

Oracle® Warehouse Builder
Data Modeling, ETL, and Data Quality Guide

11g Release 2 (11.2)

E10935-02

August 2009

Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide, 11g Release 2 (11.2)

E10935-02

Copyright © 2000, 2009, Oracle and/or its affiliates. All rights reserved.

Contributing Authors: Padmaja Potineni, Vishwanath Sreeraman

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... xxxiii

Audience... xxxiii
Documentation Accessibility ... xxxiii
Conventions ... xxxiv
Getting Help... xxxiv
Related Documents ... xxxv

1 Designing Source and Target Schemas

Designing Target Schemas ... 1-1
Creating Target Modules .. 1-1
Designing Relational Target Schemas... 1-2
Designing Dimensional Target Schemas .. 1-3

Configuring Data Objects... 1-4
Validating Data Objects .. 1-4

Viewing Validation Results .. 1-5
Editing Invalid Objects .. 1-6

Generating Data Objects... 1-6
Viewing Generation Results and Generated Scripts... 1-7
Saving Generated Scripts to a File ... 1-7

2 Creating Relational Data Objects

Overview of Data Objects .. 2-1
Supported Data Types... 2-3
About Object Class Definition.. 2-7

About First Class Objects (FCOs) ... 2-7
About Second Class Objects (SCOs)... 2-7
About Third Class and Fourth Class Objects.. 2-7

Naming Conventions for Data Objects ... 2-8
Using the Data Viewer to View Data Stored in Data Objects.. 2-9
About Error Tables... 2-9

Defining Error Tables for Data Objects.. 2-9
Error Table Columns ... 2-10

Defining Tables ... 2-10
Creating Table Definitions... 2-10

Name Tab .. 2-11

iv

Columns Tab... 2-12
Keys Tab .. 2-12
Indexes Tab ... 2-13
Partitions Tab.. 2-13
Attribute Sets Tab .. 2-13
Data Rules Tab.. 2-13

Editing Table Definitions ... 2-13
Renaming Tables.. 2-14
Adding, Modifying, and Deleting Table Columns ... 2-14
Adding, Modifying, and Deleting Table Constraints... 2-14
Adding, Modifying, and Deleting Attribute Sets.. 2-14
Reordering Columns in a Table ... 2-15

Defining Views .. 2-15
Creating View Definitions ... 2-15

Name Tab .. 2-16
Columns Tab... 2-16
Query Tab.. 2-16
Keys Tab .. 2-17
Attribute Sets Tab .. 2-17
Data Rules Tab.. 2-17

Editing View Definitions.. 2-17
Renaming Views .. 2-17
Adding, Modifying, and Deleting View Columns.. 2-17
Adding, Modifying, and Deleting View Constraints ... 2-18
Adding, Modifying, and Deleting Attribute Sets.. 2-18

Defining Materialized Views.. 2-18
Creating Materialized View Definitions.. 2-18

Columns Tab... 2-19
Query Tab.. 2-19
Keys Tab .. 2-19
Indexes Tab ... 2-19
Partitions Tab.. 2-20
Attribute Sets Tab .. 2-20
Data Rules Tab.. 2-20

Editing Materialized View Definitions .. 2-20
Renaming Materialized Views... 2-20
Adding, Modifying, and Deleting Materialized View Columns 2-20
Adding, Modifying, and Deleting Materialized View Constraints.................................. 2-20
Adding, Modifying, and Deleting Attribute Sets.. 2-20

Defining Constraints .. 2-21
About Constraints ... 2-21
Creating Constraints ... 2-21

Defining Primary Key Constraints .. 2-22
Defining Foreign Key Constraints... 2-22
Defining Unique Key Constraints ... 2-23
Defining Check Constraints ... 2-23

Editing Constraints ... 2-24

v

Defining Indexes ... 2-24
Creating Indexes.. 2-24

Defining Partitions ... 2-25
Range Partitioning .. 2-26

Example of Range Partitioning .. 2-27
Hash Partitioning .. 2-27
Hash by Quantity Partitioning.. 2-28
List Partitioning... 2-28
Composite Partitioning .. 2-30

About the Subpartition Template.. 2-31
Creating Custom Subpartitions ... 2-31

Index Partitioning ... 2-32
Index Performance Considerations ... 2-33

Configuring Partitions.. 2-33
Defining Attribute Sets.. 2-33

Creating Attribute Sets ... 2-34
Editing Attribute Sets ... 2-34

Defining Sequences .. 2-35
About Sequences ... 2-35
Creating Sequence Definitions .. 2-35
Editing Sequence Definitions .. 2-35

Name Tab .. 2-36
Columns Tab... 2-36

Defining User-Defined Types... 2-36
About Object Types .. 2-36
Defining Object Types .. 2-37

Name Tab .. 2-37
Columns Tab... 2-37

Editing Object Types... 2-38
About Varrays ... 2-39
Defining Varrays ... 2-39

Name Tab .. 2-39
Details Tab .. 2-39

Editing Varrays.. 2-40
About Nested Tables .. 2-40
Defining Nested Tables .. 2-40

Name Tab .. 2-41
Details Tab .. 2-41

Editing Nested Tables... 2-41
Defining Queues ... 2-41

Creating Queue Table Definitions .. 2-42
Defining the Payload Type of Queue Tables ... 2-42

Editing Queue Tables ... 2-43
Creating Advanced Queue Definitions.. 2-43

Specifying the Queue Table on which the AQ is Based ... 2-44
Editing Advanced Queue Definitions.. 2-44
Creating Queue Propagations ... 2-45

vi

Selecting a Target Queue for Propagation ... 2-45
Editing Queue Propagations ... 2-46

Configuring Relational Data Objects.. 2-46
Configuring Target Modules... 2-46

Deployment System Type... 2-46
Generation Preferences ... 2-47
Generation Target Directories.. 2-47
Identification... 2-48
Run Time Directories... 2-48
Tablespace Defaults ... 2-48

Configuring Tables ... 2-48
Error Table .. 2-49
Foreign Keys ... 2-49
Identification... 2-50
Parallel ... 2-50
Performance Parameters ... 2-50
Partition Parameters .. 2-50
Storage Space .. 2-50
Change Data Capture .. 2-51

Configuring Materialized Views .. 2-51
Materialized View Parameters... 2-51
Materialized View Log Parameters ... 2-53
Fast Refresh for Materialized Views ... 2-53

Configuring Views.. 2-54
Configuring Sequences... 2-54
Configuring Advanced Queues .. 2-55
Configuring Queue Tables... 2-55
Configuring Queue Propagations... 2-56

Creating Relational Data Objects in Microsoft SQL Server and IBM DB2 UDB 2-57
Rules for Naming Objects in IBM DB2 UDB... 2-57
Rules for Naming Objects in Microsoft SQL Server .. 2-58

3 Defining Dimensional Objects

Overview of Dimensional Objects ... 3-1
Overview of Dimensions .. 3-2

Overview of Surrogate Identifiers .. 3-3
Overview of Slowly Changing Dimensions... 3-3

Overview of Defining Type 2 Slowly Changing Dimensions .. 3-4
Overview of Hierarchy Versioning .. 3-5
Overview of Defining Type 3 Slowly Changing Dimensions (SCDs)................................. 3-6

Overview of Cubes... 3-7
Orphan Management for Dimensional Objects ... 3-7

Orphan Management While Loading Data Into Dimensional Objects 3-8
Orphan Management While Removing Data From Dimensional Objects 3-8
Error Tables.. 3-8

Overview of Implementing Dimensional Objects .. 3-9
Relational Implementation of Dimensional Objects ... 3-9

vii

Binding .. 3-10
Auto Binding .. 3-10
Manual Binding.. 3-11
Unbinding ... 3-12

ROLAP Implementation of Dimensional Objects .. 3-12
MOLAP Implementation of Dimensional Objects ... 3-13

Analytic Workspace .. 3-13
Deployment Options for Dimensional Objects... 3-13

Creating Dimensions .. 3-14
Dimension Example.. 3-14
Creating Dimensions Using the Create Dimension Wizard ... 3-15

Name and Description Page... 3-15
Storage Type Page.. 3-15
Dimension Attributes Page .. 3-17
Levels Page.. 3-18
Level Attributes Page .. 3-18
Slowly Changing Dimension Page.. 3-19
Pre Create Settings Page ... 3-19
Dimension Creation Progress Page... 3-20
Summary Page.. 3-20

Defaults Used By the Create Dimension Wizard ... 3-20
Storage ... 3-20
Dimension Attributes .. 3-21
Hierarchies .. 3-21
Level Attributes.. 3-21
Slowly Changing Dimensions.. 3-21
Orphan Management Policy .. 3-22
Implementation Objects .. 3-22

Creating Dimensions Using the Dimension Editor.. 3-22
Name Tab .. 3-23
Storage Tab ... 3-24
Attributes Tab... 3-25
Levels Tab ... 3-25
Hierarchies Tab .. 3-26
SCD Tab... 3-27
Orphan Tab ... 3-28
Specifying the Default Parent for Orphan Rows... 3-28
Physical Bindings Tab ... 3-29

Limitations of Deploying Dimensions to the OLAP Catalog ... 3-30
Using Control Rows.. 3-30

Determining the Number of Rows in a Dimension .. 3-31
Creating Slowly Changing Dimensions ... 3-31

Creating Type 2 Slowly Changing Dimensions Using the Dimension Editor 3-32
Type 2 Slowly Changing Dimension Dialog Box.. 3-32

Updating Type 2 Slowly Changing Dimensions .. 3-33
Creating Type 3 Slowly Changing Dimensions Using the Dimension Editor 3-35

Type 3 Slowly Changing Dimension Dialog Box.. 3-36

viii

Editing Dimension Definitions.. 3-36
Configuring Dimensions ... 3-37

Specifying How Dimensions are Deployed .. 3-38
Creating Cubes... 3-39

About Calculated Measures in Cubes.. 3-39
Standard Calculation... 3-39
Custom Expression .. 3-41

Cube Example.. 3-42
Using the Create Cube Wizard to Create Cubes .. 3-42

Name and Description Page... 3-42
Storage Type Page.. 3-42
Dimensions Page.. 3-44
Measures Page.. 3-44
Summary Page.. 3-45

Defaults Used by the Create Cube Wizard ... 3-45
Using the Cube Editor to Create Cubes ... 3-45

Name Tab .. 3-46
Storage Tab.. 3-46
Dimensions Tab.. 3-47

Advanced Dialog Box .. 3-48
Measures Tab.. 3-49
Calculated Measure Wizard ... 3-50

Define Calculated Measure Details.. 3-50
Reviewing the Summary Information ... 3-50

Aggregation Tab... 3-50
Precomputing ROLAP Cubes .. 3-50

Orphan Tab ... 3-51
Physical Bindings Tab ... 3-51

Cubes Stored in Analytic Workspaces ... 3-52
Ragged Cube Data ... 3-52
Defining Aggregations .. 3-52
Auto Solving MOLAP Cubes ... 3-52
Solving Cube Measures... 3-53
Solving Cubes Independent of Loading ... 3-53
Parallel Solving of Cubes .. 3-54
Output of a MOLAP Cube Mapping .. 3-54

Editing Cube Definitions .. 3-54
Configuring Cubes.. 3-54

Specifying How Cubes are Deployed .. 3-56
Creating Time Dimensions.. 3-56

Creating a Time Dimension Using the Time Dimension Wizard .. 3-57
Name and Description Page... 3-57
Storage Page.. 3-57
Data Generation Page.. 3-58
Levels Page (Calendar Time Dimension Only) ... 3-58
Levels Page (Fiscal Time Dimension Only).. 3-59
Pre Create Settings Page ... 3-59

ix

Time Dimension Progress Page ... 3-59
Summary Page.. 3-59

Defaults Used by the Time Dimension Wizard.. 3-60
Editing Time Dimension Definitions ... 3-60

Name Tab .. 3-61
Storage Tab ... 3-61
Attributes Tab... 3-62
Levels Tab ... 3-62
Hierarchies Tab .. 3-62

Modifying the Implementation of Time Dimensions .. 3-63
Populating Time Dimensions ... 3-63

Dynamically Populating Time Dimensions .. 3-64
Overlapping Data Populations ... 3-64

4 Overview of Transforming Data

About Data Transformation in Oracle Warehouse Builder.. 4-1
About Mappings... 4-2
About Operators ... 4-2

Types of Operators... 4-3
Source and Target Operators .. 4-3
Transformation Operators ... 4-4
Pre/Post Processing Operators... 4-5
Pluggable Mapping Operators.. 4-6
Real-time Data Warehousing Operators ... 4-6

About Transformations ... 4-6
Types of Transformations ... 4-6

Predefined Transformations.. 4-6
Custom Transformations ... 4-7

About Transformation Libraries.. 4-8
Types of Transformation Libraries .. 4-8
Accessing Transformation Libraries.. 4-9

5 Creating PL/SQL Mappings

Overview of Oracle Warehouse Builder Mappings... 5-1
Types of Mappings .. 5-2

PL/SQL Mappings ... 5-3
SQL*Loader Mappings... 5-3
SAP ABAP Mappings... 5-3
Code Template (CT) Mappings .. 5-3

Overview of the Mapping Editor .. 5-4
Mapping Editor Canvas .. 5-5
Logical View ... 5-5
Execution View... 5-5
Execution View Menu and Toolbars ... 5-5
Mapping Editor Display Options .. 5-6

Example: Defining a Simple PL/SQL Mapping ... 5-6

x

Steps to Perform Extraction, Transformation, and Loading (ETL) Using Mappings 5-8
Defining Mappings.. 5-9

Rules for Naming Mappings ... 5-10
Adding Operators to Mappings ... 5-12

Using the Add Operator Dialog Box to Add Operators.. 5-13
Create Unbound Operator with No Attributes ... 5-13
Select from Existing Repository Object and Bind.. 5-14

Using Pseudocolumns ROWID and ROWNUM in Mappings .. 5-14
Connecting Operators, Groups, and Attributes .. 5-14

Connecting Operators .. 5-15
Connecting Groups ... 5-15
Connecting Attributes .. 5-16
Using the Mapping Connection Dialog Box ... 5-16

Attribute Group to Connect ... 5-17
Connection Options... 5-18
Messages.. 5-19
Connections .. 5-19

Editing Operators .. 5-20
Name Tab ... 5-20
Groups Tab... 5-20
Input and Output Tabs... 5-20
Using Display Sets .. 5-22

Defining Display Sets .. 5-22
Selecting a Display Set .. 5-23

Setting Mapping Properties .. 5-23
Specifying the Order in Which Target Objects in a Mapping Are Loaded 5-24

Reset to Default .. 5-25
Configuring Mappings... 5-25

Steps to Configure Mappings.. 5-25
Synchronizing Operators and Workspace Objects ... 5-26

Synchronizing a Mapping Operator with its Associated Workspace Object 5-26
Synchronizing All Operators in a Mapping... 5-28

Synchronizing a Workspace Object with a Mapping Operator ... 5-28
Steps to Synchronize a Workspace Object with a Mapping Operator 5-29

Advanced Options for Synchronizing ... 5-30
Matching Strategies .. 5-30

Match by Object Identifier... 5-30
Match by Bound Name .. 5-31
Match by Position ... 5-31

Example: Using a Mapping to Load Transaction Data ... 5-31
Example: Using the Mapping Editor to Create Staging Area Tables .. 5-35
Using Pluggable Mappings ... 5-36

Creating Pluggable Mappings... 5-37
Creating Standalone Pluggable Mappings... 5-37
Signature Groups ... 5-38
Input Signature... 5-38
Output Signature ... 5-38

xi

Creating Pluggable Mapping Folders... 5-39
Creating User Folders Within Pluggable Mapping Libraries.. 5-39

Copying Operators Across Mappings and Pluggable Mappings .. 5-40
Limitations of Copying Operators, Groups, and Attributes... 5-41

Grouping Operators in Mappings and Pluggable Mappings .. 5-42
Steps to Group Operators in Mappings and Pluggable Mappings ... 5-42

Viewing the Contents of a Folder .. 5-42
Steps to Ungroup Operators in Mappings and Pluggable Mappings..................................... 5-43
Spotlighting Selected Operators ... 5-43

Locating Operators, Groups, and Attributes in Mappings and Pluggable Mappings 5-44
Steps to Perform a Regular Search.. 5-44
Steps to Perform an Advanced Search... 5-44
Advanced Find Dialog Box.. 5-45

Debugging Mappings... 5-47
General Restrictions in the Mapping Debugger ... 5-47
Starting a Debug Session.. 5-47
Debug Panels of the Design Center .. 5-48

Info Panel .. 5-48
Data Panel ... 5-48

Defining Test Data .. 5-49
Creating New Tables to Use as Test Data .. 5-49
Editing the Test Data ... 5-49
Cleaning Up Debug Objects in the Runtime Schema ... 5-50

Setting Breakpoints ... 5-50
Setting Watches ... 5-50
Running the Mapping .. 5-51

Selecting the First Source and Path to Debug.. 5-51
Debugging Mappings with Correlated Commit ... 5-52
Setting a Starting Point.. 5-52
Debugging Pluggable Submap Operators ... 5-53

ReInitializing a Debug Session.. 5-53
Scalability ... 5-53

6 Performing ETL Using Dimensional Objects

Performing ETL by Using Dimensions.. 6-1
Loading Data Into Dimensions .. 6-1

Loading Data into Type 1 Dimensions .. 6-1
Loading Data into Type 2 Slowly Changing Dimensions (SCDs) 6-3
Loading Data into Type 3 Slowly Changing Dimensions (SCDs) 6-5

Example: Loading Data Into Type 2 Slowly Changing Dimensions .. 6-6
Extracting Data Stored in Dimensions .. 6-8

Extracting Data from Dimensions .. 6-8
Extracting Data from Type 2 Slowly Changing Dimensions (SCDs) 6-8
Extracting Data from Type 3 Slowly Changing Dimensions (SCDs) 6-9

Removing Data from Dimensions .. 6-10
Example: Removing Data from Dimensions... 6-11

Performing ETL by Using Cubes ... 6-12

xii

Loading Data Into Cubes ... 6-13

7 Creating SQL*Loader, SAP, and Code Template Mappings

Creating SQL*Loader Mappings to Extract Data from Flat Files.. 7-1
Extracting Data from Flat Files... 7-2
Loading Data into a Flat File .. 7-3
Creating a New Flat File Target ... 7-4

Creating SAP Extraction Mappings .. 7-4
Defining an SAP Extraction Mapping... 7-4

Adding SAP Tables to the Mapping .. 7-5
Setting the Loading Type... 7-5
Setting Configuration Properties for the Mapping .. 7-6
Setting the Join Rank .. 7-7

Retrieving Data from the SAP System ... 7-7
Automated System... 7-8
Semiautomated System ... 7-9
Manual System .. 7-11

Creating Code Template (CT) Mappings.. 7-12
About Prebuilt Code Templates Shipped with Warehouse Builder 7-13

Limitations of Using Certain Prebuilt Code Templates ... 7-16
Mapping Operators that are Only Supported Directly in Oracle Target CT Mappings 7-16
Steps to Perform ETL Using Code Template Mappings ... 7-17
Creating Template Mapping Modules... 7-18
Creating Mappings Using Code Templates .. 7-19
Defining Execution Units ... 7-19

Execution View Menu and Toolbars... 7-19
Creating Execution Units .. 7-20
Adding Operators to an Execution Unit... 7-20
Adding Operators to Multiple Execution Units .. 7-21
Removing Operators from an Execution Unit ... 7-21
Removing Execution Units ... 7-21
Creating Default Execution Units.. 7-21
Default Code Template for An Execution Unit ... 7-22
How Warehouse Builder Displays Code Templates that Can be Associated with Execution
Units 7-22

Starting the Control Center Agent (CCA) ... 7-23
Validating Code Template Mappings .. 7-23
Generating Code Template Mappings... 7-23

Sample Code Generated for CT Mappings .. 7-24
Deploying Code Template Mappings.. 7-26
Executing Code Template Mappings ... 7-27
Viewing Execution Results for Code Template Mappings ... 7-27

Viewing Execution Results by Using the Results Tab .. 7-27
Viewing Execution Results by Using the Audit Information Panel 7-27

Setting Options for Code Templates in Code Template Mappings .. 7-28
Setting Properties for Bound Operators in CT Mappings... 7-29

Auditing the Execution of Code Template Mappings.. 7-31

xiii

Steps to Audit the Execution of Code Template Mappings.. 7-32
Using Code Template Mappings to Perform Change Data Capture (CDC) 7-32

Types of Change Data Capture (CDC)... 7-32
Change Data Capture Commands.. 7-33
Example: Performing Change Data Capture Using Code Templates 7-34

Steps to Perform Change Data Capture Using CDC CTs .. 7-34
Selecting the Objects for Change Data Capture .. 7-34
Creating the Mapping that Loads Changes ... 7-35
Deploying the Change Data Capture Solution.. 7-36
Starting the Change Data Capture Process .. 7-36
Adding a Subscriber to the Change Data Capture Process ... 7-37
Testing the Change Data Capture Process ... 7-37
Performing Change Data Capture Actions in Warehouse Builder................................... 7-37

Using Control Code Templates... 7-39
Example: Checking Data Constraints Using Control CTs .. 7-40

Steps to Log Constraint Violations While Loading Data Into a Target Table................. 7-40
Creating the Source Module and Importing Source Objects ... 7-40
Creating the Code Template Mapping that Extracts Data, Checks Data Integrity, and Loads
Data into an Oracle Target 7-41

Using Oracle Target CTs in Code Template Mappings .. 7-42
Example: Using Oracle Target Code Templates... 7-42

Creating the Source Module and Importing Source Objects ... 7-42
Creating the Target Module and Target Table .. 7-42
Creating the CT Mapping that Transforms Source Data Using Oracle Target CTs....... 7-43

Moving Data from Heterogeneous Databases to Oracle Database ... 7-44
Example: Moving Data from IBM DB2 to Oracle Database Using Integration CTs and Load CTs
7-45

Steps to Extract Data from IBM DB2, Transform Data, and Load it into an Oracle Database
7-45
Create the Source Module .. 7-45
Create the Target Module and Target Table .. 7-45
Create the CT Mapping that Extracts, Transforms, and Loads Data 7-46

8 Designing Process Flows

Overview of Process Flows... 8-1
About Process Flow Modules and Packages.. 8-2

Example: Creating a Basic Process Flow .. 8-2
Steps for Defining Process Flows ... 8-5

Creating Oracle Workflow Locations.. 8-5
Creating Process Flow Modules... 8-6

Creating User Folders Within a Process Flow Module ... 8-7
Creating Process Flow Packages.. 8-7
Creating Process Flows ... 8-8

Adding Activities to Process Flows .. 8-8
About Activities.. 8-8
Adding Activities ... 8-9
Parameters for Activities.. 8-10

xiv

Creating and Using Activity Templates .. 8-11
Name and Description Page .. 8-11
Parameters Page .. 8-12
Using Activity Templates .. 8-12

About Transitions .. 8-13
Rules for Valid Transitions .. 8-13
Connecting Activities ... 8-13
Configuring Activities .. 8-14
Using Parameters and Variables... 8-14
Using a Namespace... 8-15
Using Bindings .. 8-15

About Expressions... 8-16
Global Expression Values .. 8-16

Defining Transition Conditions ... 8-17
Example: Using Process Flows to Access Flat Files with Variable Names 8-18

Creating the Process Flow.. 8-19
Setting Parameters for the User Defined Activity .. 8-19

Method 1: Write a script Within Warehouse Builder ... 8-20
Method 2: Call a script maintained outside of Warehouse Builder 8-20

Configuring the User Defined Activity.. 8-21
Designing the Mapping.. 8-21
Deploying and Executing... 8-22
Subsequent Steps... 8-22

 Example: Using Process Flows to Transfer Remote Files ... 8-22
Defining Locations .. 8-23
Creating the Process Flow.. 8-23
Setting Parameters for the FTP Activity .. 8-24

Example: Writing a Script in Warehouse Builder for the FTP Activity 8-24
Using Substitution Variables.. 8-25

Configuring the FTP Activity .. 8-26
Registering the Process Flow for Deployment.. 8-26

9 Defining Custom Transformations

About Transforming Data Using Warehouse Builder ... 9-1
Benefits of Using Warehouse Builder for Transforming Data .. 9-2

Defining Custom Transformations ... 9-2
Defining Functions and Procedures .. 9-3

Naming the Custom Transformation... 9-3
Defining the Parameters .. 9-4
Specifying the Implementation... 9-4

