
SQL Test Case Builder

About Incidents and Problems

To facilitate diagnosis and resolution of critical errors, the fault diagnosability
infrastructure introduces two concepts for Oracle Database: problems and incidents.

A problem is a critical error in a database instance, Oracle Automatic Storage
Management (Oracle ASM) instance, or other Oracle product or component. Critical
errors manifest as internal errors, such as ORA-00600, or other severe errors, such as
ORA-07445 (operating system exception) or ORA-04031 (out of memory in the
shared pool). Problems are tracked in the ADR. Each problem has a problem key, which
is a text string that describes the problem. It includes an error code (such as ORA 600)
and in some cases, one or more error parameters.

An incident is a single occurrence of a problem. When a problem (critical error) occurs
multiple times, an incident is created for each occurrence. Incidents are timestamped
and tracked in the Automatic Diagnostic Repository (ADR). Each incident is identified
by a numeric incident ID, which is unique within the ADR. When an incident occurs,
the database:

= Makes an entry in the alert log.
= Sends an incident alert to Oracle Enterprise Manager (Enterprise Manager).

» Gathers first-failure diagnostic data about the incident in the form of dump files
(incident dumps).

» Tags the incident dumps with the incident ID.
= Stores the incident dumps in an ADR subdirectory created for that incident.

Diagnosis and resolution of a critical error usually starts with an incident alert.
Incident alerts are displayed on the Enterprise Manager Database Home page or
Oracle Automatic Storage Management Home page. The Database Home page also
displays in its Related Alerts section any critical alerts in the Oracle ASM instance or
other Oracle products or components. After viewing an alert, you can then view the
problem and its associated incidents with Enterprise Manager or with the ADRCI
command-line utility.

The following sections provide more information about incidents and problems:
= Incident Flood Control

= Related Problems Across the Topology

Managing Diagnostic Data 9-3

About the Oracle Database Fault Diagnosability Infrastructure

See Also:

= "Viewing Problems with the Enterprise Manager Support
Workbench" on page 9-17

s "Investigating, Reporting, and Resolving a Problem" on page 9-10

= "ADRCI Command-Line Utility" on page 9-7

Incident Flood Control

It is conceivable that a problem could generate dozens or perhaps hundreds of
incidents in a short period of time. This would generate too much diagnostic data,
which would consume too much space in the ADR and could possibly slow down
your efforts to diagnose and resolve the problem. For these reasons, the fault
diagnosability infrastructure applies flood control to incident generation after certain
thresholds are reached. A flood-controlled incident is an incident that generates an
alert log entry, is recorded in the ADR, but does not generate incident dumps.
Flood-controlled incidents provide a way of informing you that a critical error is
ongoing, without overloading the system with diagnostic data. You can choose to view
or hide flood-controlled incidents when viewing incidents with Enterprise Manager or
the ADRCI command-line utility.

Threshold levels for incident flood control are predetermined and cannot be changed.
They are defined as follows:

= After five incidents occur for the same problem key in one hour, subsequent
incidents for this problem key are flood-controlled. Normal (non-flood-controlled)
recording of incidents for that problem key begins again in the next hour.

= After 25 incidents occur for the same problem key in one day, subsequent
incidents for this problem key are flood-controlled. Normal recording of incidents
for that problem key begins again on the next day.

In addition, after 50 incidents for the same problem key occur in one hour, or 250
incidents for the same problem key occur in one day, subsequent incidents for this
problem key are not recorded at all in the ADR. In these cases, the database writes a
message to the alert log indicating that no further incidents will be recorded. As long
as incidents continue to be generated for this problem key, this message is added to the
alert log every ten minutes until the hour or the day expires. Upon expiration of the
hour or day, normal recording of incidents for that problem key begins again.

Related Problems Across the Topology

For any problem identified in a database instance, the diagnosability framework can
identify related problems across the topology of your Oracle Database installation. In a
single instance environment, a related problem could be identified in the local Oracle
ASM instance. In an Oracle RAC environment, a related problem could be identified in
any database instance or Oracle ASM instance on any other node. When investigating
problems, you are able to view and gather information on any related problems.

A problem is related to the original problem if it occurs within a designated time
period or shares the same execution context identifier. An execution context identifier
(ECID) is a globally unique identifier used to tag and track a single call through the
Oracle software stack, for example, a call to Oracle Application Server that then calls
into Oracle Database to retrieve data. The ECID is typically generated in the middle
tier and is passed to the database as an Oracle Call Interface (OCI) attribute. When a
single call has failures on multiple tiers of the Oracle software stack, problems that are
generated are tagged with the same ECID so that they can be correlated. You can then
determine the tier on which the originating problem occurred.

9-4 Oracle Database Administrator's Guide

About the Oracle Database Fault Diagnosability Infrastructure

Fault Diagnosability Infrastructure Components

The following are the key components of the fault diagnosability infrastructure:
= Automatic Diagnostic Repository (ADR)

n AlertLog

n Trace Files, Dumps, and Core Files

s Other ADR Contents

= Enterprise Manager Support Workbench

= ADRCI Command-Line Utility

Automatic Diagnostic Repository (ADR)

The ADR is a file-based repository for database diagnostic data such as traces, dumps,
the alert log, health monitor reports, and more. It has a unified directory structure
across multiple instances and multiple products. Beginning with Release 11g, the
database, Oracle Automatic Storage Management (Oracle ASM), the listener, and other
Oracle products or components store all diagnostic data in the ADR. Each instance of
each product stores diagnostic data underneath its own home directory within the
ADR. For example, in an Oracle Real Application Clusters environment with shared
storage and Oracle ASM, each database instance and each Oracle ASM instance has an
ADR home directory. ADR's unified directory structure, consistent diagnostic data
formats across products and instances, and a unified set of tools enable customers and
Oracle Support to correlate and analyze diagnostic data across multiple instances.

Note: Beginning with Release 11g of Oracle Database, because all
diagnostic data, including the alert log, are stored in the ADR, the
initialization parameters BACKGROUND_DUMP_DEST and USER_
DUMP_DEST are deprecated. They are replaced by the initialization
parameter DIAGNOSTIC_DEST, which identifies the location of the
ADR.

See Also: "Structure, Contents, and Location of the Automatic
Diagnostic Repository" on page 9-7 for more information on the
DIAGNOSTIC_DEST parameter and on ADR homes.

Alert Log

The alert log is an XML file that is a chronological log of database messages and errors.
It is stored in the ADR and includes messages about the following:

n Critical errors (incidents)

= Administrative operations, such as starting up or shutting down the database,
recovering the database, creating or dropping a tablespace, and others.

s Errors during automatic refresh of a materialized view
s Other database events

You can view the alert log in text format (with the XML tags stripped) with Enterprise
Manager and with the ADRCI utility. There is also a text-formatted version of the alert
log stored in the ADR for backward compatibility. However, Oracle recommends that
any parsing of the alert log contents be done with the XML-formatted version, because
the text format is unstructured and may change from release to release.

Managing Diagnostic Data 9-5

About the Oracle Database Fault Diagnosability Infrastructure

See Also:
= "ADRCI Command-Line Utility" on page 9-7
= "Viewing the Alert Log" on page 9-19

Trace Files, Dumps, and Core Files

Trace files, dumps, and core files contain diagnostic data that are used to investigate
problems. They are stored in the ADR.

Trace Files Each server and background process can write to an associated trace file.
Trace files are updated periodically over the life of the process and can contain
information on the process environment, status, activities, and errors. In addition,
when a process detects a critical error, it writes information about the error to its trace
file. The SQL trace facility also creates trace files, which provide performance
information on individual SQL statements. You can enable SQL tracing for a session or
an instance.

Trace file names are platform-dependent. Typically, database background process trace
file names contain the Oracle SID, the background process name, and the operating
system process number, while server process trace file names contain the Oracle SID,
the string "ora", and the operating system process number. The file extension is . trc.
An example of a server process trace file name is orcl_ora_344.trc. Trace files are
sometimes accompanied by corresponding trace map (. trm) files, which contain
structural information about trace files and are used for searching and navigation.

Oracle Database includes tools that help you analyze trace files. For more information
on application tracing, SQL tracing, and tracing tools, see Oracle Database Performance
Tuning Guide.

See Also: "Finding Trace Files" on page 9-20

Dumps A dump is a specific type of trace file. A dump is typically a one-time output of
diagnostic data in response to an event (such as an incident), whereas a trace tends to
be continuous output of diagnostic data. When an incident occurs, the database writes
one or more dumps to the incident directory created for the incident. Incident dumps
also contain the incident number in the file name.

Core Files A core file contains a memory dump, in an all-binary, port-specific format.
Core file names include the string "core" and the operating system process ID. Core
files are useful to Oracle Support engineers only. Core files are not found on all
platforms.

Other ADR Contents

In addition to files mentioned in the previous sections, the ADR contains health
monitor reports, data repair records, SQL test cases, incident packages, and more.
These components are described later in the chapter.

Enterprise Manager Support Workbench

The Enterprise Manager Support Workbench (Support Workbench) is a facility that
enables you to investigate, report, and in some cases, repair problems (critical errors),
all with an easy-to-use graphical interface. The Support Workbench provides a
self-service means for you to gather first-failure diagnostic data, obtain a support
request number, and upload diagnostic data to Oracle Support with a minimum of
effort and in a very short time, thereby reducing time-to-resolution for problems. The

9-6 Oracle Database Administrator's Guide

About the Oracle Database Fault Diagnosability Infrastructure

Support Workbench also recommends and provides easy access to Oracle advisors that
help you repair SQL-related problems, data corruption problems, and more.

ADRCI Command-Line Utility

The ADR Command Interpreter (ADRCI) is a utility that enables you to investigate
problems, view health check reports, and package and upload first-failure diagnostic
data to Oracle Support, all within a command-line environment. ADRCI also enables
you to view the names of the trace files in the ADR, and to view the alert log with
XML tags stripped, with and without content filtering.

For more information on ADRCI, see Oracle Database Utilities.

Structure, Contents, and Location of the Automatic Diagnostic Repository

The Automatic Diagnostic Repository (ADR) is a directory structure that is stored
outside of the database. It is therefore available for problem diagnosis when the
database is down.

The ADR root directory is known as ADR base. Its location is set by the
DIAGNOSTIC_DEST initialization parameter. If this parameter is omitted or left null,
the database sets DIAGNOSTIC_DEST upon startup as follows:

s If environment variable ORACLE_BASE is set, DIAGNOSTIC_DEST is set to the
directory designated by ORACLE_BASE.

s If environment variable ORACLE_BASE is not set, DIAGNOSTIC_DEST is set to
ORACLE_HOME/log.

Within ADR base, there can be multiple ADR homes, where each ADR home is the
root directory for all diagnostic data—traces, dumps, the alert log, and so on—for a
particular instance of a particular Oracle product or component. For example, in an
Oracle Real Application Clusters environment with Oracle ASM, each database
instance, Oracle ASM instance, and listener has an ADR home.

ADR homes reside in ADR base subdirectories that are named according to the
product or component type. Figure 9-1 illustrates these top-level subdirectories.

Figure 9-1 Product/Component Type Subdirectories in the ADR

N
ADR ———
base
Vann W
diag
asm rdbms tnsisnr clients (others)

The location of each ADR home is given by the following path, which starts at the
ADR base directory:

diag/product_type/product_id/instance_id

As an example, Table 9-1 lists the values of the various path components for an Oracle
Database instance.

Managing Diagnostic Data 9-7

About the Oracle Database Fault Diagnosability Infrastructure

Table 9-1 ADR Home Path Components for Oracle Database

Path Component Value for Oracle Database
product_type rdbms

product_id DB_UNIQUE_NAME
instance_id SID

For example, for a database with a SID and database unique name both equal to
orclbi, the ADR home would be in the following location:

ADR_base/diag/rdbms/orclbi/orclbi/
Similarly, the ADR home path for the Oracle ASM instance in a single-instance
environment would be:

ADR_base/diag/asm/+asm/+asm/

ADR Home Subdirectories

Within each ADR home directory are subdirectories that contain the diagnostic data.
Table 9-2 lists some of these subdirectories and their contents.

Table 9-2 ADR Home Subdirectories

Subdirectory Name Contents

alert The XML-formatted alert log
cdump Core files
incident Multiple subdirectories, where each subdirectory is

named for a particular incident, and where each contains
dumps pertaining only to that incident

trace Background and server process trace files, SQL trace
files, and the text-formatted alert log

(others) Other subdirectories of ADR home, which store incident
packages, health monitor reports, and other information

Figure 9-2 illustrates the complete directory hierarchy of the ADR for a database
instance.

9-8 Oracle Database Administrator's Guide

About the Oracle Database Fault Diagnosability Infrastructure

Figure 9-2 ADR Directory Structure for a Database Instance

o U
ADR ——
base
Wann W
diag
rdbms
DB_UNIQUE_NAME
Vann W
ADR —
home SID
alert cdump incident trace (others)

ADR in an Oracle Real Application Clusters Environment

In an Oracle Real Application Clusters (RAC) environment, each node can have ADR
base on its own local storage, or ADR base can be set to a location on shared storage.
The following are the advantages of the shared storage approach:

= You can use ADRCI to view aggregated diagnostic data from all instances on a
single report.

= You can use the Data Recovery Advisor to help diagnose and repair corrupted
data blocks, corrupted or missing files, and other data failures. (For Oracle RAC,
the Data Recovery Advisor requires shared storage.)

See Oracle Database 2 Day DBA for more information on the Data Recovery

Advisor.

ADR in Oracle Client

Each installation of Oracle Client includes an ADR for diagnostic data associated with
critical failures in any of the Oracle Client components. The ADRCI utility is installed
with Oracle Client so that you can examine diagnostic data and package it for upload
to Oracle Support.

Viewing ADR Locations with the VSDIAG_INFO View

The V$DIAG_INFO view lists all important ADR locations for the current Oracle
Database instance.

SELECT * FROM VS$DIAG_INFO;

INST_ID

Diag Enabled
ADR Base

ADR Home
Diag Trace
Diag Alert
Diag Incident
Diag Cdump

TRUE

/ul0l/oracle
/ul0l/oracle/diag/rdbms/orclbi/orclbi
/u0l/oracle/diag/rdbms/orclbi/orclbi/trace
/u0l/oracle/diag/rdbms/orclbi/orclbi/alert
/u0l/oracle/diag/rdbms/orclbi/orclbi/incident
/ull/oracle/diag/rdbms/orclbi/orclbi/cdump

Managing Diagnostic Data 9-9

Investigating, Reporting, and Resolving a Problem

1 Health Monitor

/ul0l/oracle/diag/rdbms/orclbi/orclbi/hm

1 Default Trace File /ul0l/oracle/diag/rdbms/orclbi/orclbi/trace/orcl_ora_22769.trc
1 Active Problem Count 8
1 Active Incident Count 20

The following table describes some of the information displayed by this view.

Table 9-3 Data in the V$DIAG_INFO View

Name Description

ADR Base Path of ADR base

ADR Home Path of ADR home for the current database instance

Diag Trace Location of background process trace files, server process trace files, SQL
trace files, and the text-formatted version of the alert log

Diag Alert Location of the XML-formatted version of the alert log

Default Trace File Path to the trace file for the current session

Investigating, Reporting, and Resolving a Problem

This section describes how to use the Enterprise Manager Support Workbench
(Support Workbench) to investigate and report a problem (critical error), and in some
cases, resolve the problem. The section begins with a "roadmap" that summarizes the
typical set of tasks that you must perform.

Note: The tasks described in this section are all Enterprise
Manager-based. You can also accomplish all of these tasks (or their
equivalents) with the ADRCI command-line utility, with PL/SQL
packages such as DBMS_HM and DBMS_SQLDIAG, and with other
software tools. See Oracle Database Ultilities for more information on
the ADRCT utility, and see Oracle Database PL/SQL Packages and Types
Reference for information on PL/SQL packages.

See Also: "About the Oracle Database Fault Diagnosability
Infrastructure" on page 9-1 for more information on problems and
their diagnostic data

Roadmap—Investigating, Reporting, and Resolving a Problem

You can begin investigating a problem by starting from the Support Workbench home
page in Enterprise Manager. However, the more typical workflow begins with a
critical error alert on the Database Home page. This section provides an overview of
that workflow.

Figure 9-3 illustrates the tasks that you complete to investigate, report, and in some
cases, resolve a problem.

9-10 Oracle Database Administrator's Guide

Investigating, Reporting, and Resolving a Problem

Figure 9-3 Workflow for Investigating, Reporting, and Resolving a Problem

View Critical
Error Alerts in
Enterprise
Manager

ORA—B86B88
View Problem Details

Close incidents

wTrack the Service
Request and

Implement Any

Repairs

Gather additional
diagnostic
information

Package and Upload

Diagnotstic Data
0

<

¥

Create a Service
Request /

Oracle Support

The following are task descriptions. Subsequent sections provide details for each task.
s Task 1- View Critical Error Alerts in Enterprise Manager on page 9-12

Start by accessing the Database Home page in Enterprise Manager, and reviewing
critical error alerts. Select an alert for which to view details, and then go to the
Problem Details page.

s Task 2 -View Problem Details on page 9-13

Examine the problem details and view a list of all incidents that were recorded for
the problem. Display findings from any health checks that were automatically run.

s Task 3 - (Optional) Gather Additional Diagnostic Information on page 9-13

Optionally run additional health checks or other diagnostics. For SQL-related
errors, optionally invoke the SQL Test Case Builder, which gathers all required
data related to a SQL problem and packages the information in a way that enables
the problem to be reproduced at Oracle Support.

s Task 4 - (Optional) Create a Service Request on page 9-13

Optionally create a service request with My Oracle Support and record the service
request number with the problem information. If you skip this step, you can create
a service request later, or the Support Workbench can create one for you.

s Task 5 -Package and Upload Diagnostic Data to Oracle Support on page 9-14

Invoke a guided workflow (a wizard) that automatically packages the gathered
diagnostic data for a problem and uploads the data to Oracle Support.

s Task 6 — Track the Service Request and Implement Any Repairs on page 9-15

Optionally maintain an activity log for the service request in the Support
Workbench. Run Oracle advisors to help repair SQL failures or corrupted data.

Managing Diagnostic Data 9-11

Investigating, Reporting, and Resolving a Problem

s Task 7 - Close Incidents on page 9-16
Set status for one, some, or all incidents for the problem to Closed.

See Also: "Viewing Problems with the Enterprise Manager Support
Workbench" on page 9-17

Task 1 - View Critical Error Alerts in Enterprise Manager

You begin the process of investigating problems (critical errors) by reviewing critical
error alerts on the Database Home page or Oracle Automatic Storage Management
Home page.

To view critical error alerts:
1. Access the Database Home page in Enterprise Manager.

For Oracle Enterprise Manager Database Control, see Oracle Database 2 Day DBA
for instructions. For Oracle Enterprise Manager Grid Control, go to the desired
database target.

2. Do one of the following to view critical error alerts. (Critical error alerts are
indicated by a red x in the Severity column, and the text "Incident” in the Category
column.)

s View the alerts in the Alerts section.

You may have to click the hide/show icon next to the Alerts heading to
display the alerts.

s View the alerts in the Related Alerts section.

The Target Name indicates the Oracle product or component that experienced
the critical error. See "Related Problems Across the Topology" on page 9-4 for
more information.

» View critical alerts for the Oracle ASM instance by completing these steps:
a. In the General section, click the link next to the label ASM.

b. On the Oracle Automatic Storage Management Home page, scroll down to
view the Alerts section.

Figure 9-4 Alerts Section of the Database Home Page

VAlerts
Category |All | Go) Critical ¥ 1 Wamning Y
|Severity |Categury |Name |Impact\Message Alert Triggered
% Incident Generic Internal Error Internal error (ORAGOO[15700]) detected in /u01/app/oracle/diag’rdbmsforclforcl/alert Aug 25, 2009
Aog.rml at timedine number: Tue Aug 25 15:54:19 2009/4349, 3:54:20 PM
A Waits by WWait Database Time Spent Metrics "Database Time Spent YWaiting (%1" is at 51.03353 for event class "Concurrency” Aug 27, 2009
Class Waiting (%) 4:18:49 P

3. In the Message column, click the message of the critical error alert that you want
investigate.

The Incident page or Data Failure page appears. This page includes:
= Problem information, including the number of incidents for the problem

s A Performance and Critical Error graphical timeline for the 24-hour period in
which the critical error occurred (database instance only).

= Alert details, including severity, timestamp, and message

9-12 Oracle Database Administrator's Guide

Investigating, Reporting, and Resolving a Problem

= Controls that enable you to clear the alert or record a comment about it.

4. Review the Performance and Critical Error graphical timeline if present, and note
any time correlation between performance issues and the critical error. Optionally
clear the alert or leave a comment about it.

Task 2 -View Problem Details

You continue your investigation by viewing the Problem Details page.

To view problem details:
1. On the Incident page or Data Failure page, click View Problem Details.

The Problem Details page appears, showing the Incidents subpage.
2. (Optional) Do one or both of the following:

s In the Investigate and Resolve section, on the Self Service tab, under Diagnose,
click Related Problems Across Topology.

A page appears showing any related problems in the local Oracle Automatic
Storage Management (Oracle ASM) instance, or in the database or Oracle ASM
instances on other nodes in an Oracle Real Application Clusters environment.
This step is recommended if any critical alerts appear in the Related Alerts
section on the Enterprise Manager Database Home page.

See "Related Problems Across the Topology" on page 9-4 for more information.
= View incident details by completing these steps:
a. In the Incidents subpage, select an incident, and then click View.

b. (Optional) On the Incident Details page, click Checker Findings to view
the Checker Findings subpage.

This page displays findings from any health checks that were automati-
cally run when the critical error was detected.

See "Running Health Checks with Health Monitor" on page 9-20 for more
information.

Task 3 — (Optional) Gather Additional Diagnostic Information

You can perform the following activities to gather additional diagnostic information
for a problem. This additional information is then automatically included in the
diagnostic data uploaded to Oracle Support. If you are unsure as to whether or not to
perform these activities, check with your Oracle Support representative.