Defining Table Functions .. 9-4
Naming the Table Function... 9-5
Specifying the Return Type ... 9-5
Specifying Table Function Input and Output Parameters.. 9-5
Specifying Parallelism Options... 9-6
Specifying Data Streaming Options ... 9-6
Specifying the Table Function Implementation ... 9-6

xv

Defining PL/SQL Types ... 9-7
About PL/SQL Types... 9-7
Usage Scenario for PL/SQL Types... 9-8
Creating PL/SQL Types .. 9-9
Name and Description Page.. 9-9
Attributes Page.. 9-9
Return Type Page... 9-10
Summary Page.. 9-11

Editing Custom Transformations ... 9-11
Editing Function or Procedure Definitions ... 9-11
Editing PL/SQL Types... 9-12

Name Tab .. 9-12
Attributes Tab... 9-12
Return Type Tab... 9-12

Editing Table Functions ... 9-12
Importing Transformations ... 9-13

Restrictions on Using Imported PL/SQL .. 9-14
Example: Reusing Existing PL/SQL Code .. 9-14
Using Functions In Non-Oracle Platforms ... 9-18

Creating IBM DB2 and SQL Server Functions .. 9-18
Defining IBM DB2 and SQL Server Functions... 9-19
Importing a Function... 9-19
Predefined Generic Heterogeneous Functions .. 9-20
Using the Functions in Mappings ... 9-20

Configuring Functions ... 9-20
Configuring Oracle Functions... 9-21

AUTHID .. 9-21
Deterministic... 9-21
Parallel Enable .. 9-21
Pragma Autonomous Transaction... 9-21

10 Understanding Performance and Advanced ETL Concepts

Best Practices for Designing PL/SQL Mappings... 10-1
Set-Based Versus Row-Based Operating Modes .. 10-4

Set-Based Mode .. 10-5
Row-Based Mode ... 10-5
Row-Based (Target Only) Mode .. 10-6

About Committing Data in Warehouse Builder... 10-7
Committing Data Based on Mapping Design ... 10-7

Committing Data from a Single Source to Multiple Targets ... 10-7
Automatic Commit versus Automatic Correlated Commit .. 10-8
Embedding Commit Logic into the Mapping.. 10-9

Committing Data Independently of Mapping Design .. 10-10
Running Multiple Mappings Before Committing Data... 10-10

Committing Data at Runtime... 10-11
Committing Mappings through the Process Flow Editor.. 10-12

Ensuring Referential Integrity in PL/SQL Mappings ... 10-13

xvi

Best Practices for Designing SQL*Loader Mappings .. 10-13
Using Conventional Loading to Ensure Referential Integrity in SQL*Loader Mappings.. 10-13

Maintaining Relationships Between Master and Detail Records.................................... 10-14
Extracting and Loading Master-Detail Records .. 10-15
Error Handling Suggestions... 10-17
Subsequent Operations ... 10-18

Using Direct Path Loading to Ensure Referential Integrity in SQL*Loader Mappings...... 10-18
Improved Performance through Partition Exchange Loading.. 10-21

About Partition Exchange Loading .. 10-22
Configuring a Mapping for PEL ... 10-22
Direct and Indirect PEL.. 10-23

Using Indirect PEL... 10-23
Example: Using Direct PEL to Publish Fact Tables... 10-24

Using PEL Effectively ... 10-24
Configuring Targets in a Mapping... 10-25

Step 1: Create All Partitions.. 10-25
Step 2: Create All Indexes Using the LOCAL Option .. 10-26
Step 3: Primary/Unique Keys Use "USING INDEX" Option.. 10-26

Restrictions for Using PEL in Warehouse Builder ... 10-26
High Performance Data Extraction from Remote Sources .. 10-26

11 Scheduling ETL Jobs

Overview of Schedules .. 11-1
Defining Schedules... 11-2

Editing Schedules.. 11-3
Start and End Dates and Times.. 11-4
Defining Schedules To Repeat ... 11-4

By Month.. 11-6
By Week Number.. 11-6
By Year Day ... 11-6
By Month Day ... 11-7
By Day .. 11-7
By Hour .. 11-7
By Minute... 11-7
By Second... 11-7
By Set Position... 11-7

Example Schedules ... 11-8
Applying Schedules to ETL Objects.. 11-8
Scheduling ETL Jobs in Oracle Enterprise Manager.. 11-9

The SQLPLUS_EXEC_TEMPLATE SQL Script .. 11-9
The WB_RT_API_EXEC.RUN_TASK Function.. 11-10

12 Deploying to Target Schemas and Executing ETL Logic

Overview of Deployment and Execution in Warehouse Builder... 12-1
About Deployment ... 12-1

About Deployment Actions.. 12-2
About Deployment Status .. 12-3

xvii

About Deploying Dimensional Objects .. 12-3
About Deploying Mappings and Process Flows... 12-3
About Deploying Code Template (CT) Mappings and Web Services 12-3
About Deploying Schedules... 12-3

About Execution.. 12-4
About Configurations... 12-4
About Viewing and Setting Configuration Properties for Different Configurations 12-4

Steps in the Deployment and Execution Process .. 12-5
Deploying Objects .. 12-6

Deploying Objects Using the Control Center Manager... 12-6
Deploying Objects Using the Projects Navigator ... 12-7
Deploying Target Systems to a Remote System ... 12-8
Reviewing Deployment Results.. 12-8

Starting ETL Jobs... 12-9
Viewing Execution Results for ETL Jobs ... 12-10
Viewing the Data... 12-11
Scheduling ETL Jobs ... 12-11

Starting ETL Jobs in SQL*Plus ... 12-12
Managing Jobs Using SQL Scripts .. 12-12

 Example: Updating a Target Schema .. 12-12

13 Auditing Deployments and Executions

About Auditing Deployment and Executions ... 13-1
About the Repository Browser.. 13-2
About the Heterogeneous Repository Browser (HRAB)... 13-2

Differences Between Repository Browser and Heterogeneous Repository Browser 13-2
Installing the Heterogeneous Repository Browser on Heterogeneous Databases and OC4J
Servers 13-3
Creating Data Stores .. 13-3

Types of Auditing ... 13-3
List of Heterogeneous Repository Browser Reports.. 13-4
Viewing Audit Reports .. 13-4

Opening the Repository Browser... 13-5
Managing the Repository Browser Listener.. 13-5
Accessing the Repository Browser ... 13-6
Logging in to a Workspace .. 13-6

Connecting to an Oracle Database .. 13-7
Connecting to a Heterogeneous Database or OC4J Server .. 13-7

Design Reports... 13-7
Repository Navigator ... 13-7
Object Properties ... 13-8
Object Reports.. 13-9

Summary Reports .. 13-9
Detailed Reports... 13-10
Implementation Reports ... 13-11
Impact Analysis Reports ... 13-11

Object Lineage ... 13-11

xviii

Object Impact ... 13-12
Control Center Reports .. 13-12

Deployment Reports... 13-13
Deployment Schedule Report .. 13-13
Locations Report .. 13-14
Object Summary Report.. 13-15
Location Object Summary Report ... 13-15
Deployment Report ... 13-15
Deployment Error Detail Report ... 13-16

Execution Reports ... 13-16
Execution Schedule Report... 13-16
Execution Summary Report ... 13-17
Execution Report.. 13-17
Error Table Execution Report... 13-17
Execution Job Report ... 13-17
Trace Report.. 13-18
Job File Report .. 13-18
Job Start Report .. 13-18
Job Error Diagnostic Report ... 13-19

Management Reports.. 13-19
Service Node Report.. 13-19
Location Validation Report .. 13-20

Common Repository Browser Tasks.. 13-20
Identifying Recently-Run Processes ... 13-20
Identifying Why a Process Run Failed... 13-20
Comparing Process Runs ... 13-21
Discovering Why a Map Run Gave Unexpected Results .. 13-21
Identifying Recently-Made Deployments ... 13-21
Identifying the Data Objects That Are Deployed to a Specific Location 13-22
Identifying the Map Runs that Use a Specific Deployed Data Object................................... 13-22
Discovering the Default DeploymentTime Settings of a Deployed Process 13-22
Rerunning a Process ... 13-22
Monitoring a Process Run.. 13-22
Terminating a Process Run .. 13-23
Removing the Execution Audit Details for a Process .. 13-23
Removing Old Deployment Audit details .. 13-23
Viewing Error Tables Created as a Result of Data Auditor Execution 13-23
Unregistering a Location.. 13-24
Updating Location Connection Details for a Changed Database Environment.................. 13-24
Updating Service Node Details in a Changing RAC Environment....................................... 13-24

14 Managing Metadata Dependencies

About the Metadata Dependency Manager ... 14-1
Example: Lineage and Impact Analysis (LIA) .. 14-1
About Lineage and Impact Analysis and Metadata Dependency Diagrams......................... 14-3

Opening an LIA Diagram .. 14-4
Managing and Exploring Objects in an LIA Diagram ... 14-4

xix

Exploring Object Lineage and Impact in an LIA Diagram ... 14-4
Using Find to Search for Objects in an LIA Diagram .. 14-5
Using Groups in an LIA Diagram .. 14-5

Managing Groups in an LIA Diagram.. 14-6
Displaying an Object's Attributes ... 14-6
Exporting and Printing LIA Diagrams .. 14-7

Making Changes to Design Metadata Using Automatic Change Propagation......................... 14-7
Automated Change Propagation in the Dependency Manager... 14-8

15 Troubleshooting and Error Handling for ETL Designs

 Inspecting Error Logs in Oracle Warehouse Builder ... 15-1
Troubleshooting Validation Errors... 15-1
Troubleshooting Generation Errors.. 15-2
Troubleshooting Deployment and Execution Errors... 15-3

Determining the Operators that Caused Errors in Mappings... 15-3
Troubleshooting Name and Address Server Errors .. 15-4

Using DML Error Logging... 15-4
About DML Error Tables ... 15-4
Enabling DML Error Logging ... 15-5

DML Error Logging and ETL... 15-5
DML Error Logging Limitations... 15-6

Troubleshooting the ETL Process... 15-6
ORA-04063 While Running Hybrid Maps... 15-6
Agent Log Files.. 15-6
Error Starting the Control Center Agent (CCA) ... 15-7
Error Executing Web Services from the Secure Web Site.. 15-7
REP-01012 While Deploying Mappings to a Target Schema.. 15-7
Unable to Delete a Location... 15-8

16 Creating and Consuming Web Services in Warehouse Builder

Introduction to Web Services .. 16-1
Advantages of Web Services ... 16-2
About Web Services in Oracle Warehouse Builder.. 16-2

About Defining Web Services .. 16-3
About Publishing Web Services... 16-3
About Consuming Web Services ... 16-3

About Public Web Services.. 16-4
Publishing Warehouse Builder Objects as Web Services.. 16-4

Creating Web Service Packages .. 16-6
Creating Web Services Based on Warehouse Builder Objects.. 16-6

Naming the Web Service... 16-7
Defining the Web Service Implementation .. 16-7

Validating Web Services .. 16-8
Generating Web Services ... 16-8
Deploying Web Services .. 16-9

Deploying Web Services Using the Control Center Manager... 16-9

xx

Deploying Web Services Using the Design Center... 16-9
Creating Web Services Based on a URL .. 16-10

Naming and Describing a Public Web Service ... 16-11
Executing Web Services.. 16-11

Using the Control Center Manager to Execute Web Services .. 16-11
Using a Browser to Execute Web Services... 16-12
Performing Operations on Web Services Using a Browser .. 16-13

Determining If a Web Service or Application Was Deployed to an OC4J Server 16-14
Executing a Control Center Job.. 16-14
Terminating an Execution Job.. 16-15
Running Deployed Applications ... 16-15

Using Web Services as Activities in Process Flows .. 16-16
Rules for Using Web Services in Process Flows ... 16-16
Steps to Use Web Services in Process Flows ... 16-16
Synchronizing Web Service Activities with Their Referenced Web Services 16-17

Using Web Services in Mappings .. 16-17
Using Secure Sockets Layer (SSL) to Access Web Services Securely.. 16-19

J2EE Roles for Control Center Agent Security .. 16-19
Setting Up Secure Access on External OC4J Servers ... 16-19
Updating the Key Store Password.. 16-21

Case Study: Using Web Services for Data Integration... 16-21
Example: Publishing Mappings as Web Services... 16-21
Example: Consuming Web Services in Process Flows... 16-22

Modify the LOAD_TOT_SALES_CT_MAP Code Template (CT) Mapping................. 16-22
Import the Currency Converter Web Service .. 16-22
Create a Process Flow That Consumes the Currency Converter Web Service 16-23

Example: Integrating Warehouse Builder Web Services with Oracle BPEL Process Manager
16-23

17 Moving Large Volumes of Data Using Transportable Modules

About Transportable Modules.. 17-1
About Transportable Modules and Oracle Database Technology... 17-4

Benefits of Using Transportable Modules.. 17-4
Instructions for Using Transportable Modules ... 17-5

Verifying the Requirements for Using Transportable Modules... 17-6
Specifying Locations for Transportable Modules .. 17-7

Transportable Module Source Location Information ... 17-7
Creating a Transportable Module... 17-8

Describing the Transportable Module .. 17-8
Selecting the Source Location... 17-8
Selecting the Target Location ... 17-9
Selecting Tablespaces and Schema Objects to Import .. 17-9
Available Database Objects .. 17-9

Finding Objects in the Available Database Object List: .. 17-10
Filtering the Available Database Objects List: .. 17-10
Objects Not Available for Inclusion in Transportable Modules 17-11

Reviewing the Transportable Module Definitions.. 17-11

xxi

Configuring a Transportable Module ... 17-12
Transportable Module Configuration Properties.. 17-12
Schema Configuration Properties.. 17-14
Target DataFile Configuration Properties .. 17-15
Tablespace Configuration Properties ... 17-15

Generating and Deploying a Transportable Module... 17-15
Designing Mappings that Access Data through Transportable Modules 17-17

Editing Transportable Modules ... 17-17
Name... 17-17
Source Location ... 17-17
Tablespaces ... 17-17
Target Locations .. 17-18
Viewing Tablespace Properties ... 17-18
Reimporting Metadata into a Transportable Module ... 17-18

18 Performing Data Profiling

Overview of Data Profiling ... 18-1
Sources Supported by Warehouse Builder for Data Profiling.. 18-1
Using Warehouse Builder Data Profiling with Warehouse Builder ETL 18-2
Using Warehouse Builder Data Profiling with Other ETL Solutions...................................... 18-2
About the Data Profile Editor.. 18-3

Performing Data Profiling ... 18-4
Data Profiling Restrictions... 18-5
Prerequisites for Data Profiling... 18-5
Steps to Perform Data Profiling .. 18-6
Creating Data Profiles .. 18-6
Configuring Data Profiles .. 18-7

Steps to Configure Data Profiles.. 18-8
Load Configuration Parameters .. 18-8
Aggregation Configuration Parameters ... 18-8
Pattern Discovery Configuration Parameters.. 18-9
Domain Discovery Configuration Parameters .. 18-9
Relationship Attribute Count Configuration Parameters.. 18-9
Unique Key Discovery Configuration Parameters ... 18-9
Functional Dependency Discovery Configuration Parameters .. 18-9
Row Relationship Discovery Configuration Parameters ... 18-10
Redundant Column Discovery Configuration Parameters ... 18-10
Performance Configuration.. 18-10
Data Rule Profiling Configuration Parameters ... 18-10

Profiling Data... 18-10
Steps to Profile Data .. 18-10

Viewing Profile Results .. 18-11
Data Profile ... 18-12
Profile Object .. 18-12
Aggregation .. 18-12
Data Type .. 18-13
Domain .. 18-14

xxii

Pattern.. 18-15
Unique Key ... 18-16
Functional Dependency .. 18-17
Referential ... 18-18
Data Rule... 18-20

Using Attribute Sets to Profile a Subset of Columns from a Data Object 18-20
Defining Attribute Sets.. 18-21
Creating a Data Profile That Contains the Attribute Set.. 18-21

Editing Data Profiles... 18-22
Adding Data Objects to a Data Profile.. 18-22

Tuning the Data Profiling Process for Better Profiling Performance.. 18-22
Tuning the Data Profile for Better Data Profiling Performance .. 18-23
Tuning the Oracle Database for Better Data Profiling Performance 18-23

Multiple Processors ... 18-23
Memory ... 18-23
I/O System.. 18-24

Performing Data Watch and Repair (DWR) for Oracle Master Data Management (MDM) 18-24
Overview of Data Watch and Repair (DWR) for MDM .. 18-24

Predefined Data Rules for MDM ... 18-25
Prerequisites for Performing Data Watch and Repair (DWR).. 18-26
Steps to Perform Data Watch and Repair (DWR) Using Warehouse Builder...................... 18-26

Importing MDM Data Rules .. 18-27
Writing Corrected Data and Metadata to the MDM Application................................... 18-27

19 Designing and Deriving Data Rules

Overview of Data Rules ... 19-1
Types of Data Rules .. 19-2
Data Rules as Objects and Binding Data Rules... 19-3

Using Data Rules ... 19-3
Managing Data Rules in Folders... 19-4
Deriving Data Rules From Data Profiling Results ... 19-4

Steps to Derive Data Rules ... 19-4
Creating Data Rules Using the Create Data Rule Wizard... 19-5

Defining the Data Rule.. 19-6
Editing Data Rules .. 19-6
Applying Data Rules to Data Objects... 19-7

20 Monitoring Quality with Data Auditors and Data Rules

Overview of Data Auditors ... 20-1
Monitoring Data Quality Using Data Auditors .. 20-2

Creating Data Auditors .. 20-3
Specifying Actions for Data That Violates Defined Data Rules .. 20-3
Editing Data Auditors ... 20-4

Configuring Data Auditors.. 20-4
Run Time Parameters .. 20-5
Data Auditor Parameters .. 20-5
Code Generation Options ... 20-6

xxiii

Auditing Data Objects Using Data Auditors .. 20-6
Manually Running Data Auditors... 20-6
Scheduling a Data Auditor to Run .. 20-7
Data Auditor Execution Results .. 20-7

Viewing Data Auditor Error Tables ... 20-8
Granting Privileges on Error Tables.. 20-9

21 Data Cleansing and Correction with Data Rules

Overview of Automatic Data Correction and Data Rules ... 21-1
Generating Corrections Based on Data Profiling Results ... 21-2

Prerequisites for Creating Corrections... 21-2
Steps to Create Correction Objects ... 21-2
Selecting the Data Rules and Data Types for Corrected Schema Objects............................... 21-3
Selecting the Objects to Be Corrected... 21-4
Choosing Data Correction and Cleansing Actions .. 21-5

Choosing Data Correction Actions.. 21-6
Specifying the Cleansing Strategy ... 21-6

Viewing the Correction Tables and Mappings ... 21-7
Cleansing and Transforming Source Data Based on Data Profiling Results 21-8

Deploying Schema Corrections... 21-8
Deploying Correction Mappings .. 21-8

22 Name and Address Cleansing

About Name and Address Cleansing in Warehouse Builder ... 22-1
Types of Name and Address Cleansing Available in Warehouse Builder............................. 22-2
Example: Correcting Address Information ... 22-2

Example Input .. 22-2
Example Steps... 22-3
Example Output ... 22-4

About Postal Reporting.. 22-5
United States Postal Service CASS Certification ... 22-5
Canada Post SERP Certification... 22-5
Australia Post AMAS Certification ... 22-5

Input Role Descriptions.. 22-6
Descriptions of Output Components ... 22-8

Pass Through .. 22-8
Name.. 22-8
Address.. 22-10
Extra Vendor... 22-13
Error Status ... 22-13
Country-Specific... 22-17

Handling Errors in Name and Address Data ... 22-18
Using the Name and Address Operator to Cleanse and Correct Name and Address Data .. 22-19

Creating a Mapping with a Name and Address Operator ... 22-19
Specifying Source Data Details and Setting Parsing Type... 22-21

Parsing Type.. 22-21

xxiv

Primary Country... 22-21
Dual Address Assignment .. 22-21

Specifying Postal Report Details.. 22-22
Managing the Name and Address Server ... 22-23

Configuring the Name and Address Server.. 22-23
Starting and Stopping the Name and Address Server .. 22-24

23 Matching, Merging, and Deduplication

About Matching and Merging in Warehouse Builder ... 23-1
Example: A Basic Mapping with a Match Merge Operator.. 23-2
Overview of the Matching and Merging Process... 23-3

Elements of Matching and Merging Records .. 23-3
Process for Matching and Merging Records .. 23-4

Constructing Match Bins ... 23-4
Constructing Match Record Sets .. 23-4
Constructing Merge Records .. 23-5

Match Rules.. 23-5
Conditional Match Rules.. 23-5

Comparison Algorithms ... 23-6
Creating Conditional Match Rules .. 23-8

Match Rules: Basic Example .. 23-8
Example: Matching and Merging Customer Data .. 23-8
Example: How Multiple Match Rules Combine.. 23-9
Example of Transitive Matching.. 23-10

Weight Match Rules.. 23-10
Example of Weight Match Rules ... 23-11
Creating Weight Match Rules .. 23-12

Person Match Rules... 23-12
Person Roles.. 23-12
Person Details ... 23-13
Creating Person Match Rules ... 23-14

Firm Match Rules .. 23-14
Firm Roles ... 23-14
Firm Details... 23-15
Creating Firm Match Rules... 23-15

Address Match Rules.. 23-16
Address Roles ... 23-16
Address Details .. 23-17
Creating Address Match Rules .. 23-17

Custom Match Rules... 23-18
Creating Custom Match Rules ... 23-18

Merge Rules ... 23-19
Match ID Merge Rule ... 23-20
Rank and Rank Record Merge Rules.. 23-20
Sequence Merge Rule ... 23-20
Min Max and Min Max Record Merge Rules.. 23-21
Copy Merge Rule .. 23-21

xxv

Custom and Custom Record Merge Rules .. 23-21
Using the Match Merge Operator to Eliminate Duplicate Source Records 23-22

Steps to Use a Match Merge Operator ... 23-22
Considerations When Designing Mappings Containing Match Merge Operators............. 23-24

Restrictions on Using the Match Merge Operator .. 23-24
Example: Using Two Match Merge Operators for Householding... 23-24

24 Mappings and Process Flows Reference

Configuring ETL Objects .. 24-1
Configuring Mappings Reference ... 24-1

Runtime Parameters ... 24-1
Analyze Table Sample Percentage .. 24-2
Bulk Size .. 24-2
Chunk Size .. 24-2
Chunking Column ... 24-2
Chunking Method for Parallel Chunking .. 24-2
Chunking Strategy ... 24-3
Chunking Table.. 24-3
Chunking Table Owner... 24-3
Commit Frequency ... 24-3
Default Audit Level .. 24-3
Default Operating Mode... 24-3
Default Purge Group .. 24-4
Maximum Number of Errors .. 24-4
Number of Threads to Process Chunks .. 24-4

Code Generation Options .. 24-5
ANSI SQL Syntax... 24-5
Commit Control ... 24-5
Analyze Table Statements... 24-5
Enable Parallel DML.. 24-6
Optimized Code ... 24-6
Authid.. 24-6
Use Target Load Ordering.. 24-6
ERROR TRIGGER .. 24-6
Bulk Processing Code.. 24-6
Generation Mode ... 24-6

Sources and Targets Reference.. 24-7
Use LCR APIs ... 24-7
Database Link ... 24-7
Location ... 24-7
Conflict Resolution .. 24-7
Schema .. 24-7
Partition Exchange Loading .. 24-7
Hints... 24-8
Constraint Management ... 24-8
SQL*Loader Parameters.. 24-10

Configuring Flat File Operators ... 24-10

xxvi

Flat File Operators as a Target... 24-11
Flat File Operator as a Source.. 24-11

Configuring Process Flows Reference... 24-13

25 Source and Target Operators

List of Source and Target Operators .. 25-1
Using Oracle Source and Target Operators ... 25-2

Setting Properties for Oracle Source and Target Operators ... 25-2
Capture Consistency.. 25-2
Change Data Capture Filter.. 25-2
Enabled .. 25-3
Trigger Based Capture .. 25-3
Primary Source .. 25-3
Loading Types for Oracle Target Operators .. 25-3
Loading Types for Flat File Targets... 25-4
Target Load Order ... 25-4
Target Filter for Update .. 25-4
Target Filter for Delete .. 25-5
Match By Constraint .. 25-5
Reverting Constraints to Default Values .. 25-5
Bound Name .. 25-6
Key Name ... 25-6
Key Columns ... 25-6
Key Type .. 25-6
Referenced Keys .. 25-6
Error Table Name... 25-6
Roll up Errors ... 25-7
Select Only Errors from this Operator .. 25-7

Setting Attribute Properties... 25-7
Bound Name... 25-7
Data Type .. 25-7
Precision .. 25-7
Scale.. 25-7
Length.. 25-7
Fractional Seconds Precision .. 25-8
Load Column When Inserting Row .. 25-8
Load Column When Updating Row ... 25-8
Match Column When Updating Row ... 25-8
Update: Operation ... 25-8
Match Column When Deleting Row... 25-8
Chunking Number Column ... 25-9

Constant Operator... 25-9
Construct Object Operator... 25-9
Cube Operator ... 25-10

Cube Operator Properties... 25-11
Cube Attribute Properties... 25-12

Data Generator Operator ... 25-12

xxvii

Setting a Column to the Data File Record Number .. 25-13
Setting a Column to the Current Date .. 25-13
Setting a Column to a Unique Sequence Number .. 25-14

Dimension Operator ... 25-14
Dimension Operator Properties... 25-15

AW Properties ... 25-15
Dimension Properties... 25-16
Error Table ... 25-16
History Logging Properties... 25-17
Orphan Management Policies... 25-17

Expand Object Operator... 25-18
External Table Operator ... 25-19
Mapping Input Parameter Operator .. 25-20
Mapping Output Parameter Operator ... 25-21
Materialized View Operator.. 25-22
Queue Operator... 25-23

Using a Queue Operator ... 25-23
Selecting the Queue ... 25-23
Selecting the Source Type for a Queue Operator .. 25-24
Selecting the User-Defined or Primary Type for a Queue Operator 25-24
Selecting the Source Object... 25-25
Specifying the Source Changes to Process ... 25-25

Sequence Operator .. 25-25
Table Operator... 25-26

Merge Optimization for Table Operators... 25-27
Chunking for Table Operators ... 25-27
Creating Temporary Tables While Performing ETL... 25-28

Is Temp Stage Table.. 25-28
Extra DDL Clauses.. 25-28
Temp Stage Table ID .. 25-28

DML Error Logging ... 25-28
Data Rules and Loading Tables ... 25-28

Varray Iterator Operator .. 25-29
View Operator ... 25-30

Using the View Operator for Inline Views... 25-30
Using Remote and non-Oracle Source and Target Operators... 25-30

Limitations of Using Non-Oracle or Remote Targets .. 25-30
Warehouse Builder Workarounds for Non-Oracle and Remote Targets.............................. 25-31

Using Flat File Source and Target Operators ... 25-31
Flat File Operator .. 25-32

Flat File Source Operators... 25-32
Flat File Target Operators ... 25-33
Setting Properties for Flat File Source and Target Operators.. 25-33
Loading Types for Flat Files ... 25-33
Field Names in the First Row... 25-33

xxviii

26 Data Flow Operators

List of Data Flow Operators .. 26-1
About Operator Wizards .. 26-2

Operator Wizard General Page... 26-2
Operator Wizard Groups Page ... 26-2
Operator Wizard Input and Output Pages.. 26-3
Operator Wizard Input Connections.. 26-3

About the Expression Builder ... 26-3
Opening the Expression Builder ... 26-3

The Expression Builder User Interface ... 26-4
Aggregator Operator ... 26-5

Group By Clause ... 26-6
Having Clause ... 26-7
Aggregate Function Expression .. 26-7

Anydata Cast Operator ... 26-9
Deduplicator Operator ... 26-10
Expression Operator ... 26-10
Filter Operator.. 26-12

Adding Self Joins in a Mapping.. 26-13
Joiner Operator .. 26-13

Joiner Input Roles.. 26-14
Steps to Use a Joiner Operator in a Mapping.. 26-14
Joiner Restrictions ... 26-15

Specifying a Full Outer Join.. 26-16
Creating Full Outer Join Conditions .. 26-17
Grouping Join Conditions.. 26-18

LCR Cast Operator .. 26-19
LCR Splitter Operator .. 26-20
Lookup Operator ... 26-20

Using the Lookup Operator... 26-22
Name.. 26-22
Groups ... 26-22
Lookup Tables .. 26-23
Input Attributes.. 26-23
Output Attributes .. 26-23
Lookup Conditions .. 26-23
Multiple Match Rows .. 26-24
No-match Rows.. 26-25
Type 2 History Lookup ... 26-26

Pivot Operator .. 26-26
Example: Pivoting Sales Data.. 26-26
The Row Locator ... 26-27
Using the Pivot Operator ... 26-28

General .. 26-28
Groups ... 26-28
Input Connections.. 26-29
Input Attributes ... 26-30

xxix

Output Attributes ... 26-30
Pivot Transform .. 26-31

Post-Mapping Process Operator ... 26-32
Pre-Mapping Process Operator... 26-33
Set Operation Operator .. 26-34

Synchronizing the Attributes in a Set Operation Operator ... 26-35
Sorter Operator .. 26-35

Order By Clause .. 26-36
Splitter Operator.. 26-37

Example: Creating Mappings with Multiple Targets .. 26-38
Subquery Filter Operator... 26-39
Table Function Operator .. 26-41

Prerequisites for Using the Table Function Operator .. 26-43
Input... 26-43
Output .. 26-43

Table Function Operator Properties ... 26-43
Table Function Operator Properties.. 26-43
Input Parameter Properties .. 26-43
Output Parameter Group Properties .. 26-44
Output Parameter .. 26-44

Transformation Operator ... 26-44
Unpivot Operator .. 26-45

Example: Unpivoting Sales Data .. 26-45
The Row Locator ... 26-46
Using the Unpivot Operator.. 26-46

General .. 26-46
Groups .. 26-46
Input Connections ... 26-47
Input Attributes.. 26-47
Row Locator ... 26-47
Output Attributes .. 26-48
Unpivot Transform ... 26-49

27 Activities in Process Flows

Using Activities in Process Flows .. 27-1
Activities That Represent Objects ... 27-1
Utility Activities .. 27-2
Control Activities .. 27-3
OS Activities... 27-3

Setting a Security Constraint .. 27-4
Setting a Proxy Command and Parameters ... 27-4

AND .. 27-5
Assign .. 27-6
Data Auditor Monitor... 27-6
Enterprise Java Bean ... 27-6

Example: Using an Enterprise Java Bean Activity to Leverage Existing Business Logic from
EJBs 27-7

xxx

Example: Using an Enterprise Java Bean Activity to Load Data From one DB2 Table to Another
27-8
Restrictions on Using an Enterprise Java Bean Activity.. 27-9

Email .. 27-9
End.. 27-11
End Loop ... 27-12
File Exists .. 27-12
FORK ... 27-13
For Loop... 27-14
 FTP ... 27-14

Writing a Script Within Warehouse Builder ... 27-14
Using Substitution Variables ... 27-16
Calling a Script Outside of Warehouse Builder.. 27-17

Java Class .. 27-17
Example of Using a Java Class Activity in a Process Flow ... 27-18
Example of Customizing the Java Class Activity Executable... 27-18

Manual... 27-19
Mapping .. 27-19
Notification... 27-20

Notification Message Substitution.. 27-21
OMBPlus ... 27-22
 OR.. 27-23
Route .. 27-23
Set Status... 27-24
SQL*PLUS .. 27-24

Using SQL*PLUS Activities in Process Flows... 27-24
Using Substitution Variables ... 27-25
SQL *Plus Command.. 27-25

 Start ... 27-26
 Subprocess ... 27-26
 Transform ... 27-27
User Defined .. 27-27
Wait... 27-29
While Loop ... 27-29
Web Service .. 27-29

28 Warehouse Builder Transformations Reference

Predefined Transformations in the Public Oracle Predefined Library....................................... 28-1
Administrative Transformations .. 28-1

WB_ABORT .. 28-2
WB_COMPILE_PLSQL ... 28-2
WB_DISABLE_ALL_CONSTRAINTS .. 28-3
WB_DISABLE_ALL_TRIGGERS ... 28-3
WB_DISABLE_CONSTRAINT .. 28-4
WB_DISABLE_TRIGGER ... 28-5
WB_ENABLE_ALL_CONSTRAINTS... 28-6
WB_ENABLE_ALL_TRIGGERS .. 28-6

xxxi

WB_ENABLE_CONSTRAINT ... 28-7
WB_ENABLE_TRIGGER .. 28-8
WB_TRUNCATE_TABLE... 28-9

Character Transformations .. 28-9
WB_LOOKUP_CHAR (number) ... 28-10
WB_LOOKUP_CHAR (varchar2).. 28-11
WB_IS_SPACE.. 28-11

Control Center Transformations... 28-12
WB_RT_GET_ELAPSED_TIME... 28-12
WB_RT_GET_JOB_METRICS .. 28-13
WB_RT_GET_LAST_EXECUTION_TIME ... 28-14
WB_RT_GET_MAP_RUN_AUDIT ... 28-14
WB_RT_GET_NUMBER_OF_ERRORS .. 28-15
WB_RT_GET_NUMBER_OF_WARNINGS... 28-15
WB_RT_GET_PARENT_AUDIT_ID... 28-16
WB_RT_GET_RETURN_CODE... 28-16
WB_RT_GET_START_TIME .. 28-17

Conversion Transformations... 28-17
Date Transformations ... 28-18

WB_CAL_MONTH_NAME... 28-19
WB_CAL_MONTH_OF_YEAR ... 28-20
WB_CAL_MONTH_SHORT_NAME ... 28-20
WB_CAL_QTR ... 28-21
WB_CAL_WEEK_OF_YEAR.. 28-21
WB_CAL_YEAR... 28-22
WB_CAL_YEAR_NAME .. 28-22
WB_DATE_FROM_JULIAN .. 28-23
WB_DAY_NAME .. 28-23
WB_DAY_OF_MONTH.. 28-24
WB_DAY_OF_WEEK .. 28-24
WB_DAY_OF_YEAR... 28-25
WB_DAY_SHORT_NAME... 28-25
WB_DECADE... 28-26
WB_HOUR12.. 28-26
WB_HOUR12MI_SS .. 28-27
WB_HOUR24.. 28-27
WB_HOUR24MI_SS .. 28-28
WB_IS_DATE ... 28-28
WB_JULIAN_FROM_DATE .. 28-29
WB_MI_SS... 28-29
WB_WEEK_OF_MONTH... 28-30

Number Transformations .. 28-30
WB_LOOKUP_NUM (on a number) .. 28-31
WB_LOOKUP_NUM (on a varchar2) ... 28-32
WB_IS_NUMBER... 28-33

OLAP Transformations .. 28-33
WB_OLAP_AW_PRECOMPUTE .. 28-34

xxxii

WB_OLAP_LOAD_CUBE .. 28-34
WB_OLAP_LOAD_DIMENSION ... 28-35
WB_OLAP_LOAD_DIMENSION_GENUK .. 28-35

Other Transformations ... 28-36
Spatial Transformations ... 28-37
Streams Transformations ... 28-37

REPLICATE .. 28-37
XML Transformations .. 28-38

WB_XML_LOAD ... 28-39
WB_XML_LOAD_F ... 28-39

Index

xxxiii

Preface

This preface contains the following topics:

■ Audience

■ Documentation Accessibility

■ Conventions

■ Getting Help

■ Related Documents

Audience
This manual is written for Oracle Database administrators and others who create
warehouses using Oracle Warehouse Builder.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

xxxiv

Deaf/Hard of Hearing Access to Oracle Support Services
To reach Oracle Support Services, use a telecommunications relay service (TRS) to call
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle
technical issues and provide customer support according to the Oracle service request
process. Information about TRS is available at
http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone
numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.

Conventions
In this manual, Windows refers to the Windows NT, Windows 2000, and Windows XP
operating systems. The SQL*Plus interface to Oracle Database may be referred to as
SQL.

In the examples, an implied carriage return occurs at the end of each line, unless
otherwise noted. You must press the Return key at the end of a line of input.

The following table lists the conventions used in this manual:

Getting Help
Help is readily available throughout Warehouse Builder:

■ Menus: Menu bars throughout Warehouse Builder contain a Help menu. For
context-sensitive information, choose Topic from the Help menu.

■ Wizards and Dialog Boxes: Detailed instructions are provided on the pages of the
wizards, which take you step-by-step through the process of creating an object.
Click the Help button for additional information about completing a specific
dialog box or a page of a wizard.

■ Tools: You can identify the tools on a toolbar by the tooltips that appear when you
rest the mouse over the icon.

Some toolbars include a Help icon, which displays the Contents page of the Help
system.

Convention Meaning

.

.

.

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

... Horizontal ellipsis points in statements or commands mean that
parts of the statement or command not directly related to the
example have been omitted.

boldface text Boldface type in text refers to interface buttons and links. Boldface
type also serves as emphasis to set apart main ideas.

italicized text Italicized text applies to new terms introduced for the first time.
Italicized text also serves as an emphasis on key concepts.

unicode text Unicode text denotes exact code, file directories and names, and
literal commands.

italicized unicode
text

Italicized unicode text refers to parameters whose value is
specified by the user.

[] Brackets enclose optional clauses from which you can choose one
or none.

xxxv

■ Lists: For items presented in lists, a description of the selected item displays
beneath the list.

■ Pop-Up menus: Click the arrow icon on the right side of the title bar for a window.
Then choose Help from the pop-up menu for context-sensitive information.

You may also want to follow the Oracle By Example tutorials at

http://www.oracle.com/technology/products/warehouse/selfserv_
edu/self_service_education.html

Related Documents
The Oracle Warehouse Builder documentation set includes these manuals:

■ Oracle Warehouse Builder Sources and Targets Guide

■ Oracle Warehouse Builder Concepts

■ Oracle Warehouse Builder ETL and Data Quality Guide

■ Oracle Warehouse Builder Installation and Administration Guide for Windows and UNIX

■ Oracle Warehouse Builder API and Scripting Reference

■ Oracle Warehouse Builder User's Reference

■ Oracle Warehouse Builder Release Notes

In addition to the Warehouse Builder documentation, you can refer to Oracle Database
Data Warehousing Guide.

xxxvi

Part I
Data Modeling

Oracle Warehouse Builder enables you to design your data warehouses. This part
describes how to design your data warehouse and create the data objects that store
data.

This part contains the following chapters:

■ Chapter 1, "Designing Source and Target Schemas"

■ Chapter 2, "Creating Relational Data Objects"

■ Chapter 3, "Defining Dimensional Objects"

Designing Source and Target Schemas 1-1

1
Designing Source and Target Schemas

The data in your data warehouse is stored in target schemas. This data is in the form of
data objects such as tables, views, dimensions, and cubes. In a traditional data
warehousing implementation, there is typically only one target schema, which is the
data warehouse target. You can design both relational and dimensional target
schemas.

This chapter provides an overview of designing target schemas. It contains the
following topics:

■ Designing Target Schemas

■ Configuring Data Objects

■ Validating Data Objects

■ Generating Data Objects

Designing Target Schemas
A target schema contains the data objects that contain your data warehouse data. To
design a target schema, you create any of the dimensional or relational objects listed in
Table 2–1 on page 2-2.

You can design a relational target schema or a dimensional target schema. In this
section, the term dimensions refers to both regular dimensions and Slowly Changing
Dimensions (SCDs).

To design your target schema:

1. Create the target module that will contain the data objects for your data
warehouse.

See "Creating Target Modules" on page 1-1 for details about how to create a target
module.

2. Define the target schema. The schema can be a relational target schema or a
dimensional target schema.

For more details, see "Designing Relational Target Schemas" on page 1-2 or
"Designing Dimensional Target Schemas" on page 1-3.

Creating Target Modules
A target module is a container that holds the metadata definitions of all your data
warehouse objects. Each target module corresponds to a target location that represents
the physical location where the objects are stored.

Designing Target Schemas

1-2 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

To create a target module:

1. Expand the project node under which you want to create the target module and
then expand the node representing the type of target that you want to create.

A separate node is displayed for each type of target that you can create. To create a
target schema in the Oracle Database, expand the Databases node and then the
Oracle node. To create a flat file target, expand the Files node.

2. Right-click the type of target that you want to create and select New Type Module.

For example, to create an Oracle module, expand the Databases node, right-click
the Oracle node, and then select New Oracle Module. To create a flat file module,
right-click the Files node and select New Flat File Module.

3. On the Welcome page of the Create Module Wizard click Next.

4. On the Name and Description page, enter information for the following fields and
then click Next.

Name: Enter a name for the target module.

Description: Enter an optional description for the target module.

The name and description must conform to the naming standards specified in
"Naming Conventions for Data Objects" on page 2-8.

5. On the Connection Information page, enter the details of the physical location
where your data warehouse objects will be stored and click Finish.

If you have already created a location that corresponds to the physical location
where the data objects will be stored, select this location from the Location list.

The target module is created and added to the Projects Navigator. You can now create
your data objects in this target module.

You can create user folders to organize all or some objects in your module based on
specific object characteristics. For example, you create user folders to group tables
based on their functionality (sales, marketing, administration).

Designing Relational Target Schemas
A relational target schema is one that contains relational data objects such as tables,
views, materialized views, and sequences. All the warehouse data is stored in these
objects.

To design a relational target schema:

1. If you have not already done so, create an Oracle module that will contain the
objects for your target schema. Ensure that this module is associated with the
location created to store the target objects.

2. Define the relational data objects that are part of the target schema.

Relational data objects include tables, views, materialized views, and sequences.
You may have already imported some existing target objects. To create additional

See Also: Oracle Warehouse Builder Sources and Targets Guide for more
information about the targets supported by Oracle Warehouse
Builder.

See Also: Oracle Warehouse Builder Sources and Targets Guide for more
information about creating user folders within modules.

Designing Target Schemas

Designing Source and Target Schemas 1-3

data objects, see "Creating Relational Data Objects" on page 2-1. You can define
additional structures pertaining to relational objects such as constraints, indexes,
and partitions.

Note that this step only creates the definitions of the objects in the workspace. To
create the objects in the target schema, you must deploy these objects.

3. Configure the data objects.

In this step, you set the physical properties of the data objects. For example, you
specify the name of the tablespace in which a table should be created. Each data
object has a set of default configuration parameters. You can modify these default
values.

See "Configuring Data Objects" on page 1-4.

4. Validate the data objects. You can only validate Oracle data objects, not data
objects in other databases such as DB2 or SQL Server.

Validation verifies the metadata definitions and configuration parameters of data
objects. Correct any errors that you encounter during the validation.

See "Validating Data Objects" on page 1-4.

5. Generate code that will create these data objects in the target schema. You can
generate code only for Oracle data objects.

Generation produces code that is required to create the data objects created in Step
2 in the target schema.

See "Generating Data Objects" on page 1-6.

Designing Dimensional Target Schemas
A dimensional target schema uses dimensional objects to store the data warehouse
data. Dimensional objects include dimensions and cubes. Dimensional objects
transform the visualization of the target schema from a table-oriented environment to
a more business-focused environment. This helps you obtain answers to complex
analytical queries quickly and efficiently.

You can create a dimensional target schema only in an Oracle module.

To design a dimensional target schema:

1. If you have not already done so, create the Oracle module that will contain your
dimensional objects. Ensure that the location associated with this module refers to
the target schema.

2. Define the dimensions required in your target schema as described in "Creating
Dimensions" on page 3-14.

Note that this step only creates the definitions of the dimensions in the workspace.
To create the objects in the target schema, you must deploy these dimensions.

3. Define the time dimensions required in your target schema as defined in "Creating
Time Dimensions" on page 3-56.

Data warehouses use time dimensions extensively to store temporal data.

4. Define the cubes required for your target schema as described in "Creating Cubes"
on page 3-39.

5. Configure the dimensions and cubes.

Configuring Data Objects

1-4 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Configure the dimensional objects that you created in Steps 2, 3, and 4 to set
physical properties for these objects. You can accept the default properties or
modify them.

6. Validate the dimensions and cubes.

In this step, you verify the metadata definitions and configuration parameters of
the dimensional objects created in Steps 2, 3, and 4. Correct any errors resulting
from the validation.

See "Validating Data Objects" on page 1-4.

7. Generate code that will create these dimensions and cubes in the target schema.

See "Generating Data Objects" on page 1-6.

Configuring Data Objects
Configuration defines the physical characteristics of data objects. For example, you can
define a tablespace and set performance parameters in the configuration of a table. Or
you can specify the type of implementation for dimensional objects. You can change
the configuration of an object any time prior to deployment.

You can define multiple configurations for the same set of objects. This feature is
useful when deploying to multiple environments, such as test and production.

All objects have a Deployable parameter, which is set to true by default. To prevent an
object from being deployed, set this parameter to false.

You configure objects by using the Projects Navigator. Right-click the object in the
Projects Navigator and select Configure. A new tab is displayed containing the
configuration parameters of the selected object. Specify values for the required
configuration parameters.

Validating Data Objects
Validation is the process of verifying metadata definitions and configuration
parameters. These definitions must be valid before you generate and deploy scripts.

Oracle Warehouse Builder runs a series of validation tests to ensure that data object
definitions are complete and that scripts can be generated and deployed. When these

See Also:

■ "Configuring Dimensions" on page 3-37 for information about
configuring dimensions

■ "Configuring Cubes" on page 3-54 for information about
configuring cubes

See Also: Oracle Warehouse Builder Installation and Administration
Guide for Windows and UNIX for more information about creating
multiple configurations

See Also:

■ "Configuring Relational Data Objects" on page 2-46

■ "Configuring Dimensions" on page 3-37

■ "Configuring Cubes" on page 3-54

Validating Data Objects

Designing Source and Target Schemas 1-5

tests are complete, the results are displayed. Warehouse Builder enables you to open
object editors and correct any invalid objects before continuing. In addition to being a
standalone operation, validation also occurs implicitly when you generate or deploy
objects.

To detect possible problems and deal with them as they arise, you can validate in two
stages: after creating data object definitions, and after configuring objects for
deployment. Validating objects after configuration is more extensive than validating
object definitions.

When you validate an object after it has been defined, the metadata definitions for the
objects that you have designed are checked for errors. For example, if you create a
table, Warehouse Builder requires that columns be defined. When this object is
validated, Warehouse Builder verifies that all components of the table have been
defined. If these components are missing, validation messages are displayed in the
Log window.

If you validate an object after it has been configured, metadata definitions are
rechecked for errors and configuration parameters are checked to ensure that the
object will be generated and deployed without any problems. You can then edit
invalid objects.

You can validate a single object or multiple objects at one time. You can also validate
objects that contain objects, such as modules and projects. In this case, all data objects
contained by that object are validated. Use the Projects Navigator to validate data
objects.

Validating Data Objects by Using the Projects Navigator

In the Projects Navigator, select the data object and click the Validate icon. Or select
Validate from the File menu. You can select multiple objects by holding down the Ctrl
key while selecting objects.

or

In the Projects Navigator, select the data object or data objects. To select multiple
objects, hold down the Ctrl key while selecting objects. Right-click the data object and
select Validate. If you selected multiple objects, ensure that the Ctrl key is pressed
when you right-click.

Note that you can only select multiple objects of the same type. For example, you can
select eight tables, but you cannot select five tables and three views.

Viewing Validation Results
When you validate data objects, the validation results are displayed in the Log
window. A new tab named Results is displayed for each validation. This tab contains
the validation results of the selected objects.

You can view validation results for objects even after you close the Results tab. Select
the object in the Projects Navigator and from the View menu, select Validation
Messages. The Log window displays the validation results for the selected object. You
can also select a container object, such as a module node or the Tables node, to view

Tip: Validate objects as you create and configure them to resolve
problems as they arise. The same error-checking processes are run
whether you are validating the design or the configuration.

Generating Data Objects

1-6 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

validation results. This action displays validation messages for the all the contained
objects.

Editing Invalid Objects
The results of validating data objects are displayed in the Log window. From this
window, you can access the editor for an object and rectify any errors in its definition.

To edit an invalid definition:

In the Log window, click the Results tab corresponding to the object you want to edit.
Select the node representing the object and click the Go To Source icon on the Log
window toolbar.

or

In the Log window, click the Results tab displaying the validation results of the object
that you want to edit. Expand the Validation node under the object node to display the
validation messages. Double-click this validation message to open the editor that edits
the object. Or, right-click the message and select Go to Source.

After you edit the object to correct problems, save you changes by clicking the Save All
icon in the toolbar, and then revalidate the object.

Generating Data Objects
When you generate data objects, Warehouse Builder produces the code required to
create the data objects in the target schema. Usually, data objects generate a SQL
script. The SQL script may contain a mixture of DDL statements and PL/SQL blocks
for creating objects using APIs (such as dimension and cube generation).