= Manually invoke additional health checks
See "Running Health Checks with Health Monitor" on page 9-20
s Invoke the SQL Test Case Builder

See Oracle Database Performance Tuning Guide for instructions.

Task 4 - (Optional) Create a Service Request

At this point, you can create an Oracle Support service request and record the service
request number with the problem information. If you choose to skip this task, the
Support Workbench will automatically create a draft service request for you in Task 5.

Managing Diagnostic Data 9-13

Investigating, Reporting, and Resolving a Problem

To create a service request:

1. On the Problem Details page, in the Investigate and Resolve section, click Go to
My Oracle Support and Research.

The My Oracle Support Sign In and Registration page appears in a new browser
window.

Note: See "Viewing Problems with the Enterprise Manager Support
Workbench" on page 9-17 for instructions for returning to the Problem
Details page if you are not already there.

2. Login to My Oracle Support and create a service request in the usual manner.
(Optional) Remember the service request number (SR#) for the next step.

3. (Optional) Return to the Problem Details page, and then do the following;:
a. In the Summary section, click the Edit button that is adjacent to the SR# label.
b. Enter the SR#, and then click OK.
The SR# is recorded in the Problem Details page. This is for your reference only.

Task 5 — Package and Upload Diagnostic Data to Oracle Support

For this task, you use the quick packaging process of the Support Workbench to
package and upload the diagnostic information for the problem to Oracle Support.
Quick packaging has a minimum of steps, organized in a guided workflow (a wizard).
The wizard assists you with creating an incident package (package) for a single
problem, creating a zip file from the package, and uploading the file. With quick
packaging, you are not able to edit or otherwise customize the diagnostic information
that is uploaded. However, quick packaging is the more direct, straightforward
method to package and upload diagnostic data.

If you want to edit or remove sensitive data from the diagnostic information, enclose
additional user files (such as application configuration files or scripts), or perform
other customizations before uploading, you must use the custom packaging process,
which is a more manual process and has more steps. See "Creating, Editing, and
Uploading Custom Incident Packages" on page 9-31 for instructions. If you choose to
follow those instructions instead of the instructions here in Task 5, do so now and then
continue with Task 6 — Track the Service Request and Implement Any Repairs on

page 9-15 when you are finished.

Note: The Support Workbench uses Oracle Configuration Manager to
upload the diagnostic data. If Oracle Configuration Manager is not
installed or properly configured, the upload may fail. In this case, a
message is displayed with a request that you upload the file to Oracle
Support manually. You can upload manually with My Oracle Support.

For more information about Oracle Configuration Manager, see Oracle
Configuration Manager Installation and Administration Guide.

To package and upload diagnostic data to Oracle Support:

1. On the Problem Details page, in the Investigate and Resolve section, click Quick
Package.

The Create New Package page of the Quick Packaging wizard appears.

9-14 Oracle Database Administrator's Guide

Investigating, Reporting, and Resolving a Problem

Note: See "Viewing Problems with the Enterprise Manager Support
Workbench" on page 9-17 for instructions for returning to the Problem
Details page if you are not already there.

M M

S S
Create New Package View Contents Wiew Manifest Schedule

Gluick Packaging: Create New Package

Cancel) Step 1 of 4 |Mext
Target orcl.us.oracle.com Logged in As SYSTEM
Problerns Selected ORA 600 [15700]

Use quick packaging to generate an upload file for & single problerm and send it to Oracle with default options. If Oracle Configuration Manager is not
set up, the upload file will still be created but it will not be sent to Oracle

* Package Mame | ORAGOD1S7_200908252207118

Package Description
Send to Oracle Suppot @ ves ONo
My Oracle Support Username
by Qracle Support Password
Custorner Support [dentifier (CS1)
Country | United States hd
Create new Service Request (SR) @ ves ONa

Optionally enter a package name and description.

Fill in the remaining fields on the page. If you already created a service request for
this problem, select No next to Create new Service Request (SR).

If you select Yes, the Quick Packaging wizard creates a draft service request on
your behalf. You must later log in to My Oracle Support and fill in the details of
the service request.

Click Next, and then proceed with the remaining pages of the Quick Packaging
wizard.

When the Quick Packaging wizard is complete, the package that it creates remains
available in the Support Workbench. You can then modify it with custom
packaging operations (such as adding new incidents) and reupload at a later time.
See "Viewing and Modifying Incident Packages" on page 9-38.

Task 6 — Track the Service Request and Implement Any Repairs

After uploading diagnostic information to Oracle Support, you might perform various
activities to track the service request, to collect additional diagnostic information, and
to implement repairs. Among these activities are the following:

Adding an Oracle bug number to the problem information.

To do so, on the Problem Details page, click the Edit button that is adjacent to the
Bug# label. This is for your reference only.

Adding comments to the problem activity log.

You may want to do this to share problem status or history information with other
DBAs in your organization. For example you could record the results of your
conversations with Oracle Support. To add comments, complete the following
steps:

1. Access the Problem Details page for the problem, as described in "Viewing
Problems with the Enterprise Manager Support Workbench" on page 9-17.

2. Click Activity Log to display the Activity Log subpage.

Managing Diagnostic Data 9-15

Investigating, Reporting, and Resolving a Problem

3. In the Comment field, enter a comment, and then click Add Comment.
Your comment is recorded in the activity log.
= Asnew incidents occur, adding them to the package and reuploading.

For this activity, you must use the custom packaging method described in
"Creating, Editing, and Uploading Custom Incident Packages" on page 9-31.

= Running health checks.
See "Running Health Checks with Health Monitor" on page 9-20.
= Running a suggested Oracle advisor to implement repairs.
Access the suggested advisor in one of the following ways:

— Problem Details page—In the Self-Service tab of the Investigate and Resolve
section

- Support Workbench home page—on the Checker Findings subpage
- Incident Details page—on the Checker Findings subpage

Table 9—4 lists the advisors that help repair critical errors.

Table 9-4 Oracle Advisors that Help Repair Critical Errors

Advisor Critical Errors Addressed See
Data Recovery Advisor Corrupted blocks, corrupted or missing files, ~ "Repairing Data Corruptions with
and other data failures the Data Recovery Advisor" on
page 9-30
SQL Repair Advisor SQL statement failures "Repairing SQL Failures with the

SQL Repair Advisor" on page 9-27

See Also: "Viewing Problems with the Enterprise Manager Support
Workbench" on page 9-17 for instructions for viewing the Checker
Findings subpage of the Incident Details page

Task 7 - Close Incidents

When a particular incident is no longer of interest, you can close it. By default, closed
incidents are not displayed on the Problem Details page.

All incidents, whether closed or not, are purged after 30 days. You can disable purging

for an incident on the Incident Details page.

To close incidents:
1. Access the Support Workbench home page.

See "Viewing Problems with the Enterprise Manager Support Workbench" on
page 9-17 for instructions.

2. Select the desired problem, and then click View.
The Problem Details page appears.

3. Select the incidents to close and then click Close.
A confirmation page appears.

4. Enter an optional comment and click OK.

9-16 Oracle Database Administrator's Guide

Viewing Problems with the Enterprise Manager Support Workbench

Viewing Problems with the Enterprise Manager Support Workbench

You use the Enterprise Manager Support Workbench home page (Figure 9-5 on
page 9-17) to view all problems or only those within a specified time period.

Figure 9-5 Enterprise Manager Support Workbench Home Page

Database Instance: orcl.us.oracle.cam = Lagged in As SYSTEM

Support Workbench

Page Refreshed August 27, 2009 4:33:42 PM PDT (Refresh)

Probl 2 Checker Findings (3] Packages (I

New Problerns in Last 24 Hours 0 All Active Problerms 1 All Problerms 2

News Incidents in Last 24 Hours 1 All Active Incidents 3 All Incidents &

View |Last Week w Search Co) Advanced Search
View || Package)

Select Al | Select Mone | Show All Details | Hide All Details

Select Details |ID|DEscriptiun :" ber Of Incid Last Incid Last Comment Active Packaged SR#
O e Show 2 ORA15TH 3 August 26, 2009 10:00:17 P PDT Yes o
] p-Show 1 ORABOO [15700] 2 August 25, 2003 3:54:13 PM PDT Mo Mo

¥ Performance and Critical Error

10

w
=
[0
% os [cPu
r W User 1O
; | wait
g 00
ks 20 21 22 23 24 25 26 27

Algust 2009

. .
* ORA 1578

ORA BO0 [15700

To access the Support Workbench home page (database or Oracle ASM):
1. Access the Database Home page in Enterprise Manager.

See Oracle Database 2 Day DBA for the instructions for Oracle Enterprise Manager
Database Control. For Oracle Enterprise Manager Grid Control, go to the desired

database target.
2. Do one of the following:

s In the Diagnostic Summary section, click the numeric link next to the label
Active Incidents.

= At the top of the page, click Software and Support, and then under Support,
click Support Workbench.

The Support Workbench home page for the database instance appears, showing
the Problems subpage. By default the problems from the last 24 hours are
displayed.

3. To view the Support Workbench home page for the Oracle ASM instance, click the

link Support Workbench (+ASM_hostname) in the Related Links section.

To view problems and incidents:
1. On the Support Workbench home page, select the desired time period from the
View list. To view all problems, select AlL

2. (Optional) If the Performance and Critical Error section is hidden, click the
Show/Hide icon adjacent to the section heading to show the section.

Managing Diagnostic Data 9-17

Creating a User-Reported Problem

This section enables you to view any correlation between performance changes
and incident occurrences.

3. (Optional) Under the Details column, click Show to display a list of all incidents
for a problem, and then click an incident ID to display the Incident Details page.

To view details for a particular problem:
1. On the Support Workbench home page, select the problem, and then click View.

The Problem Details page appears, showing the Incidents subpage. The incidents
subpage shows all incidents that are open and that generated dumps—that is, that
were not flood-controlled.

2. (Optional) To view both open and closed incidents, select All Incidents in the
Status list. To view both normal and flood-controlled incidents, select All
Incidents in the Data Dumped list.

3. (Optional) To view details for an incident, select the incident, and then click View.
The Incident Details page appears.

4. (Optional) On the Incident Details page, to view checker findings for the incident,
click Checker Findings.

5. (Optional) On the Incident Details page, to view the user actions that are available
to you for the incident, click Additional Diagnostics. Each user action provides a
way for you to gather additional diagnostics for the incident or its problem.

See Also: '"Incident Flood Control" on page 9-4

Creating a User-Reported Problem

System-generated problems—critical errors generated internally to the database—are
automatically added to the Automatic Diagnostic Repository (ADR) and tracked in the
Support Workbench. From the Support Workbench, you can gather additional
diagnostic data on these problems, upload diagnostic data to Oracle Support, and in
some cases, resolve the problems, all with the easy-to-use workflow that is explained
in "Investigating, Reporting, and Resolving a Problem" on page 9-10.

There may be a situation in which you want to manually add a problem that you
noticed to the ADR so that you can put that problem through that same workflow. An
example of such a situation might be a global database performance problem that was
not diagnosed by Automatic Diagnostic Database Monitor (ADDM). The Support
Workbench includes a mechanism for you to create and work with such a
user-reported problem.

To create a user-reported problem:
1. Access the Support Workbench home page.

See "Viewing Problems with the Enterprise Manager Support Workbench" on
page 9-17 for instructions.

2. Under Related Links, click Create User-Reported Problem.
The Create User-Reported Problem page appears.

9-18 Oracle Database Administrator's Guide

Viewing the Alert Log

Database Instance: orcl.us oracle.camn > SupportWorkbench = Logged in As SYSTEM
Create User-Reported Problem

Flease select an issue type that best describes your problem. Mate that critical errors are autormatically detected and recorded as problems by the system
Before proceeding, you are advised to run the recommended advisar as that may resolve the issue and therefore avoid creation of a new problem.

Cancel)

Run Recommended Advisor | (Continue with Creation of Problem |

Select Issue type Description Recommended Advisor
O System Perfarmance General Database Pedformance ADDM
O Query Parformance S0OL Query Performance SOL Advisor
O Resource Usage Mernory or Hard Disk Usage Mermory Advisor
O Mone of the Abave Erter Description about Your lssue

If your problem matches one of the listed issue types, select the issue type, and
then click Run Recommended Advisor to attempt to solve the problem with an
Oracle advisor.

If the recommended advisor did not solve the problem, or if you did not run an
advisor, do one of the following:

= If your problem matches one of the listed issue types, select the issue type, and
then click Continue with Creation of Problem.

s If your problem does not match one of the listed issue types, select the issue
type None of the Above, enter a description, and then click Continue with
Creation of Problem.

The Problem Details page appears.
Follow the instructions on the Problem Details page.

See "Investigating, Reporting, and Resolving a Problem" on page 9-10 for more
information.

See Also: "About the Oracle Database Fault Diagnosability

Infrastructure” on page 9-1 for more information on problems and the
ADR

Viewing the Alert Log

You can view the alert log with a text editor, with Enterprise Manager, or with the
ADRCT utility.

To view the alert log with Enterprise Manager:

1.

Access the Database Home page in Enterprise Manager.

For Oracle Enterprise Manager Database Control, see Oracle Database 2 Day DBA
for instructions. For Oracle Enterprise Manager Grid Control, go to the desired
database target.

Under Related Links, click Alert Log Contents.
The View Alert Log Contents page appears.

Select the number of entries to view, and then click Go.

To view the alert log with a text editor:

1.

Connect to the database with SQL*Plus or another query tool, such as SQL
Developer.

Query the VSDIAG_INFO view as shown in "Viewing ADR Locations with the
V$DIAG_INFO View" on page 9-9.

Managing Diagnostic Data 9-19

Finding Trace Files

3. To view the text-only alert log, without the XML tags, complete these steps:

a. Inthe VSDIAG_INFO query results, note the path that corresponds to the
Diag Trace entry, and change directory to that path.

b. Open file alert_SID.log with a text editor.
4. To view the XML-formatted alert log, complete these steps:

a. Inthe V$SDIAG_INFO query results, note the path that corresponds to the
Diag Alert entry, and change directory to that path.

b. Open the file log.xml with a text editor.
See Also: Oracle Database Utilities for information about using the

ADRCT utility to view a text version of the alert log (with XML tags
stripped) and to run queries against the alert log

Finding Trace Files

Trace files are stored in the Automatic Diagnostic Repository (ADR), in the trace
directory under each ADR home. To help you locate individual trace files within this
directory, you can use data dictionary views. For example, you can find the path to
your current session's trace file or to the trace file for each Oracle Database process.

To find the trace file for your current session:
= Submit the following query:

SELECT VALUE FROM VSDIAG_INFO WHERE NAME = 'Default Trace File';

The full path to the trace file is returned.

To find all trace files for the current instance:
= Submit the following query:

SELECT VALUE FROM VSDIAG_INFO WHERE NAME = 'Diag Trace';

The path to the ADR trace directory for the current instance is returned.

To determine the trace file for each Oracle Database process:
= Submit the following query:

SELECT PID, PROGRAM, TRACEFILE FROM VS$PROCESS;

See Also:

= "Structure, Contents, and Location of the Automatic Diagnostic
Repository" on page 9-7

s The ADRCI SHOW TRACEFILE command in Oracle Database
Utilities

Running Health Checks with Health Monitor

This section describes the Health Monitor and includes instructions on how to use it.
The following topics are covered:

= About Health Monitor
» Running Health Checks Manually

9-20 Oracle Database Administrator's Guide

Running Health Checks with Health Monitor

s Viewing Checker Reports
s Health Monitor Views

s Health Check Parameters Reference

About Health Monitor

Beginning with Release 11g, Oracle Database includes a framework called Health
Monitor for running diagnostic checks on the database.

About Health Monitor Checks

Health Monitor checks (also known as checkers, health checks, or checks) examine
various layers and components of the database. Health checks detect file corruptions,
physical and logical block corruptions, undo and redo corruptions, data dictionary
corruptions, and more. The health checks generate reports of their findings and, in
many cases, recommendations for resolving problems. Health checks can be run in
two ways:

= Reactive—The fault diagnosability infrastructure can run health checks
automatically in response to a critical error.

= Manual—As a DBA, you can manually run health checks using either the DBMS_
HM PL/SQL package or the Enterprise Manager interface. You can run checkers on
a regular basis if desired, or Oracle Support may ask you to run a checker while
working with you on a service request.

Health Monitor checks store findings, recommendations, and other information in the
Automatic Diagnostic Repository (ADR).

Health checks can run in two modes:

= DB-online mode means the check can be run while the database is open (that is, in
OPEN mode or MOUNT mode).

s DB-offline mode means the check can be run when the instance is available but
the database itself is closed (that is, in NOMOUNT mode).

All the health checks can be run in DB-online mode. Only the Redo Integrity Check
and the DB Structure Integrity Check can be used in DB-offline mode.

See Also: "Automatic Diagnostic Repository (ADR)" on page 9-5

Types of Health Checks

Health monitor runs the following checks:

» DB Structure Integrity Check—This check verifies the integrity of database files
and reports failures if these files are inaccessible, corrupt or inconsistent. If the
database is in mount or open mode, this check examines the log files and data files
listed in the control file. If the database is in NOMOUNT mode, only the control file is
checked.

= Data Block Integrity Check—This check detects disk image block corruptions
such as checksum failures, head/tail mismatch, and logical inconsistencies within
the block. Most corruptions can be repaired using Block Media Recovery.
Corrupted block information is also captured in the VSDATABASE BLOCK_
CORRUPTION view. This check does not detect inter-block or inter-segment
corruption.

Managing Diagnostic Data 9-21

Running Health Checks with Health Monitor

= Redo Integrity Check—This check scans the contents of the redo log for
accessibility and corruption, as well as the archive logs, if available. The Redo
Integrity Check reports failures such as archive log or redo corruption.

= Undo Segment Integrity Check—This check finds logical undo corruptions. After
locating an undo corruption, this check uses PMON and SMON to try to recover
the corrupted transaction. If this recovery fails, then Health Monitor stores
information about the corruption in VSCORRUPT_XID_LIST. Most undo
corruptions can be resolved by forcing a commit.

s Transaction Integrity Check—This check is identical to the Undo Segment
Integrity Check except that it checks only one specific transaction.

s Dictionary Integrity Check—This check examines the integrity of core dictionary
objects, such as tabs and cols. It performs the following operations:

- Verifies the contents of dictionary entries for each dictionary object.

— Performs a cross-row level check, which verifies that logical constraints on
rows in the dictionary are enforced.

— Performs an object relationship check, which verifies that parent-child
relationships between dictionary objects are enforced.

The Dictionary Integrity Check operates on the following dictionary objects:

tabs, clus, fets$, uets, segs, undos, tss, files, objs, inds, icols, cols,
users, con$, cdefs, ccols, bootstrap$, objauths, ugroups, tsgs, syns,
views, typed_view$, superobjs, seqgs, 1obs, coltypes, subcoltypes,
ntab$, refcon$, opgtypes, dependency$, access$, viewcons$, icoldeps,
duals, sysauths, objprivs, defroles, and ecols.

Running Health Checks Manually

Health Monitor provides two ways to run health checks manually:
= By using the DBMS_HM PL/SQL package

= By using the Enterprise Manager interface, found on the Checkers subpage of the
Advisor Central page

Running Health Checks Using the DBMS_HM PL/SQL Package

The DBMS_HM procedure for running a health check is called RUN_CHECK. To call RUN_
CHECK, supply the name of the check and a name for the run, as follows:

BEGIN

DBMS_HM.RUN_CHECK ('Dictionary Integrity Check', 'my_run');
END;
/

To obtain a list of health check names, run the following query:

SELECT name FROM v$hm_check WHERE internal_check='N"';

DB Structure Integrity Check
Data Block Integrity Check
Redo Integrity Check
Transaction Integrity Check
Undo Segment Integrity Check
Dictionary Integrity Check

9-22 Oracle Database Administrator's Guide

Running Health Checks with Health Monitor

Most health checks accept input parameters. You can view parameter names and
descriptions with the VSHM_CHECK_PARAM view. Some parameters are mandatory
while others are optional. If optional parameters are omitted, defaults are used. The
following query displays parameter information for all health checks:

SELECT c.name check_name, p.name parameter_name, p.type,
p.default_value, p.description

FROM v$hm_check_param p, v$hm_check c¢

WHERE p.check_id = c.id and c.internal_check = 'N'
ORDER BY c.name;

Input parameters are passed in the input_params argument as name/value pairs
separated by semicolons (;). The following example illustrates how to pass the
transaction ID as a parameter to the Transaction Integrity Check:

BEGIN
DBMS_HM.RUN_CHECK (
check_name => 'Transaction Integrity Check',
run_name => 'my_run',
input_params => 'TXN_ID=7.33.2');
END;

/

See Also:
= "Health Check Parameters Reference" on page 9-27

» Oracle Database PL/SQL Packages and Types Reference for more
examples of using DBMS_HM.

Running Health Checks Using Enterprise Manager
Enterprise Manager provides an interface for running Health Monitor checkers.

To run a Health Monitor Checker using Enterprise Manager:
1. On the Database Home page, in the Related Links section, click Advisor Central.

2. Click Checkers to view the Checkers subpage.
3. In the Checkers section, click the checker you want to run.

4. Enter values for input parameters or, for optional parameters, leave them blank to
accept the defaults.

5. Click Run, confirm your parameters, and click Run again.

Viewing Checker Reports

After a checker has run, you can view a report of its execution. The report contains
findings, recommendations, and other information. You can view reports using
Enterprise Manager, the ADRCI utility, or the DBMS_HM PL/SQL package. The
following table indicates the report formats available with each viewing method.

Report Viewing Method Report Formats Available

Enterprise Manager HTML
DBMS_HM PL/SQL package ~ HTML, XML, and text
ADRCI utility XML

Managing Diagnostic Data 9-23

Running Health Checks with Health Monitor

Results of checker runs (findings, recommendations, and other information) are stored
in the ADR, but reports are not generated immediately. When you request a report
with the DBMS_HM PL/SQL package or with Enterprise Manager, if the report does not
yet exist, it is first generated from the checker run data in the ADR, stored as a report
file in XML format in the HM subdirectory of the ADR home for the current instance,
and then displayed. If the report file already exists, it is just displayed. When using the
ADRCT utility, you must first run a command to generate the report file if it does not
exist, and then run another command to display its contents.