As part of generation, the data object is also validated.

You can view the generated scripts and also store them to a file system.

When you generate code for a data object, Warehouse Builder first validates the object
and then generates code. You may skip the validation step and directly generate code
for your data objects. However, it is recommended that you validate objects before you
generate them. This enables you to discover and correct any errors in data object
definitions before the code is generated.

To generate a single data object:

In the Projects Navigator, select the data object and click the Generate icon.

or

In the Projects Navigator, select the data object and then select Generate from the File
menu.

or

In the Projects Navigator, right-click the data object and select Generate.

To generate code for multiple data objects:

In the Projects Navigator, select the data objects by holding down the Ctrl key and
click the Generate icon.

or

In the Projects Navigator, select the data objects and, while continuing to hold down
the Ctrl key, right-click and select Generate.

Generating Data Objects

Designing Source and Target Schemas 1-7

You can select and generate code simultaneously for multiple objects only if all the
data objects are of the same type. For example, you can generate code simultaneously
for a set of 12 tables. However, you cannot generate code for three tables and two
dimensions.

Use collections to generate code for multiple data objects which are of different types
and belong to different modules. You can create a collection, add all the objects that
you want to generate simultaneously to the collection, and then generate the
collection.

Regenerating Data Objects
If you make any changes to your data object definitions, you can generate modified
scripts for your data object. Select the data object in the Projects Navigator and click
the Generate icon.

Before you view the modified scripts, close any open tabs containing previous
generation scripts. Opening the same script twice without closing the original editor
window will appear to give incorrect results.

Viewing Generation Results and Generated Scripts
When you generate objects, the generation results are displayed in the Log window, if
the validation completed successfully. The results of each generation operation are
displayed in a separate Results tab.

To view the generated scripts:

1. In the Log window, click the Results tab that contains the generation results for the
required object.

2. Expand the object node and then the Validation node to view the validation
results.

After the data object is validated successfully, Warehouse Builder generates
scripts.

3. Expand the Scripts node under the object node.

A list of the scripts generated for the selected data object is displayed.

4. Select a specific script and, in the Log window toolbar, click the View Script icon.
Or right-click a specific script and select Go to Source.

The selected script is displayed in a read-only code viewer.

Saving Generated Scripts to a File
To save generated scripts:

1. In the Log window, click the Results tab that contains the generation results for the
required object.

2. Expand the object node and then the Scripts node.

A list of the generated scripts is displayed, under the Scripts node, for the object
that you selected.

3. Select a specific script and, in the toolbar, click the Save Script As icon.

The Save dialog box opens and you can select a location where you want to save
the script file.

Generating Data Objects

1-8 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Creating Relational Data Objects 2-1

2
Creating Relational Data Objects

After you finish designing your data warehouse or data mart, you are ready to design
your target system. This chapter shows you how to create relational data objects.
Relational data objects include tables, views, materialized views, sequences, external
tables, user-defined types (object types, Varrays, and nested tables), and queues.

This chapter contains the following topics:

■ Overview of Data Objects

■ Defining Tables

■ Defining Views

■ Defining Materialized Views

■ Defining Constraints

■ Defining Indexes

■ Defining Partitions

■ Defining Attribute Sets

■ Defining Sequences

■ Defining User-Defined Types

■ Defining Queues

■ Configuring Relational Data Objects

■ Creating Relational Data Objects in Microsoft SQL Server and IBM DB2 UDB

Overview of Data Objects
Oracle Warehouse Builder supports relational and dimensional data objects. Relational
objects, like relational databases, rely on tables and table-derived objects to store and
link all of their data. The relational objects you define are physical containers in the
database that are used to store data. It is from these relational objects that you run
queries after the warehouse has been created. Relational objects include tables, views,
materialized views, sequences, user-defined types, and queues. You can also create
optional structures associated with relational objects such as constraints, indexes,
partitions, and attribute sets.

Dimensional objects contain additional metadata to identify and categorize your data.
When you define dimensional objects, you describe the logical relationships that help
store the data in a more structured format. Dimensional objects include dimensions
and cubes.

Overview of Data Objects

2-2 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

In addition to relational and dimensional objects, Warehouse Builder supports
intelligence objects. Intelligence objects are not part of Oracle modules. They are
displayed under the Business Intelligence node in the Projects Navigator. Intelligence
objects enable you to store definitions of business views. You can deploy these
definitions to analytical tools such as Oracle Discoverer and perform ad hoc queries on
the warehouse.

The Oracle module contains nodes for each type of data object that you can define in
Warehouse Builder. In the Projects Navigator, under the Oracle node, expand the
module node to view all the supported data objects.

List of Warehouse Builder Data Objects
Table 2–1 describes the types of data objects that you can use in Warehouse Builder.

See Also: Oracle Warehouse Builder Sources and Targets Guide for more
information about creating business definitions for Oracle BI
Discoverer

Table 2–1 Data Objects in Oracle Warehouse Builder

Data Object Type Description

Tables Relational The basic unit of storage in a relational database management
system. Once a table is created, valid rows of data can be
inserted into it. Table information can then be queried, deleted,
or updated. To enforce defined business rules on its data,
define integrity constraints for a table.

 See "Defining Tables" on page 2-10 for more information.

External
Tables

Relational External tables are tables that represent data from
non-relational flat files in a relational format. Use an external
table as an alternative to using a Flat File operator and
SQL*Loader.

See Oracle Warehouse Builder Sources and Targets Guide for more
information about external tables.

Views Relational A view is a custom-tailored presentation of data in one or more
tables. Views do not actually contain or store data; they derive
their data from the tables on which they are based. Like tables,
views can be queried, updated, inserted into, and deleted from,
with some restrictions. All operations performed on a view
affect the base tables of the view. Use views to simplify the
presentation of data or to restrict access to data.

See "Defining Views" on page 2-15 for more information.

Materialized
Views

Relational Materialized views are precomputed tables comprising
aggregated or joined data from fact and possibly dimension
tables. Also known as a summary or aggregate table. Use
materialized views to improve query performance.

See "Defining Materialized Views" on page 2-18 for more
information.

Sequences Relational Sequences are database objects that generate lists of unique
numbers. You can use sequences to generate unique surrogate
key values.

See "Defining Sequences" on page 2-35 for more information.

Overview of Data Objects

Creating Relational Data Objects 2-3

Supported Data Types
The metadata for the data objects that you create is stored in the repository. The
metadata consists of details such as the attribute or column names, data types, and
level names.

Table 2–2 displays the data types that you can use to define columns or attributes.

Dimensions Dimensional A general term for any characteristic that is used to specify the
members of a data set. The three most common dimensions in
sales-oriented data warehouses are time, geography, and
product. Most dimensions have hierarchies.

See "Overview of Dimensions" on page 3-2 for more
information.

Cubes Dimensional Cubes contain measures and links to one or more dimension
tables. They are also known as facts.

See "Overview of Cubes" on page 3-7 for more information.

Advanced
Queues

Relational Advanced queues enable message management and
communication required for application integration.

See "Creating Advanced Queue Definitions" on page 2-43 for
more information.

Queue Tables Relational Queue tables are tables that store queues. Each queue table
contains a payload, whose data type is specified at the time of
creating the queue table.

See "Creating Queue Table Definitions" on page 2-42 for more
information.

Object Types Relational An object type is composed of one or more user-defined types
or scalar types.

See "About Object Types" on page 2-36 for more information.

Varrays Relational A Varray is an ordered collection of elements.

 See "About Varrays" on page 2-39 for more information.

Nested Tables Relational A nested table complements the functionality of the Varray
data type. A nested table permits a row to have multiple
"mini-rows" of related data contained within one object.

See "About Nested Tables" on page 2-40 for more information.

Table 2–2 Oracle Warehouse Builder Supported Data Types

Data Type Description

BINARY_DOUBLE Stores double-precision IEEE 754-format single-precision
floating-point numbers. Used primarily for high-speed
scientific computation. Literals of this type end with d.
For example, 3.0235d.

BINARY_FLOAT Stores single-precision IEEE 754-format single-precision
floating-point numbers. Used primarily for high-speed
scientific computation. Literals of this type end with f.
For example, 2.07f.

BLOB Stores large binary objects in the database, in-line or
out-of-line. Every BLOB variable stores a locator, which
points to a large binary object. The size of a BLOB cannot
exceed 4 gigabytes.

Table 2–1 (Cont.) Data Objects in Oracle Warehouse Builder

Data Object Type Description

Overview of Data Objects

2-4 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

CHAR Stores fixed-length character data to a maximum size of
4,000 characters. How the data is represented internally
depends on the database character set. You can specify
the size in terms of bytes or characters, where each
character contains one or more bytes, depending on the
character set encoding.

CLOB Stores large blocks of character data in the database,
in-line or out-of-line. Both fixed-width and
variable-width character sets are supported. Every CLOB
variable stores a locator that points to a large block of
character data. The size of a CLOB cannot exceed four
gigabytes.

DATE Stores fixed-length date times, which include the time of
day in seconds since midnight. The date defaults to the
first day of the current month; the time defaults to
midnight. The date function SYSDATE returns the
current date and time.

FLOAT Stores a single-precision, floating-point number. FLOAT
can be loaded with correct results only between systems
where the representation of a FLOAT is compatible and of
the same length.

INTEGER A NUMBER subtype that stores integer values with a
maximum precision of 38 decimal digits.

INTERVAL DAY TO SECOND Stores intervals of days, hours, minutes, and seconds.

INTERVAL YEAR TO MONTH Stores intervals of years and months.

LONG Stores fixed-length character strings. The LONG data type
is like the VARCHAR2 data type, except that the
maximum length of a LONG value is 2147483647 bytes (2
gigabytes).

LONG RAW Stores binary data or byte strings. Use this data type to
store graphics, sounds, documents, or arrays of binary
data.

MDSYS.SDOAGGRTYPE Stores the geometric description of a spatial object and
the tolerance. Tolerance is used to determine when two
points are close enough to be considered as the same
point.

MDSYS.SDO_DIM_ARRAY Stores an array of type MDSYS.SDO_DIM_ELEMENT.

MDSYS.SDO_DIM_ELEMENT Stores the dimension name, lower boundary, upper
boundary, and tolerance.

MDSYS.SDO_ELEM_INFO_ARRAY Stores an array of type MDSYS.SDO_ORDINATE_ARRAY.

MDSYS.SDO_GEOMETRY Stores Geographical Information System (GIS) or spatial
data in the database. For more information, see Oracle
Spatial Developer's Guide.

MDSYS.SDO_ORDINATE_ARRAY Stores the list of all vertices that define the geometry.

MDSYS.SDO_POINT_TYPE Stores two-dimensional and three-dimensional points.

Table 2–2 (Cont.) Oracle Warehouse Builder Supported Data Types

Data Type Description

Overview of Data Objects

Creating Relational Data Objects 2-5

NCHAR Stores fixed-length (blank-padded, if necessary) national
character data. Because this type can always
accommodate multibyte characters, you can use it to
hold any Unicode character data. How the data is
represented internally depends on the national character
set specified when the database was created, which
might use a variable-width encoding (UTF8) or a
fixed-width encoding (AL16UTF16).

NCLOB Stores large blocks of NCHAR data in the database, in-line
or out-of-line.

NUMBER Stores real numbers in a fixed-point or floating-point
format. Numbers using this data type are guaranteed to
be portable among different Oracle platforms, and offer
up to 38 decimal digits of precision. You can store
positive and negative numbers, as well as zero, in a
NUMBER column.

NVARCHAR2 Stores variable-length Unicode character data. Because
this type can always accommodate multibyte characters,
you can use it to hold any Unicode character data. How
the data is represented internally depends on the
national character set specified when the database was
created, which might use a variable-width encoding
(UTF8) or a fixed-width encoding (AL16UTF16).

RAW Stores binary data or byte strings. For example, a RAW
variable might store a sequence of graphics characters or
a digitized picture. Raw data is like VARCHAR2 data,
except that PL/SQL does not interpret raw data.

ROWID Base 64 string representing the unique address of a row
in its table. This data type is primarily for values
returned by the ROWID pseudocolumn.

SYS.ANYDATA An Oracle-supplied type that can contain an instance of a
given type, with data, plus a description of the type.
ANYDATA can be used as a table column data type and
lets you store heterogeneous values in a single column.
The values can be of SQL built-in types as well as
user-defined types.

SYS.AQ$_JMS_BYTES_MESSAGE A type that is the ADT (Abstract Data Type) used to store
a BytesMessage in an Oracle Streams AQ queue.

A BytesMessage object is used to send a message
containing a stream of uninterrupted bytes.

For more information about this data type, see:

■ Oracle Database PL/SQL Packages and Types Reference

■ Oracle Streams Advanced Queuing User's Guide

SYS.AQ$_JMS_MAP_MESSAGE A type that is the ADT used to store a MapMessage in an
Oracle Streams AQ queue.

A MapMessage object is used to send a set of
name-value pairs where the names are String types, and
the values are Java primitive types.

For more information about this data type, see:

■ Oracle Database PL/SQL Packages and Types Reference

■ Oracle Streams Advanced Queuing User's Guide

Table 2–2 (Cont.) Oracle Warehouse Builder Supported Data Types

Data Type Description

Overview of Data Objects

2-6 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

SYS.AQ$_JMS_MESSAGE An ADT type that can represent any of five different JMS
message types: text message, bytes message, stream
message, map message, or object message. Queues
created using this ADT can therefore store all five types
of JMS messages.

For more information about this data type, see Oracle
Database PL/SQL Packages and Types Reference:

SYS.AQ$_JMS_STREAM_
MESSAGE

A type that is the ADT used to store a StreamMessage
in an Oracle Streams AQ queue. A StreamMessage
object is used to send a stream of Java primitives. It is
filled and read sequentially.

For more information about this data type, see:

■ Oracle Database PL/SQL Packages and Types Reference

■ Oracle Streams Advanced Queuing User's Guide

SYS.AQ$_JMS_TEXT_MESSAGE A type that is the ADT used to store a TextMessage in
an Oracle Streams AQ queue. A TextMessage object is
used to send a message containing a
java.lang.StringBuffer.

For more information about this data type, see:

■ Oracle Database PL/SQL Packages and Types Reference

■ Oracle Streams Advanced Queuing User's Guide

SYS.LCR$_ROW_RECORD A type that represents a data manipulation language
(DML) change to a row in a table. This type uses the
LCR$_ROW_LIST type.

TIMESTAMP Extends the DATE data type and stores the year, month,
day, hour, minute, and second. The default timestamp
format is set by the Oracle Database initialization
parameter NLS_TIMESTAMP_FORMAT.

TIMESTAMP WITH LOCAL TIME
ZONE

Extends the TIMESTAMP data type and includes a
time-zone displacement. The time-zone displacement is
the difference (in hours and minutes) between local time
and Coordinated Universal Time (UTC)—formerly
Greenwich Mean Time. You can also use named time
zones, as with TIMESTAMP WITH TIME ZONE.

TIMESTAMP WITH TIME ZONE Extends the TIMESTAMP data type and includes a
time-zone displacement. The time-zone displacement is
the difference (in hours and minutes) between local time
and Coordinated Universal Time (UTC)—formerly
Greenwich Mean Time.

UROWID Represents the address of certain rows in relational tables
that are not physical or are not generated by Oracle
Database. For example, row address of an
index-organized table and row IDs of non-Oracle foreign
tables (such as DB2 accessed using a gateway). The
maximum size is 4,000 bytes.

VARCHAR Stores a length-value data type consisting of a binary
length subfield followed by a character string of the
specified length. The length is in bytes, unless
character-length semantics are used for the data file. In
that case, the length is in characters.

Table 2–2 (Cont.) Oracle Warehouse Builder Supported Data Types

Data Type Description

Overview of Data Objects

Creating Relational Data Objects 2-7

About Object Class Definition
Oracle Warehouse Builder architecture comprises several classes of objects, such as
First Class Objects, Second Class Objects, and Third Class Objects. This section
describes these classes of objects.

About First Class Objects (FCOs)
A First Class Object (FCO) represents a component in the metadata repository that can
be manipulated through the Warehouse Builder interface. FCOs often, but not always,
own other objects. For example, a TABLE is an FCO that may own the following
Second Class Objects: TABLE_COLUMN, UNIQUE_KEY, FOREIGN_KEY, and
CHECK_CONSTRAINT.

For those accessing Warehouse Builder using the Design Center, FCOs generally
appear on the navigation tree. Similarly, users who access Warehouse Builder through
OMB*Plus can generalize FCOs as objects of OMBCREATE, OMBALTER,
OMBRETRIEVE, and OMBDROP commands.

About Second Class Objects (SCOs)
A Second Class Object (SCO) represents a dependent object component. An SCO is
always owned by another object, and can, in turn, own objects itself. For example, the
FCO called MAPPING contains the SCO MAPPING_OPERATOR, which in turn
contains ATTRIBUTES.

For those accessing Warehouse Builder through the Design Center, SCOs can only be
manipulated through an FCO. Similarly, users who access Warehouse Builder through
OMB*Plus can only manipulate SCO definitions through a command against an FCO.

About Third Class and Fourth Class Objects
Third Class and Fourth Class objects are relative rankings of objects owned by other
objects. These refer only to objects whose ownership spans several layers. For example,
INDEX_COLUMN is an SCO in the scenario where a DIMENSION_TABLE (which is a
FCO) owns INDEX_COLUMN. However, INDEX_COLUMN becomes a Third Class

VARCHAR2 Stores variable-length character data. How the data is
represented internally depends on the database character
set. The VARCHAR2 data type takes a required parameter
that specifies a maximum size up to 4,000 characters.

XMLFORMAT An object type that is used to specify formatting
arguments for SYS_XMLGEN() and SYS_XMLAGG()
functions.

XMLTYPE An Oracle-supplied type that can be used to store and
query XML data in the database. It has member
functions that you can use to access, extract, and query
the XML data by using XPath expressions. XPath is a
standard developed by the W3C committee to traverse
XML documents.

User-defined Types Use Oracle built-in data types and other user-defined
data types as the building blocks of object types that
model the structure and behavior of data in applications.

User-defined types include Object Types, Varrays, and
Nested tables.

Table 2–2 (Cont.) Oracle Warehouse Builder Supported Data Types

Data Type Description

Overview of Data Objects

2-8 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Object in the scenario where the FCO CUBE_TABLE owns the SCO INDEX, which in
turn owns INDEX_COLUMN.

Naming Conventions for Data Objects
The rules for naming data objects depend on the naming mode that you set for
Warehouse Builder. Warehouse Builder maintains a business and a physical name for
each object stored in a workspace. The business name for an object is its descriptive
logical name and the physical name is the name used when Warehouse Builder
generates code.

You set the naming mode using the Naming Preferences section of the Preferences
dialog box.

When you name or rename data objects, use the following naming conventions.

Naming Oracle Data Objects
In the physical naming mode, the name for an Oracle data object can be between 1 and
30 alphanumeric characters. The name must be unique across the object category that
owns the object. Blank spaces are not allowed. Data object names cannot begin with
OWB$.

In the business naming mode, the limit is 200 characters. The name must be unique
across the object category that owns the object. For example, because all tables belong
to a module, table names must be unique across the module to which they belong.
Similarly, module names must be unique across the project to which they belong.

Describing Data Objects
Edit the description of the data object as necessary. The description can be between 1
and 4,000 alphanumeric characters and can contain blank spaces. Specifying a
description for a data object is optional.

Best Practices for Naming Data Objects
Data object names or FCO names should be unique across the object category that
owns the FCO. Additionally, it is a good practice to ensure that SCO names are unique
across the object category that owns the FCO and are different from those of the FCO
containing the SCO.

For example, a table contains constraints. The table is an FCO and constraints are
SCOs. When you define the table, provide a table name that is unique across the
module in which it is defined. Additionally, Oracle recommends that you provide
constraint names that are unique across all the FCOs and SCOs in that module.

See Also: Oracle Warehouse Builder Concepts for more information
about naming preferences.

See Also: For information about the length of physical names on
other platforms, see:

■ "Rules for Naming Objects in IBM DB2 UDB" on page 2-57

■ "Rules for Naming Objects in Microsoft SQL Server" on page 2-58

Overview of Data Objects

Creating Relational Data Objects 2-9

Using the Data Viewer to View Data Stored in Data Objects
The Data Viewer enables you to view the data stored in relational and dimensional
data objects. For example, the data viewer for a table enables you to view the table
data. Similarly, the data viewer for a cube enables you to view data stored in a cube.

To access the Data Viewer for a data object, from the Projects Navigator, right-click the
data object and select Data. The Data Viewer containing the data stored in the data
object is displayed in a separate tab.

The Data Viewer tab contains the following buttons: Execute Query, Get More, Where
Clause, and More. The More button is displayed at the bottom of the tab.

Click Execute Query to execute a query on the data object and fetch its data.

By default, the Data Viewer displays the first hundred rows of data. To retrieve the
next set of rows, click Get More. Alternatively, you can click More to perform the
same action.

Click Where Clause to specify a condition that is used to restrict the data displayed by
the Data Viewer. Clicking this button displays the Where Clause dialog box. Use this
dialog box to specify the condition used to filter data. You can use this option for
tables and views only.

The columns and column names displayed in the Data Viewer are taken directly from
the location in which the actual table is deployed.

About Error Tables
Warehouse Builder enables you to create error tables to store logical errors that may
occur while loading data into Oracle data objects such as tables, views, materialized
view, dimensions, and cubes.

Use error tables to:

■ Capture logical errors when data rules are applied to tables, views, or materialized
views.

■ Capture physical errors using DML error logging.

■ Store errors caused by orphan records when an orphan management policy is
enabled for dimensional objects.

Defining Error Tables for Data Objects
An error table is created for a data object only if you set the Error Table Name
configuration parameter for the data object. If you do not specify an error table name
for a data object, logical errors are not logged for that object. However, when a data
object has data rules associated with it, even if you do not specify an error table name
for the object, Warehouse Builder creates an error table using a default name. For
example, if the name of the table for which you specified data rules is EMP, the error
table is called EMP_ERR.

To create an error table for a data object:

1. In the Projects Navigator, right-click the data object for which you want to create
an error table, and select Configure.

The Configuration tab containing the configuration parameters for the data object
is displayed.

See Also: "Orphan Management for Dimensional Objects" on
page 3-7 for more information about orphan management

Defining Tables

2-10 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

2. In the Configuration tab, expand the Error Tables node.

3. Set the value of the Error Table Name parameter to the name of the error table for
the data object.

If you modify the value of the Error Table Name parameter after the data object is
deployed, you must drop the data object and then redeploy it. If this data object was
used in mappings, ensure that you synchronize all operators that are bound to this
data object and then redeploy the mappings.

Error Table Columns
In addition to the columns contained in the data object, error tables for a data object
contain the columns listed in Table 2–3.

For scalar data types, if no data rules are applied to the data object, the columns in the
error table are of data type VARCHAR2(4000). This allows physical data errors such as
ORA-12899: value too large for column, to be captured. If data rules are applied, the
columns in the error table are of the same data type as the columns in the data object.

For example, the table TEST has two columns C1, of data type NUMBER, and C2, of
data type VARCHAR2(10). The error table generated for TEST will contain the DML
error columns C1 and C2. If no data rules are applied to TEST, the data type for both
C1 and C2 will be VARCHAR2(4000). If data rules are applied to TEST, C1 will be
NUMBER and C2 will be of data type VARCHAR2(10).

Defining Tables
Tables are metadata representations of relational storage objects. They can be tables
from a database system such as Oracle Database or even an SAP system.

The following sections provide information about defining tables:

■ Creating Table Definitions on page 2-10

■ Editing Table Definitions on page 2-13

Creating Table Definitions
Tables capture the metadata used to model your target schema. Table definitions
specify the table constraints, indexes, partitions, attribute sets, and metadata about the

Note: The Error Table Name and Truncate Error Table configuration
parameters of the Table, View, or Materialized View operators are not
used for row-based code.

Table 2–3 Error Table Columns

Column Name Description

ORA_ERR_NUMBER$ Oracle Database error number

ORA_ERR_MESG$ Oracle Database error message text

ORA_ERR_ROWID$ Row ID of the row in error (for update and delete)

ORA_ERR_OPTYPE$ Type of operation: insert (I), update (U), delete (D)

ORA_ERR_TAG$ Step or detail audit ID from the runtime audit data. This is the
STEP_ID column in the runtime view ALL_RT_AUDIT_STEP_
RUNS.