The preferred method to view checker reports is with Enterprise Manager. The
following sections provide instructions for all methods:

s Viewing Reports Using Enterprise Manager
= Viewing Reports Using DBMS_HM
= Viewing Reports Using the ADRCI Utility

See Also: "Automatic Diagnostic Repository (ADR)" on page 9-5

Viewing Reports Using Enterprise Manager

You can also view Health Monitor reports and findings for a given checker run using
Enterprise Manager.

To view run findings using Enterprise Manager
1. Access the Database Home page.

For Oracle Enterprise Manager Database Control, see Oracle Database 2 Day DBA
for instructions. For Oracle Enterprise Manager Grid Control, go to the desired
database target.

2. In the Related Links section, click Advisor Central.
3. Click Checkers to view the Checkers subpage.
4. Click the run name for the checker run that you want to view.

The Run Detail page appears, showing the findings for that checker run.
5. Click Runs to display the Runs subpage.

Enterprise Manager displays more information about the checker run.
6. Click View Report to view the report for the checker run.

The report is displayed in a new browser window.

Viewing Reports Using DBMS_HM
You can view Health Monitor checker reports with the DBMS_HM package function

GET_RUN_REPORT. This function enables you to request HTML, XML, or text
formatting. The default format is text, as shown in the following SQL*Plus example:

SET LONG 100000

SET LONGCHUNKSIZE 1000

SET PAGESIZE 1000

SET LINESIZE 512

SELECT DBMS_HM.GET_RUN_REPORT ('HM_RUN_1061') FROM DUAL;

DBMS_HM.GET _RUN_REPORT ('HM_RUN_1061")

9-24 Oracle Database Administrator's Guide

Running Health Checks with Health Monitor

Run Name : HM_RUN_1061

Run Id : 1061

Check Name : Data Block Integrity Check

Mode : REACTIVE

Status : COMPLETED

Start Time : 2007-05-12 22:11:02.032292 -07:00
End Time : 2007-05-12 22:11:20.835135 -07:00
Error Encountered : 0

Source Incident Id : 7418

Number of Incidents Created : 0

Input Paramters for the Run

BLC_DF_NUM=1

BLC_BIL_NUM=64349

Run Findings And Recommendations

Finding
Finding Name
Finding ID
Type

Status
Priority
Message

Message
Finding
Finding Name
Finding ID
Type

Status
Priority
Message

Message

: Media Block Corruption
: 1065
: FAILURE
: OPEN
: HIGH
Block 64349 in datafile 1:
'/uOl/app/oracle/dbs/t dbl.f' is media corrupt
: Object BMRTEST1 owned by SYS might be unavailable

: Media Block Corruption

: 1071

: FAILURE

: OPEN

: HIGH

: Block 64351 in datafile 1:

'/uOl/app/oracle/dbs/t dbl.f' is media corrupt

: Object BMRTEST2 owned by SYS might be unavailable

See Also: Oracle Database PL/SQL Packages and Types Reference for
details on the DBMS_HM package.

Viewing Reports Using the ADRCI Utility
You can create and view Health Monitor checker reports using the ADRCI utility.

To create and view a checker report using ADRCI:

1. Ensure that operating system environment variables (such as ORACLE_HOME) are
set properly, and then enter the following command at the operating system
command prompt:

ADRCI

The utility starts and displays the following prompt:

adrci>>

Optionally, you can change the current ADR home. Use the SHOW HOMES
command to list all ADR homes, and the SET HOMEPATH command to change the
current ADR home. See Oracle Database Utilities for more information.

2. Enter the following command:

show hm_run

Managing Diagnostic Data 9-25

Running Health Checks with Health Monitor

This command lists all the checker runs (stored in V$HM_RUN) registered in the
ADR repository.

3. Locate the checker run for which you want to create a report and note the checker
run name. The REPORT_FILE field contains a filename if a report already exists
for this checker run. Otherwise, generate the report with the following command:

create report hm_run run name

4. To view the report, enter the following command:

show report hm_run run_name

See Also: "Automatic Diagnostic Repository (ADR)" on page 9-5

Health Monitor Views

Instead of requesting a checker report, you can view the results of a specific checker
run by directly querying the ADR data from which reports are created. This data is
available through the views V$HM_RUN, VSHM_FINDING, and V$HM_
RECOMMENDATION.

The following example queries the VSHM_RUN view to determine a history of checker
runs:

SELECT run_id, name, check_name, run_mode, src_incident FROM v$hm_run;

RUN_ID NAME CHECK_NAME RUN_MODE SRC_INCIDENT
1 HM_RUN_1 DB Structure Integrity Check REACTIVE 0

101 HM_RUN_101 Transaction Integrity Check REACTIVE 6073
121 TXNCHK Transaction Integrity Check MANUAL 0
181 HMR_tab$ Dictionary Integrity Check MANUAL 0
981 Proct_ts$ Dictionary Integrity Check MANUAL 0
1041 HM_RUN_1041 DB Structure Integrity Check REACTIVE 0
1061 HM_RUN_1061 Data Block Integrity Check REACTIVE 7418

The next example queries the VSHM_FINDING view to obtain finding details for the
reactive data block check with RUN_ID 1061:

SELECT type, description FROM vShm finding WHERE run_id = 1061;

TYPE DESCRIPTION

FAILURE Block 64349 in datafile 1: '/u0l/app/orac
le/dbs/t_dbl.f' is media corrupt

FAILURE Block 64351 in datafile 1: '/u0l/app/orac
le/dbs/t_dbl.f' is media corrupt

See Also:
s "Types of Health Checks" on page 9-21

» Oracle Database Reference for more information on the VSHM_ *
views

9-26 Oracle Database Administrator's Guide

Repairing SQL Failures with the SQL Repair Advisor

Health Check Parameters Reference

The following tables describe the parameters for those health checks that require them.
Parameters with a default value of (none) are mandatory.

Table 9-5 Parameters for Data Block Integrity Check

Parameter Name Type Default Value Description
BLC_DF_NUM Number (none) Block data file number
BLC_BL_NUM Number (none) Data block number

Table 9-6 Parameters for Redo Integrity Check

Parameter Name Type Default Value Description

SCN_TEXT Text 0 SCN of the latest good redo (if known)

Table 9-7 Parameters for Undo Segment Integrity Check

Parameter Name Type Default Value Description

USN_NUMBER Text (none) Undo segment number

Table 9-8 Parameters for Transaction Integrity Check

Parameter Name Type Default Value Description

TXN_ID Text (none) Transaction ID

Table 9-9 Parameters for Dictionary Integrity Check

Parameter Name Type Default Value Description

CHECK_MASK Text ALL Possible values are:

s COLUMN_CHECKS—Run column
checks only. Verify column-level
constraints in the core tables.

s ROW_CHECKS—Run row checks
only. Verify row-level constraints in
the core tables.

] REFERENTIAL_CHECKS—Run
referential checks only. Verify
referential constraints in the core
tables.

s ALL—Run all checks.

TABLE_NAME Text ALL_CORE_TABLES Name of a single core table to check. If
omitted, all core tables are checked.

Repairing SQL Failures with the SQL Repair Advisor

In the rare case that a SQL statement fails with a critical error, you can run the SQL
Repair Advisor to try to repair the failed statement.

This section covers the following topics:
= About the SQL Repair Advisor
= Running the SQL Repair Advisor

Managing Diagnostic Data 9-27

Repairing SQL Failures with the SQL Repair Advisor

= Viewing, Disabling, or Removing a SQL Patch

About the SQL Repair Advisor

You run the SQL Repair Advisor after a SQL statement fails with a critical error. The
advisor analyzes the statement and in many cases recommends a patch to repair the
statement. If you implement the recommendation, the applied SQL patch circumvents
the failure by causing the query optimizer to choose an alternate execution plan for
future executions.

Running the SQL Repair Advisor

You run the SQL Repair Advisor from the Problem Details page of the Support
Workbench. The instructions in this section assume that you were already notified of a
critical error caused by your SQL statement and that you followed the workflow
described in "Investigating, Reporting, and Resolving a Problem" on page 9-10.

To run the SQL Repair Advisor:
1. Access the Problem Details page for the problem that pertains to the failed SQL
statement.

See "Viewing Problems with the Enterprise Manager Support Workbench" on
page 9-17 for instructions.

2. In the Investigate and Resolve section, under the Self Service tab, under the
Resolve heading, click SQL Repair Advisor.

Database Instance: orelUs oracle.corn = Support'Workbench = Logged in As SYSTEM
Problem Details: ORA 600 [15700]

Page Refreshed August 25, 2009 1:55:10 PM PDT [Refresh)

Investigate and Resolve

SUmimay Go 10 My Oracle Support) | Quick Package |
i (Edy) Self Service Oracle Support
Bug# Ediit)

Assess Damage
Active Yes L

faciaces 0 Database Inst Health
Mumber of Incidents 1 Ualabase Inslance Healtn

Run Checkers

Last Dumped Incident Diagnose
Timestamp August 25, 20089 1:60:02 P PDT Alert Log
Incident Source System Generated Related Problems Across Topolog
Irnpact Diagnostics for Last Dumped Incident
Checkers Run 0 Go to My Oracle Support and Research

Checker Findings 0

Resolve
SQL Repair Advisor (Recommended)

Incidents Activity Log

3. On the SQL Repair Advisor page, complete these steps:

a. Modify the preset task name if desired, optionally enter a task description,
modify or clear the optional time limit for the advisor task, and adjust settings
to schedule the advisor to run either immediately or at a future date and time.

b. Click Submit.

A "Processing" page appears. After a short delay, the SQL Repair Results page
appears.

9-28 Oracle Database Administrator's Guide

Repairing SQL Failures with the SQL Repair Advisor

S0 Repair Results: 8QL_DIAG_1174506262358
Page Refreshed Mar 21, 2007 12:45:50 PM PDT | Refresh ",I
Status COMPLETED Started Mar 21, 2007 12:45:28 PM PDT
SQLID 9m7mvytcb4dl4 Completed Mar 21, 2007 12:45:46 PM PDT
Time Limit (seconds) 1800 Running Time (seconds) 18
Recommendations
Wiew |
select SOL Text Parsing Schema SQL 1D 0L Patch
@ |delete From t t1 where £1.a = 'a' and rowid <= {select maxirowid) from £ t2 where tl,.a=t2.a and t1..., am7myytcbad14 +

A check mark in the SQL Patch column indicates that a recommendation is
present. The absence of a check mark in this column means that the SQL Repair
Advisor was unable to devise a patch for the SQL statement.

Note: If the SQL Repair Results page fails to appear, then complete
these steps to display it:

1. Go to the Database Home page.

2. Under Related Links, click Advisor Central.

3. On the Advisor Central page, in the Results list, locate the most recent
entry for the SQL Repair Advisor.

4. Select the entry and click View Result.

4. If a recommendation is present (there is a check mark in the SQL Patch column),
click View to view the recommendation.

The Repair Recommendations page appears, showing the recommended patch for
the statement.

5. Click Implement.
The SQL Repair Results page returns, showing a confirmation message.

6. (Optional) Click Verify using SQL Worksheet to run the statement in the SQL
worksheet and verify that the patch successfully repaired the statement.

Viewing, Disabling, or Removing a SQL Patch

After you apply a SQL patch with the SQL Repair Advisor, you may want to view it to
confirm its presence, disable it, or remove it. One reason to remove a patch is if you
install a later release of Oracle Database that fixes the bug that caused the failure in the
patched SQL statement.

To view, disable, or remove a SQL patch:
1. Access the Database Home page in Enterprise Manager.

For Oracle Enterprise Manager Database Control, see Oracle Database 2 Day DBA
for instructions. For Oracle Enterprise Manager Grid Control, go to the desired
database target.

2. At the top of the page, click Server to display the Server page.
3. In the Query Optimizer section, click SQL Plan Control.

The SQL Plan Control page appears. See the online help for information about this
page.

4. At the top of the page, click SQL Patch to display the SQL Patch subpage.
The SQL Patch subpage displays all SQL patches in the database.

Managing Diagnostic Data 9-29

Repairing Data Corruptions with the Data Recovery Advisor

5. Locate the desired patch by examining the associated SQL text.
Click the SQL text to view the complete text of the statement.
6. To disable the patch, select it, and then click Disable.

A confirmation message appears, and the patch status changes to DISABLED. You
can later reenable the patch by selecting it and clicking Enable.

7. To remove the patch, select it, and then click Drop.

A confirmation message appears.

See Also: "About the SQL Repair Advisor" on page 9-28

Repairing Data Corruptions with the Data Recovery Advisor

You use the Data Recovery Advisor to repair data block corruptions, undo
corruptions, data dictionary corruptions, and more. The Data Recovery Advisor
integrates with the Enterprise Manager Support Workbench (Support Workbench),
with the Health Monitor, and with the RMAN utility to display data corruption
problems, assess the extent of each problem (critical, high priority, low priority),
describe the impact of a problem, recommend repair options, conduct a feasibility
check of the customer-chosen option, and automate the repair process.

Oracle Database 2 Day DBA provides details on how to use the Data Recovery Advisor.
This section describes the various ways to access the advisor from the Support
Workbench.

The Data Recovery Advisor is automatically recommended by and accessible from the
Support Workbench when you are viewing;:

= Problem details for a problem that is related to a data corruption or other data
failure.

= Health checker findings that are related to a data corruption or other data failure.

The Data Recovery Advisor is also available from the Advisor Central page. A link to
this page can be found in the Related Links section of the Database Home page and of
the Performance page.

Note: The Data Recovery Advisor is available only when you are
connected as SYSDBA.

You access the Data Recovery Advisor from the Support Workbench in the following
ways:

s From the Problem Details page

9-30 Oracle Database Administrator's Guide

Creating, Editing, and Uploading Custom Incident Packages

Datahase Instance: orclus. dracle.com > Support¥Workbench =

Problem Details: ORA 1578

Summary
Sh# Edit)
Bug# - Ean)
Active Yes

Packaged No
Murnber of Incidents 2
First Incident August 26, 2009 11:49:11 A POT
Last Dumped Incident
Timestamp August 26, 2009 11:49:16 Ak PDT
Incident Source System Generated
Irnpact

Logged in As S5YS

Page Refreshed August 26, 2009 12:02:46 PM PDT | _Refresh J

Investigate and Reselve
Go to My Oracle SLIDFIEH"I;I Quick Package |

Self Service Oracle Support

Assess Damage
Checker Findings
Run Checkers
Database Instance Health

Diagnose
Alert Log
Related Problerns Across Topology
Diagnostics for Last Dumped [ncident

Checkers Run 0 Goto My Oracle Support and Research
Checker Findings 0

Resohwe

L A R
Data Recovery Advisor

Incidents Auctivity Log

Click the Data Recovery Advisor link in the Investigate and Resolve section.

See "Viewing Problems with the Enterprise Manager Support Workbench" on
page 9-17 for instructions on how to access this page.

s From the Checker Findings subpage of the Support Workbench home page

Database Instance: orcl.us oraclecorn > Logged in As BYE

Support Workbench

Page Refreshed August 26, 2009 1:33:28 PM PDT (Refresh)

Froblems (2 Checker Findings (2) Packages (0

Search
Description Damage Translation Status Time Detected
Open v || Al v|(Go)

Data Corruption
Select findings and click on the "Launch Recovery Advisor" button to repait those findings

Launch Recowery Advisor |
Select All | Select hane | Expand All | Collapse Al

Incident
Select Description Priority |Damage Translation ID|Status |Time Detected
¥ All Findings
O B Datafile 4. '+DATA/orcl/datafile High Some objects in tablespace USERS might be 985 Open August 26, 2009 11:49:18
fusers. 2596956785873 containg unavailable Ahd PDT

one of more corrupt blocks

Select one or more data corruption findings and then click Launch Recovery
Advisor.

See "Viewing Problems with the Enterprise Manager Support Workbench" on
page 9-17 for instructions on how to access the Support Workbench home page.

See Also: Oracle Database 2 Day DBA for instructions for running the
Data Recovery Advisor

Creating, Editing, and Uploading Custom Incident Packages

Using the Enterprise Manager Support Workbench (Support Workbench), you can
create, edit, and upload custom incident packages. With custom incident packages,
you have fine control over the diagnostic data that you send to Oracle Support.

In this section:

= About Incident Packages

Managing Diagnostic Data 9-31

Creating, Editing, and Uploading Custom Incident Packages

= Packaging and Uploading Problems with Custom Packaging
s Viewing and Modifying Incident Packages

s Creating, Editing, and Uploading Correlated Packages

s Deleting Correlated Packages

m Setting Incident Packaging Preferences

See Also: "About the Oracle Database Fault Diagnosability
Infrastructure" on page 9-1

About Incident Packages

For the customized approach to uploading diagnostic data to Oracle Support, you first
collect the data into an intermediate logical structure called an incident package
(package). A package is a collection of metadata that is stored in the Automatic
Diagnostic Repository (ADR) and that points to diagnostic data files and other files
both in and out of the ADR. When you create a package, you select one or more
problems to add to the package. The Support Workbench then automatically adds to
the package the problem information, incident information, and diagnostic data (such
as trace files and dumps) associated with the selected problems. Because a problem
can have many incidents (many occurrences of the same problem), by default only the
first three and last three incidents for each problem are added to the package,
excluding any incidents that are over 90 days old. You can change these default
numbers on the Incident Packaging Configuration page of the Support Workbench.

After the package is created, you can add any type of external file to the package,
remove selected files from the package, or edit selected files in the package to remove
sensitive data. As you add and remove package contents, only the package metadata is
modified.

When you are ready to upload the diagnostic data to Oracle Support, you first create a
zip file that contains all the files referenced by the package metadata. You then upload
the zip file through Oracle Configuration Manager.

Note: If you do not have Oracle Configuration Manager installed and
properly configured, you must upload the zip file manually through My
Oracle Support.

For more information about Oracle Configuration Manager, see Oracle
Configuration Manager Installation and Administration Guide.

More information about packages is presented in the following sections:
= About Correlated Diagnostic Data in Incident Packages

= About Quick Packaging and Custom Packaging

= About Correlated Packages

See Also:

= "Packaging and Uploading Problems with Custom Packaging" on
page 9-34

= "Viewing and Modifying Incident Packages" on page 9-38

9-32 Oracle Database Administrator's Guide

Creating, Editing, and Uploading Custom Incident Packages

About Correlated Diagnostic Data in Incident Packages

To diagnose problem, it is sometimes necessary to examine not only diagnostic data
that is directly related to the problem, but also diagnostic data that is correlated with
the directly related data. Diagnostic data can be correlated by time, by process ID, or
by other criteria. For example, when examining an incident, it may be helpful to also
examine an incident that occurred five minutes after the original incident. Similarly,
while it is clear that the diagnostic data for an incident should include the trace file for
the Oracle Database process that was running when the incident occurred, it might be
helpful to also include trace files for other processes that are related to the original
process.

Thus, when problems and their associated incidents are added to a package, any
correlated incidents are added at the same time, with their associated trace files.

During the process of creating the physical file for a package, the Support Workbench
calls upon the Incident Packaging Service to finalize the package. Finalizing means
adding to the package any additional trace files that are correlated by time to incidents
in the package, and adding other diagnostic information such as the alert log, health
checker reports, SQL test cases, configuration information, and so on. This means that
the number of files in the zip file may be greater than the number of files that the
Support Workbench had previously displayed as the package contents.

The Incident Packaging Service follows a set of rules to determine the trace files in the
ADR that are correlated to existing package data. You can modify some of those rules
in the Incident Packaging Configuration page in Enterprise Manager.

Because both initial package data and added correlated data may contain sensitive
information, it is important to have an opportunity to remove or edit files that contain
this information before uploading to Oracle Support. For this reason, the Support
Workbench enables you to run a command that finalizes the package as a separate
operation. After manually finalizing a package, you can examine the package contents,
remove or edit files, and then generate and upload a zip file.

Note: Finalizing a package does not mean closing it to further
modifications. You can continue to add diagnostic data to a finalized
package. You can also finalize the same package multiple times. Each
time that you finalize, any new correlated data is added.

See Also: "Setting Incident Packaging Preferences” on page 9-45

About Quick Packaging and Custom Packaging

The Enterprise Manager Support Workbench provides two methods for creating and
uploading an incident package: the quick packaging method and the custom
packaging method.

Quick Packaging—This is the more automated method with a minimum of steps,
organized in a guided workflow (a wizard). You select a single problem, provide a
package name and description, and then schedule upload of the package contents,
either immediately or at a specified date and time. The Support Workbench
automatically places diagnostic data related to the problem into the package, finalizes
the package, creates the zip file, and then uploads the file. With this method, you do
not have the opportunity to add, edit, or remove package files or add other diagnostic
data such as SQL test cases. However, it is the simplest and quickest way to get
first-failure diagnostic data to Oracle Support. Quick packaging is the method used in
the workflow described in "Investigating, Reporting, and Resolving a Problem" on
page 9-10.

Managing Diagnostic Data 9-33

Creating, Editing, and Uploading Custom Incident Packages

Note that when quick packaging is complete, the package that was created by the
wizard remains. You can then modify the package with custom packaging operations
at a later time and manually reupload.

Custom Packaging—This is the more manual method, with more steps. It is intended
for expert Support Workbench users who want more control over the packaging
process. With custom packaging, you can create a new package with one or more
problems, or you can add one or more problems to an existing package. You can then
perform a variety of operations on the new or updated package, including:

= Adding or removing problems or incidents

= Adding, editing, or removing trace files in the package
= Adding or removing external files of any type

= Adding other diagnostic data such as SQL test cases

= Manually finalizing the package and then viewing package contents to determine
if you must edit or remove sensitive data or remove files to reduce package size.

You might conduct these operations over a number of days, before deciding that you
have enough diagnostic information to send to Oracle Support.

With custom packaging, you create the zip file and request upload to Oracle Support
as two separate steps. Each of these steps can be performed immediately or scheduled
for a future date and time.