Defining Tables

Creating Relational Data Objects 2-11

columns and data types used in the table. This information is stored in the workspace.
You can later use these definitions to generate .ddl scripts that can be deployed to
create physical tables in your target database. These tables can then be loaded with
data from chosen source tables.

Before You Begin
Ensure that you create the target schema that will contain your table as described in
"Designing Target Schemas" on page 1-1.

To create a table in an Oracle module:

1. From the Projects Navigator, expand the Databases node and then the Oracle
node.

2. Expand the module where you want to create the table, right-click Tables, and
select New Table.

or

Right-click the module where you want to create a table and select New. The New
Gallery dialog box is displayed. From the Items section, select Table and click OK.

3. In the Create Table dialog box, enter a name and an optional description for the
table and click OK. Alternatively, you can accept the autogenerated unique name
for the table and click OK.

The Table Editor is displayed. Define the table using the following tabs:

■ Columns Tab on page 2-12

■ Keys Tab on page 2-12

■ Indexes Tab on page 2-13

■ Partitions Tab on page 2-13

■ Attribute Sets Tab on page 2-13

■ Data Rules Tab on page 2-13

After you define the table using these tabs, the table definitions are created and
stored in the workspace. The new table name is also added to the Projects
Navigator. At this stage, only the metadata for the table is created in the
workspace. To create the table in your target schema, you must deploy the table.

Name Tab
Use the Name tab to specify the name and description of a table. This tab contains the
following fields:

■ Name: Represents the name for the table. The name should be unique within the
module in which the table is defined.

■ Description: Specify an optional description for the table.

Follow the rules in "Naming Conventions for Data Objects" on page 2-8 to specify a
name and an optional description.

Note: You can also create a table from the Graphical Navigator.

Defining Tables

2-12 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Columns Tab
Use the Columns tab to define the columns in the table. This tab displays a table that
you use to define columns. Each row in the table corresponds to the definition of one
table column. Warehouse Builder generates the column position in the order in which
you type in the columns. To reorder columns, see "Reordering Columns in a Table" on
page 2-15.

Enter the following details for each column:

■ Name: Enter the name of the column. The column name should be unique within
the table.

■ Data Type: Select the data type of the column from the Data Type list. A default
data type is assigned based on the column name. For example, if you create a
column named start_date, the data type assigned is DATE. You can change the
default assignment if it does not suit your data requirement.

For a list of supported Oracle Database data types, see "Supported Data Types" on
page 2-3.

■ Length: Specify the length of the column. Length is applicable to character data
types only.

■ Precision: Specify the total number of digits allowed for the column. Precision is
applicable for numeric data types only.

■ Scale: Specify the total number of digits to the right of the decimal point. Scale is
applicable to numeric data types only.

■ Seconds Precision: Used for TIMESTAMP, TIMESTAMP WITH TIME ZONE, and
TIMESTAMP WITH LOCAL TIME ZONE data types only. Specify the number of
digits in the fractional part of the datetime field.

■ Not Null: Select this field to specify that the column should not contain null
values. By default, all columns in a table allow nulls.

■ Default Value: Specify the default value for this column. If no value is entered for
this column while you are loading data into the table, the default value is used. If
you specify a value for this column while loading data, the default value is
overridden and the specified value is stored in the column.

■ Virtual: Select this option to indicate that the column is a virtual column.

Virtual columns are not stored in the database. They are computed using the
expression specified in the Expression field. You can refer to virtual columns just
like any other column in the table, except that you cannot explicitly write to a
virtual column.

■ Expression: Specify the expression that is used to compute the value of the virtual
column. The expression can include columns from the same table, constants, SQL
functions, and user-defined PL/SQL functions.

■ Description: Enter an optional description for the column.

Keys Tab
Use the Keys tab to create constraints on the table columns. You can create primary
keys, foreign keys, unique keys, and check constraints.

For more information about creating constraints, see "Creating Constraints" on
page 2-21.

Defining Tables

Creating Relational Data Objects 2-13

Indexes Tab
Use the Indexes tab to create indexes on the table. Indexes enable faster retrieval of
data stored in your data warehouse. You can create the following types of indexes:
unique, nonunique, bitmap, function-based, composite, and reverse.

For more information about creating these indexes, see "Creating Indexes" on
page 2-24.

Partitions Tab
Use the Partitions tab to create partitions for the table. Partitions enable better
manageability of larger tables. They also improve query and load performance. You
can create the following types of partitions: range, hash, hash by quantity, list,
range-hash, range-hash by quantity and range-list.

For more information about partitions and how to create each type of partition, see
"Defining Partitions" on page 2-25.

Attribute Sets Tab
Use the Attribute Sets tab to create attribute sets for the table.

For more information about creating attribute sets for a table, see "Defining Attribute
Sets" on page 2-33.

Data Rules Tab
Use the Data Rules tab to apply data rules to a table. Data rules enable you to
determine legal data within a table and legal relationships between tables. When you
apply a data rule to a table, Warehouse Builder ensures that the data in the table
conforms to the specified data rule.

Warehouse Builder provides a set of predefined data rules that are listed in the
DERIVED_DATA_RULES node under the Data Rules node of the Projects Navigator.
You can define your own data rules by creating data rules under the Data Rules node.

Click Apply Rule to apply a data rule to a table. The Apply Data Rule Wizard is
displayed. Use this wizard to select the data rule and the column to which the data
rule should be applied.

After you apply a data rule to a table, it is listed on the Data rules tab. For the data rule
to be applied to a table, ensure that the check box to the left of the data rule name is
selected. Deselect this option if you do not want the data rule to be applied to the
table.

Editing Table Definitions
Use the Table Editor to edit table definitions. To open the editor, right-click the name of
the table in the Projects Navigator and select Open. Alternatively, you can double-click
the name of the table in the Projects Navigator.

The following sections describe the table definitions that you can edit.

See Also:

■ "Overview of Data Rules" on page 19-1

■ "Applying Data Rules to Data Objects" on page 19-7

■ "Creating Data Rules Using the Create Data Rule Wizard" on
page 19-5

Defining Tables

2-14 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Renaming Tables
Use one of the following methods to rename a table:

■ On the Name tab of the table editor, click the Name field and enter the new name
for the table. You can also modify the description stored in the Description field.

Alternatively, select the table in the Projects Navigator to display the properties of
the table in the Property Inspector. Edit the values of the Physical Name and
Description properties.

■ In the Projects Navigator, select the table you want to rename and press the F2 key.
The table name is highlighted. Enter the new table name and press the Enter key.

■ In the Projects Navigator, right-click the table name and select Rename. The table
name is highlighted. Enter the new name for the table and press the Enter key.

Adding, Modifying, and Deleting Table Columns
Use the Columns tab of the Table Editor to add, modify, and remove table columns.

Adding Columns

Navigate to the Columns tab. Click the Name field in an empty row and enter the
details that define the new column. For more information, see "Columns Tab" on
page 2-12.

Modifying Columns

Use the Columns tab of the Table Editor to modify column definitions. You can modify
any of the attributes of the column definition either by entering the new value or
selecting the new value from a list. For more information, see "Columns Tab" on
page 2-12.

Deleting Columns

Navigate to the Columns tab. Right-click the gray cell to the left of the column name
that you want to remove and select Delete.

Adding, Modifying, and Deleting Table Constraints
Navigate to the Keys tab of the Table Editor.

For details on adding and editing constraints, see "Creating Constraints" on page 2-21
and "Editing Constraints" on page 2-24 respectively.

To delete a constraint, select the row that represents the constraint by clicking the gray
cell to the left of the column name. Click Delete at the bottom of the tab.

Adding, Modifying, and Deleting Attribute Sets
Use the Attribute Sets tab of the Table Editor to add, modify, or delete attribute sets in
a table.

For details about adding attribute sets, see "Creating Attribute Sets" on page 2-34. See
"Editing Attribute Sets" on page 2-34 for instructions on how to edit an attribute set.

To delete an attribute set, navigate to the Attribute Sets tab. Right-click the cell to the
left of the attribute set that you want to remove and select Delete.

Defining Views

Creating Relational Data Objects 2-15

Reordering Columns in a Table
By default, columns in a table are displayed in the order in which they are created.
This order is also propagated to the DDL script generated to create the table. If this
default ordering does not suit your application needs, or if you want to further
optimize query performance, you can reorder the columns.

To change the position of a column:

1. If the Table Editor is not already open for the table, open the editor.

You can do this by double-clicking the name of the table in the Projects Navigator.
Alternatively, you can right-click the name of the table in the Projects Navigator
and select Open.

2. On the Columns tab, select the gray square located to the left of the column name.

The entire row is highlighted.

3. Use the buttons on the left of the Columns tab to move the column to the required
position.

The position of the column is now updated.

4. Close the Table Editor.

For the change in the column position to be reflected in the table stored in the
workspace you must deploy the changed table definition.

Defining Views
You can define views and materialized views in Warehouse Builder. This section
describes views. For information about materialized views, see "Defining Materialized
Views" on page 2-18.

Views are used to simplify the presentation of data or restrict access to data. Often the
data that users are interested in is stored across multiple tables with many columns.
When you create a view, you create a stored query to retrieve only the relevant data or
only data that the user has permission to access.

A view can be defined to model a query on your target data. This query information is
stored in the workspace. You can later use these definitions to generate .ddl scripts that
can be deployed to create views in your target system.

For information about using views, see:

■ Creating View Definitions on page 2-15

■ Editing View Definitions on page 2-17

Creating View Definitions
A view definition specifies the query used to create the view, constraints, attribute sets,
data rules, and metadata about the columns and data types used in the view. This
information is stored in the workspace. You can generate the view definition to create
.ddl scripts. These scripts can be deployed to create the physical views in your
database.

Before You Begin
Ensure that you create the target schema that will contain your view as described in
"Creating Target Modules" on page 1-1.

To define a view:

Defining Views

2-16 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

1. From the Projects Navigator, expand the Databases node and then the Oracle
node.

2. Expand the target module where you want to create the view, right-click Views,
and select New View.

or

Right-click the target module where you want to create the view and select New.
In the New Gallery dialog box, select View and click OK.

3. In the Create View dialog box, enter a name and an optional description for the
view and click OK.

The View Editor is displayed.

4. Provide information on the following tabs of the View Editor:

■ Columns Tab on page 2-16

■ Query Tab on page 2-16

■ Keys Tab on page 2-17

■ Attribute Sets Tab on page 2-17

■ Data Rules Tab on page 2-17

Warehouse Builder creates a definition for the view, stores this definition in the
workspace, and adds this view name in the Projects Navigator.

Name Tab
Use the Name tab to modify the name and description that you provided in the Create
View dialog box. Ensure that the name and description follow the rules listed in
"Naming Conventions for Data Objects" on page 2-8.

Columns Tab
Use the Columns tab to define the columns in the view. For each view column, enter
the following details: Name, Data Type, Length, Precision, Scale, Seconds Precision,
Not Null, Default Value, Virtual, Expression, and Description.

Query Tab
Use the Query tab to define the query used to create the view. A view can contain data
from tables that belongs to a different module than the one to which the view belongs.
You can also combine data from more than one table using joins.

Ensure that the query statement you type is valid. Warehouse Builder does not
validate the text in the Query tab and will attempt to deploy a view even if the syntax
is invalid.

Note: The name and description must follow the naming
conventions listed in "Naming Conventions for Data Objects" on
page 2-8.

Note: You can also define a view from the Graphical Navigator.

See Also: "Columns Tab" on page 2-12 for more information about
defining columns

Defining Views

Creating Relational Data Objects 2-17

Keys Tab
Use the Keys tab to define logical constraints for a view. Although these constraints are
not used when enumerating DDL for the view, they can be useful when the view
serves as a data source in a mapping. The Mapping Editor can use the logical foreign
key constraints to include the referenced dimensions as secondary sources in the
mapping.

For more information about creating constraints, see "Creating Constraints" on
page 2-21.

Attribute Sets Tab
Use the Attribute Sets tab to define attribute sets for the view.

For more information about attribute sets and how to create them, see "Defining
Attribute Sets" on page 2-33.

Data Rules Tab
Use the Data Rules tab to specify the data rules that are applied to the view. Data rules
help to ensure data quality by defining the legal data within a table, or legal
relationships between tables.

For more information about the Data Rules tab, see "Data Rules Tab" on page 2-13.

Editing View Definitions
Use the View Editor to edit view definitions. To open the View Editor, right-click the
view in the Projects Navigator and select Open. The following sections describe the
view definitions that you can edit.

Renaming Views
Use the Name tab of the View Editor to rename views. Click the Name field and enter
the new name for the view. You can also modify the description stored in the
Description field. Enter the new name over the highlighted object name.

Alternatively, select the view in the Projects Navigator to display the view properties
in the Property Inspector. Edit the values of the Physical Name and Description
properties.

Adding, Modifying, and Deleting View Columns
Use the Columns tab to add, modify, or delete view columns.

Adding columns: On the Columns tab, click the Name field in an empty row and
enter the details that define a column. For more information about these details, see
"Columns Tab" on page 2-16.

Editing columns: Use the Columns tab of the Table Editor to modify column
definitions. You can modify any of the attributes of the column definition. For more
information, see "Columns Tab" on page 2-16.

Removing columns: On the Columns tab, right-click the gray cell to the left of the
column name that you want to remove and select Delete.

Note: You cannot create check constraints for views.

Defining Materialized Views

2-18 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Adding, Modifying, and Deleting View Constraints
Use the Keys tab of the View Editor to add, modify, or delete view constraints. For
details on adding and editing constraints, see "Creating Constraints" on page 2-21 and
"Editing Constraints" on page 2-24 respectively.

To delete constraints, on the Keys tab, select the row that represents the constraint.
Click Delete at the bottom of the tab.

Adding, Modifying, and Deleting Attribute Sets
Use the Attribute Sets tab of the View Editor to add, modify, or delete attribute sets.
For details about adding attribute sets, see "Creating Attribute Sets" on page 2-34. See
"Editing Attribute Sets" on page 2-34 for instructions on how to edit an attribute set.

To delete an attribute set, navigate to the Attribute Sets tab. Right-click the cell to the
left of the attribute set that you want to remove and select Delete.

Defining Materialized Views
Materialized views improve query performance. When you create a materialized view,
you create a set of query commands that aggregate or join data from multiple tables.
Materialized views provide precalculated data that can be reused or replicated to
remote data marts. For example, data about company sales is widely sought
throughout an organization.

When you create a materialized view, you can configure it to take advantage of the
query rewrite and fast refresh features available in Oracle Database. For information
about query rewrite and fast refresh, see "Fast Refresh for Materialized Views" on
page 2-53.

Creating Materialized View Definitions
A materialized view definition specifies the query used to create the materialized
view, constraints, indexes, partitions, attribute sets, data rules, and metadata about the
columns and data types used in the materialized view. You can generate the view
definition to obtain .ddl scripts that are used to deploy the materialized view.

Before You Begin
Create the target schema that will contain your materialized view, as described in
"Creating Target Modules" on page 1-1.

To define materialized views:

1. From the Projects Navigator, expand the Databases node and then the Oracle
node.

2. Expand the target module where you want to create the materialized view,
right-click Materialized Views, and select New Materialized View.

or

Right-click the target module where you want to create the view and select New.
In the New Gallery dialog box, select Materialized View and click OK.

3. In the Create Materialized View dialog box, enter a name and an optional
description for the materialized view and click OK.

The name and description must follow the naming conventions listed in "Naming
Conventions for Data Objects" on page 2-8.

Defining Materialized Views

Creating Relational Data Objects 2-19

4. Provide information on the following tabs of the Materialized View Editor:

■ Columns Tab on page 2-19

■ Query Tab on page 2-19

■ Keys Tab on page 2-19

■ Indexes Tab on page 2-19

■ Partitions Tab on page 2-20

■ Attribute Sets Tab on page 2-20

■ Data Rules Tab on page 2-20

Warehouse Builder creates a definition for the materialized view, stores this
definition in the workspace, and inserts its name in the Projects Navigator.

Columns Tab
Use the Columns tab to define the materialized view columns. For each column,
specify the following details: Name, Data Type, Length, Precision, Scale, Seconds
Precision, Not Null, Default Value, and Description.

For more information about the details to be provided for each materialized view
column, see "Columns Tab" on page 2-12.

Query Tab
Use the Query tab to define the query used to create the materialized view. Ensure that
you type a valid query in the Select Statement field. For column names, use the same
names that you specified on the Columns Tab. If you change a column name on the
columns page, you must manually change the name in the Query tab. Warehouse
Builder does not validate the text in the Query tab and will attempt to deploy a
materialized view even if the syntax is invalid.

Keys Tab
Use the Keys tab to define constraints for the materialized view. Defining constraints is
optional. These constraints are for logical design purposes only and are not used when
enumerating DDL for the materialized view.

You can create primary keys, foreign keys, and unique keys. For information about
creating constraints, see "Creating Constraints" on page 2-21.

Indexes Tab
Use the Indexes tab to define indexes on the materialized view. Defining indexes is
optional. You can create the following types of indexes: Unique, non-Unique, Bitmap,
Function-based, Composite, and Reverse.

For information about creating indexes, see "Creating Indexes" on page 2-24.

Note: You can also define a materialized view from the Graphical
Navigator.

Note: You cannot create check constraints for materialized views.

Defining Materialized Views

2-20 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Partitions Tab
Use the Partitions tab to define partitions on the materialized view. Partitioning a
materialized view is optional. You can perform Index Partitioning, Range Partitioning,
Hash Partitioning, Hash by Quantity Partitioning, List Partitioning, or Composite
Partitioning.

Attribute Sets Tab
Use the Attribute Sets tab to define attribute sets for the materialized view. Defining
attribute sets is optional.

For information about how to define attribute sets, see "Creating Attribute Sets" on
page 2-34.

Data Rules Tab
Use the Data Rules tab to specify data rules that must be applied to the materialized
view data. For more information, see "Data Rules Tab" on page 2-13.

Editing Materialized View Definitions
Use the Materialized View Editor to edit a materialized view definition. To open the
Materialized View Editor, right-click the materialized view and select Open. The
following sections describe the type of editing operations that you can perform on a
materialized view.

Renaming Materialized Views
Double-click the Name field on the Name tab of the editor. This selects the name. Type
the new name.

Alternatively, select the materialized view in the Projects Navigator to display the
materialized view properties in the Property Inspector. Edit the values of the Physical
Name and Description properties.

Adding, Modifying, and Deleting Materialized View Columns
Use the Columns tab to add, modify, or delete materialized view columns.

Adding columns: On the Columns tab, click the Name field in an empty row and
enter the details for the column. For more information about these details, see
"Columns Tab" on page 2-16.

Removing columns: On the Columns tab, right-click the gray cell to the left of the
column name that you want to remove and select Delete.

Adding, Modifying, and Deleting Materialized View Constraints
Use the Keys tab of the Materialized View Editor to add, modify, or delete materialized
view constraints. For details on adding and editing constraints, see "Creating
Constraints" on page 2-21 and "Editing Constraints" on page 2-24 respectively.

To delete a constraint, on the Keys tab, select the row that represents the constraint.
Click Delete at the bottom of the tab.

Adding, Modifying, and Deleting Attribute Sets
Use the Attribute Sets tab to add, modify, or delete attribute sets in a materialized
view. For details about adding attribute sets, see "Creating Attribute Sets" on

Defining Constraints

Creating Relational Data Objects 2-21

page 2-34. See "Editing Attribute Sets" on page 2-34 for instructions on how to edit an
attribute set.

To delete an attribute set, on the Attribute Sets tab, right-click the cell to the left of the
attribute set that you want to remove and select Delete.

Defining Constraints
You can optionally create constraints on relational data objects such as tables, views,
and materialized views.

About Constraints
Constraints are used to enforce the business rules that you want to associate with the
information in a database. Constraints prevent the entry of invalid data into tables.
Business rules specify conditions and relationships that must always be true, or must
always be false.

For example, if you define a constraint for the salary column of the employees
table as Salary < 10000, this constraint enforces the rule that no row in this table can
contain a numeric value greater than 10000 in this column. If an INSERT or UPDATE
statement attempts to violate this integrity constraint, an error message is displayed.
Remember that constraints slow down load performance.

You can define the following constraints for tables, views, and materialized views:

■ Unique Key (UK): A UK constraint requires that every value in a column or set of
columns (key) be unique. No two rows of a table can have duplicate values in a
specified column or set of columns. A UK column can also contain a null value.

■ Primary Key (PK): A value defined on a key (column or set of columns) specifying
that each row in the table can be uniquely identified by the values in the key
(column or set of columns). No two rows of a table can have duplicate values in
the specified column or set of columns. Each table in the database can have only
one PK constraint. A PK column cannot contain a null value.

■ Foreign Key (FK): A rule defined on a key (column or set of columns) in one table
that guarantees that the values in that key match the values in a PK or UK key
(column or set of columns) of a referenced table.

■ Check Constraint: A user-defined rule for a column (or set of columns) that
restricts inserts and updates of a row based on the value it contains for the column
(or set of columns). A Check condition must be a Boolean expression that is
evaluated using the values in the row being inserted or updated.

For example, the condition Order Date < Ship Date checks that the value of the
Order Date column is always less than that of the Ship Date column. If not, there is
an error when the table is loaded and the record is rejected. A check condition
cannot contain subqueries and sequences or SYSDATE, UID, USER, or USERENV
SQL functions. Although check constraints are useful for data validation, they
slow load performance.

Creating Constraints
Use the Keys tab of the object editors to create constraints. You can create the following
types of constraints: primary key, foreign key, unique key, and check constraints.

To create constraints on a table, view, or materialized view:

1. Open the editor for the data object to which you want to add constraints.

Defining Constraints

2-22 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

In the Projects Navigator, double-click the data object on which you want to define
a constraint. Alternatively, you can right-click the data object in the Projects
Navigator and select Open.

2. Navigate to the Keys tab.

3. Depending on the type of constraint that you want to define, see one of the
following sections:

■ Defining Primary Key Constraints on page 2-22

■ Defining Foreign Key Constraints on page 2-22

■ Defining Unique Key Constraints on page 2-23

■ Defining Check Constraints on page 2-23

Defining Primary Key Constraints
To define a primary key constraint:

1. On the Keys tab, click the Add Constraint button.

A blank row is displayed with the cursor positioned in the Name column.

2. Enter the name of the constraint in the Name column.

Constraint names must be unique within the module that contains the data object
on which the constraint is defined.

3. In the Type column, select Primary Key.

Press the Tab key to exit from the Type column or use the mouse and click the
empty space in the Keys tab.

4. Click Add Local Column.

A new row is added below the current row that contains the constraint name and
constraint type. This new row displays a list in the Local Columns column.

5. In the Local Columns list of the new row, select the name of the column that
represents the primary key.

6. (Optional) To create a composite primary key, repeat Steps 4 and 5 for each column
that you want to add to the primary key.

Defining Foreign Key Constraints
To define a foreign key constraint:

1. On the Keys tab, click the Add Constraint button.

A blank row is displayed with the cursor positioned in the Name field.

2. Enter the name of the constraint in the Name column.

Constraint names must be unique within the module that contains the data object
on which the constraint is defined.

3. In the Type column, select Foreign Key.

Press the tab key to navigate out of the Type column or use the mouse and click
the empty space in the Keys tab.

4. In the References column, click the Ellipsis button.

The Key Selector dialog box is displayed.

Defining Constraints

Creating Relational Data Objects 2-23

5. In the Key Selector dialog box, select the primary key constraint that the foreign
key being created references.

For example, the DEPARTMENTS table has a primary key called DEPT_PK defined
on the department_id column. To specify that the column department_id of
the EMPLOYEES table is a foreign key that references the primary key DEPT_FK,
select DEPT_FK under the node that represents the DEPARTMETNS table in the Key
Selector dialog box.

6. Click OK.

Defining Unique Key Constraints
To define a unique key constraint:

1. On the Keys tab, click the Add Constraint button.

A blank row is displayed with the cursor positioned in the Name field.

2. Enter the name of the constraint in the Name column and press the Enter key.

You can also press the Tab key or click any other location in the editor.

Constraint names must be unique within the module that contains the data object
on which the constraint is defined.

3. In the Type column, select Unique Key.

Press the tab key to navigate out of the Type column or use the mouse and click
the empty space in the Keys tab.

4. Click Add Local Column.

A new row is added below the current row that contains the constraint name and
constraint type. This new row displays a list in the Local Columns column.

5. In the Local Columns list of the new row, select the name of the column on which
a unique key should be created.

6. (Optional) To create a composite unique key, repeat steps 4 and 5 for each column
that you want to add to the unique key.

Defining Check Constraints
1. On the Keys tab, click the Add Constraint button.