See Also: "Task 5 — Package and Upload Diagnostic Data to Oracle
Support" on page 9-14 for instructions for the Quick Packaging
method

About Correlated Packages

Correlated packages provide a means of packaging and uploading diagnostic data for
related problems. A database instance problem can have related problems in other
database instances or in Oracle Automatic Storage Management instances, as
described in "Related Problems Across the Topology" on page 9-4. After you create and
upload a package for one or more database instance problems (the "main package"),
you can create and upload one or more correlated packages, each with one or more
related problems. You can accomplish this only with the custom packaging workflow
in Enterprise Manager Support Workbench.

See Also: "Creating, Editing, and Uploading Correlated Packages"
on page 9-44

Packaging and Uploading Problems with Custom Packaging

You use Enterprise Manager Support Workbench (Support Workbench) to create and
upload custom incident packages (packages). Before uploading, you can manually
add, edit, and remove diagnostic data files from the package.

To package and upload problems with custom packaging:
1. Access the Support Workbench home page.

See "Viewing Problems with the Enterprise Manager Support Workbench" on
page 9-17 for instructions.

2. (Optional) For each problem that you want to include in the package, indicate the
service request number (SR#) associated with the problem, if any. To do so,
complete the following steps for each problem:

9-34 Oracle Database Administrator's Guide

Creating, Editing, and Uploading Custom Incident Packages

a. In the Problems subpage at the bottom of the Support Workbench home page,
select the problem, and then click View.

Note: If you do not see the desired problem in the list of problems, or
if there are too many problems to scroll through, select a time period
from the View list and click Go. You can then select the desired
problem and click View.

The Problem Details page appears.

b. Next to the SR# label, click Edit, enter a service request number, and then click
OK.

The service request number is displayed on the Problem Details page.

c. Return to the Support Workbench home page by clicking Support Workbench
in the locator links at the top of the page.

Database Instance: database > Support Workbench =
Problem details (4)

3. On the Support Workbench home page, select the problems that you want to
package, and then click Package.

The Select Packaging Mode page appears.

Note: The packaging process may automatically select additional
correlated problems to add to the package. An example of a correlated
problem is one that occurs within a few minutes of the selected
problem. See "About Correlated Diagnostic Data in Incident Packages"
on page 9-33 for more information.

4. Select the Custom packaging option, and then click Continue.

The Select Package page appears.

Figure 9-6 Select Package Page

Database Instance: arcl.us.oracle.corm > Suppotiorkbench = Logged in As SYSTEM
Custom Packaging : Select Package
Cancel | [OK)

Problerns Selected ORA 600 [15700]
Select a package.
@ TIP Create a new package or select an existing one. Problems chosen earlier will be added 1o this package
@ Create Mew Package

Package Mame |ORAS00157_20090827 182967
Package Description
O Selact from Existing Packages
SelE[:I‘Name Status Type Description Main Problem Keys |Created
O ORABDD157 _20080627 182950 Active Main ORA GO0 [15700] August 27, 2009 6:30:28 PM PDT

5. Do one of the following;:

= To create a new package, select the Create new package option, enter a
package name and description, and then click OK.

Managing Diagnostic Data 9-35

Creating, Editing, and Uploading Custom Incident Packages

s To add the selected problems to an existing package, select the Select from
existing packages option, select the package to update, and then click OK.

The Customize Package page appears. It displays the problems and incidents that
are contained in the package, plus a selection of packaging tasks to choose from.
You run these tasks against the new package or the updated existing package.

Figure 9-7 Customize Package Page

Database Instance: orclus araclecom > SupportWartkbench >
& Confirmation

Logged in As S¥YSTEM

Package(ORABDO1S7 20090527 182967) has been created successfully

Customize Package: ORAS00167_20090827 182967

Page Refreshed August 27, 2009 6:34:55 PM PDT (_Refresh)

The package can be customized to edit its contents, to generate and include additional diagnostic data or to scrub user data. Once the package is ready it can be sent

to Oracle Support

Summary
Status
Type
Total Size (uncompressed)
Incremental Size (uncompressed)
Created
Description
Problems in Package

Incidents Previously Excluded by User

Files Excluded by User

Files Activity Log

Exclude
Select All | Select one

Active

Main

13.56 MB

13.56 MB

August 27, 2009 6:34:52 PM PDT
N/A

ORA GO0 [15700

1]

1]

Packaging Tasks

Edit Contents
Add Problems
Exclude Problems
Wiew Package Manifest

Scrub User Data

Copy out Files to Edit Cantents
Copy in Files to Replace
Contents

Additional Diagnostic Data

Gather Additional Dumps
Add External Files
Create/Update Correlated
Packages

Send to Oracle Support
Finish Contents Preparation
Generate Upload File
View/Send Upload Files

Add Incidents | add Recent Incidents |

Select ID[Type

O 5081 Main
O 5001 Main

Problem ID Description
1 ORABO0 [15700] [1] [1]
1 ORA-B00 [157001[1] [1]

Size (MB) Timestamp
B.72 August 25, 2008 1:50:02 PM POT
B.84 August 25, 2003 3:54:19 PM POT

6. (Optional) In the Packaging Tasks section, click links to perform one or more
packaging tasks. Or, use other controls on the Customize Package page and its
subpages to manipulate the package. Return to the Customize Package page when

you are finished.

See "Viewing and Modifying Incident Packages" on page 9-38 for instructions for
some of the most common packaging tasks.

7. In the Packaging Tasks section of the Customize Package page, under the heading
Send to Oracle Support, click Finish Contents Preparation to finalize the package.

A list (or partial list) of files included in the package is displayed. (This may take a
while.) The list includes files that were determined to contain correlated diagnostic
information and added by the finalization process.

See "About Correlated Diagnostic Data in Incident Packages" on page 9-33 for a
definition of package finalization.

8. Click the Files link to view all the files in the package. Examine the list to see if
there are any files that might contain sensitive data that you do not want to
expose. If you find such files, exclude (remove) or edit them.

See "Editing Incident Package Files (Copying Out and In)" on page 9-39 and
"Removing Incident Package Files" on page 9-43 for instructions for editing and

removing files.

To view the contents of a file, click the eyeglasses icon in the rightmost column in
the table of files. Enter host credentials, if prompted.

9-36 Oracle Database Administrator's Guide

Creating, Editing, and Uploading Custom Incident Packages

10.

11.

12.

13.

14.

15.

16.

Note: Trace files are generally for Oracle internal use only.

Click Generate Upload File.
The Generate Upload File page appears.

Select the Full or Incremental option to generate a full package zip file or an
incremental package zip file.

For a full package zip file, all the contents of the package (original contents and all
correlated data) are always added to the zip file.

For an incremental package zip file, only the diagnostic information that is new or
modified since the last time that you created a zip file for the same package is
added to the zip file. For example, if trace information was appended to a trace file
since that file was last included in the generated physical file for a package, the
trace file is added to the incremental package zip file. Conversely, if no changes
were made to a trace file since it was last uploaded for a package, that trace file is
not included in the incremental package zip file.

Note: The Incremental option is dimmed (unavailable) if an upload
file was never created for the package.

Schedule file creation either immediately or at a future date and time (select
Immediately or Later), and then click Submit.

File creation can use significant system resources, so it may be advisable to
schedule it for a period of low system usage.

A Processing page appears, and creation of the zip file proceeds. A confirmation
page appears when processing is complete.

Note: The package is automatically finalized when the zip file is
created.

Click OK.

The Customize Package page returns.

Click Send to Oracle.

The View/Send Upload Files page appears.

(Optional) Click the Send Correlated Packages link to create correlated packages
and send them to Oracle.

See "Creating, Editing, and Uploading Correlated Packages" on page 9-44. When
you are finished working with correlated packages, return to the View /Send
Upload Files page by clicking the Package Details link at the top of the page,
clicking Customize Package, and then clicking Send to Oracle again.

Select the zip files to upload, and then click Send to Oracle.
The Send to Oracle page appears. The selected zip files are listed in a table.

Fill in the requested My Oracle Support information. Next to Create new Service
Request (SR), select Yes or No. If you select Yes, a draft service request is created

Managing Diagnostic Data 9-37

Creating, Editing, and Uploading Custom Incident Packages

for you. You must later log in to My Oracle Support and fill in the service request
details. If you select No, enter an existing service request number.

17. Schedule the upload to take place immediately or at a future date and time, and
then click Submit.

A Processing page appears. If the upload is completed successfully, a confirmation
page appears. If the upload could not complete, an error page appears. The error
page may include a message that requests that you upload the zip file to Oracle
manually. If so, contact your Oracle Support representative for instructions.

18. Click OK.

The View /Send Upload Files page returns. Under the Time Sent column, check the
status of the files that you attempted to upload.

Note: The Support Workbench uses Oracle Configuration Manager to
upload the physical files. If Oracle Configuration Manager is not installed
or properly configured, the upload may fail. In this case, a message is
displayed with a path to the package zip file and a request that you
upload the file to Oracle Support manually. You can upload manually
with My Oracle Support.

For more information about Oracle Configuration Manager, see Oracle
Configuration Manager Installation and Administration Guide.

19. (Optional) Create and upload correlated packages.
See "Creating, Editing, and Uploading Correlated Packages" on page 9-44 for
instructions.
See Also:
= "About Incidents and Problems" on page 9-3
= "About Incident Packages" on page 9-32
= "About Quick Packaging and Custom Packaging" on page 9-33

Viewing and Modifying Incident Packages

After creating an incident package with the custom packaging method, you can view
or modify the contents of the package before uploading the package to Oracle Support.
In addition, after using the quick packaging method to package and upload diagnostic
data, you can view or modify the contents of the package that the Support Workbench
created, and then reupload the package. To modify a package, you choose from among
a selection of packaging tasks, most of which are available from the Customize Package
page. (See Figure 9-7 on page 9-36.)

This section provides instructions for some of the most common packaging tasks. It
includes the following topics:

» Editing Incident Package Files (Copying Out and In)

= Adding an External File to an Incident Package

= Removing Incident Package Files

= Viewing and Updating the Incident Package Activity Log

Also included are the following topics, which explains how to view package details
and how to access the Customize Package page for a particular package:

9-38 Oracle Database Administrator's Guide

Creating, Editing, and Uploading Custom Incident Packages

= Viewing Package Details

» Accessing the Customize Package Page

See Also:
= "About Incident Packages" on page 9-32

» '"Packaging and Uploading Problems with Custom Packaging" on
page 9-34

Viewing Package Details

The Package Details page contains information about the incidents, trace files, and
other files in a package, and enables you to view and add to the package activity log.

To view package details:
1. Access the Support Workbench home page.

See "Viewing Problems with the Enterprise Manager Support Workbench" on
page 9-17 for instructions.

2. Click the Packages link to view the Packages subpage.

A list of packages that are currently in the Automatic Diagnostic Repository (ADR)
is displayed.

3. (Optional) To reduce the number of packages displayed, enter text into the Search
field above the list, and then click Go.

All packages that contain the search text anywhere in the package name are
displayed. To view the full list of packages, click the Packages link again.

4. Under the Package Name column, click the link for the desired package.
The Package Details page appears.

Accessing the Customize Package Page

The Customize Package page is used to perform various packaging tasks, such as
adding and removing problems; adding, removing, and scrubbing (editing) package
files; and generating and uploading the package zip file.

To access the Customize Package page:

1. Access the Package Details page for the desired package, as described in "Viewing
Package Details" on page 9-39.

2. Click Customize Package.

The Customize Package page appears. See Figure 9-7 on page 9-36.

Editing Incident Package Files (Copying Out and In)

The Support Workbench enables you to edit one or more files in an incident package.
You may want to do this to delete or overwrite sensitive data in the files. To edit
package files, you must first copy the files out of the package into a designated
directory, edit the files with a text editor or other utility, and then copy the files back
into the package, overwriting the original package files.

The following procedure assumes that the package is already created and contains
diagnostic data.

Managing Diagnostic Data 9-39

Creating, Editing, and Uploading Custom Incident Packages

To edit incident package files:
1. Access the Customize Package page for the desired incident package.

See "Accessing the Customize Package Page" on page 9-39 for instructions.

2. In the Packaging Tasks section, under the Scrub User Data heading, click Copy out
Files to Edit contents.

The Copy Out Files page appears. It displays the name of the host to which you
can copy files.

Figure 9-8 Copy Out Files Page

Copy out files
Cancel OK

Destination folder

Enter the desination folder where the file will be copied
Host myhost.example.com
Destination Folder «

Files to copy out
Select files to copy out

1-25 of 2794 M| Next 25 &)
Select All | Select Mone

Filey Has User
Select _ Source|File Name Size Data Date Path

] Incident mydbl_ora_13579_il.frc 476 g Tue Oct 03 Jjoracle/log/diag/rdbms suselab/suselab/incident/incdir _1
bytes 20:32:20 FDT 2006

O Incident mydbl_ora_12579_i1_2.irc 252 vag Tue Oct 03 Joracle/log/diag/rdbms suselab/suselab/incident/incdir _1
bytes 20:32:20 PDT 2006

O Incident rydbl_ora_13579_i1_sql_2tc 280 ves Tue Oct 03 Joracle/log/diag/rdbms fsuselab/suselab/incident/incdir _1
bytes 20:32:20 PDT 2006

O Incident mydbl_ora_13579_i2.rc 476 vag Tue Oct 03 foracle/log/diag/rdbms/suselabisuselabyincident/incdir_2
bytes 20:32:20 PDT 2006

] Incident mydbl_ora_13579_i2_2.trc 232 vas Tue Oct 03 foracle/log/diag/rdbmsfsuselab/susalabyincident/incdir_2
bytes 20:33:20 PDT 2006

] Incident mydbl_ora_13579_i2_sgl_2.trc 280 vas Tue Oct 03 foracle/log/diag/rdbmsfsuselab/susalab/incident/incdir_2
bytes 20:33:20 PDT 2006

3. Do one of the following to specify a destination directory for the files:
= Enter a directory path in the Destination Folder field.

s Click the flashlight icon next to the Destination Folder field, and then
complete the following steps:

a. If prompted for host credentials, enter credentials for the host to which
you want to copy out the files, and then click OK. (Select Save as
Preferred Credential to avoid the prompt for credentials next time.)

b. Inthe Browse and Select File or Directory window, click directory links to
move down the directory hierarchy, and click directory names next to the
Path label to move up the directory hierarchy, until you see the desired
destination directory.

9-40 Oracle Database Administrator's Guide

Creating, Editing, and Uploading Custom Incident Packages

Browse and Select: File or Directory
(Canrel] | Selert)
Host: mvhost.example._cnm

User fsmith | Change
Path / =

Search

(@0)

1-25of 37 M| Mexk 12 =

Selett|Name ‘I]wner |Ernup | Size (KB)lLast Maodified Time (PST) |

@

.autafsck rook roak 0 Feb 3, 2007 1:52:12 AM

wautomount rook root < Jul 4, 2005 7:49:59 AM

ade rook root 4 May 1, 2007 10:16:22 PM

ade_autofs rook root 0 Feb 3, 2007 1:52:33 AM

L=
5

rook root 4 Mov 13, 2006 12:36:13 AM

=g
|2
=3

rook root 4 Mov 13, 2006 6:57:41 AM

o
=
=

=

rook root 4 Mov 13, 2006 6:55:07 &M

=8
@
<

root ront S Feb 28, 2007 12:16:20 PM

o/o o|o|o/o oo
PepRERRPRR/D
!

L
5

rook root & May 1, 2007 10:12:15 PM

To reduce the number of directories displayed in the list, enter search text
in the Search field and click Go. All directories that have the search text
anywhere in the directory name are displayed.

c. Select the desired destination directory, and then click Select.

The Browse and Select File or Directory window closes, and the path to
the selected directory appears in the Destination Folder field of the Copy
Out Files page.

4. Under Files to Copy Out, select the desired files, and then click OK.

Note: If you do not see the desired files, they may be on another
page. Click the Next link to view the next page. Continue clicking
Next, or select from the list of file numbers (to the left of the Next link)
until you see the desired files. You can then select the files and click
OK.

The Customize Package page returns, displaying a confirmation message that lists
the files that were copied out.

5. Using a text editor or other utility, edit the files.

6. On the Customize Package page, in the Packaging Tasks section, under the Scrub
User Data heading, click Copy in Files to Replace Contents.

The Copy In Files page appears. It displays the files that you copied out.
7. Select the files to copy in, and then click OK.

The files are copied into the package, overwriting the existing files. The Customize
Package page returns, displaying a confirmation message that lists the files that
were copied in.

Adding an External File to an Incident Package
You can add any type of external file to an incident package.

To add an external file to an incident package:
1. Access the Customize Package page for the desired incident package.

See "Accessing the Customize Package Page" on page 9-39 for instructions.

2. Click the Files link to view the Files subpage.

Managing Diagnostic Data 9-41

Creating, Editing, and Uploading Custom Incident Packages

Figure 9-9 Files Subpage of Customize Package Page

Incidents Files Activity Log
Exclude |
Select &l | Select Mone
Has
Size User
Select Source Name {MB) Data
O Incident mydbl_ora_13579_i4850.trc 0 Mo
¥ Incident mydbl_ora_13579_i4850_2.trc 0 Mo
O incidert mydb1_ora_13579_4849 tre 0 Mo
O Incident mydbl_ora_13579_i4849_2.trc 0 Na
Incidents Files Activity Log

Timestamp

Mary 4, 2007
9:46:11 PM PDT

May 4, 2007
9i46:11 FM PDT

May 4, 2007
e 43 PM DT

May 4, 2007
9:44:48 PM PDT

Add Incident Files |

Add External Files)

Path
Joracleflogidiagrdbmsfemdbfemdbyincident fincdir_4850

toracleflogidiagirdbmsfemdb/emdbfincident fincdir_4850

loracleflogidiag)rdbmsfemdbfemdbfincident fincdir_4849

Joracleflogjdiagjrdbmserndbfemdbyincidentfincdir 4849

Yiew

§ 3 B

From this page, you can add and remove files to and from the package.

3. C(lick Add external files.

The Add External File page appears. It displays the host name from which you
may select a file.

4. Do one of the following to specify a file to add:

= Enter the full path to the file in the File Name field.

s Click the flashlight icon next to the File Name field, and then complete the
following steps:

a. If prompted for host credentials, enter credentials for the host on which
the external file resides, and then click OK. (Select Save as Preferred
Credential to avoid the prompt for credentials next time.)

b. Inthe Browse and Select File or Directory window, click directory links to
move down the directory hierarchy, and click directory names next to the
Path label to move up the directory hierarchy, until you see the desired

file.

Host myhost.example.com

User fsmith | Change

Browse and Select: File or Directory

(Cancel) (Select)

Selett|Name

Path / =
Search | &)
1-25 of 37 |8| Mext 12 G2
‘I]wner |Ernup | Size (KB)lLast Maodified Time (PST) |

@

o/o o|o|o/o oo
PepRERRPRR/D

.autofsck

+automounk

de

o

ade autofs

L=
5

=g
|2
=3

o
=
=

=

=8
@
<

L
5

raok

rook

raok

root

raok

rook

raok

root

rook

root 0 Feb 3, 2007 1:52:12 AM
root < Jul 4, 2005 7:49:59 AM
root 4 May 1, 2007 10:16:22 PM
ront 0 Feb 3, 2007 1:52:33 AM
root 4 Mov 13, 2006 12:36:13 AM
root 4 Mov 13, 2006 6:57:41 AM
root 4 Mov 13, 2006 6:55:07 &M
oot 5 Feb 28, 2007 12:16:20 PM
root & May 1, 2007 10:12:15 PM

To reduce the number of files or directories displayed in the list, enter
search text in the Search field and click Go. All files or directories that
have the search text anywhere in the file name or directory name are dis-

played.

c. In the Select column, click to select the desired file, and then click Select.

9-42 Oracle Database Administrator's Guide

Creating, Editing, and Uploading Custom Incident Packages

5.

The Browse and Select window closes, and the path to the selected file
appears in the File Name field of the Add External File page.

Click OK.

The Customize Package page returns, displaying the Files subpage. The selected
file is now shown in the list of files.

Removing Incident Package Files
You can remove one or more files of any type from the incident package.

To remove incident package files:

1.

Access the Customize Package page for the desired incident package.

See "Accessing the Customize Package Page" on page 9-39 for instructions.
Click the Files link to view the Files subpage.

A list of files in the package is displayed.

If you have not yet generated a physical file for this package, all package files are
displayed in the list. If you have already generated a physical file, a View list
appears above the files list. It enables you to choose between viewing only
incremental package contents or the full package contents. The default selection is
incremental package contents. This default selection displays only those package
files that were created or modified since the last time that a physical file was
generated for the package. Select Full package contents from the View list to view
all package files.

Select the files to remove, and then click Exclude.

Note: If you do not see the desired files, they may be on another
page. Click the Next link to view the next page. Continue clicking
Next, or select from the list of file numbers (to the left of the Next link)
until you see the desired files. You can then select the files and click
Remove.

Viewing and Updating the Incident Package Activity Log

The Support Workbench maintains an activity log for each incident package. Most
activities that you perform on a package, such as adding or removing files or creating
a package zip file, are recorded in the log. You can also add your own notes to the log.
This is especially useful if more than one database administrator is working with
packages.

To view and update the incident package activity log:

1.

Access the Package Details page for the desired incident package.

See "Accessing the Customize Package Page" on page 9-39 for instructions.
Click the Activity Log link to view the Activity Log subpage.

The activity log is displayed.

To add your own note to the activity log, enter text into the Note field, and then
click Add Note.

Your note is timestamped and appended to the list.

Managing Diagnostic Data 9-43

Creating, Editing, and Uploading Custom Incident Packages

Creating, Editing, and Uploading Correlated Packages

After you upload a package to Oracle Support, you can create and upload one or more
correlated packages. This is recommended if critical alerts appeared in the Related
Alerts section of the Database Home page. The correlated packages are associated with
the original package, also known as the main package. The main package contains
problems that occurred in a database instance. Correlated packages contain problems
that occurred on other instances (Oracle ASM instances or other database instances)
and that are related problems for the problems in the main package. There can be only
one correlated package for each related instance.

To create, edit, and upload a correlated package:

1.

View the Package Details page for the main package.
See "Viewing Package Details" on page 9-39 for instructions.
On the Package Details page, click Customize Package.

On the Customize Package page, in the Packaging Tasks section, under Additional
Diagnostic Data, click Create/Update Correlated Packages.

See Figure 9-7 on page 9-36.

On the Correlated Packages page, under Correlated Packages, select one or more
instances that have incidents and click Create.

A confirmation message appears, and the package IDs of the newly created
correlated packages appear in the ID column.

Select the instance on which you created the correlated package, and click Finish
Contents Preparation.

A confirmation message appears.
(Optional) View and edit a correlated package by completing these steps:
a. Click the package ID to view the package.
If prompted for credentials, enter them and click Login.
b. On the Package Details page, click Files to view the files in the package.

c. Click Customize Package and perform any desired customization tasks, as
described in "Viewing and Modifying Incident Packages" on page 9-38.

For each correlated package to upload, click Generate Upload File.

For each correlated package to send to Oracle, select the package and click Send to
Oracle.

Note: If Send to Oracle is unavailable (dimmed), there were no
correlated incidents for the instance.

See Also:
= "About Correlated Packages" on page 9-34
= "Related Problems Across the Topology" on page 9-4

Deleting Correlated Packages

You delete a correlated package with the Enterprise Manager Support Workbench for
the target for which you created the package. For example, if you created a correlated

9-44 Oracle Database Administrator's Guide

Creating, Editing, and Uploading Custom Incident Packages

package for an Oracle ASM instance target, access the Support Workbench for that
Oracle ASM instance.

To delete a correlated package:

1. Access the Support Workbench for the target on which you created the correlated
package.

Tip: See the Related Links section at the bottom of any Support
Workbench page. Or, see "Viewing Problems with the Enterprise
Manager Support Workbench" on page 9-17

2. Click Packages to view the Packages subpage.

3. Locate the correlated package in the list. Verify that it is a correlated package by
viewing the package description.

4. Select the package and click Delete.

5. On the confirmation page, click Yes.

See Also:
= "About Correlated Packages" on page 9-34
= "Related Problems Across the Topology" on page 9-4

Setting Incident Packaging Preferences

This section provides instructions for setting incident packaging preferences.
Examples of incident packaging preferences include the number of days to retain
incident information, and the number of leading and trailing incidents to include in a
package for each problem. (By default, if a problem has many incidents, only the first
three and last three incidents are packaged.) You can change these and other incident
packaging preferences with Enterprise Manager or with the ADRCI utility.

To set incident packaging preferences with Enterprise Manager:
1. Access the Support Workbench home page.

See "Viewing Problems with the Enterprise Manager Support Workbench" on
page 9-17 for instructions.

2. In the Related Links section at the bottom of the page, click Incident Packaging
Configuration.

The View Incident Packaging Configuration page appears. Click Help to view
descriptions of the settings on this page.

3. Click Edit.
The Edit Incident Packaging Configuration page appears.
4. Edit settings, and then click OK to apply changes.

Managing Diagnostic Data 9-45

Creating, Editing, and Uploading Custom Incident Packages

See Also:
= "About Incident Packages" on page 9-32
= "About Incidents and Problems" on page 9-3

s "Task 5 — Package and Upload Diagnostic Data to Oracle Support"
on page 9-14

n Oracle Database Utilities for information on ADRCI

9-46 Oracle Database Administrator's Guide

Part li

Oracle Database Structure and Storage

Part II describes database structure in terms of storage components and explains how
to create and manage those components. It contains the following chapters:

= Chapter 10, "Managing Control Files"

s Chapter 11, "Managing the Redo Log"

» Chapter 12, "Managing Archived Redo Logs"

» Chapter 13, "Managing Tablespaces"

s Chapter 14, "Managing Datafiles and Tempfiles"
s Chapter 15, "Managing Undo"

» Chapter 16, "Using Oracle-Managed Files"

10

Managing Control Files

In this chapter:
= WhatIs a Control File?
= Guidelines for Control Files
s Creating Control Files
s Troubleshooting After Creating Control Files
= Backing Up Control Files
= Recovering a Control File Using a Current Copy
= Dropping Control Files
= Control Files Data Dictionary Views
See Also: Chapter 16, "Using Oracle-Managed Files" for

information about creating control files that are both created and
managed by the Oracle Database server

What Is a Control File?

Every Oracle Database has a control file, which is a small binary file that records the
physical structure of the database. The control file includes:

s The database name

= Names and locations of associated datafiles and redo log files
» The timestamp of the database creation

» The current log sequence number

s Checkpoint information

The control file must be available for writing by the Oracle Database server whenever
the database is open. Without the control file, the database cannot be mounted and
recovery is difficult.

The control file of an Oracle Database is created at the same time as the database. By
default, at least one copy of the control file is created during database creation. On
some operating systems the default is to create multiple copies. You should create two
or more copies of the control file during database creation. You can also create control
files later, if you lose control files or want to change particular settings in the control
files.

Managing Control Files 10-1

Guidelines for Control Files

Guidelines for Control Files

This section describes guidelines you can use to manage the control files for a
database, and contains the following topics:

Provide Filenames for the Control Files
Multiplex Control Files on Different Disks
Back Up Control Files

Manage the Size of Control Files

Provide Filenames for the Control Files

You specify control file names using the CONTROL_FILES initialization parameter in
the database initialization parameter file (see "Creating Initial Control Files" on

page 10-3). The instance recognizes and opens all the listed file during startup, and the
instance writes to and maintains all listed control files during database operation.

If you do not specify files for CONTROL_FILES before database creation:

If you are not using Oracle-managed files, then the database creates a control file
and uses a default filename. The default name is operating system specific.

If you are using Oracle-managed files, then the initialization parameters you set to
enable that feature determine the name and location of the control files, as
described in Chapter 16, "Using Oracle-Managed Files".

If you are using Oracle Automatic Storage Management (Oracle ASM), you can
place incomplete Oracle ASM filenames in the DB_CREATE_FILE_DEST and DB_
RECOVERY_FILE_DEST initialization parameters. Oracle ASM then automatically
creates control files in the appropriate places. See the sections "About Oracle ASM
Filenames" and "Creating a Database That Uses Oracle ASM" in Oracle Database
Storage Administrator's Guide for more information.

Multiplex Control Files on Different Disks

Every Oracle Database should have at least two control files, each stored on a different
physical disk. If a control file is damaged due to a disk failure, the associated instance
must be shut down. Once the disk drive is repaired, the damaged control file can be
restored using the intact copy of the control file from the other disk and the instance
can be restarted. In this case, no media recovery is required.

The behavior of multiplexed control files is this:

The database writes to all filenames listed for the initialization parameter
CONTROL_FILES in the database initialization parameter file.

The database reads only the first file listed in the CONTROL_FILES parameter
during database operation.

If any of the control files become unavailable during database operation, the
instance becomes inoperable and should be aborted.

Note: Oracle strongly recommends that your database has a
minimum of two control files and that they are located on separate
physical disks.

10-2 Oracle Database Administrator's Guide

Creating Control Files

One way to multiplex control files is to store a control file copy on every disk drive
that stores members of redo log groups, if the redo log is multiplexed. By storing
control files in these locations, you minimize the risk that all control files and all
groups of the redo log will be lost in a single disk failure.

Back Up Control Files

It is very important that you back up your control files. This is true initially, and every
time you change the physical structure of your database. Such structural changes
include:

= Adding, dropping, or renaming datafiles
= Adding or dropping a tablespace, or altering the read /write state of the tablespace
» Adding or dropping redo log files or groups

The methods for backing up control files are discussed in "Backing Up Control Files"
on page 10-8.

Manage the Size of Control Files

The main determinants of the size of a control file are the values set for the
MAXDATAFILES, MAXLOGFILES, MAXLOGMEMBERS, MAXLOGHISTORY, and
MAXINSTANCES parameters in the CREATE DATABASE statement that created the
associated database. Increasing the values of these parameters increases the size of a
control file of the associated database.

See Also:

= Your operating system specific Oracle documentation contains
more information about the maximum control file size.

» Oracle Database SQL Language Reference for a description of the
CREATE DATABASE statement

Creating Control Files
This section describes ways to create control files, and contains the following topics:
s Creating Initial Control Files
s Creating Additional Copies, Renaming, and Relocating Control Files

s Creating New Control Files

Creating Initial Control Files

The initial control files of an Oracle Database are created when you issue the CREATE
DATABASE statement. The names of the control files are specified by the CONTROL_
FILES parameter in the initialization parameter file used during database creation.
The filenames specified in CONTROL_FILES should be fully specified and are
operating system specific. The following is an example of a CONTROL_FILES
initialization parameter:

CONTROL_FILES = (/u0l/oracle/prod/controlOl.ctl,
/u02/oracle/prod/control02.ctl,
/u03/oracle/prod/control03.ctl)

If files with the specified names currently exist at the time of database creation, you
must specify the CONTROLFILE REUSE clause in the CREATE DATABASE statement,

Managing Control Files 10-3

Creating Control Files

or else an error occurs. Also, if the size of the old control file differs from the SIZE
parameter of the new one, you cannot use the REUSE clause.

The size of the control file changes between some releases of Oracle Database, as well
as when the number of files specified in the control file changes. Configuration
parameters such as MAXLOGFILES, MAXLOGMEMBERS, MAXLOGHISTORY,
MAXDATAFILES, and MAXINSTANCES affect control file size.

You can subsequently change the value of the CONTROL_FILES initialization
parameter to add more control files or to change the names or locations of existing
control files.

See Also: Your operating system specific Oracle documentation
contains more information about specifying control files.

Creating Additional Copies, Renaming, and Relocating Control Files

You can create an additional control file copy for multiplexing by copying an existing
control file to a new location and adding the file name to the list of control files.
Similarly, you rename an existing control file by copying the file to its new name or
location, and changing the file name in the control file list. In both cases, to guarantee
that control files do not change during the procedure, shut down the database before
copying the control file.

To add a multiplexed copy of the current control file or to rename a control file:
1. Shut down the database.
2. Copy an existing control file to a new location, using operating system commands.

3. Edit the CONTROL_FILES parameter in the database initialization parameter file
to add the new control file name, or to change the existing control filename.

4. Restart the database.

Creating New Control Files

This section discusses when and how to create new control files.

When to Create New Control Files
It is necessary for you to create new control files in the following situations:

= All control files for the database have been permanently damaged and you do not
have a control file backup.

= You want to change the database name.

For example, you would change a database name if it conflicted with another
database name in a distributed environment.

Note: You can change the database name and DBID (internal
database identifier) using the DBNEWID utility. See Oracle Database
Utilities for information about using this utility.

s The compatibility level is set to a value that is earlier than 10.2.0, and you must
make a change to an area of database configuration that relates to any of the
following parameters from the CREATE DATABASE or CREATE CONTROLFILE
commands: MAXLOGFILES, MAXLOGMEMBERS, MAXLOGHISTORY, and
MAXINSTANCES. If compatibility is 10.2.0 or later, you do not have to create new

10-4 Oracle Database Administrator's Guide

Creating Control Files

control files when you make such a change; the control files automatically expand,
if necessary, to accommodate the new configuration information.

For example, assume that when you created the database or recreated the control
files, you set MAXLOGFILES to 3. Suppose that now you want to add a fourth redo
log file group to the database with the ALTER DATABASE command. If
compatibility is set to 10.2.0 or later, you can do so and the controlfiles
automatically expand to accommodate the new logfile information. However,
with compatibility set earlier than 10.2.0, your ALTER DATABASE command
would generate an error, and you would have to first create new control files.

For information on compatibility level, see "About The COMPATIBLE
Initialization Parameter" on page 2-31.

The CREATE CONTROLFILE Statement

You can create a new control file for a database using the CREATE CONTROLFILE
statement. The following statement creates a new control file for the prod database (a
database that formerly used a different database name):

CREATE CONTROLFILE
SET DATABASE prod
LOGFILE GROUP 1 ('/u0l/oracle/prod/redo01_01.log',
'/ull/oracle/prod/redo01_02.log"'),
GROUP 2 ('/u0l/oracle/prod/redo02_01.log',
'/ull/oracle/prod/redo02_02.1log"'),
GROUP 3 ('/u0l/oracle/prod/redo03_01.log',
'/u0l/oracle/prod/redo03_02.1log")
RESETLOGS
DATAFILE '/ulOl/oracle/prod/system0l.dbf' SIZE 3M,
'/ul0l/oracle/prod/rbs0l.dbs' SIZE 5M,
'/ull/oracle/prod/users0l.dbs' SIZE 5M,
'/ull/oracle/prod/temp0l.dbs' SIZE 5M
MAXLOGFILES 50
MAXLOGMEMBERS 3
MAXLOGHISTORY 400
MAXDATAFILES 200
MAXINSTANCES 6
ARCHIVELOG;

Cautions:

s The CREATE CONTROLFILE statement can potentially damage
specified datafiles and redo log files. Omitting a filename can
cause loss of the data in that file, or loss of access to the entire
database. Use caution when issuing this statement and be sure
to follow the instructions in "Steps for Creating New Control
Files".

» If the database had forced logging enabled before creating the
new control file, and you want it to continue to be enabled,
then you must specify the FORCE LOGGING clause in the
CREATE CONTROLFILE statement. See "Specifying FORCE
LOGGING Mode" on page 2-23.

See Also: Oracle Database SQL Language Reference describes the
complete syntax of the CREATE CONTROLFILE statement

Managing Control Files 10-5

Creating Control Files

Steps for Creating New Control Files
Complete the following steps to create a new control file.

1.

Make a list of all datafiles and redo log files of the database.

If you follow recommendations for control file backups as discussed in "Backing
Up Control Files" on page 10-8, you will already have a list of datafiles and redo
log files that reflect the current structure of the database. However, if you have no
such list, executing the following statements will produce one.

SELECT MEMBER FROM VSLOGFILE;
SELECT NAME FROM V$DATAFILE;
SELECT VALUE FROM VSPARAMETER WHERE NAME = 'control_files';

If you have no such lists and your control file has been damaged so that the
database cannot be opened, try to locate all of the datafiles and redo log files that
constitute the database. Any files not specified in step 5 are not recoverable once a
new control file has been created. Moreover, if you omit any of the files that make
up the SYSTEM tablespace, you might not be able to recover the database.

Shut down the database.

If the database is open, shut down the database normally if possible. Use the
IMMEDIATE or ABORT clauses only as a last resort.

Back up all datafiles and redo log files of the database.
Start up a new instance, but do not mount or open the database:

STARTUP NOMOUNT

Create a new control file for the database using the CREATE CONTROLFILE
statement.

When creating a new control file, specify the RESETLOGS clause if you have lost
any redo log groups in addition to control files. In this case, you will need to
recover from the loss of the redo logs (step 8). You must specify the RESETLOGS
clause if you have renamed the database. Otherwise, select the NORESETLOGS
clause.

Store a backup of the new control file on an offline storage device. See "Backing Up
Control Files" on page 10-8 for instructions for creating a backup.

Edit the CONTROL_FILES initialization parameter for the database to indicate all
of the control files now part of your database as created in step 5 (not including the
backup control file). If you are renaming the database, edit the DB_NAME
parameter in your instance parameter file to specify the new name.

Recover the database if necessary. If you are not recovering the database, skip to
step 9.

If you are creating the control file as part of recovery, recover the database. If the
new control file was created using the NORESETLOGS clause (step 5), you can
recover the database with complete, closed database recovery.

If the new control file was created using the RESETLOGS clause, you must specify
USING BACKUP CONTROL FILE. If you have lost online or archived redo logs or
datafiles, use the procedures for recovering those files.

See Also: Oracle Database Backup and Recovery User’s Guide for
information about recovering your database and methods of
recovering a lost control file

10-6 Oracle Database Administrator's Guide

Troubleshooting After Creating Control Files

9. Open the database using one of the following methods:

= If you did not perform recovery, or you performed complete, closed database
recovery in step 8, open the database normally.

ALTER DATABASE OPEN;

= If you specified RESETLOGS when creating the control file, use the ALTER
DATABASE statement, indicating RESETLOGS.

ALTER DATABASE OPEN RESETLOGS;

The database is now open and available for use.

Troubleshooting After Creating Control Files

After issuing the CREATE CONTROLFILE statement, you may encounter some errors.
This section describes the most common control file errors:

s Checking for Missing or Extra Files
= Handling Errors During CREATE CONTROLFILE

Checking for Missing or Extra Files

After creating a new control file and using it to open the database, check the alert log
to see if the database has detected inconsistencies between the data dictionary and the
control file, such as a datafile in the data dictionary includes that the control file does
not list.

If a datafile exists in the data dictionary but not in the new control file, the database
creates a placeholder entry in the control file under the name MISSINGnnnn, where
nnnn is the file number in decimal. MISSINGnnnn is flagged in the control file as
being offline and requiring media recovery.

If the actual datafile corresponding to MISSINGnnnn is read-only or offline normal,
then you can make the datafile accessible by renaming MISSINGnnnn to the name of
the actual datafile. If MI SSINGnnnn corresponds to a datafile that was not read-only
or offline normal, then you cannot use the rename operation to make the datafile
accessible, because the datafile requires media recovery that is precluded by the
results of RESETLOGS. In this case, you must drop the tablespace containing the
datafile.

Conversely, if a datafile listed in the control file is not present in the data dictionary,
then the database removes references to it from the new control file. In both cases, the
database includes an explanatory message in the alert log to let you know what was
found.

Handling Errors During CREATE CONTROLFILE

If Oracle Database sends you an error (usually error ORA-01173, ORA-01176,
ORA-01177,0RA-01215, or ORA-01216) when you attempt to mount and open the
database after creating a new control file, the most likely cause is that you omitted a
file from the CREATE CONTROLFILE statement or included one that should not have
been listed. In this case, you should restore the files you backed up in step 3 on

page 10-6 and repeat the procedure from step 4, using the correct filenames.

Managing Control Files 10-7

Backing Up Control Files

Backing Up Control Files

Use the ALTER DATABASE BACKUP CONTROLFILE statement to back up your
control files. You have two options:

Back up the control file to a binary file (duplicate of existing control file) using the
following statement:

ALTER DATABASE BACKUP CONTROLFILE TO '/oracle/backup/control.bkp';

Produce SQL statements that can later be used to re-create your control file:
ALTER DATABASE BACKUP CONTROLFILE TO TRACE;
This command writes a SQL script to a trace file where it can be captured and

edited to reproduce the control file. View the alert log to determine the name and
location of the trace file.

See Also:

» Oracle Database Backup and Recovery User's Guide for more
information on backing up your control files

= "Viewing the Alert Log" on page 9-19

Recovering a Control File Using a Current Copy

This section presents ways that you can recover your control file from a current
backup or from a multiplexed copy.

Recovering from Control File Corruption Using a Control File Copy

This procedure assumes that one of the control files specified in the CONTROL_FILES
parameter is corrupted, that the control file directory is still accessible, and that you
have a multiplexed copy of the control file.

1.

With the instance shut down, use an operating system command to overwrite the
bad control file with a good copy:

% cp /ul03/oracle/prod/control03.ctl /u02/oracle/prod/control02.ctl

Start SQL*Plus and open the database:

SQL> STARTUP

Recovering from Permanent Media Failure Using a Control File Copy

This procedure assumes that one of the control files specified in the CONTROL_FILES
parameter is inaccessible due to a permanent media failure and that you have a
multiplexed copy of the control file.

1.

With the instance shut down, use an operating system command to copy the
current copy of the control file to a new, accessible location:

% cp /ull/oracle/prod/control0l.ctl /u04/oracle/prod/control03.ctl
Edit the CONTROL_FILES parameter in the initialization parameter file to replace
the bad location with the new location:

CONTROL_FILES = (/u0l/oracle/prod/controlOl.ctl,
/ul02/oracle/prod/control02.ctl,
/u04/oracle/prod/control03.ctl)

10-8 Oracle Database Administrator's Guide

Control Files Data Dictionary Views

3. Start SQL*Plus and open the database:

SQL> STARTUP

If you have multiplexed control files, you can get the database started up quickly by
editing the CONTROL_FILES initialization parameter. Remove the bad control file
from CONTROL_FILES setting and you can restart the database immediately. Then
you can perform the reconstruction of the bad control file and at some later time shut
down and restart the database after editing the CONTROL_FILES initialization
parameter to include the recovered control file.

Dropping Control Files

You want to drop control files from the database, for example, if the location of a
control file is no longer appropriate. Remember that the database should have at least
two control files at all times.

1. Shut down the database.

2. Edit the CONTROL_FILES parameter in the database initialization parameter file
to delete the old control file name.

3. Restart the database.

Note: This operation does not physically delete the unwanted
control file from the disk. Use operating system commands to
delete the unnecessary file after you have dropped the control file
from the database.

Control Files Data Dictionary Views

The following views display information about control files:

View Description

VS$SDATABASE Displays database information from the control file

VS$SCONTROLFILE Lists the names of control files

VSCONTROLFILE_RECORD_SECTION Displays information about control file record
sections

V$PARAMETER Displays the names of control files as specified in

the CONTROL_FILES initialization parameter

This example lists the names of the control files.

SQL> SELECT NAME FROM V$CONTROLFILE;

/u0l/oracle/prod/control0l.ctl
/u02/oracle/prod/control02.ctl
/u03/oracle/prod/control03.ctl

Managing Control Files 10-9

Control Files Data Dictionary Views

10-10 Oracle Database Administrator's Guide

11

Managing the Redo Log

In this chapter:
= What Is the Redo Log?
= Planning the Redo Log
s Creating Redo Log Groups and Members
= Relocating and Renaming Redo Log Members
= Dropping Redo Log Groups and Members
» Forcing Log Switches
= Verifying Blocks in Redo Log Files
» Clearing a Redo Log File
s Redo Log Data Dictionary Views
See Also: Chapter 16, "Using Oracle-Managed Files" for

information about redo log files that are both created and managed
by the Oracle Database server

What Is the Redo Log?

The most crucial structure for recovery operations is the redo log, which consists of
two or more preallocated files that store all changes made to the database as they
occur. Every instance of an Oracle Database has an associated redo log to protect the
database in case of an instance failure.