A blank row is displayed with the cursor positioned in the Name field.

2. Enter the name of the constraint in the Name column and press the Enter key.

You can also press the Tab key or click any other location in the editor.

Constraint names must be unique within the module that contains the data object
on which the constraint is defined.

3. In the Type column, select Check Constraint.

Press the tab key to exit from the Type column or use the mouse and click the
empty space in the Keys tab.

4. In the Check Condition column, enter the condition to be applied for the check
constraint. For example, salary > 2000. If you leave this field blank, an error is
generated during validation and you cannot generate valid code for this
constraint.

The column name referenced in the check condition must exactly match the
physical column name defined in the table. Warehouse Builder does not check the

Defining Indexes

2-24 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

syntax of the condition during validation. This may result in errors during
deployment. If this happens, check the Repository Browser for details.

Editing Constraints
You can edit constraints using the Keys tab of the object editors to accomplish the
following tasks:

■ Rename a constraint

■ Change the constraint type

■ Modify the check condition

■ Modify the referenced column for a foreign key constraint

■ Modify the primary key column for a primary key

After editing constraint definitions, ensure that you regenerate and redeploy the data
object containing the modified constraints.

Defining Indexes
Use indexes to enhance query performance of your data warehouse. In Warehouse
Builder, you can define indexes for tables and materialized views. In the following
sections, the word table refers to all objects for which you can define indexes.

Indexes are important for speeding queries by quickly accessing data processed in a
warehouse. You can create indexes on one or more columns of a table to speed SQL
statement execution on that table. Indexes have the following characteristics:

■ Indexes provide pointers to the rows in a table that contain a given key value.

■ Index column values are stored presorted.

■ Because the database stores indexes in a separate area of the database, you can
create and drop indexes at any time without affecting the underlying table.

■ Indexes are independent of the data in the table. When you delete, add, or update
data, the indexes are maintained automatically.

Creating Indexes
You create indexes by using the Indexes tab in the editor. To start the editor, navigate
to the table or other data object on the Projects Navigator and double-click it, or
right-click and select Open. When you select an index type, Warehouse Builder
displays the appropriate template enabling you to create the index. Index names must
be unique within the module that contains the data object on which the indexes are
defined.

For all types of indexes except bitmap indexes, you can determine whether the index
inherits the partitioning method of the underlying table. An index that inherits its
partitioning method is known as a local index whereas an index with its own
partitioning method is known as a global index. For additional information, see "Index
Partitioning" on page 2-32.

You can create the following types of indexes in Warehouse Builder:

See Also: Oracle Database Data Warehousing Guide for more
information about indexing strategies

Defining Partitions

Creating Relational Data Objects 2-25

■ Unique: These indexes ensure that no two rows of a table have duplicate values in
the key column or composite key columns.

■ Non-Unique: These are B-tree type indexes that do not impose restrictions against
duplicate values in the key column or composite key columns.

■ Bitmap: These indexes are primarily used for data warehousing applications to
enable the querying of large amounts of data. These indexes use bitmaps as key
values instead of a list of row IDs. Bitmaps are effective when the values for the
index key comprise a small list. For example, AGE_GROUP could be a good index
key but AGE would not.

Bitmaps enable star query transformations, which are cost-based query
transformations aimed at efficiently executing star queries. A prerequisite of the
star transformation is that a bitmap index must be built on each of the foreign key
columns of the cube or cubes.

When you define a bitmap index in Warehouse Builder, set its scope to LOCAL
and partitioning to NONE.

■ Function-based: These indexes compute and store the value of a function or
expression that you define on one or more columns in a table. The function can be
an arithmetic expression that contains a PL/SQL function, package function, C
callout, or SQL function.

■ Composite: Also known as concatenated indexes, these are indexes on multiple
columns. The columns can be in any order in the table and need not be adjacent to
each other.

To define a composite index in Warehouse Builder, create the index as you would
any other index and assign between 2 and 32 index columns.

■ Reverse: For each indexed column except for the row ID column, this index
reverses the bytes in the columns. Because the row ID is not reversed, this index
maintains the column order.

To define a reverse index in Warehouse Builder, create the index as you would
any other index and then go to the Configurations tab of the data object and set
the Index Sorting parameter listed under the Performance Parameters to
REVERSE.

Defining Partitions
Partitions enable you to efficiently manage very large tables and indexes by dividing
them into smaller, more manageable parts. Partitions improve query and load
performance because operations work on subsets of data. Use partitions to enhance
data access and improve overall application performance, especially for applications
that access tables and indexes with millions of rows and many gigabytes of data.

In Warehouse Builder, you can define partitions for tables, indexes, materialized
views, and MOLAP cubes. For brevity, in the following sections, the word table is used
to refer to all objects for which you can define partitions. The following sections
discuss partitioning for all the objects previously listed except partitioning MOLAP
cubes, which is described separately.

You define partitions for these objects by using the Partitions tab in the object editors.
Depending on the type of partition that you create, you may also need to configure
tablespaces for the partitions in the Configuration tab.

You can perform the following types of partitioning:

Defining Partitions

2-26 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ Range Partitioning: Use range partitioning to create partitions based on a range of
values in a column. When you use range partitioning with a date column as the
partition key, you can design mappings that instantly update target tables, as
described in "Improved Performance through Partition Exchange Loading" on
page 10-21.

■ Hash Partitioning: Use hash partitioning to direct Oracle Database to evenly
divide the data across a recommended even number of partitions. This type of
partitioning is useful when data is not historical and there is no obvious column or
column list.

■ Hash by Quantity Partitioning: To quickly define hash partitioning, use Hash by
quantity partitioning. This is the same as hash partitioning except that you specify
only a partition key and the number of partitions. The partitions are created and
named automatically. You can then configure the partitions to share the same
tablespace list.

■ List Partitioning: Use list partitioning to explicitly assign rows to partitions based
on a partition key that you select. This enables you to organize the data in a
structure not available in the table.

■ Composite Partitioning: You can use Warehouse Builder to specify a composite of
either range-hash, range-hash by quantity, or range-list partitioning. Oracle
Database first performs the range partitioning and then further divides the data
using the second partitioning that you select. For example, in range-list
partitioning, you can base partitions on the sales transaction date and then further
divide the data based on lists of states where transactions occurred.

■ Index Partitioning: You can define an index that inherits the partitioning method
of its underlying table. Or, you can partition an index with its own partitioning
strategy.

Depending on the partition type that you create, the Partitions tab is dynamically
altered to display only the relevant information. Columns or rows on this tab that are
not required for a particular partition type are hidden.

For example, when you create a range or list partition, since you cannot create
subpartitions, the rows Subpartition Key and Subpartition Template are hidden. When
you create a range-hash partition, the Subpartition Template row contains an entry for
Hash Subpartition Quantity with the condition "=".

The conditions that define the upper bound for subpartitions depend on the type of
partitioning method used. For example, for a range-list partition, the condition
allowed for determining the upper bound for a partition must be based on equality.
Thus, the column that contains the condition (the column between the Partition and
Value columns) contains "=" and is disabled. However, the condition for determining
the upper bound for the subpartition is displayed as "<" and you cannot edit this field.

Range Partitioning
Range partitioning is the most common type of partitioning and is often used to
partition data based on date ranges. For example, you can partition sales data into
monthly partitions.

To use range partitioning, go to the Partitions tab in the editor to specify a partition
key and assign a name and value range for each partition you want to create.

To partition data by range:

1. On the Partitions tab in the object editor, click the cell under Type and select
Range.

Defining Partitions

Creating Relational Data Objects 2-27

If necessary, click the plus sign to the left of Type to expand the template for the
range partition.

2. Select a partition key under the Partition Key node.

Warehouse Builder lists all the columns for the object you selected under Key
Columns. You can select a column of any data type; however, DATE is the most
common partition key for range partitioning.

You can base the partition key on multiple key columns. To add another key
column, select the partition key node and click Add.

3. Define the partitions under the Partitions node.

To assist you in defining the partitions, the template offers two partitions that you
can edit but not delete. P1 represents the first partition and PDEFAULT represents
the last partition. If you want to partition data based on month, you could rename
P1 to Jan and PDEFAULT to Dec.

The last partition is set to the keyword MAXVALUE, which represents a virtual
infinite value that sorts higher than any other value for the data type, including
the null value.

To add more partitions between the first and last partitions, click the Partitions
node and select Add.

In Values, specify the greatest value for the first range and all the additional
ranges that you create. These values are the less than values.

Example of Range Partitioning
Figure 2–1 shows how to define a partition for each quarter of a calendar year.

Figure 2–1 Example Table with Range Partitioning

You can also partition data for each month or week. When you design mappings using
such a table, consider enabling Partition Exchange Loading (PEL). PEL is a data
definition language (DDL) operation that swaps existing partitions on the target table
with new partitions. Because it is not a data manipulation language (DML) operation,
the exchange of partitions occurs instantaneously.

Hash Partitioning
Hash partitioning assigns data to partitions based on a hashing algorithm that Oracle
Database applies to a partitioning key you identify. The hashing algorithm evenly
distributes rows among partitions, giving partitions approximately the same size.
Hash partitioning is a good and easy-to-use alternative to range partitioning when
data is not historical and there is no obvious column or column list where logical range
partition pruning can be advantageous.

Defining Partitions

2-28 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

To partition data based on the hash algorithm:

1. On the Partitions tab in the object editor, click the cell below Type and select Hash.

If necessary, click the plus sign to the left of Type to expand the template for
defining hash partitions.

2. Select a partition key in the Key Columns column under the Partition Key node.

Warehouse Builder lists all the columns for the object you selected. You can select
a column of any data type.

3. Define the partitions under the Partitions node.

Warehouse Builder provides two partitions that you can rename. Click the
Partitions node and select Add to add as many partitions as necessary.

Oracle Database uses a linear hashing algorithm. To prevent data from clustering
within specific partitions, you should define the number of partitions by a power
of two (for example, 2, 4, 8).

Hash by Quantity Partitioning
Use hash by quantity partitioning to quickly define hash partitioning. When you
define a partition key and specify the number of partitions, the partitions are
automatically created and named. You can then configure the partitions to share the
same tablespace list.

To partition data based on the hash by quantity algorithm:

1. On the Partitions tab in the object editor, click the cell below Type and select Hash
by Quantity.

If necessary, click the plus sign to the left of Type to expand the template for
defining hash by quantity partitions.

2. Define the partition key using the Partition Key column under the Partition Key
node.

3. Define the number of partitions in the Values column under the Partitions node.
The default value is two partitions.

Oracle Database uses a linear hashing algorithm and, to prevent data from
clustering within specific partitions, you should define the number of partitions by
a power of two (for example, 2, 4, 8).

4. In the Configuration tab, define the Partition Tablespace List and Overflow
Tablespace List.

To display the Configuration tab for a data object, right-click the data object and
select Configure.

List Partitioning
List partitioning enables you to explicitly assign rows to partitions. You can achieve
this by specifying a list of discrete values for each partition. The advantage of list
partitioning is that you can group and organize unordered and unrelated sets of data
in a natural way.

Figure 2–2 shows an example of a table partitioned into list partitions based on the
instructions described below.

To partition data based on a list of values:

Defining Partitions

Creating Relational Data Objects 2-29

1. On the Partitions tab in the object editor, click the cell below Type and select List.

If necessary, click the plus sign to the left of Type to expand the template for
defining list partitions.

2. Select a partition key using the Key Columns column under the Partition Key
node.

Warehouse Builder lists all the columns for the object you selected. You can select
a column of any data type.

3. Define the partitions under the Partitions node.

PDEFAULT is set to the keyword DEFAULT and includes all rows not assigned to
any other partition. A partition that captures all unassigned rows is essential for
maintaining the integrity of the data.

To assist you in defining the partitions, the template offers two partitions that you
can edit but not delete. P1 represents the first partition and PDEFAULT represents
the last partition.

To add more partitions between the first and last partitions, click the Partitions
node and select Add.

In Values, enter a comma-separated list of values for each partition that
corresponds to data in the partition key you previously selected. For example, if
the partition key is COUNTRY_ID, you could create partitions for Asia, Eastern
Europe, Western Europe, and so on. Then, for the values for each partition, list the
corresponding COUNTRY_IDs for each country in the region.

Example of List Partitioning
Figure 2–2 shows a table with data partitioned into different regions by using list
partitioning based on the COUNTRY_ID column. Each partition has a single
comma-separated list.

Figure 2–2 List Partitioning Based on a Single Key Column

Figure 2–3 shows a table with data partitioned based on key columns REGION and
SALES_DIVISION. Each partition includes two comma-separated lists enclosed by
single quotation marks. In this example, N, NE, S, SW, W, and NW correspond to
REGION while PRD1, PRD2, PRD3, and so on correspond to SALES_DIVISION.

Defining Partitions

2-30 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Figure 2–3 List Partitioning Based on Multiple Key Columns

Composite Partitioning
Composite partitioning methods include range-hash, range-hash by quantity, and
range-list partitioning. Oracle Database first performs the range partitioning and then
further divides the data using the second partitioning that you select.

The steps for defining composite partition methods are similar to those used to define
simple partition methods such as (range, hash, and list) but include additional options.

To partition data based on range and then subpartition based on list, hash, or hash
by quantity:

1. On the Partitions tab in the object editor, click the cell below Type and select one of
the composite partitioning methods.

If necessary, click the plus sign to the left of Type to expand the template.

2. Select a partition key and define partitions as described in "Range Partitioning" on
page 2-26.

In Figure 2–4, the partition key is SALE_DATE and its associated range partitions
are QTR_1, QTR_2, QTR_3, and QTR_4.

Figure 2–4 Range-List Partitioning with List Defined Under a Subpartition Template

Defining Partitions

Creating Relational Data Objects 2-31

3. Select a column for the subpartition key in the Key Columns list under the
Subpartition Key node.

4. Under the Subpartition Template node, define the values for the second
partitioning method as described in "About the Subpartition Template" on
page 2-31.

5. (Optional) Define custom subpartitions.

For range-list partitions, you can specify custom subpartitions that override the
defaults you defined under the subpartition node. For details, see "Creating
Custom Subpartitions" on page 2-31.

6. Configure the Partition Tablespace List and Overflow Tablespace List in the
Configuration tab.

To display the Configuration tab for a data object, right-click the data object and
select Configure.

About the Subpartition Template
Use the subpartition template to specify the second partitioning method in composite
partitioning. The steps you take depend on the type of composite partition you select.

For range-hash by quantity, enter the number of subpartitions only.

For range-hash, the subpartition template enables you to enter names for the
subpartitions only.

For range-list, name the lists and enter comma-separated values. Be sure to preserve
the last subpartition as set to DEFAULT.

Figure 2–4 shows a list subpartition based on the REGION key column and
subpartitions for groups of countries. Warehouse Builder divides each partition (such
as QTR_1 and QTR_2) into subpartitions (such as ASIA and WEST_EUR).

Creating Custom Subpartitions
Using the subpartition template is the most convenient and likely the most common
way to define subpartitions. Entries that you specify under the Subpartition Template
node apply uniformly to all the partitions under the partition node. However, in some
cases, you may want to override the subpartition template.

For range-hash by quantity, select a partition and then click Add Hash Count.
Warehouse Builder expands the partition node to enable you to specify the number of
hash subpartitions that uniquely apply to that partition.

For range-hash, select a partition and then click Add Subpartition. Warehouse Builder
expands the partition node and you can name subpartitions for that partition only.

For range-list, select a partition and then click Add Subpartition. Warehouse Builder
expands the partition node to enable you to specify list subpartitions for that partition
only. Be sure to preserve the last subpartition as set to DEFAULT.

Figure 2–5 shows that partition QTR_1 is subpartitioned into lists for UK, EUR, and
ALL_OTHERS whereas the other quarters are partitioned according to the
subpartition template.

Defining Partitions

2-32 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Figure 2–5 Subpartitions Overriding Subpartition Template

Index Partitioning
For all types of indexes except bitmap indexes, you can determine whether the index
inherits the partitioning method of the underlying table. An index that inherits the
partitioning method of the underlying table is known as a local index. An index with its
own partitioning method is known as a global index.

Local Index
Local indexes are partitioned on the same columns and have the same definitions for
partitions and subpartitions as specified on the underlying table. Furthermore, local
indexes share the same tablespaces as the table.

For example, if you used range-list partitioning to partition a table of sales data by
quarter and then by region, a local index is also partitioned by quarter and then by
region.

Bitmap indexes can only be defined as local indexes to facilitate the best performance
for querying large amounts of data.

To define an index as local in Warehouse Builder set the Scope to LOCAL and
Partitioning to NONE.

Global Index
A global index is one in which you can partition the index independently of the
partition strategy applied to the underlying table. You can choose between range or
hash partitioning. The global index option is available for all indexes except bitmap
indexes.

In releases before Oracle Database 10g, Oracle recommended that you not use global
indexes for data warehouse applications because deleting partitions on the table
during partition maintenance would invalidate the entire index and result in having to

Defining Attribute Sets

Creating Relational Data Objects 2-33

rebuild the index. Beginning with Oracle Database 10g, this is no longer a limitation, as
global indexes are no longer negatively affected by partitioning maintenance.

Nonetheless, local indexes are likely to be the preferred choice for data warehousing
applications due to ease in managing partitions and the ability to parallelize query
operations.

A global index is useful when you want to specify an index partition key other than
any of the table partition keys. For a global index, ensure that there are no duplicate
rows in the index key column and select unique for the index type.

Index Performance Considerations
As you decide which type of index to use, consider that indexes rank in performance
in the following order:

1. Unique and local index

2. Unique and global index

3. All other non-unique indexes (normal, bitmap, function-based) and local index.

Configuring Partitions
For some but not all partitioning methods, you must configure partition tablespaces.

You can access the parameters for partitions using the Projects Navigator. Right-click
the table and select Configure to display the Configuration tab for the table. Scroll
down to view the Partition Parameters node.

Partition Tablespace List
Enter a comma-separated list of tablespaces when you partition by any of the
following methods: hash by quantity, range-list, range-hash, or range-hash by
quantity.

If you neglect to specify partition tablespaces, the default tablespaces associated with
the table are used and the performance advantage for defining partitions is not
realized.

Overflow Tablespace List
Enter a comma-separated list of tablespaces when you partition by the method hash
by quantity. If you provide a list of tablespaces less than the number of partitions, the
Oracle Database cycles through those tablespaces.

If you neglect to specify overflow tablespaces, the default tablespaces associated with
the table are used and the performance advantage for defining partitions is not
realized when the limits for the partition tablespaces are exceeded.

Defining Attribute Sets
An attribute set contains a chosen set of columns. Attribute sets are useful while
defining a mapping or during data import and export. Warehouse Builder enables you
to define attribute sets for tables, views, and materialized views. For brevity, in the
following sections, the word table is used to refer to all objects for which you can
define attribute sets

Defining Attribute Sets

2-34 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Creating Attribute Sets
Use the Attribute Sets tab of the object editors to create attribute sets. You can define
attribute sets for tables, views, and materialized views.

To define an attribute set:

1. From the Projects Navigator, right-click the object name in which the attribute set
is to be defined and select Open.

The object editor is displayed.

2. Select the Attribute Sets tab.

This tab contains two sections: Attribute sets and Attributes of the selected attribute
set.

The Attribute sets section displays the attribute sets defined for the table. It
contains two columns that define each attribute set: Name and Description.

The Attributes of the selected attribute set section lists all the attributes in the table.
The attributes that are selected using the Include column are the ones that are
included in the attribute set that is selected in the Attribute sets section.

3. In the Attribute sets section, click the Name field of an empty row and enter a name
for the attribute set.

In physical mode, you must enter a name between 1 and 30 valid characters.
Spaces are not allowed. In logical mode, you can enter up to 200 valid characters.
The attribute set name must be unique within the object.

Notice that all the table attributes are displayed in the Attributes of the selected
attribute set section.

4. In the Attributes of the selected attribute set section, select Include for each attribute
you want to include in the attribute set. The order in which you select the columns
determines their initial order in the attribute set.

Click Select All to select all the displayed columns in the attribute set. Click
Deselect All to exclude all the columns from the attribute set. To remove a column
from the attribute set, deselect Include.

Editing Attribute Sets
Use the Attribute Sets tab of the object editor to edit attribute sets. Before you edit an
attribute set, ensure that the editor is open for the object that contains the attribute set.
Also, navigate to the Attribute Sets tab of the editor.

You can perform the following actions when you edit an attribute set:

■ Rename the attribute set

Click the name of the attribute set in the Name column of the Attribute sets of the
entity section and enter the new name.

■ Add or remove attributes from the attribute set

Adding attributes to an attribute set: Select the attribute set to which you want to
add attributes by clicking the gray cell to the left of the attribute set name in the
Attribute sets section. In the Attributes of the selected attribute set section, select
Include for each attribute that you want to include in the attribute set.

Removing attributes from an attribute set: Select the attribute set from which you
want to remove attributes by clicking the gray cell to the left of the attribute set. In

Defining Sequences

Creating Relational Data Objects 2-35

the Attributes of the selected attribute set section, unselect Include for the attributes
that you want to remove from the attribute set.

■ Delete the attribute set

In the Attribute Sets section, right-click the gray cell to the left of the attribute set
name and select Delete.

Defining Sequences
A sequence is a database object that generates a serial list of unique numbers. You can
use sequences to generate unique primary key values and to coordinate keys across
multiple rows or tables. Sequence values are guaranteed to be unique. When you
create a sequence, you are creating sequence definitions that are saved in the
workspace. Sequence definitions can be used in mappings to generate unique numbers
while transforming and moving data to your target system.

The following sections provide information about using sequences:

■ "About Sequences" on page 2-35

■ "Creating Sequence Definitions" on page 2-35

■ "Editing Sequence Definitions" on page 2-35

About Sequences
A sequence is referenced in SQL statements with the NEXTVAL and CURRVAL
pseudocolumns. Each new sequence number is incremented by a reference to the
pseudocolumn NEXTVAL, whereas the current sequence number is referenced using
the pseudocolumn CURRVAL. These attributes are created when you define a
sequence.

You can also import sequence definitions from existing source systems using the
Metadata Import Wizard.

Creating Sequence Definitions
To create a sequence:

1. From the Projects Navigator, expand the Databases node and then the target
module node.

2. Right-click Sequences and select New Sequence from the menu.

Warehouse Builder displays the Create Sequence dialog box.

3. Use the Name field to specify a name and the Description field to specify an
optional description for the sequence.

In addition to the rules listed in "Naming Conventions for Data Objects" on
page 2-8, the name must be unique across the module.

4. Click OK.

Warehouse Builder stores the definition for the sequence and inserts its name in
the Projects Navigator.

Editing Sequence Definitions
Use the Edit Sequence dialog box to edit a sequence definition. You can edit the name,
description, and column notes of a sequence.

Defining User-Defined Types

2-36 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

To edit sequence properties, right-click the name of the sequence from the Projects
Navigator and select Open. Or double-click the name of the sequence. The Edit
Sequence dialog box is displayed. This dialog box contains two tabs: Name Tab and
Columns Tab.

Click these tabs to perform the following tasks:

■ Rename a sequence

■ Edit sequence columns

Name Tab
Rename a sequence by typing the new name in the Name field. You can also rename a
sequence by right-clicking the sequence name in the Projects Navigator and selecting
Rename.

Follow the rules in "Naming Conventions for Data Objects" on page 2-8 to specify the
name and description.

To modify a sequence description, enter the new description in the Description field.

Columns Tab
The Columns tab displays the sequence columns CURRVAL and NEXTVAL.

Defining User-Defined Types
User-defined data types use Oracle built-in data types and other user-defined data
types as the building blocks of object types that model the structure and behavior of
data in applications. The built-in data types are mostly scalar types and do not provide
the same flexibility that modeling an application-specific data structure does.

User-defined data types extend the modeling capabilities of native data types by
specifying both the underlying persistent data (attributes) and the related behaviors
(methods). With user-defined types, you can create better models of complex entities
in the real world by binding data attributes to semantic behavior.

Consider a simple example of a Customers table. The Customer address information
is usually modeled as four or five separate fields, each with an appropriate scalar type.
User-defined types allow for a definition of "address" as a composite type and also to
define validation on that type.

Warehouse Builder enables you to define the following user-defined data types:

■ Object types

■ Varrays

■ Nested tables

About Object Types
Object types are abstractions of the real-world entities, such as purchase orders, that
application programs deal with. An object type is a heterogeneous user-defined type.
It is composed of one or more user-defined types or scalar types.

An object type is a schema object with the following components:

■ Name: A name identifies the object type uniquely within that schema.