Redo Threads

When speaking in the context of multiple database instances, the redo log for each
database instance is also referred to as a redo thread. In typical configurations, only one
database instance accesses an Oracle Database, so only one thread is present. In an
Oracle Real Application Clusters environment, however, two or more instances
concurrently access a single database and each instance has its own thread of redo. A
separate redo thread for each instance avoids contention for a single set of redo log
files, thereby eliminating a potential performance bottleneck.

This chapter describes how to configure and manage the redo log on a standard
single-instance Oracle Database. The thread number can be assumed to be 1 in all
discussions and examples of statements. For information about redo log groups in an
Oracle Real Application Clusters environment, please refer to Oracle Real Application
Clusters Administration and Deployment Guide.

Managing the Redo Log 11-1

What Is the Redo Log?

Redo Log Contents

Redo log files are filled with redo records. A redo record, also called a redo entry, is
made up of a group of change vectors, each of which is a description of a change made
to a single block in the database. For example, if you change a salary value in an
employee table, you generate a redo record containing change vectors that describe
changes to the data segment block for the table, the undo segment data block, and the
transaction table of the undo segments.

Redo entries record data that you can use to reconstruct all changes made to the
database, including the undo segments. Therefore, the redo log also protects rollback
data. When you recover the database using redo data, the database reads the change
vectors in the redo records and applies the changes to the relevant blocks.

Redo records are buffered in a circular fashion in the redo log buffer of the SGA (see
"How Oracle Database Writes to the Redo Log" on page 11-2) and are written to one of
the redo log files by the Log Writer (LGWR) database background process. Whenever a
transaction is committed, LGWR writes the transaction redo records from the redo log
buffer of the SGA to a redo log file, and assigns a system change number (SCN) to
identify the redo records for each committed transaction. Only when all redo records
associated with a given transaction are safely on disk in the online logs is the user
process notified that the transaction has been committed.

Redo records can also be written to a redo log file before the corresponding transaction
is committed. If the redo log bulffer fills, or another transaction commits, LGWR
flushes all of the redo log entries in the redo log buffer to a redo log file, even though
some redo records may not be committed. If necessary, the database can roll back
these changes.

How Oracle Database Writes to the Redo Log

The redo log of a database consists of two or more redo log files. The database requires
a minimum of two files to guarantee that one is always available for writing while the
other is being archived (if the database is in ARCHIVELOG mode). See "Managing
Archived Redo Logs" on page 12-1 for more information.

LGWR writes to redo log files in a circular fashion. When the current redo log file fills,
LGWR begins writing to the next available redo log file. When the last available redo
log file is filled, LGWR returns to the first redo log file and writes to it, starting the
cycle again. Figure 11-1 illustrates the circular writing of the redo log file. The
numbers next to each line indicate the sequence in which LGWR writes to each redo
log file.

Filled redo log files are available to LGWR for reuse depending on whether archiving
is enabled.

s If archiving is disabled (the database is in NOARCHIVELOG mode), a filled redo log
file is available after the changes recorded in it have been written to the datafiles.

s If archiving is enabled (the database is in ARCHIVELOG mode), a filled redo log file
is available to LGWR after the changes recorded in it have been written to the
datafiles and the file has been archived.

11-2 Oracle Database Administrator's Guide

What Is the Redo Log?

Figure 11-1 Reuse of Redo Log Files by LGWR

Online redo 1,4,7,...
log file
#1

LGWR

Online redo 2,5,8,...
log file
#2

Online redo
log file
#3

3,6,9,...

Active (Current) and Inactive Redo Log Files

Oracle Database uses only one redo log files at a time to store redo records written
from the redo log buffer. The redo log file that LGWR is actively writing to is called
the current redo log file.

Redo log files that are required for instance recovery are called active redo log files.
Redo log files that are no longer required for instance recovery are called inactive redo
log files.

If you have enabled archiving (the database is in ARCHIVELOG mode), then the
database cannot reuse or overwrite an active online log file until one of the archiver
background processes (ARCn) has archived its contents. If archiving is disabled (the
database is in NOARCHIVELOG mode), then when the last redo log file is full, LGWR
continues by overwriting the first available active file.

Log Switches and Log Sequence Numbers

A log switch is the point at which the database stops writing to one redo log file and
begins writing to another. Normally, a log switch occurs when the current redo log file
is completely filled and writing must continue to the next redo log file. However, you
can configure log switches to occur at regular intervals, regardless of whether the
current redo log file is completely filled. You can also force log switches manually.

Oracle Database assigns each redo log file a new log sequence number every time a
log switch occurs and LGWR begins writing to it. When the database archives redo log
files, the archived log retains its log sequence number. A redo log file that is cycled
back for use is given the next available log sequence number.

Each online or archived redo log file is uniquely identified by its log sequence number.
During crash, instance, or media recovery, the database properly applies redo log files
in ascending order by using the log sequence number of the necessary archived and
redo log files.

Managing the Redo Log 11-3

Planning the Redo Log

Planning the Redo Log

This section provides guidelines you should consider when configuring a database
instance redo log and contains the following topics:

= Multiplexing Redo Log Files

s Placing Redo Log Members on Different Disks
= Planning the Size of Redo Log Files

= Planning the Block Size of Redo Log Files

s Choosing the Number of Redo Log Files

= Controlling Archive Lag

Multiplexing Redo Log Files

To protect against a failure involving the redo log itself, Oracle Database allows a
multiplexed redo log, meaning that two or more identical copies of the redo log can be
automatically maintained in separate locations. For the most benefit, these locations
should be on separate disks. Even if all copies of the redo log are on the same disk,
however, the redundancy can help protect against I/O errors, file corruption, and so
on. When redo log files are multiplexed, LGWR concurrently writes the same redo log
information to multiple identical redo log files, thereby eliminating a single point of
redo log failure.

Multiplexing is implemented by creating groups of redo log files. A group consists of a
redo log file and its multiplexed copies. Each identical copy is said to be a member of
the group. Each redo log group is defined by a number, such as group 1, group 2, and
SO on.

Figure 11-2 Multiplexed Redo Log Files

AN N

Disk A

7 N~
T 155 " D

A_LOG1 \ / B_LOGH Group 1
2 LGWR ~—
< / " / ~ \
R A / \\ N A Group 2
AloG2| o A 2:4.6,... \ B_LOG2

Group 1
Group 2

In Figure 11-2, A_LOG1 and B_LOG1 are both members of Group 1, A_LOG2 and B_
LOG2 are both members of Group 2, and so forth. Each member in a group must be
exactly the same size.

Each member of a log file group is concurrently active—that is, concurrently written to
by LGWR—as indicated by the identical log sequence numbers assigned by LGWR. In
Figure 11-2, first LGWR writes concurrently to both A_1.0G1 and B_LOG1. Then it

11-4 Oracle Database Administrator's Guide

Planning the Redo Log

writes concurrently to both A_LOG2 and B_L0G2, and so on. LGWR never writes
concurrently to members of different groups (for example, to 2_1L.0G1 and B_LOG2).

Note: Oracle recommends that you multiplex your redo log files.
The loss of the log file data can be catastrophic if recovery is
required. Note that when you multiplex the redo log, the database
must increase the amount of I/O that it performs. Depending on
your configuration, this may impact overall database performance.

Responding to Redo Log Failure

Whenever LGWR cannot write to a member of a group, the database marks that
member as INVALID and writes an error message to the LGWR trace file and to the
database alert log to indicate the problem with the inaccessible files. The specific
reaction of LGWR when a redo log member is unavailable depends on the reason for
the lack of availability, as summarized in the table that follows.

Condition LGWR Action
LGWR can successfully write to at Writing proceeds as normal. LGWR writes to the
least one member in a group available members of a group and ignores the

unavailable members.

LGWR cannot access the next group at | Database operation temporarily halts until the group
a log switch because the group needs | becomes available or until the group is archived.
to be archived

All members of the next group are Oracle Database returns an error, and the database
inaccessible to LGWR at a log switch | instance shuts down. In this case, you may need to
because of media failure perform media recovery on the database from the

loss of a redo log file.

If the database checkpoint has moved beyond the lost
redo log, media recovery is not necessary, because
the database has saved the data recorded in the redo
log to the datafiles. You need only drop the
inaccessible redo log group. If the database did not
archive the bad log, use ALTER DATABASE CLEAR
UNARCHIVED LOG to disable archiving before the log

can be dropped.
All members of a group suddenly Oracle Database returns an error and the database
become inaccessible to LGWR while it | instance immediately shuts down. In this case, you
is writing to them may need to perform media recovery. If the media

containing the log is not actually lost--for example, if
the drive for the log was inadvertently turned
off--media recovery may not be needed. In this case,
you need only turn the drive back on and let the
database perform automatic instance recovery.

Legal and lllegal Configurations

In most cases, a multiplexed redo log should be symmetrical: all groups of the redo log
should have the same number of members. However, the database does not require
that a multiplexed redo log be symmetrical. For example, one group can have only one
member, and other groups can have two members. This configuration protects against
disk failures that temporarily affect some redo log members but leave others intact.

The only requirement for an instance redo log is that it have at least two groups.
Figure 11-3 shows legal and illegal multiplexed redo log configurations. The second
configuration is illegal because it has only one group.

Managing the Redo Log 11-5

Planning the Redo Log

Figure 11-3 Legal and lllegal Multiplexed Redo Log Configuration

o [

Disk A Disk B

(.)

Group 1 A_LOG1 B_LOGH
- P

))

— O

Group 2 A_LOG2 B_LOG2
2 .

@D a»

Group 3 A_LOG3 B_LOG3

ILLEGAL /\ /\

Group 2

Group 3

N~

. l Group 3

Placing Redo Log Members on Different Disks

When setting up a multiplexed redo log, place members of a group on different
physical disks. If a single disk fails, then only one member of a group becomes
unavailable to LGWR and other members remain accessible to LGWR, so the instance
can continue to function.

If you archive the redo log, spread redo log members across disks to eliminate
contention between the LGWR and ARC#n background processes. For example, if you
have two groups of multiplexed redo log members (a duplexed redo log), place each
member on a different disk and set your archiving destination to a fifth disk. Doing so
will avoid contention between LGWR (writing to the members) and ARCn (reading
the members).

11-6 Oracle Database Administrator's Guide

Planning the Redo Log

Datafiles should also be placed on different disks from redo log files to reduce
contention in writing data blocks and redo records.

Planning the Size of Redo Log Files

When setting the size of redo log files, consider whether you will be archiving the redo
log. Redo log files should be sized so that a filled group can be archived to a single
unit of offline storage media (such as a tape or disk), with the least amount of space on
the medium left unused. For example, suppose only one filled redo log group can fit
on a tape and 49% of the tape storage capacity remains unused. In this case, it is better
to decrease the size of the redo log files slightly, so that two log groups could be
archived on each tape.

All members of the same multiplexed redo log group must be the same size. Members
of different groups can have different sizes. However, there is no advantage in varying
file size between groups. If checkpoints are not set to occur between log switches,

make all groups the same size to guarantee that checkpoints occur at regular intervals.

The minimum size permitted for a redo log file is 4 MB.

See Also: Your operating system-specific Oracle documentation.
The default size of redo log files is operating system dependent.

Planning the Block Size of Redo Log Files

Unlike the database block size, which can be between 2K and 32K, redo log files
always default to a block size that is equal to the physical sector size of the disk.
Historically, this has typically been 512 bytes (512B).

Some newer high-capacity disk drives offer 4K byte (4K) sector sizes for both
increased ECC capability and improved format efficiency. Most Oracle Database
platforms are able to detect this larger sector size. The database then automatically
creates redo log files with a 4K block size on those disks.

However, with a block size of 4K, there is increased redo wastage. In fact, the amount
of redo wastage in 4K blocks versus 512B blocks is significant. You can determine the
amount of redo wastage by viewing the statistics stored in the V$SESSTAT and
VS$SYSSTAT views.

SQL> SELECT name, value FROM vSsysstat WHERE name = 'redo wastage';

redo wastage 17941684

To avoid the additional redo wastage, if you are using emulation-mode disks—4K
sector size disk drives that emulate a 512B sector size at the disk interface—you can
override the default 4K block size for redo logs by specifying a 512B block size or, for
some platforms, a 1K block size. However, you will incur a significant performance
degradation when a redo log write is not aligned with the beginning of the 4K
physical sector. Because seven out of eight 512B slots in a 4K physical sector are not
aligned, performance degradation typically does occur. Thus, you must evaluate the
trade-off between performance and disk wastage when planning the redo log block
size on 4K sector size emulation-mode disks.

Beginning with Oracle Database 11g Release 2, you can specify the block size of online
redo log files with the BLOCKSIZE keyword in the CREATE DATABASE, ALTER
DATABASE, and CREATE CONTROLFILE statements. The permissible block sizes are
512, 1024, and 4096.

Managing the Redo Log 11-7

Planning the Redo Log

The following statement adds a redo log file group with a block size of 512B. The
BLOCKSIZE 512 clause is valid but not required for 512B sector size disks. For 4K
sector size emulation-mode disks, the BLOCKSIZE 512 clause overrides the default 4K
size.

ALTER DATABASE orcl ADD LOGFILE
GROUP 4 ('/u0l/logs/orcl/redo04a.log','/u0l/logs/orcl/redo04b.log")
SIZE 100M BLOCKSIZE 512 REUSE;

To ascertain the redo log file block size, run the following query:

SQL> SELECT BLOCKSIZE FROM VSLOG;

BLOCKSIZE

See Also:

» Oracle Database SQL Language Reference for information about the
ALTER DATABASE command.

» Oracle Database Reference for information about the VS SESSTAT
and V$SYSSTAT views

Choosing the Number of Redo Log Files

The best way to determine the appropriate number of redo log files for a database
instance is to test different configurations. The optimum configuration has the fewest
groups possible without hampering LGWR from writing redo log information.

In some cases, a database instance may require only two groups. In other situations, a
database instance may require additional groups to guarantee that a recycled group is
always available to LGWR. During testing, the easiest way to determine whether the
current redo log configuration is satisfactory is to examine the contents of the LGWR
trace file and the database alert log. If messages indicate that LGWR frequently has to
wait for a group because a checkpoint has not completed or a group has not been
archived, add groups.

Consider the parameters that can limit the number of redo log files before setting up or
altering the configuration of an instance redo log. The following parameters limit the
number of redo log files that you can add to a database:

s The MAXLOGFILES parameter used in the CREATE DATABASE statement
determines the maximum number of groups of redo log files for each database.
Group values can range from 1 to MAXLOGFILES. When the compatibility level is
set earlier than 10.2.0, the only way to override this upper limit is to re-create the
database or its control file. Therefore, it is important to consider this limit before
creating a database. When compatibility is set to 10.2.0 or later, you can exceed the
MAXLOGFILES limit, and the control files expand as needed. If MAXLOGFILES is
not specified for the CREATE DATABASE statement, then the database uses an
operating system specific default value.

s The MAXLOGMEMBERS parameter used in the CREATE DATABASE statement
determines the maximum number of members for each group. As with
MAXLOGFILES, the only way to override this upper limit is to re-create the
database or control file. Therefore, it is important to consider this limit before
creating a database. If no MAXLOGMEMBERS parameter is specified for the CREATE
DATABASE statement, then the database uses an operating system default value.

11-8 Oracle Database Administrator's Guide

Planning the Redo Log

See Also:

= Your operating system specific Oracle documentation for the
default and legal values of the MAXLOGFILES and
MAXLOGMEMBERS parameters

Controlling Archive Lag

You can force all enabled redo log threads to switch their current logs at regular time
intervals. In a primary/standby database configuration, changes are made available to
the standby database by archiving redo logs at the primary site and then shipping
them to the standby database. The changes that are being applied by the standby
database can lag behind the changes that are occurring on the primary database,
because the standby database must wait for the changes in the primary database redo
log to be archived (into the archived redo log) and then shipped to it. To limit this lag,
you can set the ARCHIVE_LAG_TARGET initialization parameter. Setting this
parameter lets you specify in seconds how long that lag can be.

Setting the ARCHIVE_LAG_TARGET Initialization Parameter

When you set the ARCHIVE_LAG_TARGET initialization parameter, you cause the
database to examine the current redo log of the instance periodically. If the following
conditions are met, then the instance will switch the log:

s The current log was created prior to n seconds ago, and the estimated archival
time for the current log is m seconds (proportional to the number of redo blocks
used in the current log), where n + m exceeds the value of the ARCHIVE_LAG_
TARGET initialization parameter.

s The current log contains redo records.

In an Oracle Real Application Clusters environment, the instance also causes other
threads to switch and archive their logs if they are falling behind. This can be
particularly useful when one instance in the cluster is more idle than the other
instances (as when you are running a 2-node primary/secondary configuration of
Oracle Real Application Clusters).

The ARCHIVE_LAG_TARGET initialization parameter specifies the target of how many
seconds of redo the standby could lose in the event of a primary shutdown or failure if
the Oracle Data Guard environment is not configured in a no-data-loss mode. It also
provides an upper limit of how long (in seconds) the current log of the primary
database can span. Because the estimated archival time is also considered, this is not
the exact log switch time.

The following initialization parameter setting sets the log switch interval to 30 minutes
(a typical value).

ARCHIVE_LAG_TARGET = 1800
A value of 0 disables this time-based log switching functionality. This is the default
setting.

You can set the ARCHIVE_LAG_TARGET initialization parameter even if there is no
standby database. For example, the ARCHIVE_LAG_TARGET parameter can be set
specifically to force logs to be switched and archived.

ARCHIVE_LAG_TARGET is a dynamic parameter and can be set with the ALTER
SYSTEM SET statement.

Managing the Redo Log 11-9

Creating Redo Log Groups and Members

Caution: The ARCHIVE_LAG_TARGET parameter must be set to
the same value in all instances of an Oracle Real Application
Clusters environment. Failing to do so results in unpredictable
behavior.

Factors Affecting the Setting of ARCHIVE_LAG_TARGET

Consider the following factors when determining if you want to set the ARCHIVE_
LAG_TARGET parameter and in determining the value for this parameter.

» Overhead of switching (as well as archiving) logs

= How frequently normal log switches occur as a result of log full conditions

» How much redo loss is tolerated in the standby database

Setting ARCHIVE_LAG_TARGET may not be very useful if natural log switches already
occur more frequently than the interval specified. However, in the case of
irregularities of redo generation speed, the interval does provide an upper limit for the
time range each current log covers.

If the ARCHIVE_LAG_TARGET initialization parameter is set to a very low value, there
can be a negative impact on performance. This can force frequent log switches. Set the
parameter to a reasonable value so as not to degrade the performance of the primary
database.

Creating Redo Log Groups and Members

Plan the redo log of a database and create all required groups and members of redo
log files during database creation. However, there are situations where you might
want to create additional groups or members. For example, adding groups to a redo
log can correct redo log group availability problems.

To create new redo log groups and members, you must have the ALTER DATABASE
system privilege. A database can have up to MAXLOGFILES groups.

See Also: Oracle Database SQL Language Reference for a complete
description of the ALTER DATABASE statement

Creating Redo Log Groups

To create a new group of redo log files, use the SQL statement ALTER DATABASE with
the ADD LOGFILE clause.

The following statement adds a new group of redo logs to the database:

ALTER DATABASE
ADD LOGFILE ('/oracle/dbs/loglc.rdo', '/oracle/dbs/log2c.rdo') SIZE 100M;

Note: Provide full path names of new log members to specify
their location. Otherwise, the files are created in either the default
or current directory of the database server, depending upon your
operating system.

You can also specify the number that identifies the group using the GROUP clause:

ALTER DATABASE
ADD LOGFILE GROUP 10 ('/oracle/dbs/loglc.rdo', '/oracle/dbs/log2c.rdo')

11-10 Oracle Database Administrator's Guide

Relocating and Renaming Redo Log Members

SIZE 100M BLOCKSIZE 512;

Using group numbers can make administering redo log groups easier. However, the
group number must be between 1 and MAXLOGFILES. Do not skip redo log file group
numbers (that is, do not number your groups 10, 20, 30, and so on), or you will
consume unnecessary space in the control files of the database.

In the preceding statement, the BLOCKSIZE clause is optional. See "Planning the Block
Size of Redo Log Files" on page 11-7 for more information.

Creating Redo Log Members

In some cases, it might not be necessary to create a complete group of redo log files. A
group could already exist, but not be complete because one or more members of the
group were dropped (for example, because of a disk failure). In this case, you can add
new members to an existing group.

To create new redo log members for an existing group, use the SQL statement ALTER
DATABASE with the ADD LOGFILE MEMBER clause. The following statement adds a
new redo log member to redo log group number 2:

ALTER DATABASE ADD LOGFILE MEMBER '/oracle/dbs/log2b.rdo' TO GROUP 2;
Notice that filenames must be specified, but sizes need not be. The size of the new
members is determined from the size of the existing members of the group.

When using the ALTER DATABASE statement, you can alternatively identify the target
group by specifying all of the other members of the group in the TO clause, as shown
in the following example:

ALTER DATABASE ADD LOGFILE MEMBER '/oracle/dbs/log2c.rdo'
TO ('/oracle/dbs/log2a.rdo', '/oracle/dbs/log2b.rdo');

Note: Fully specify the filenames of new log members to indicate
where the operating system files should be created. Otherwise, the
files will be created in either the default or current directory of the
database server, depending upon your operating system. You may
also note that the status of the new log member is shown as
INVALID. This is normal and it will change to active (blank) when
it is first used.

Relocating and Renaming Redo Log Members

You can use operating system commands to relocate redo logs, then use the ALTER
DATABASE statement to make their new names (locations) known to the database. This
procedure is necessary, for example, if the disk currently used for some redo log files
is going to be removed, or if datafiles and a number of redo log files are stored on the
same disk and should be separated to reduce contention.

To rename redo log members, you must have the ALTER DATABASE system privilege.
Additionally, you might also need operating system privileges to copy files to the
desired location and privileges to open and back up the database.

Before relocating your redo logs, or making any other structural changes to the
database, completely back up the database in case you experience problems while
performing the operation. As a precaution, after renaming or relocating a set of redo
log files, immediately back up the database control file.

Managing the Redo Log 11-11

Relocating and Renaming Redo Log Members

Use the following steps for relocating redo logs. The example used to illustrate these
steps assumes:

s Thelog files are located on two disks: diska and diskb.

s Theredo log is duplexed: one group consists of the members
/diska/logs/logla.rdo and /diskb/logs/loglb.rdo, and the second
group consists of the members /diska/logs/log2a.rdo and
/diskb/logs/log2b.rdo.

s The redo log files located on diska must be relocated to diskc. The new
filenames will reflect the new location: /diskc/logs/loglc.rdo and
/diskc/logs/log2c.rdo.

Steps for Renaming Redo Log Members

1. Shut down the database.

SHUTDOWN

2. Copy the redo log files to the new location.

Operating system files, such as redo log members, must be copied using the
appropriate operating system commands. See your operating system specific
documentation for more information about copying files.

Note: You can execute an operating system command to copy a
file (or perform other operating system commands) without exiting
SQL*Plus by using the HOST command. Some operating systems
allow you to use a character in place of the word HOST. For
example, you can use an exclamation point (!) in UNIX.

The following example uses operating system commands (UNIX) to move the
redo log members to a new location:

mv /diska/logs/logla.rdo /diskc/logs/loglc.rdo
mv /diska/logs/log2a.rdo /diskc/logs/log2c.rdo
3. Startup the database, mount, but do not open it.
CONNECT / as SYSDBA
STARTUP MOUNT
4. Rename the redo log members.

Use the ALTER DATABASE statement with the RENAME FILE clause to rename
the database redo log files.

ALTER DATABASE
RENAME FILE '/diska/logs/logla.rdo', '/diska/logs/log2a.rdo'
TO '/diskc/logs/loglc.rdo', '/diskc/logs/log2c.rdo';

5. Open the database for normal operation.
The redo log alterations take effect when the database is opened.

ALTER DATABASE OPEN;

11-12 Oracle Database Administrator's Guide

Dropping Redo Log Groups and Members

Dropping Redo Log Groups and Members

In some cases, you may want to drop an entire group of redo log members. For
example, you want to reduce the number of groups in an instance redo log. In a
different case, you may want to drop one or more specific redo log members. For
example, if a disk failure occurs, you may need to drop all the redo log files on the
failed disk so that the database does not try to write to the inaccessible files. In other
situations, particular redo log files become unnecessary. For example, a file might be
stored in an inappropriate location.

Dropping Log Groups

To drop a redo log group, you must have the ALTER DATABASE system privilege.
Before dropping a redo log group, consider the following restrictions and precautions:

= Aninstance requires at least two groups of redo log files, regardless of the number
of members in the groups. (A group comprises one or more members.)

= You can drop a redo log group only if it is inactive. If you need to drop the current
group, first force a log switch to occur.

= Make sure a redo log group is archived (if archiving is enabled) before dropping
it. To see whether this has happened, use the V$LOG view.

SELECT GROUP#, ARCHIVED, STATUS FROM VS$LOG;

GROUP# ARC STATUS

1 YES ACTIVE

2 NO CURRENT
3 YES INACTIVE
4 YES INACTIVE

Drop a redo log group with the SQL statement ALTER DATABASE with the DROP
LOGFILE clause.

The following statement drops redo log group number 3:

ALTER DATABASE DROP LOGFILE GROUP 3;

When a redo log group is dropped from the database, and you are not using the
Oracle-managed files feature, the operating system files are not deleted from disk.
Rather, the control files of the associated database are updated to drop the members of
the group from the database structure. After dropping a redo log group, make sure
that the drop completed successfully, and then use the appropriate operating system
command to delete the dropped redo log files.

When using Oracle-managed files, the cleanup of operating systems files is done
automatically for you.

Dropping Redo Log Members

To drop a redo log member, you must have the ALTER DATABASE system privilege.
Consider the following restrictions and precautions before dropping individual redo
log members:

= Itis permissible to drop redo log files so that a multiplexed redo log becomes
temporarily asymmetric. For example, if you use duplexed groups of redo log
files, you can drop one member of one group, even though all other groups have
two members each. However, you should rectify this situation immediately so that

Managing the Redo Log 11-13

Forcing Log Switches

all groups have at least two members, and thereby eliminate the single point of
failure possible for the redo log.

= Aninstance always requires at least two valid groups of redo log files, regardless
of the number of members in the groups. (A group comprises one or more
members.) If the member you want to drop is the last valid member of the group,
you cannot drop the member until the other members become valid. To see a redo
log file status, use the VSLOGFILE view. A redo log file becomes INVALID if the
database cannot access it. It becomes STALE if the database suspects that it is not
complete or correct. A stale log file becomes valid again the next time its group is
made the active group.

= You can drop a redo log member only if it is not part of an active or current group.
If you want to drop a member of an active group, first force a log switch to occur.

= Make sure the group to which a redo log member belongs is archived (if archiving
is enabled) before dropping the member. To see whether this has happened, use
the VSLOG view.

To drop specific inactive redo log members, use the ALTER DATABASE statement with
the DROP LOGFILE MEMBER clause.

The following statement drops the redo log /oracle/dbs/log3c.rdo:

ALTER DATABASE DROP LOGFILE MEMBER '/oracle/dbs/log3c.rdo';

When a redo log member is dropped from the database, the operating system file is
not deleted from disk. Rather, the control files of the associated database are updated
to drop the member from the database structure. After dropping a redo log file, make
sure that the drop completed successfully, and then use the appropriate operating
system command to delete the dropped redo log file.

To drop a member of an active group, you must first force a log switch.

Forcing Log Switches

A log switch occurs when LGWR stops writing to one redo log group and starts
writing to another. By default, a log switch occurs automatically when the current
redo log file group fills.

You can force a log switch to make the currently active group inactive and available
for redo log maintenance operations. For example, you want to drop the currently
active group, but are not able to do so until the group is inactive. You may also wish to
force a log switch if the currently active group needs to be archived at a specific time
before the members of the group are completely filled. This option is useful in
configurations with large redo log files that take a long time to fill.

To force a log switch, you must have the ALTER SYSTEM privilege. Use the ALTER
SYSTEM statement with the SWITCH LOGFILE clause.

The following statement forces a log switch:

ALTER SYSTEM SWITCH LOGFILE;

Verifying Blocks in Redo Log Files

You can configure the database to use checksums to verify blocks in the redo log files.
If you set the initialization parameter DB_BLOCK_CHECKSUM to TYPICAL (the default),
the database computes a checksum for each database block when it is written to disk,

11-14 Oracle Database Administrator's Guide

Clearing a Redo Log File

including each redo log block as it is being written to the current log. The checksum is
stored the header of the block.

Oracle Database uses the checksum to detect corruption in a redo log block. The
database verifies the redo log block when the block is read from an archived log
during recovery and when it writes the block to an archive log file. An error is raised
and written to the alert log if corruption is detected.

If corruption is detected in a redo log block while trying to archive it, the system
attempts to read the block from another member in the group. If the block is corrupted
in all members of the redo log group, then archiving cannot proceed.

The value of the DB_BLOCK_CHECKSUM parameter can be changed dynamically using
the ALTER SYSTEM statement.

Note: There is a slight overhead and decrease in database
performance with DB_ BLOCK_CHECKSUM enabled. Monitor your
database performance to decide if the benefit of using data block
checksums to detect corruption outweighs the performance impact.

See Also: Oracle Database Reference for a description of the DB_
BLOCK_CHECKSUM initialization parameter

Clearing a Redo Log File

A redo log file might become corrupted while the database is open, and ultimately
stop database activity because archiving cannot continue. In this situation the ALTER
DATABASE CLEAR LOGFILE statement can be used to reinitialize the file without
shutting down the database.

The following statement clears the log files in redo log group number 3:

ALTER DATABASE CLEAR LOGFILE GROUP 3;

This statement overcomes two situations where dropping redo logs is not possible:
= If there are only two log groups
s The corrupt redo log file belongs to the current group

If the corrupt redo log file has not been archived, use the UNARCHIVED keyword in the
statement.

ALTER DATABASE CLEAR UNARCHIVED LOGFILE GROUP 3;
This statement clears the corrupted redo logs and avoids archiving them. The cleared
redo logs are available for use even though they were not archived.

If you clear a log file that is needed for recovery of a backup, then you can no longer
recover from that backup. The database writes a message in the alert log describing the
backups from which you cannot recover.

Note: If you clear an unarchived redo log file, you should make
another backup of the database.

If you want to clear an unarchived redo log that is needed to bring an offline
tablespace online, use the UNRECOVERABLE DATAFILE clause in the ALTER
DATABASE CLEAR LOGFILE statement.

Managing the Redo Log 11-15

Redo Log Data Dictionary Views

If you clear a redo log needed to bring an offline tablespace online, you will not be
able to bring the tablespace online again. You will have to drop the tablespace or
perform an incomplete recovery. Note that tablespaces taken offline normal do not
require recovery.

Redo Log Data Dictionary Views

The following views provide information on redo logs.

View Description

VS$LOG Displays the redo log file information from the control file
VSLOGFILE Identifies redo log groups and members and member status
VSLOG_HISTORY Contains log history information

The following query returns the control file information about the redo log for a
database.

SELECT * FROM VS$LOG;

GROUP# THREAD# SEQ BYTES MEMBERS ARC STATUS FIRST CHANGE# FIRST TIM
1 1 10605 1048576 1 YES ACTIVE 11515628 16-APR-00
2 1 10606 1048576 1 NO CURRENT 11517595 16-APR-00
3 1 10603 1048576 1 YES INACTIVE 11511666 16-APR-00
4 1 10604 1048576 1 YES INACTIVE 11513647 16-APR-00

To see the names of all of the member of a group, use a query similar to the following:

SELECT * FROM VSLOGFILE;

GROUP# STATUS MEMBER

1 D:\ORANT\ORADATA\IDDB2\REDOO4 .LOG
2 D: \ORANT\ORADATA\IDDB2\REDOO3 .LOG
3 D:\ORANT\ORADATA\IDDB2\REDOO2 .LOG
4 D:\ORANT\ORADATA\IDDB2\REDOO1.LOG

If STATUS is blank for a member, then the file is in use.

See Also: Oracle Database Reference for detailed information about
these views

11-16 Oracle Database Administrator's Guide

12

Managing Archived Redo Logs

In this chapter:

= WhatIs the Archived Redo Log?

s Choosing Between NOARCHIVELOG and ARCHIVELOG Mode
= Controlling Archiving

= Specifying Archive Destinations

= About Log Transmission Modes

» Managing Archive Destination Failure

» Controlling Trace Output Generated by the Archivelog Process

= Viewing Information About the Archived Redo Log

See Also:

» Chapter 16, "Using Oracle-Managed Files" for information
about creating an archived redo log that is both created and
managed by the Oracle Database server

» Oracle Real Application Clusters Administration and Deployment
Guide for information specific to archiving in the Oracle Real
Application Clusters environment

What Is the Archived Redo Log?

Oracle Database lets you save filled groups of redo log files to one or more offline
destinations, known collectively as the archived redo log. The process of turning redo
log files into archived redo log files is called archiving. This process is only possible if
the database is running in ARCHIVELOG mode. You can choose automatic or manual
archiving.

An archived redo log file is a copy of one of the filled members of a redo log group. It
includes the redo entries and the unique log sequence number of the identical member
of the redo log group. For example, if you are multiplexing your redo log, and if group
1 contains identical member files a_logl and b_logl, then the archiver process
(ARCn) will archive one of these member files. Should a_1logl become corrupted,
then ARCn can still archive the identical b_logl. The archived redo log contains a
copy of every group created since you enabled archiving.

When the database is running in ARCHIVELOG mode, the log writer process (LGWR)
cannot reuse and hence overwrite a redo log group until it has been archived. The
background process ARCn automates archiving operations when automatic archiving

Managing Archived Redo Logs 12-1

Choosing Between NOARCHIVELOG and ARCHIVELOG Mode

is enabled. The database starts multiple archiver processes as needed to ensure that
the archiving of filled redo logs does not fall behind.

You can use archived redo logs to:
= Recover a database
= Update a standby database

= Get information about the history of a database using the LogMiner utility

See Also: The following sources document the uses for archived
redo logs:

» Oracle Database Backup and Recovery User's Guide

s Oracle Data Guard Concepts and Administration discusses setting
up and maintaining a standby database

s Oracle Database Utilities contains instructions for using the
LogMiner PL/SQL package

Choosing Between NOARCHIVELOG and ARCHIVELOG Mode

This section describes the issues you must consider when choosing to run your
database in NOARCHIVELOG or ARCHIVELOG mode, and contains these topics:

= Running a Database in NOARCHIVELOG Mode
= Running a Database in ARCHIVELOG Mode

The choice of whether to enable the archiving of filled groups of redo log files depends
on the availability and reliability requirements of the application running on the
database. If you cannot afford to lose any data in your database in the event of a disk
failure, use ARCHIVELOG mode. The archiving of filled redo log files can require you
to perform extra administrative operations.

Running a Database in NOARCHIVELOG Mode

When you run your database in NOARCHIVELOG mode, you disable the archiving of
the redo log. The database control file indicates that filled groups are not required to
be archived. Therefore, when a filled group becomes inactive after a log switch, the
group is available for reuse by LGWR.

NOARCHIVELOG mode protects a database from instance failure but not from media
failure. Only the most recent changes made to the database, which are stored in the
online redo log groups, are available for instance recovery. If a media failure occurs
while the database is in NOARCHIVELOG mode, you can only restore the database to
the point of the most recent full database backup. You cannot recover transactions
subsequent to that backup.

In NOARCHIVELOG mode you cannot perform online tablespace backups, nor can you
use online tablespace backups taken earlier while the database was in ARCHIVELOG
mode. To restore a database operating in NOARCHIVELOG mode, you can use only
whole database backups taken while the database is closed. Therefore, if you decide to
operate a database in NOARCHIVELOG mode, take whole database backups at regular,
frequent intervals.

12-2 Oracle Database Administrator's Guide

Choosing Between NOARCHIVELOG and ARCHIVELOG Mode

Running a Database in ARCHIVELOG Mode

When you run a database in ARCHIVELOG mode, you enable the archiving of the redo
log. The database control file indicates that a group of filled redo log files cannot be
reused by LGWR until the group is archived. A filled group becomes available for
archiving immediately after a redo log switch occurs.

The archiving of filled groups has these advantages:

= A database backup, together with online and archived redo log files, guarantees
that you can recover all committed transactions in the event of an operating
system or disk failure.

= If you keep an archived log, you can use a backup taken while the database is
open and in normal system use.

= You can keep a standby database current with its original database by
continuously applying the original archived redo logs to the standby.

You can configure an instance to archive filled redo log files automatically, or you can
archive manually. For convenience and efficiency, automatic archiving is usually best.
Figure 121 illustrates how the archiver process (ARCO in this illustration) writes filled
redo log files to the database archived redo log.

If all databases in a distributed database operate in ARCHIVELOG mode, you can
perform coordinated distributed database recovery. However, if any database in a
distributed database is in NOARCHIVELOG mode, recovery of a global distributed
database (to make all databases consistent) is limited by the last full backup of any
database operating in NOARCHIVELOG mode.

Figure 12-1 Redo Log File Use in ARCHIVELOG Mode

O
- m Archived
Redo Log
m b

ARCO ARCO ARCO

Managing Archived Redo Logs 12-3

Controlling Archiving

Tip: Itis good practice to move archived redo log files and
corresponding database backups from the local disk to permanent
offline storage media such as tape. A primary value of archived logs is
database recovery, so you want to ensure that these logs are safe
should disaster strike your primary database.

Controlling Archiving

This section describes how to set the archiving mode of the database and how to
control the archiving process. The following topics are discussed:

= Setting the Initial Database Archiving Mode
s Changing the Database Archiving Mode
» Performing Manual Archiving

= Adjusting the Number of Archiver Processes

See Also: your Oracle operating system specific documentation
for additional information on controlling archiving modes

Setting the Initial Database Archiving Mode

You set the initial archiving mode as part of database creation in the CREATE
DATABASE statement. Usually, you can use the default of NOARCHIVELOG mode at
database creation because there is no need to archive the redo information generated
by that process. After creating the database, decide whether to change the initial
archiving mode.

If you specify ARCHIVELOG mode, you must have initialization parameters set that
specify the destinations for the archived redo log files (see "Setting Initialization
Parameters for Archive Destinations" on page 12-6).

Changing the Database Archiving Mode

To change the archiving mode of the database, use the ALTER DATABASE statement
with the ARCHIVELOG or NOARCHIVELOG clause. To change the archiving mode, you
must be connected to the database with administrator privileges (AS SYSDBA).

The following steps switch the database archiving mode from NOARCHIVELOG to
ARCHIVELOG:

1. Shut down the database instance.
SHUTDOWN
An open database must first be closed and any associated instances shut down

before you can switch the database archiving mode. You cannot change the mode
from ARCHIVELOG to NOARCHIVELOG if any datafiles need media recovery.

2. Back up the database.

Before making any major change to a database, always back up the database to
protect against any problems. This will be your final backup of the database in
NOARCHIVELOG mode and can be used if something goes wrong during the
change to ARCHIVELOG mode. See Oracle Database Backup and Recovery User’s
Guide for information about taking database backups.

12-4 Oracle Database Administrator's Guide

Controlling Archiving

3. Edit the initialization parameter file to include the initialization parameters that
specify the destinations for the archived redo log files (see "Setting Initialization
Parameters for Archive Destinations" on page 12-6).

4. Start a new instance and mount, but do not open, the database.

STARTUP MOUNT

To enable or disable archiving, the database must be mounted but not open.

5. Change the database archiving mode. Then open the database for normal
operations.

ALTER DATABASE ARCHIVELOG;
ALTER DATABASE OPEN;

6. Shut down the database.

SHUTDOWN IMMEDIATE

7. Back up the database.

Changing the database archiving mode updates the control file. After changing the
database archiving mode, you must back up all of your database files and control
file. Any previous backup is no longer usable because it was taken in
NOARCHIVELOG mode.

See Also: Oracle Real Application Clusters Administration and
Deployment Guide for more information about switching the
archiving mode when using Real Application Clusters

Performing Manual Archiving

As mentioned in "Running a Database in ARCHIVELOG Mode" on page 12-3, for
convenience and efficiency, automatic archiving is usually best. However, you can
configure your database for manual archiving only. To operate your database in
manual archiving mode, follow the procedure described in "Changing the Database
Archiving Mode" on page 12-4, but replace the ALTER DATABASE statement in step 5
with the following statement:

ALTER DATABASE ARCHIVELOG MANUAL;

When you operate your database in manual ARCHIVELOG mode, you must archive
inactive groups of filled redo log files or your database operation can be temporarily
suspended. To archive a filled redo log group manually, connect with administrator
privileges. Ensure that the database is either mounted or open. Use the ALTER
SYSTEM statement with the ARCHIVE LOG clause to manually archive filled redo log
files. The following statement archives all unarchived log files:

ALTER SYSTEM ARCHIVE LOG ALL;

When you use manual archiving mode, you cannot specify any standby databases in
the archiving destinations.

Even when automatic archiving is enabled, you can use manual archiving for such
actions as rearchiving an inactive group of filled redo log members to another location.
In this case, it is possible for the instance to reuse the redo log group before you have
finished manually archiving, and thereby overwrite the files. If this happens, the
database writes an error message to the alert log.

Managing Archived Redo Logs 12-5

Specifying Archive Destinations

Adjusting the Number of Archiver Processes

The LOG_ARCHIVE_MAX_PROCESSES initialization parameter specifies the number of
ARCn processes that the database initially invokes. The default is two processes. There
is usually no need specify this initialization parameter or to change its default value,
because the database starts additional archiver processes (ARCn) as needed to ensure
that the automatic processing of filled redo log files does not fall behind.

However, to avoid any runtime overhead of invoking additional ARCn processes, you
can set the LOG_ARCHIVE_MAX PROCESSES initialization parameter to specify up to
ten ARCn processes to be started at instance startup. The LOG_ARCHIVE_MAX_
PROCESSES parameter is dynamic, and can be changed using the ALTER SYSTEM
statement. The database must be mounted but not open. The following statement
increases (or decreases) the number of ARCn processes currently running:

ALTER SYSTEM SET LOG_ARCHIVE_MAX PROCESSES=3;

Specifying Archive Destinations

Before you can archive redo logs, you must determine the destination to which you
will archive, and familiarize yourself with the various destination states. The dynamic
performance (V$) views, listed in "Viewing Information About the Archived Redo
Log" on page 12-14, provide all needed archive information.

This section contains:
» Setting Initialization Parameters for Archive Destinations
s Understanding Archive Destination Status

= Specifying Alternate Destinations

Setting Initialization Parameters for Archive Destinations

You can choose to archive redo logs to a single destination or to multiple destinations.
Destinations can be local—within the local file system or an Oracle Automatic Storage
Management (Oracle ASM) disk group—or remote (on a standby database). When you
archive to multiple destinations, a copy of each filled redo log file is written to each
destination. These redundant copies help ensure that archived logs are always
available in the event of a failure at one of the destinations.

If you want to archive to only a single destination, then specify that destination using
the LOG_ARCHIVE_DEST initialization parameter. If you want to archive to multiple
destinations, then you can choose to archive to two or more locations using the LOG_
ARCHIVE_DEST_n initialization parameters, or to archive only to a primary and
secondary destination using the LOG_ARCHIVE_DEST and LOG_ARCHIVE_DUPLEX_
DEST initialization parameters.

For local destinations, in addition to the local file system or an Oracle ASM disk group,
you can archive to the Fast Recovery Area. The database uses the Fast Recovery Area
to store and automatically manage disk space for a variety of files related to backup
and recovery. See Oracle Database Backup and Recovery User's Guide for details about the
Fast Recovery Area.

Typically, you determine archive log destinations during database planning, and you
set the initialization parameters for archive destinations during database installation.
However, you can use the ALTER SYSTEM command to dynamically add or change
archive destinations after your database is running. Any destination changes that you
make take effect at the next log switch (automatic or manual).