Defining User-Defined Types

Creating Relational Data Objects 2-37

■ Attributes: An attribute is used to create the structure and state of the real-world
entity that is represented by an object. Attributes can be built-in types or other
user-defined types.

■ Methods: A method contains functions or procedures that are written in PL/SQL
or Java and stored in the database, or written in a language such as C and stored
externally. Methods are code-based representations of the operations that an
application can perform on the real-world entity.

For example, the ADDRESS type definition can be defined as follows:

CREATE TYPE ADDRESS AS OBJECT (street_name varchar2(240), door_
no varchar2(30), po_box_no number, city varchar2(35), state
varchar2(30), country varchar2(30));

Once the type has been defined it can be used across the schema for any table that
requires the type definition "address" as one of its fields.

Defining Object Types
To define an object type:

1. In the Projects Navigator, expand the Databases node and then the Oracle node.

2. Expand the target module in which you want to create the object type.

3. Expand the User Defined Types node.

4. Right-click Object Types and select New Object Type.

The Create Object Type dialog box is displayed.

5. Enter a name and an optional description for the object type and click OK.

The Object Type Editor is displayed. Use the following tabs on the editor to define
the object type:

■ Name Tab

■ Columns Tab

Name Tab
Use the Name field to enter a name for the object type. Use the Description field to
enter an optional description for the object type. To rename an object type, select the
name and enter a new name.

Follow the rules in "Naming Conventions for Data Objects" on page 2-8 to specify a
name and description.

Columns Tab
Use the Columns tab to define the attributes in the object type. This tab displays a
table that you can use to define attributes. Each row in the table corresponds to the
definition of one object type attribute.

Specify the following details for each attribute:

■ Name: Enter the name of the attribute. The attribute name must be unique within
the object type.

Note: Methods are currently not supported.

Defining User-Defined Types

2-38 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ Data Type: Select the data type of the attribute from the Data Type list.
Warehouse Builder assigns a default data type for the attribute based on the name.
For example, if you create an attribute named start_date, the data type
assigned is DATE. You can change the default assignment if it does not suit your
data requirement.

■ Length: Specify the length of the attribute. Length is applicable to character data
types only.

■ Precision: Specify the total number of digits allowed for the attribute. Precision is
applicable for to data types only.

■ Scale: Specify the total number of digits to the right of the decimal point. Scale is
applicable to numeric data types only.

■ Seconds Precision: Specify the number of digits in the fractional part of the
datetime field. Seconds precision is used for TIMESTAMP, TIMESTAMP WITH
TIME ZONE, and TIMESTAMP WITH LOCAL TIME ZONE data types.

■ Not Null: Select this field to specify that the attribute should not contain NULL
values. By default, all columns in a table allow nulls. This column is not applicable
to object types.

■ Default Value: Specify the default value for this attribute. If no value is entered for
this column while data is stored in the table, then the default value is used. If you
specify a value for this column while loading data, then the default value is
overridden and the specified value is stored in the column. This column is not
applicable for object types.

■ Virtual: Select this option to indicate that the attribute behaves like a virtual
column.

Virtual columns are not stored in the database. They are computed using the
expression specified in the Expression field. You can refer to virtual columns just
like any other column in the table, except that you cannot explicitly write to a
virtual column.

■ Expression: Specify the expression that is used to compute the value of the virtual
attribute. The expression can include columns from the same table, constants, SQL
functions, and user-defined PL/SQL functions.

■ Description: Type an optional description for the attribute.

Editing Object Types
To edit an object type:

1. In the Projects Navigator, expand the Databases node and then the Oracle node.

2. Expand the module that contains the object type.

3. Expand the User Defined Types node and then the Object Types node.

4. Right-click the object type that you want to edit and select Open.

The Object Type Editor is displayed. Use the Name and Columns tabs as defined in
"Defining Object Types" on page 2-37 to edit the definition of the object type.

See Also: "Supported Data Types" on page 2-3 for a list of supported
Oracle Database data types

Defining User-Defined Types

Creating Relational Data Objects 2-39

About Varrays
A Varray is an ordered collection of data elements. The position of each element in a
Varray is stored as an index number. You can use this number to access particular
elements. When you define a Varray, you specify the maximum number of elements it
can contain. You can change this number later. Varrays are stored as opaque objects
(such as RAW or BLOB).

If the customer has more than one address, for example three addresses, then you can
create another type, a table type, that holds three addresses. The following example
creates a table of ADDRESS type:

TYPE address_store is VARRAY(3) of address;

The first address in the list is considered as the primary address and the remaining
addresses are considered as the secondary addresses.

Defining Varrays
To define a Varray:

1. From the Projects Navigator, expand the Databases node and then the Oracle
node.

2. Expand the target module in which you want to create the Varray.

3. Expand the User Defined Types node.

4. Right-click Varrays and select New Varray.

The Create Varray dialog box is displayed.

5. Enter a name and an optional description for the Varray and click OK.

The Varray Editor is displayed. Use the following tabs on the editor to define the
object type:

■ Name Tab

■ Details Tab

Name Tab
Use the Name field to enter a name for the Varray. Use the Description field to enter an
optional description for the Varray. To rename a Varray, select the name and enter a
new name.

Follow the rules in "Naming Conventions for Data Objects" on page 2-8 to specify a
name and an optional description.

Details Tab
Use the Details tab to specify the value for the following fields:

■ Data Type: Select the data type of the attribute from the Data Type list.

■ Length: Specify the length of the Varray element. Length is applicable for
character data types only.

■ Precision: Specify the total number of digits allowed for the Varray element.
Precision is applicable to numeric data types only.

See Also: "Supported Data Types" for a list of supported Oracle
Database data types.

Defining User-Defined Types

2-40 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ Scale: Specify the total number of digits to the right of the decimal point. Scale is
applicable to numeric data types only.

■ Seconds Precision: Specify the number of digits in the fractional part of the
datetime field. Seconds precision is used for TIMESTAMP, TIMESTAMP WITH
TIME ZONE, and TIMESTAMP WITH LOCAL TIME ZONE data types only.

■ Size: Specify the size of the Varray.

Editing Varrays
To edit a Varray:

1. From the Projects Navigator, expand the Databases node and then the Oracle
node.

2. Expand the module that contains the Varray type.

3. Expand the User Defined Types node and then the Varrays node.

4. Right-click the Varray that you want to edit and select Open.

The Varray Editor is displayed. Use the Name and Details tabs of the Varray Editor, as
described in "Defining Varrays" on page 2-39, to edit the definition of the Varray.

About Nested Tables
A nested table is an unordered collection of data elements. Nested tables enable you to
have any number of elements. There is no maximum number of elements specified in
the definition of the table. The order of the elements is not preserved. All the
operations, such as SELECT, INSERT, and DELETE that you perform on ordinary
tables can be performed on nested tables. Elements of a nested table are stored in a
separate storage table containing a column that identifies the parent table row or object
to which each element belongs. The elements may be built-in types or user-defined
types. You can view a nested table as a single-column table, or if the nested table is an
object type, as a multicolumn table, with a column for each attribute of the object type.

Nested tables are used to store an unordered set of elements that do not have a
predefined size, such as customer references.

Defining Nested Tables
To define a nested table:

1. From the Projects Navigator, expand the Databases node and then the Oracle
node.

2. Expand the target module where you want to create the nested table.

3. Expand the User Defined Types node.

4. Right-click Nested Tables and select New Nested Table.

The Create Nested Table dialog box is displayed.

5. Enter the name and an optional description for the nested table and click OK.

The Nested Table Editor is displayed. Use the following tabs on the editor to
define the nested table.

■ Name Tab

■ Details Tab

Defining Queues

Creating Relational Data Objects 2-41

Name Tab
Use the Name field to enter a name for the nested table. Use the Description field to
enter an optional description for the nested table. To rename a nested table, select the
name and enter a new name.

Follow the rules in "Naming Conventions for Data Objects" on page 2-8 to specify a
name and an optional description.

Details Tab
Use the Details tab to specify the value for the following fields:

■ Data Type: Select the data type of the attribute from the Data Type list.

■ Length: Specify the length of the nested table element. Length is applicable for
character data types only.

■ Precision: Specify the total number of digits allowed for the nested table element.
Precision is applicable to numeric data types only.

■ Scale: Specify the total number of digits to the right of the decimal point. Scale is
applicable to numeric data types only.

■ Seconds Precision: Specify the number of digits in the fractional part of the
datetime field. Seconds precision is used for TIMESTAMP,TIMESTAMP WITH
TIME ZONE, and TIMESTAMP WITH LOCAL TIME ZONE data types only.

Editing Nested Tables
To edit a nested table:

1. From the Projects Navigator, expand the Databases node and then the Oracle
node.

2. Expand the module that contains the nested table.

3. Expand the User Defined Types node and then the Nested Tables node.

4. Right-click the nested table that you want to edit and select Open.

The Nested Table Editor is displayed. Use the Name and Details tabs, as defined in
"Defining Nested Tables" on page 2-40, to edit the definition of the nested table.

Defining Queues
Queues enable asynchronous information sharing using messages. Use queues to
implement incremental data warehousing or replication solutions, both within a
database or from one database to another.

Before you can share data in the form of messages, you must create a data object that
stores and manages multiple messages. This object is the Advanced Queue (AQ). You
can propagate messages between different queues by defining queue propagations.
The following sections describe how to define and use queues.

Queues provide the following advantages:

■ Creating applications that communicate with each other in a consistent, reliable,
secure, and autonomous manner

See Also: "Supported Data Types" on page 2-3 for a list of supported
data types

Defining Queues

2-42 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ Storing messages in database tables, bringing the reliability and recoverability of
the database to your messaging infrastructure

■ Retaining messages in the database automatically for auditing and business
intelligence

Creating Queue Table Definitions
Queues are stored in queue tables. Each queue table is a database table and contains
one or more queues. Creating a queue table creates a database table with
approximately 25 columns. These columns store Oracle AQ metadata and the
user-defined payload.

You can create queue tables that store any type of messages by using the
SYS.ANYDATA data type to define the type of data stored in the queue table.

To create queue tables:

1. In the Projects Navigator, expand the Databases node, the Oracle node, and then
the module node under which you want to define a queue table.

2. Expand the Queues node, right-click Queue Tables and select New Queue Table.

The Create Queue Table dialog box is displayed.

3. Specify the details required to define queue tables and click OK.

For more details, see "Defining the Payload Type of Queue Tables" on page 2-42.

The metadata for the queue table is created in the workspace and the queue table is
added to the Projects Navigator under the Queues node.

Defining the Payload Type of Queue Tables
Use the Create Queue Table dialog box or the Edit Queue Table dialog box to provide
additional details about the queue table such as the payload type and order in which
the messages in the queue should be sorted. The following section describes the details
to be provided for a queue table.

Name
The Name field represents the name of the queue table. The name should be unique
within the Oracle module containing that queue table. For more details, see "Naming
Conventions for Data Objects" on page 2-8.

Description
Use the Description field to provide an optional description for the queue table.

Payload Type
Each queue contains a payload that stores the actual data that is to be transferred. The
Payload Type represents the type of data that is permitted in the queue table.

You can select one of the following options for the payload type: Object Type,
SYS.ANYDATA, RAW, SYS.AQ$_JMS_BYTES_MESSAGE, SYS.AQ$_JMS_MAP_
MESSAGE, SYS.AQ$_JMS_MESSAGE, SYS.AQ$_JMS_STREAM_MESSAGE, SYS.AQ$_
JMS_TEXT_MESSAGE, and XMLTYPE.

Search For
Use the Search For field to search for an object. This field is enabled only when you
select Object Type as the Payload Type.

Defining Queues

Creating Relational Data Objects 2-43

The area below the Search For field displays the object types in your workspace. Object
types are listed under the module to which they belong. To search for an object with a
specific name, enter the name of the object in the Search For field and click Go.

Enable Transactional Property for Messages
Select Enable Transactional Property for Messages to enable message grouping. This
option is enabled for all object-typed queues except SYS.ANYDATA queues.

Message grouping enables messages belonging to one queue to be grouped so that
they form a set that can only be consumed by one user at a time. All messages
belonging to a group must be created in the same transaction, and all messages created
in one transaction belong to the same group.

This feature enables users to segment complex messages into simple messages. It is
also useful if the message payload contains complex large objects such as images and
video that can be segmented into smaller objects.

Secured Queue Table
Select Secured Queue Table if you want to create a secure queue. This option is
enabled for all object-typed queues except SYS.ANYDATA queues.

Secure queues are queues for which Oracle Streams Advanced Queuing (AQ) agents
must be associated explicitly with one or more database users who can perform queue
operations, such as enqueue and dequeue. The owner of a secure queue can perform
all queue operations on the queue, but other users cannot perform queue operations
on a secure queue, unless they are configured as secure queue users.

Sort Messages By
Use the Sort Messages By list to specify the order in which the messages contained in
the payload should be sorted. The options you can use to sort messages are:

■ Enqueue_time: Sorts by the arrival time of the message.

■ Priority: Sorts by message priority.

■ Enqueue_time, priority: Sorts by the arrival time of the message and, for
messages with the same arrival time, sorts by message priority.

■ Priority, enqueue_time: Sorts by message priority and, for messages with the
same priority, sorts by arrival time of the message.

Editing Queue Tables
To edit queue tables, right-click the queue table and select Open. The Edit Queue Table
dialog box is displayed. Use this to modify your queue table definition.

You can modify queue tables and change the name, description, or payload type.
However, if you modify the payload type of a queue table, the queue table and any
queues based on this queue table will dropped and recreated. Thus, all the existing
data in the queue will be lost. Once deployed, it is recommend to not to modify the
payload type.

Creating Advanced Queue Definitions
Advanced Queues (AQs) provide database-integrated message queuing functionality.
They optimize the functions of Oracle Database so that messages can be stored
persistently, propagated between queues on different computers and databases, and
transmitted using Oracle Net Services, HTTP, and HTTPS.

Defining Queues

2-44 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Use advanced queues to propagate and manage data either within an Oracle database
or between different databases. Every advanced queue is based on a queue table that
stores the actual queue data.

To create an advanced queue definition:

1. In the Projects Navigator, expand the Databases node, the Oracle node, and then
the Oracle module node under which you want to define an advanced queue.

2. Right-click the Queues node and select New Advanced Queue.

The Create Advanced Queue dialog box is displayed.

3. Provide details such as the advanced queue name and the queue table on which
the advanced queue is based. Click OK.

For more information, see "Specifying the Queue Table on which the AQ is Based"
on page 2-44.

Specifying the Queue Table on which the AQ is Based
Use the Create Advanced Queue dialog box to specify details such as the advanced
queue name and the queue table on which the AQ is based. You can choose an existing
queue table or create a new one. Use the Edit Advanced Queue dialog box to modify
the name, description, or the queue table on which the AQ is based.

Name
The Name field represents the name of the advanced queue. The name should be
unique within the Oracle module containing that advanced queue. For more details,
see "Naming Conventions for Data Objects" on page 2-8.

Description
Use the Description field to provide an optional description for the advanced queue.

Select a Queue Table
Use the Select a Queue Table list to select the queue table that stores messages
contained in the advanced queue.

Create New Queue Table
Select Create New Queue Table to create a new queue table that will contain the
advanced queue data. The Create Queue Table dialog box that guides you through the
process of defining a queue table is displayed. For more information about defining
queue tables, see "Creating Queue Table Definitions" on page 2-42.

Editing Advanced Queue Definitions
You can edit advanced queues and modify the properties that you specified while
creating the advanced queues. This includes the name, description, and queue table
that stores queue data.

To edit an advanced queue, in the Projects Navigator, right-click the advanced queue
and select Open. The Edit Advanced Queue dialog box is displayed. Use this to edit
the advanced queue.

See Also: Oracle Streams Concepts and Administration for more
information about advanced queues

Defining Queues

Creating Relational Data Objects 2-45

For more information about the options on this dialog box, see "Creating Advanced
Queue Definitions" on page 2-43.

After you edit an advanced queue definition, ensure that you synchronize any
mappings that use this advanced queue.

Creating Queue Propagations
Queue propagations enable you to propagate messages between different queues. For
example, you have two queues SRC_QUE and TGT_QUE. In SRC_QUE, define a
queue propagation with the target queue as TGT_QUE to propagate messages from
SRC_QUE to TGT_QUE.

Queue propagations are typically used in replication, when you have two databases
located in different location and you want to replicate the source database to the target
location.

To create a queue propagation:

1. In the Projects Navigator, expand the Databases node, the Oracle node, and then
the Oracle module node under which you want to define a queue propagation.

2. Expand the Queues node, right-click the advanced queue under which you want
to create a propagation, and select New.

The New Gallery dialog box is displayed.

3. On the New Gallery dialog box, select Queue Propagations and click OK.

The Create Queue Propagation dialog box is displayed.

4. Use the Create Propagation dialog box to define the target queue and click OK.

The metadata for the queue propagation is created in the workspace and the queue
propagation is added under the advanced queue in the Projects Navigator.

Selecting a Target Queue for Propagation
Use the Create Queue Propagation dialog box or the Edit Queue Propagation dialog
box to specify the target queue for propagation. The following sections describe the
fields contained in this page.

Name
The Name field represents the name of the queue propagation. The name should be
unique within the advanced queue under which the queue propagation is defined.

To rename a queue propagation, select the name and enter the new name.

Description
The Description field represents the description of the queue propagation. Providing a
description is optional.

Select a Target Queue for Propagation
Use the Select a Target Queue for Propagation section to define the target queue. The
area below this section displays a node tree containing the advanced queues defined in
the current project. Select the advanced queue which will be used as a target. Messages
from the AQ under which you define the queue propagation can then be propagated
to the AQ defined as the target queue.

Use the Search For field to search for a particular object using the object name. Enter
the name of the object in this field and click Go.

Configuring Relational Data Objects

2-46 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Editing Queue Propagations
You can edit queue propagations and modify the selections you made which defining
the queue propagation. The options you can modify include the name, description,
and target queue.

To edit a queue propagation, in the Projects Navigator, right-click the queue
propagation and select Open. The Edit Queue Propagation dialog box is displayed.
For more information about the options on this dialog box, see "Creating Queue
Propagations" on page 2-45.

Configuring Relational Data Objects
Earlier in the design phase, you defined a logical model for your target system using
Warehouse Builder design objects. In the configuration phase, you assign physical
deployment properties to the object definitions by configuring parameters such as
tablespaces, partitions, and other identification parameters. You also configure
runtime parameters such as job names, and runtime directories.

Set these physical properties using the Configuration tab of the data object. The
following sections show you how to assign physical properties to your logical design
model:

■ Configuring Target Modules on page 2-46

■ Configuring Tables on page 2-48

■ Configuring Materialized Views on page 2-51

■ Configuring Views on page 2-54

■ Configuring Sequences on page 2-54

■ Configuring Advanced Queues on page 2-55

■ Configuring Queue Tables on page 2-55

■ Configuring Queue Propagations on page 2-56

Configuring Target Modules
Each target module provides top-level configuration options for all the objects
contained in that module.

To configure an Oracle module:

1. From the Projects Navigator, expand Databases, expand Oracle, and right-click a
target module name, and select Configure.

Warehouse Builder displays the Configuration tab.

2. Choose the parameters that you want to configure and click the space to the right
of the parameter name to edit its value.

For each parameter, you can either select an option from a list, type a value, or
click the Ellipsis button to display another properties dialog box.

3. Configure the parameters listed in the following sections.

Deployment System Type
PL/SQL Generation Mode: Defines the target database type. The options you can
select are: Default, Oracle 10g, Oracle10gR2, Oracle11gR1, Oracle11gR2, Oracle8i, and
Oracle9i. Code generation is based on your choice in this field. For example, select

Configuring Relational Data Objects

Creating Relational Data Objects 2-47

Oracle 9i to ensure the use of Oracle 9i code constructs. If you select Oracle8i,
row-based code is generated.

Each release introduces new functionality, some of which you may use only in
conjunction with the latest version of the Oracle Database. For example, if you select
Oracle8i as the PL/SQL Generation Mode, you cannot access some Oracle 9i
Warehouse Builder components such as table functions and external tables.

Generation Preferences
End of Line: Defines the end of line markers for flat files. This depends on the
platform to which you are deploying your warehouse. For UNIX, use \n, and for
Windows NT, use \r\n.

Generation Target Directories
ABAP Extension: File name extension for ABAP scripts. The default is .abap.

ABAP Run Parameter File: Suffix for the parameter script in an ABAP job. The default
is _run.ini.

ABAP Spool Directory: The location where ABAP scripts are buffered during script
generation processing.

DDL Directory: Enter a location for the scripts that create database objects in the target
schema. The default is ddl\.

DDL Extension: Enter a file name extension for DDL scripts. The default is .ddl

DDL Spool Directory: Enter a buffer location for DDL scripts during the script
generation processing. The default is ddl\log.

LIB Directory: Enter a location for the scripts that generate Oracle functions and
procedures. The default is lib\.

LIB Extension: Enter a suffix to be appended to a mapping name. The default is
.lib.

LIB Spool Directory: Enter a location for the scripts that generate user-defined
functions and procedures. The default is lib\log\.

LOADER Directory: Enter a location for the control files. The default is ctl\.

LOADER Extension: Enter a suffix for the loader scripts. The default is .ctl.

LOADER Run Parameter File: Enter a suffix for the parameter initialization file. The
default is _run.ini.

PL/SQL Directory: Enter a location for the PL/SQL scripts. The default is pls\.

PL/SQL Run Parameter File: Enter a suffix for the parameter script in a PL/SQL job.
The default is _run.ini.

PL/SQL Spool Directory: Enter a buffer location for PL/SQL scripts during the script
generation processing. The default is pls\log\.

PL/SQL Extension: Enter a file name extension for PL/SQL scripts. The default is
.pls.

SQLPlus Directory: Enter a location for the PL/SQL scripts. The default is sql\.

SQLPlus Extension: Enter a file name extension for PL/SQL scripts. The default is
.sql.

SQLPLus Run Parameter File: Enter a suffix for the parameter script in a PL/SQL job.
The default is _run.ini.

Configuring Relational Data Objects

2-48 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Staging File Directory: For all ABAP configuration related to SAP tables. The default
is abap\.

Tcl Directory: Enter a location for the tcl scripts. The default is tcl\.

Identification
Application Short Name: This parameter is obsolete and is no longer used.

Deployable: Select this option to indicate that the objects contained in the module can
be deployed.

Location: Represents the location with which the module is associated. If the module
is a source module, this value represents the location from which the data is sourced. If
the module is a target module, this value represents the location to which the
generated code and object data are deployed.

Main Application Short Name: This parameter is obsolete and is no longer used.

Top Directory: Represents the name of the directory to which the generated code is
stored. The default value for this parameter is ..\..\codegen\. You can change this
value to any directory in which you want to store generated code.

Run Time Directories
Archive Directory: Not currently used. The default is archive\.

Input Directory: Not currently used. The default is input\.

Invalid Directory: Directory for SQL*Loader error and rejected records. The default is
invalid\.

Log Directory: Log directory for the SQL*Loader. The default is log\.

Receive Directory: Not currently used. The default is receive\.

Sort Directory: Not currently used. The default is sort\.

Work Directory: Not currently used. The default is work\.

Tablespace Defaults
Default Index Tablespace: Defines the name of each tablespace where indexes are
created. The default is null. If you configure an index tablespace at the target module
level and not at the object level, the tablespace value configured at the target module
level is used during code generation. If you configure a tablespace for each index at
the object level, the tablespace value configured at the target module level is
overwritten.

Default Object Tablespace: Defines the name of each tablespace where objects are
created (for example, tables, views, or materialized views). The default is null. If you
configure object tablespace at the target module level and not at the individual object
level, the value configured at the target module level is used during code generation. If
you configure a tablespace for each individual object, the tablespace value configured
at the target module level is overwritten.

Configuring Tables
Warehouse Builder generates DDL scripts for each table defined in a target module.

See Also: Oracle Warehouse Builder Sources and Targets Guide for more
information about using SAP tables.

Configuring Relational Data Objects

Creating Relational Data Objects 2-49

To configure the physical properties for a table:

1. In the Projects Navigator, right-click the name of a table and select Configure.

The Configuration tab for the table is displayed.

2. Set the configuration parameters listed under the following nodes: Error Table,
Foreign Keys, Identification, Parallel, Performance Parameters, Partition
Parameters, Storage Space, and Change Data Capture.

Error Table
Error Table Name: Indicates the name of the error table that stores the rows that were
not loaded into the table during a load operation.