12-6 Oracle Database Administrator's Guide

Specifying Archive Destinations

The following table summarizes the archive destination alternatives, which are further
described in the sections that follow.

through Oracle Net
service name.

Method | Initialization Parameter Host Example
1 LOG_ARCHIVE_DEST_n Local or LOG_ARCHIVE_DEST_1 = 'LOCATION=/diskl/arc'
where: remote LOG_ARCHIVE_DEST_2 = 'LOCATION=/disk2/arc’
n is an integer from 1 to 31. Archive LOG_ARCHIVE_DEST 3 = 'SERVICE=standbyl'
destinations 1 to 10 are available for
local or remote locations. Archive
destinations 11 to 31 are available
for remote locations only.
2 LOG_ARCHIVE_DEST and Local only LOG_ARCHIVE_DEST = '/diskl/arc'
LOG_ARCHIVE_DUPLEX_DEST LOG_ARCHIVE_DUPLEX_DEST = '/disk2/arc’
Method 1: Using the LOG_ARCHIVE_DEST_n Parameter
Use the LOG_ARCHIVE_DEST_n parameter (where # is an integer from 1 to 31) to
specify from one to 31 different destinations for archived logs. Each numerically
suffixed parameter uniquely identifies an individual destination.
You specify the location for LOG_ARCHIVE_DEST_n using the keywords explained in
the following table:
Keyword Indicates Example
LOCATION | A local file system LOG_ARCHIVE_DEST _n = 'LOCATION=/diskl/arc'
location or Oracle ASM. | | oy ApcHTVE DEST_n = 'LOCATION=+DGROUPL"
disk group
LOCATION | The Fast Recovery Area | LOG_ARCHIVE_DEST n = 'LOCATION=USE_DB_RECOVERY_FILE_DEST'
SERVICE Remote archival LOG_ARCHIVE_DEST n = 'SERVICE=standbyl'

If you use the LOCATION keyword, specify one of the following:

= A valid path name in your operating system’s local file system

= An Oracle ASM disk group

s The keyword USE_DB_RECOVERY_FILE_DEST to indicate the Fast Recovery Area

If you specify SERVICE, supply a net service name that Oracle Net can resolve to a
connect descriptor for a standby database. The connect descriptor contains the
information necessary for connecting to the remote database.

Perform the following steps to set the destination for archived redo logs using the
LOG_ARCHIVE_DEST_n initialization parameter:

1. Setthe LOG_ARCHIVE_DEST_n initialization parameter to specify from one to 31
For example, enter:

archiving locations.

LOG_ARCHIVE_DEST_1 = 'LOCATION = /diskl/archive'
LOG_ARCHIVE_DEST_2 = 'LOCATION = /disk2/archive'
LOG_ARCHIVE_DEST 3 = 'LOCATION = +RECOVERY'

If you are archiving to a standby database, then use the SERVICE keyword to

specify a valid net service name. For example, enter:

LOG_ARCHIVE_DEST_4 = 'SERVICE = standbyl'

Managing Archived Redo Logs 12-7

Specifying Archive Destinations

2. Optionally, set the LOG_ARCHIVE_FORMAT initialization parameter, using $t to
include the thread number as part of the file name, $s to include the log sequence
number, and %r to include the resetlogs ID (a timestamp value represented in
ub4). Use capital letters (3T, %S, and %R) to pad the file name to the left with
zeroes.

Note: If the COMPATIBLE initialization parameter is set to 10.0.0
or higher, the database requires the specification of resetlogs ID
(%r) when you include the LOG_ARCHIVE_FORMAT parameter. The
default for this parameter is operating system dependent. For
example, this is the default format for UNIX:

LOG_ARCHIVE_FORMAT=%t_%s_%r.dbf

The incarnation of a database changes when you open it with the
RESETLOGS option. Specifying %r causes the database to capture
the resetlogs ID in the archived redo log file name. See Oracle
Database Backup and Recovery User’s Guide for more information
about this method of recovery.

The following example shows a setting of LOG_ARCHIVE_FORMAT:

LOG_ARCHIVE_FORMAT = arch_%t_%s_%r.arc

This setting will generate archived logs as follows for thread 1; log sequence
numbers 100, 101, and 102; resetlogs ID 509210197. The identical resetlogs ID
indicates that the files are all from the same database incarnation:

/diskl/archive/arch_1_100_509210197.arc,
/diskl/archive/arch_1_101_509210197.arc,
/diskl/archive/arch_1_102_509210197.arc

/disk2/archive/arch_1_100_509210197.arc,
/disk2/archive/arch_1_101_509210197.arc,
/disk2/archive/arch_1_102_509210197.arc

/disk3/archive/arch_1_100_509210197.arc,
/disk3/archive/arch_1_101_509210197.arc,
/disk3/archive/arch_1_102_509210197.arc

Method 2: Using LOG_ARCHIVE_DEST and LOG_ARCHIVE_DUPLEX_DEST

To specify a maximum of two locations, use the LOG_ARCHIVE_DEST parameter to
specify a primary archive destination and the LOG_ARCHIVE_DUPLEX_DEST to
specify an optional secondary archive destination. All locations must be local.
Whenever the database archives a redo log, it archives it to every destination specified
by either set of parameters.

Perform the following steps the use method 2:

1. Specify destinations for the LOG_ARCHIVE_DEST and LOG_ARCHIVE_DUPLEX_
DEST parameter (you can also specify LOG_ARCHIVE_DUPLEX_DEST dynamically
using the ALTER SYSTEM statement). For example, enter:

LOG_ARCHIVE_DEST = '/diskl/archive'
LOG_ARCHIVE_DUPLEX_DEST = '/disk2/archive'

2, Set the LOG_ARCHIVE_FORMAT initialization parameter as described in step 2 for
method 1.

12-8 Oracle Database Administrator's Guide

Specifying Archive Destinations

Note: If you configure a Fast Recovery Area (by setting the DB_
RECOVERY_FILE_DEST and DB_RECOVERY_FILE_DEST_SIZE
parameters) and do not specify any local archive destinations, the
database automatically selects the Fast Recovery Area as a local
archive destination and sets LOG_ARCHIVE_DEST_1 to USE_DB_
RECOVERY_FILE_DEST.

WARNING: You must ensure that there is sufficient disk space at
all times for archive log destinations. If the database encounters a
disk full error as it attempts to archive a log file, a fatal error occurs
and the database stops responding. You can check the alert log for a
disk full message.

See Also:

» Oracle Database Reference for additional information about the
initialization parameters used to control the archiving of redo
logs

» Oracle Data Guard Concepts and Administration for information
about using the LOG_ARCHIVE_DEST_n initialization
parameter for specifying a standby destination. There are
additional keywords that can be specified with this
initialization parameter that are not discussed in this book.

s Oracle Database Net Services Administrator’s Guide for a
discussion of net service names and connect descriptors.

» Oracle Database Backup and Recovery User’s Guide for information
about the Fast Recovery Area

Understanding Archive Destination Status

Each archive destination has the following variable characteristics that determine its

status:

Valid/Invalid: indicates whether the disk location or service name information is
specified and valid

Enabled/Disabled: indicates the availability state of the location and whether the
database can use the destination

Active/Inactive: indicates whether there was a problem accessing the destination

Several combinations of these characteristics are possible. To obtain the current status
and other information about each destination for an instance, query the VSARCHIVE_
DEST view.

The LOG_ARCHIVE_DEST_STATE_n (where 7 is an integer from 1 to 31) initialization
parameter lets you control the availability state of the specified destination (n).

ENABLE indicates that the database can use the destination.
DEFER indicates that the location is temporarily disabled.

ALTERNATE indicates that the destination is an alternate. The availability state of
an alternate destination is DEFER. If its parent destination fails, the availability

Managing Archived Redo Logs 12-9

About Log Transmission Modes

state of the alternate becomes ENABLE. ALTERNATE cannot be specified for
destinations LOG_ARCHIVE_DEST 11 to LOG_ARCHIVE_DEST 31.

Specifying Alternate Destinations

If you want to specify that a location be an archive destination only in the event of a
failure of another destination, you can make it an alternate destination. Both local and
remote destinations can be alternates. The following example makes LOG_ARCHIVE_
DEST_4 an alternate for LOG_ARCHIVE_DEST 3:

ALTER SYSTEM SET LOG_ARCHIVE_DEST 4 = 'LOCATION=/disk4/arch';

ALTER SYSTEM SET LOG_ARCHIVE_DEST 3 'LOCATION=/disk3/arch
ALTERNATE=LOG_ARCHIVE_DEST 4';

ALTER SYSTEM SET LOG_ARCHIVE_DEST STATE_4=ALTERNATE;

SQL> SELECT dest_name, status, destination FROM vS$Sarchive_dest;

DEST_NAME STATUS DESTINATION
LOG_ARCHIVE_DEST_1 VALID /diskl/arch
LOG_ARCHIVE_DEST_2 VALID +RECOVERY

LOG_ARCHIVE_DEST_3 VALID /disk3/arch
LOG_ARCHIVE_DEST_4 ALTERNATE /disk4/arch

About Log Transmission Modes

The two modes of transmitting archived logs to their destination are normal archiving
transmission and standby transmission mode. Normal transmission involves
transmitting files to a local disk. Standby transmission involves transmitting files
through a network to either a local or remote standby database.

Normal Transmission Mode

In normal transmission mode, the archiving destination is another disk drive of the
database server. In this configuration archiving does not contend with other files
required by the instance and can complete more quickly. Specify the destination with
either the LOG_ARCHIVE_DEST_n or LOG_ARCHIVE_DEST parameters.

Standby Transmission Mode

In standby transmission mode, the archiving destination is either a local or remote
standby database.

Caution: You can maintain a standby database on a local disk, but
Oracle strongly encourages you to maximize disaster protection by
maintaining your standby database at a remote site.

See Also:
» Oracle Data Guard Concepts and Administration

n Oracle Database Net Services Administrator’s Guide for
information about connecting to a remote database using a
service name

12-10 Oracle Database Administrator's Guide

Managing Archive Destination Failure

Managing Archive Destination Failure

Sometimes archive destinations can fail, causing problems when you operate in
automatic archiving mode. Oracle Database provides procedures to help you
minimize the problems associated with destination failure. These procedures are
discussed in the sections that follow:

= Specifying the Minimum Number of Successful Destinations

= Rearchiving to a Failed Destination

Specifying the Minimum Number of Successful Destinations

The optional initialization parameter LOG_ARCHIVE_MIN_SUCCEED_DEST=n
determines the minimum number of destinations to which the database must
successfully archive a redo log group before it can reuse online log files. The default
value is 1. Valid values for n are 1 to 2 if you are using duplexing, or 1 to 31 if you are
multiplexing.

Specifying Mandatory and Optional Destinations

The LOG_ARCHIVE_DEST_n parameter lets you specify whether a destination is
OPTIONAL (the default) or MANDATORY. The LOG_ARCHIVE_MIN_SUCCEED_DEST=n
parameter uses all MANDATORY destinations plus some number of non-standby
OPTIONAL destinations to determine whether LGWR can overwrite the online log. The
following rules apply:

= Omitting the MANDATORY attribute for a destination is the same as specifying
OPTIONAL.

= You must have at least one local destination, which you can declare OPTIONAL or
MANDATORY.

» The MANDATORY attribute can only be specified for destinations LOG_ARCHIVE_
DEST_1 through LOG_ARCHIVE_DEST_10.

= When you specify a value for LOG_ARCHIVE_MIN_SUCCEED_DEST=n, Oracle
Database will treat at least one local destination as MANDATORY, because the
minimum value for LOG_ARCHIVE_MIN_SUCCEED_DEST is 1.

s The LOG_ARCHIVE_MIN_SUCCEED_DEST value cannot be greater than the
number of destinations, nor can it be greater than the number of MANDATORY
destinations plus the number of OPTIONAL local destinations.

= If you DEFER a MANDATORY destination, and the database overwrites the online
log without transferring the archived log to the standby site, then you must
transfer the log to the standby manually.

If you are duplexing the archived logs, you can establish which destinations are
mandatory or optional by using the LOG_ARCHIVE_DEST and LOG_ARCHIVE_
DUPLEX_DEST parameters. The following rules apply:

= Any destination declared by LOG_ARCHIVE_DEST is mandatory.

= Any destination declared by LOG_ARCHIVE_DUPLEX_DEST is optional if LOG_
ARCHIVE_MIN_SUCCEED_DEST = 1 and mandatory if LOG_ARCHIVE_MIN_
SUCCEED_DEST = 2.

Specifying the Number of Successful Destinations: Scenarios

You can see the relationship between the LOG_ARCHIVE_DEST_n and LOG_
ARCHIVE_MIN_SUCCEED_DEST parameters most easily through sample scenarios.

Managing Archived Redo Logs 12-11

Managing Archive Destination Failure

Scenario for Archiving to Optional Local Destinations In this scenario, you archive to three
local destinations, each of which you declare as OPTIONAL. Table 121 illustrates the
possible values for LOG_ARCHIVE_MIN_SUCCEED_DEST=n in this case.

Table 12-1 LOG_ARCHIVE_MIN_SUCCEED_DEST Values for Scenario 1

Value Meaning

1 The database can reuse log files only if at least one of the OPTIONAL
destinations succeeds.

2 The database can reuse log files only if at least two of the OPTIONAL
destinations succeed.

3 The database can reuse log files only if all of the OPTIONAL destinations
succeed.

4 or greater ERROR: The value is greater than the number of destinations.

This scenario shows that even though you do not explicitly set any of your
destinations to MANDATORY using the LOG_ARCHIVE_DEST_n parameter, the database
must successfully archive to one or more of these locations when LOG_ARCHIVE_
MIN_SUCCEED_DESTissetto 1,2, or 3.

Scenario for Archiving to Both Mandatory and Optional Destinations Consider a case in which:
= You specify two MANDATORY destinations.

= You specify two OPTIONAL destinations.

= No destination is a standby database.

Table 12-2 shows the possible values for LOG_ARCHIVE_MIN_SUCCEED_DEST=n.

Table 12-2 LOG_ARCHIVE_MIN_SUCCEED_DEST Values for Scenario 2

Value Meaning

1 The database ignores the value and uses the number of MANDATORY
destinations (in this example, 2).

2 The database can reuse log files even if no OPTIONAL destination
succeeds.

3 The database can reuse logs only if at least one OPTIONAL destination
succeeds.

4 The database can reuse logs only if both OPTIONAL destinations succeed.

5 or greater ERROR: The value is greater than the number of destinations.

This case shows that the database must archive to the destinations you specify as
MANDATORY, regardless of whether you set LOG_ARCHIVE_MIN_SUCCEED_DEST to
archive to a smaller number of destinations.

Rearchiving to a Failed Destination

Use the REOPEN attribute of the LOG_ARCHIVE_DEST_n parameter to specify whether
and when ARCn should attempt to rearchive to a failed destination following an error.
REOPEN applies to all errors, not just OPEN errors.

REOPEN=n sets the minimum number of seconds before ARCn should try to reopen a
failed destination. The default value for n is 300 seconds. A value of 0 is the same as
turning off the REOPEN attribute; ARCn will not attempt to archive after a failure. If

12-12 Oracle Database Administrator's Guide

Controlling Trace Output Generated by the Archivelog Process

you do not specify the REOPEN keyword, ARCn will never reopen a destination
following an error.

You cannot use REOPEN to specify the number of attempts ARCn should make to
reconnect and transfer archived logs. The REOPEN attempt either succeeds or fails.

When you specify REOPEN for an OPTIONAL destination, the database can overwrite
online logs if there is an error. If you specify REOPEN for a MANDATORY destination, the
database stalls the production database when it cannot successfully archive. In this
situation, consider the following options:

= Archive manually to the failed destination.

s Change the destination by deferring the destination, specifying the destination as
optional, or changing the service.

= Drop the destination.
When using the REOPEN keyword, note the following:

s ARCn reopens a destination only when starting an archive operation from the
beginning of the log file, never during a current operation. ARCn always retries the
log copy from the beginning.

s If you specified REOPEN, either with a specified time the default, ARCn checks to
see whether the time of the recorded error plus the REOPEN interval is less than
the current time. If it is, ARCn retries the log copy.

= The REOPEN clause successfully affects the ACTIVE=TRUE destination state. The
VALID and ENABLED states are not changed.

Controlling Trace Output Generated by the Archivelog Process

Background processes always write to a trace file when appropriate. (See the
discussion of this topic in "Monitoring Errors with Trace Files and the Alert Log" on
page 8-1.) In the case of the archivelog process, you can control the output that is
generated to the trace file. You do this by setting the LOG_ARCHIVE_TRACE
initialization parameter to specify a trace level. The following values can be specified:

Trace Level Meaning

0 Disable archivelog tracing. This is the default.

1 Track archival of redo log file.

2 Track archival status for each archivelog destination.
4 Track archival operational phase.

8 Track archivelog destination activity.

16 Track detailed archivelog destination activity.

32 Track archivelog destination parameter modifications.
64 Track ARCn process state activity.

128 Track FAL (fetch archived log) server related activities.
256 Supported in a future release.

512 Tracks asynchronous LGWR activity.

1024 RFS physical client tracking.

2048 ARCn/RFS heartbeat tracking.

Managing Archived Redo Logs 12-13

Viewing Information About the Archived Redo Log

Trace Level Meaning
4096 Track real-time apply
8192 Track redo apply activity (media recovery or physical standby)

You can combine tracing levels by specifying a value equal to the sum of the
individual levels that you would like to trace. For example, setting LOG_ARCHIVE_
TRACE=12, will generate trace level 8 and 4 output. You can set different values for
the primary and any standby database.

The default value for the LOG_ARCHIVE_TRACE parameter is 0. At this level, the
archivelog process generates appropriate alert and trace entries for error conditions.

You can change the value of this parameter dynamically using the ALTER SYSTEM
statement. The database must be mounted but not open. For example:

ALTER SYSTEM SET LOG_ARCHIVE_TRACE=12;

Changes initiated in this manner will take effect at the start of the next archiving
operation.

See Also: Oracle Data Guard Concepts and Administration for
information about using this parameter with a standby database

Viewing Information About the Archived Redo Log

You can display information about the archived redo log using dynamic performance
views or the ARCHIVE LOG LIST command.

This section contains the following topics:
= Archived Redo Logs Views
s The ARCHIVE LOG LIST Command

Archived Redo Logs Views

Several dynamic performance views contain useful information about archived redo
logs, as summarized in the following table.

Dynamic Performance View | Description

VSDATABASE Shows if the database is in ARCHIVELOG or NOARCHIVELOG
mode and if MANUAL (archiving mode) has been specified.

VSARCHIVED_LOG Displays historical archived log information from the
control file. If you use a recovery catalog, the RC_
ARCHIVED_LOG view contains similar information.

VS$SARCHIVE_DEST Describes the current instance, all archive destinations, and
the current value, mode, and status of these destinations.

VSARCHIVE_PROCESSES Displays information about the state of the various archive
processes for an instance.

V$BACKUP_REDOLOG Contains information about any backups of archived logs. If
you use a recovery catalog, the RC_BACKUP_REDOLOG
contains similar information.

V$LOG Displays all redo log groups for the database and indicates
which need to be archived.

12-14 Oracle Database Administrator's Guide

Viewing Information About the Archived Redo Log

Dynamic Performance View | Description

VSLOG_HISTORY Contains log history information such as which logs have
been archived and the SCN range for each archived log.

For example, the following query displays which redo log group requires archiving:

SELECT GROUP#, ARCHIVED
FROM SYS.VSLOG;

GROUP# ARC
1 YES
2 NO

To see the current archiving mode, query the V$DATABASE view:

SELECT LOG_MODE FROM SYS.VS$SDATABASE;

LOG_MODE

NOARCHIVELOG

See Also: Oracle Database Reference for detailed descriptions of
dynamic performance views

The ARCHIVE LOG LIST Command

The SQL*Plus command ARCHIVE LOG LIST displays archiving information for the
connected instance. For example:

SQL> ARCHIVE LOG LIST

Database log mode Archive Mode

Automatic archival Enabled

Archive destination D:\oracle\oradata\IDDB2\archive
0Oldest online log sequence 11160

Next log sequence to archive 11163

Current log sequence 11163

This display tells you all the necessary information regarding the archived redo log
settings for the current instance:

s The database is currently operating in ARCHIVELOG mode.

= Automatic archiving is enabled.

s The archived redo log destination is D:\oracle\oradata\IDDB2\archive.
s The oldest filled redo log group has a sequence number of 11160.

s The next filled redo log group to archive has a sequence number of 11163.

s The current redo log file has a sequence number of 11163.

See Also: SQL*Plus User's Guide and Reference for more
information on the ARCHIVE LOG LIST command

Managing Archived Redo Logs 12-15

Viewing Information About the Archived Redo Log

12-16 Oracle Database Administrator's Guide

13

Managing Tablespaces

In this chapter:

Guidelines for Managing Tablespaces

Creating Tablespaces

Specifying Nonstandard Block Sizes for Tablespaces

Controlling the Writing of Redo Records

Altering Tablespace Availability

Using Read-Only Tablespaces

Altering and Maintaining Tablespaces

Renaming Tablespaces

Dropping Tablespaces

Managing the SYSAUX Tablespace

Diagnosing and Repairing Locally Managed Tablespace Problems
Migrating the SYSTEM Tablespace to a Locally Managed Tablespace
Transporting Tablespaces Between Databases

Tablespace Data Dictionary Views

See Also:

» Oracle Database Concepts for a complete discussion of database
structure, space management, tablespaces, and datafiles

» Chapter 16, "Using Oracle-Managed Files" for information
about creating datafiles and tempfiles that are both created and
managed by the Oracle Database server

Guidelines for Managing Tablespaces

Before working with tablespaces of an Oracle Database, familiarize yourself with the
guidelines provided in the following sections:

Using Multiple Tablespaces

Assigning Tablespace Quotas to Users

Managing Tablespaces 13-1

Creating Tablespaces

Using Multiple Tablespaces

Using multiple tablespaces allows you more flexibility in performing database
operations. When a database has multiple tablespaces, you can:

= Separate user data from data dictionary data to reduce I/O contention.

= Se