Tablespace: Indicates the name of the tablespace in which the error table is stored.

Foreign Keys
The Foreign Keys node is displayed if your table contains a foreign key definition. A
separate node is displayed, under the Foreign Keys node, for each foreign key in the
table. Under this node, parameters are listed under the following categories: Creation
Method and Identification.

The Creation Method category contains the following parameters:

■ Constraint Checking: Indicates if the checking of this constraint can be deferred
until after the transaction is committed. Set this parameter to DEFERABLE to
indicate that, in subsequent transactions, you can set the SET CONSTRAINTS
clause to defer checking this constraint until after the transaction is committed. Set
this parameter to NOT DEFERABLE to indicate that you cannot use the SET
CONSTRAINTS clause ti defer checking this constraint until after the transaction
is committed. The default is NOT DEFERABLE.

■ Constraint State: Indicates if the constraint should be enabled. Select ENABLE to
apply the constraint to the table data. Select DISABLE to disable the integrity
constraint. The default is ENABLE.

■ Constraint Validation: The options you can set are NOVALIDATE or VALIDATE.
The effect of setting this parameter is different based on whether the constraint is
enabled or disabled.

■ EXCEPTIONS INTO: Indicates the name of the exceptions table. You cannot use
this parameters when you set NOVALIDATE as the Constraint Validation.

■ INITIALLY: The options you can set for this parameter are IMMEDIATE or
DEFERRED. The default setting is IMMEDIATE. IMMEDIATE indicates that a
deferrable constraint must be checked at the end of each SQL statement.
DEFERRED indicates that a deferrable constraint must be checked at the end of
subsequent transactions.

■ NOVALIDATE mode: The options you can set for this parameter are NORELY
and RELY, with NORELY being the default setting. Setting this parameter to RELY
activates a constraint in NOVALIDATE mode for query rewrite.

■ ON DELETE: During a delete operation, this parameter indicates how to handle
foreign keys that depend on the record being deleted. The options you can set for
this parameter are CASCADE or SET NULL. CASCADE deletes dependent foreign
key values. NOT NULL sets the dependent foreign key values to null.

Configuring Relational Data Objects

2-50 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Identification
Deployable: Select this option to indicate that you want to deploy this table. Scripts
are generated only for tables marked deployable.

Error Table Only: Select this option to perform generation or deployment actions only
on the error table associated with the table. Use this option to add an error table to an
existing table. This setting only controls the actions of the Deployable parameter, but
does not override it.

Deselect this option to deploy the error table along with the table.

Parallel
Parallel Access Mode: Enables parallel processing when the table has been created.
The default is PARALLEL.

Parallel Degree: Indicates the degree of parallelism. This is the number of parallel
threads used in the parallel operation.

Performance Parameters
Buffer Cache: Indicates how Oracle Database should store rows in the buffer cache.

Data Segment Compression: Indicates whether data segments should be compressed.
Compressing reduces disk use. The default is NOCOMPRESS.

Logging Mode: Indicates whether the DML actions are logged in the redo log file. To
improve performance, set this parameter to NOLOGGING. The default is LOGGING.

Row-level Dependency: Indicates whether row-level dependency tracking.

Row Movement: Indicates if Oracle Database can move a table row.

Statistics Collection: Indicates if statistics should be collected for the table. Specify
MONITORING if you want modification statistics to be collected on this table.

Partition Parameters
Partition Tablespace List: Specify a comma-separated list of tablespaces. For simple
partitioned objects, it is used for a HASH BY QUANTITY partition tablespace. For
composite partitioned tables, it is used for subpartition template to store the list of
tablespaces.

Overflow Tablespace List: Specify a comma separated list of tablespaces for overflow
data. For simple partitioned objects, it is used for HASH BY QUANTITY partition
overflow tablespaces. The number of tablespaces does not have to equal the number of
partitions. If the number of partitions is greater than the number of tablespaces, then
Oracle Database cycles through the names of the tablespaces.

Storage Space
Storage parameters enable you to define how the table is stored in the database. This
category contains parameters such as BUFFER_POOL, FREELIST GROUPS,
FREELISTS, INITIAL, MINEXTENTS, MAXEXTENTS, NEXT, and PCTINCREASE.

The Tablespace parameter defines the name of each tablespace where the table is
created. The default value is null. If you accept the default value of null, the table is
generated based on the tablespace value set in the configuration parameters of the
target module. If you configure the tablespace for individual objects, the tablespace
value configured for the target module is overwritten.

Configuring Relational Data Objects

Creating Relational Data Objects 2-51

Change Data Capture
Enable: Indicates if change data capture is enabled for the table. Select True for this
parameter to enable change data capture for the table.

Table Position: Indicates the position of the table in the change data capture.

Configuring Materialized Views
To configure the physical properties for a materialized view:

1. From the Projects Navigator, right-click a materialized view name and select
Configure.

The Configuration tab for the materialized view is displayed.

2. Follow the configuration guidelines listed for tables. For more information, see
"Configuring Tables" on page 2-48.

3. Configure the Materialized View Parameters listed in the following section.

4. Configure the Materialized View Log parameters as described in "Materialized
View Log Parameters" on page 2-53.

Materialized View Parameters
The following are parameters for materialized views:

■ Base Tables: Specify a comma-separated list of base tables referenced by the
materialized view. Separate each table name with a comma. If a table name is not
in uppercase, enclose the name in double quotation marks.

■ BUILD: Indicates when the materialized view is populated. The options are
Immediate (default), Deferred, and Prebuilt.

Immediate: Populates the materialized view when it is created.

Deferred: Delays the population of the materialized view until the next refresh
operation. You can select this option when you are designing a materialized view
and the metadata for the base tables is correct but the data is not.

Prebuilt: Indicates that the materialized view is prebuilt.

■ Default Rollback Segment: The options are DEFAULT, DEFAULT MASTER,
DEFAULT LOCAL, and NONE. The default setting is DEFAULT LOCAL. Specify
DEFAULT to indicate that Oracle Database should choose which rollback segment
to use. Specify DEFAULT MASTER for the remote rollback segment to be used at
the remote site. Specify DEFAULT LOCAL for the remote rollback segment to be
used for the local refresh group that contains the materialized view. Specify NONE
to name both master and local segments.

■ FOR UPDATE: Select Yes to allow a subquery, primary key, row ID, or object
materialized view to be updated. The default setting is No.

■ Local Rollback Segment: Specify a named remote rollback segment to be used for
the local refresh group of the materialized view. The default is null.

■ Master Rollback Segment: Indicates the name of the remote rollback segment to
be used at the remote master site for the materialized view.

■ NEXT (date): Indicates the interval between automatic refreshes. Specify a
datetime value for this parameter.

■ Query Rewrite: Indicates if the materialized view is eligible for query rewrite. The
options are ENABLE and DISABLE. The default is DISABLE.

Configuring Relational Data Objects

2-52 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Enable: Enables query rewrite. For other query rewrite requirements, see "Fast
Refresh for Materialized Views" on page 2-53.

Disable: Disables query rewrite. You can disable query rewrite when you know
that the data in the materialized view is stale or when you want to make changes
to the query statement.

■ REFRESH: Indicates the refresh method. The options are Complete, Fast, Force,
and Never. The default setting is Force.

Complete: Oracle Database truncates the materialized view and reexecutes the
query upon refresh.

Fast: Uses materialized views to only apply changes to the base table data. There
are many requirements for fast refresh to operate properly. For more information,
see "Fast Refresh for Materialized Views" on page 2-53.

Force: Oracle Database attempts to refresh using the fast mode. If unable to refresh
in fast mode, the Oracle server reexecutes the query upon refresh.

Never: Prevents the materialized view from being refreshed.

■ Refresh On: The options are COMMIT and DEMAND. Specify COMMIT to
indicate that a fast refresh is to occur whenever the database commits a transaction
that operates on a master table of the materialized view. Specify DEMAND to
indicate that the materialized view should be refreshed on demand. You can do
this by using one of the refresh procedures of the DBMS_MVIEW package. The
default setting is DEMAND.

■ Start With: Indicates the first automatic refresh time. Specify a datetime value for
this parameter.

■ Using Constraints: The options that you can select for this parameter are
TRUSTED or ENFORCED. Select TRUSTED to allow Oracle Database to use
dimension and constraint information that has been declared trustworthy by the
DBA but has not been validated by Oracle Database. ENFORCED is the default
setting.

■ WITH: Select PRIMARY_KEY to create a primary key materialized view. Select
ROWID to create a ROWID materialized view. The default setting is PRIMARY_
KEY.

Performance Parameters
Buffer Cache: Indicates how the blocks retrieved for this table are placed in the buffer
cache. The options you can select are CACHE or NOCACHE. When you select
CACHE, the blocks are placed at the most recently used end of the least recently used
(LRU) list in the buffer cache when a full table scan is performed. Setting the Buffer
Cache parameter to CACHE is useful for frequently accessed tables, such as small
lookup tables. When you select NOCACHE, the blocks are placed at the least recently
used end of the LRU list in the buffer cache.

Data Segment Compression: Indicates if segments should be compressed on disk to
reduce space usage. The options you can set for this parameter are COMPRESS,
COMPRESS ALL, or NOCOMPRESS. The default is NOCOMPRESS. Set this
parameter to COMPRESS to compress data only during a direct path INSERT, when it
is productive to do so. Set this parameter to COMPRESS ALL compresses data during
all DML operations on the table.

Logging Mode: Indicates whether the DML actions are logged in the redo log file. To
improve performance, set this parameter to NOLOGGING. The default is LOGGING.

Configuring Relational Data Objects

Creating Relational Data Objects 2-53

Error Table
■ Error Table Name: Indicates the name of the error table that stores the rows that

were not loaded into the table during a load operation.

■ Tablespace: Indicates the name of the tablespace in which the error table is stored.

Parallel
■ Parallel Access Mode: Enables parallel processing when the table has been

created. The default is PARALLEL.

■ Parallel Degree: Indicates the degree of parallelism. This is the number of parallel
threads used in the parallel operation.

Identification
■ Deployable: Select TRUE to indicate if you want to deploy this materialized view.

Warehouse Builder generates scripts only for materialized views marked
deployable.

■ Error Table Only: Select this option to perform generation or deployment actions
only on the error table associated with the materialized view. Use this option to
add an error table to an existing materialized view. This setting controls the actions
of the Deployable parameter, but does not override it.

Deselect this option to deploy the error table along with the materialized view.

Hash Partition Parameters
■ Hash Partition Tablespace List: Indicates the tablespace that stores the partition or

subpartition data. To specify multiple tablespaces, use a comma-separated list.

Materialized View Log Parameters
You can configure the following materialized view log parameters.

Record Primary Key: Select PRIMARY KEY to indicate that the primary key of all
rows changed should be recorded in the materialized view log.

Record ROWID: Select ROWID to indicate that the row ID of all rows changed should
be recorded in the materialized view log.

Record SEQUENCE: Select SEQUENCE to indicate that a sequence value providing
additional ordering information should be recorded in the materialized view log.

Sequence numbers are necessary to support fast refresh after some update scenarios.

COLUMNS: Specify the columns whose values you want to be recorded in the
materialized view log for all rows that are changed. Typically these columns are filter
columns and join columns.

Generate Materialized View Log: Select YES to generate DDL for materialized view
log. The default is YES.

New Values: Specify INCLUDING to save both new and old values in the log. Specify
EXCLUDING to disable the recording of new values in the log. EXCLUDING is the
default.

Fast Refresh for Materialized Views
You can configure a materialized view to refresh incrementally. When you update the
base tables for a materialized view, the database stores updated record pointers in the

Configuring Relational Data Objects

2-54 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

materialized view log. Changes in the log tables are used to refresh the associated
materialized views.

To ensure incremental refresh of materialized views, verify the following conditions:

■ The Refresh parameter must be set to Fast and the Base Tables parameter must list
all base tables.

■ Each base table must have a PK constraint defined. Warehouse Builder generates a
create statement based on the PK constraint and utilizes that log to refresh the
dependent materialized views.

■ The materialized view must not contain references to nonrepeating expressions
such as SYSDATE, ROWNUM, and nonrepeatable PL/SQL functions.

■ The materialized view must not contain references to RAW and LONG RAW data
types.

■ There are additional restrictions for materialized views with statements for joins,
aggregations, and unions. For information about additional restrictions, see Oracle
Database Data Warehousing Guide.

Configuring Views
Warehouse Builder generates a script for each view defined in a target module. You
can configure the parameters listed in the following categories.

Identification
Deployable: Set to TRUE to deploy this view.

Error Table Only: Select this option to perform generation or deployment actions only
on the error table associated with the view. Use this option to add an error table to an
existing view. This setting only controls the actions of the Deployable parameter, but
does not override it. Deselect this option to deploy the error table along with the view.

Error Table
Error Table Name: Indicates the name of the error table that stores the rows that were
not loaded into the view during a load operation.

Tablespace: Indicates the name of the tablespace in which the error table is stored.

Configuring Sequences
A script is generated for each sequence object. A sequence object has a Start With
parameter and an Increment By parameter. Both parameters are numeric.

To configure the physical properties for a sequence:

1. Right-click the name of a sequence and select Configure.

The Configuration tab for the sequence is displayed.

2. Configure the following Sequence parameters:

Increment By: The number by which you want to increment the sequence.

Start With: The number at which you want the sequence to start.

3. Configure the following Identification parameter:

Deployable: Select this option to indicate that you want to deploy this sequence.
Warehouse Builder only generates scripts for sequences marked deployable.

Configuring Relational Data Objects

Creating Relational Data Objects 2-55

Configuring Advanced Queues
Use the following steps to configure advanced queues.

1. From the Projects Navigator, expand the Databases node and then the Oracle
node.

2. Expand the Oracle module containing the advanced queue, then the Queues node,
and right-click the advanced queue name and select Configure.

Warehouse Builder displays the Configuration tab that contains configuration
parameters for the advanced queue.

3. Choose the parameters you want to configure and click the space to the right of
the parameter name to edit its value.

For each parameter, you can either select an option from a list, type a value, or
click the Ellipsis button to display another properties dialog box.

Following are the parameters that you can configure.

Dequeue Enabled Set this parameter to true to enable dequeuing for the advanced
queue.

Enqueue Enabled Set this parameter to true to enable enqueuing for the advanced
queue.

Max Retries Represents the number of times a dequeue can be attempted on a
message. The maximum value of max_retries is 2**31 -1.

Retention Time Represents the number of seconds for which a message is retained in
the queue table after being dequeued from the queue.

Retry Delay Represents the delay time, in seconds, before this message is scheduled
for processing again after an application rollback. The default value of this parameter
is 0, which means the message can be retried as soon as possible. This parameter has
no effect if Max Retires parameter is set to 0.

Configuring Queue Tables
Use the following steps to configure queue tables.

1. From the Projects Navigator, expand the Databases node and then the Oracle node
that contains the queue table.

2. Expand the Queues node and then the Queue Tables node.

3. Right-click the name of the queue table to be configured and select Configure.

Warehouse Builder displays the Configuration tab that contains configuration
parameters for the queue table.

4. Choose the parameters you want to configure and click the space to the right of
the parameter name to edit its value.

For each parameter, you can either select an option from a list, type a value, or
click the Ellipsis button to display another properties dialog box.

The Generation Options node contains the Generate Queue Table parameter. Set this
parameter to True to generate code to create the queue table that will persist the
messages of this advanced queue. If the queue table exists in the database, you need
not create it and you can set Generate Queue Table to False.

Configuring Relational Data Objects

2-56 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Configuring Queue Propagations
Use the following steps to configure queue propagations.

1. From the Projects Navigator, expand the Databases node and then the Oracle node
that contains the queue table.

2. Expand the Queues node and then the advanced queue that contains the queue
propagation.

3. Right-click the name of the queue propagation to be configured and select
Configure.

Warehouse Builder displays the Configuration tab that contains configuration
parameters for the queue propagation.

4. Choose the parameters you want to configure and click the space to the right of
the parameter name to edit its value.

For each parameter, you can either select an option from a list, type a value, or
click the Ellipsis button to display another properties dialog box.

The configuration parameters are described in the following sections.

Rule Condition: Represents a rule condition to check whether the message can be
propagated to the subscriber. This parameter is applicable only for non-streams
queues.

Transformation: Represents the transformation that is applied before propagation to
the target queue. This parameter is applicable only for non-streams queues.

Generation Options

■ Generate Database Link: Set this parameter to True to generate a script that
creates the database link used for propagation.

■ Generate Queue Propagation: Set this parameter to True to generate code that
creates the queue propagation.

■ Generate Ruleset and Rule for Replication: Set this parameter to true to generate
the code for RULE and RULESET for replication purposes. This parameter is
applicable only for streams queues.

■ Generate Schedule Propagation: Set this parameter to true to generate code for
scheduling the queue propagation. This parameter is applicable only for
non-streams queues.

Replication Options (Only for Streams Queues)

■ Not Permitted Tag Values: List of comma separated Tag values (in Hexadecimal
numbers) that are not allowed for propagation.

■ Permitted Tag Values: List of comma separated Tag values (in Hexadecimal
numbers) that are allowed for propagation.

Scheduling Options

■ Duration: Represents the duration of propagation to be performed. The default
value is null. This parameter is applicable only for non-streams queue.

■ Latency: Represents the latency for the queue propagation. By default the value is
60. This parameter is applicable only for non-streams queue.

■ Next Time: Represents the next time when the propagation is performed. The
default value is null. This parameter is applicable only for non-streams queue.

Creating Relational Data Objects in Microsoft SQL Server and IBM DB2 UDB

Creating Relational Data Objects 2-57

■ Start Time: Represents the start time for the propagation. The default value is
SYSDATE. This parameter is applicable only for non-streams queue.

Creating Relational Data Objects in Microsoft SQL Server and IBM DB2
UDB

When you create a Microsoft SQL Server module or an IBM DB2 module, you can
define data objects such as tables, views, and sequences in this module. Use the editors
to define tables and views.

To define a table, view, or sequence in Microsoft SQL Server or IBM DB2 UDB
module:

1. Expand the project node under which you want to create data objects and then
expand the Databases node.

2. For SQL Server, expand the SQL Server module node and then the module in
which the data objects are to be created.

For IBM DB2 UDB, expand the DB2 module node and then the module in which
the data objects are to be created.

3. Right-click the node representing the type of object that you want to create and
select New <type of object>. The editor for the object is displayed.

For example, to create a table, right-click the Tables node and select New Table.

4. Based on the type of object being created, follow the instructions mentioned in one
of the following sections:

■ "Creating Table Definitions" on page 2-10

■ "Creating View Definitions" on page 2-15

■ "Creating Sequence Definitions" on page 2-35

Differences in the Object Editors for Heterogeneous Databases
The following differences exist when you define tables or views in the SQL Server or
DB2 module:

■ The Table Editor and View Editor do not contain the Indexes and Partitions tabs.

■ The types of constraints supported for SQL Server and DB2 tables are Primary
Key, Foreign Key, Check Constraints, and Unique Keys.

■ On the Columns tab, the field Seconds Precision is not available.

■ On the Columns tab, the Datatypes list contains the data types that you can use. If
you use native access, the Datatypes list contains that data types native to the
platform. If you use Gateways to access the heterogeneous database, the Datatypes
list contains Oracle data types.

Rules for Naming Objects in IBM DB2 UDB
When you import data objects from DB2, the case used in object names is preserved.
However, for all objects created using Warehouse Builder, the names are automatically
converted to uppercase.

Following are the rules for naming objects in a DB2 module:

■ Object names and column names must be unique.

■ The maximum length for the object name is 128 characters.

Creating Relational Data Objects in Microsoft SQL Server and IBM DB2 UDB

2-58 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ The maximum length for each column name is 30 characters.

■ The following characters are illegal in names: `, *, +, |, [,], :, ;, ", ', &, <, >, ?, /, and
Space

■ Names cannot begin with a space, a digit, or with any of the following characters:
_, `, &, *, +, |, [,], :, ;, ", ', <, >, ?, and /.

Rules for Naming Objects in Microsoft SQL Server
When you import data objects from SQL Server, the case used in object names is
preserved. However, for all objects created using Warehouse Builder, the names are
automatically converted to uppercase.

Following are the rules for naming objects in Microsoft SQL Server:

■ Object names and column names must be unique.

■ The maximum length for the object name is 128 characters.

■ The following characters are illegal in names: ~, `, !, %, ^, &, ;, *, (,), {, }, [,], |, \, :,
", /, ?, >, and <.

■ Names cannot contain spaces, periods, or mathematical symbols.

■ Names cannot begin with a space or with any of the following characters: ~, `, !, %,
^, &, *,(,) {, }, [,], |, \, :, ;, ", ', /, ?, <, >, and $.

■ Column names cannot begin with mathematical symbols or periods.

Note: Enclosed illegal characters are only allowed in names when
you import objects. You cannot use illegal characters within
Warehouse Builder.

Note: Enclosed illegal characters are only allowed in names when
you import objects. You cannot use illegal characters within
Warehouse Builder.

Defining Dimensional Objects 3-1

3
Defining Dimensional Objects

Warehouse Builder enables you to define, deploy, and load dimensional objects. You
can deploy dimensional objects either to a relational schema or to an analytical
workspace in the database.

This chapter contains the following topics:

■ Overview of Dimensional Objects

■ Overview of Implementing Dimensional Objects

■ Creating Dimensions

■ Creating Slowly Changing Dimensions

■ Editing Dimension Definitions

■ Configuring Dimensions

■ Creating Cubes

■ Editing Cube Definitions

■ Configuring Cubes

■ Creating Time Dimensions

■ Populating Time Dimensions

Overview of Dimensional Objects
Objects that contain additional metadata to identify and categorize data are called
dimensional objects. Warehouse Builder enables you to design, deploy, and load two
types of dimensional objects: dimensions and cubes. In this chapter, the word
dimensional object refers to both dimensions and cubes.

Most analytic queries require the use of a time dimension. Warehouse Builder
provides tools that enable you to easily create and populate time dimensions by
answering simple questions.

Steps to Create Dimensional Objects
Creating dimensional objects consists of following high-level tasks.

1. Define dimensional objects

Defining dimensional objects consists of specifying the logical relationships that
help store data in a more structured format. For example, to define a dimension,
you describe its attributes, levels, and hierarchies. To define a cube, you define its
measures and dimensions.

Overview of Dimensional Objects

3-2 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

You can use wizards or editors to define dimensional objects. For more details, see:

■ "Creating Dimensions" on page 3-14

■ "Creating Slowly Changing Dimensions" on page 3-31

■ "Creating Cubes" on page 3-39

■ "Creating Time Dimensions" on page 3-56

2. Implement dimensional objects

See "Overview of Implementing Dimensional Objects" on page 3-9

3. Deploy dimensional objects

4. Load dimensional objects

To load data into dimensional objects, create a mapping that defines the data flow
and transformations from the source objects to the dimensional object. You then
deploy and execute this mapping.

Overview of Dimensions
A dimension is a structure that organizes data. Examples of commonly used
dimensions are Customers, Time, and Products.

For relational dimensions, using dimensions improves query performance because
users often analyze data by drilling down on known hierarchies. An example of a
hierarchy is the Time hierarchy of year, quarter, month, day. The Oracle Database uses
these defined hierarchies by rewriting queries that retrieve data from materialized
views rather than detail tables.

A dimension consists of a set of levels and a set of hierarchies defined over these
levels. To create a dimension, you must define the following:

■ Dimension attributes

■ Levels

■ Level attributes

This includes surrogate and business identifiers for levels.

■ Hierarchies

See Also:

■ "About Deploying Dimensional Objects" on page 12-3

■ "Deploying Objects" on page 12-6

See Also:

■ "Performing ETL by Using Dimensions" on page 6-1

■ "Performing ETL by Using Cubes" on page 6-12

See Also: Oracle Warehouse Builder Concepts for more information
about defining dimension attributes, levels, level attributes, and
hierarchies.

Overview of Dimensional Objects

Defining Dimensional Objects 3-3

Overview of Surrogate Identifiers
A surrogate identifier uniquely identifies each level record across all the levels of the
dimension. It must be composed of a single attribute. Surrogate identifiers enable you
to hook facts to any dimension level as opposed to the lowest dimension level only.

For a dimension that has a relational or ROLAP implementation, the surrogate
identifier should be of the data type NUMBER.

You need to use a surrogate key if:

■ your dimension is a Type 2 or Type 3 SCD. In these cases, we can have multiple
dimension records loaded for each business key value, so we need an extra unique
key to track these records.

■ your dimension contains more that one level and is implemented using a star
schema. Thus, any cube that references such a dimension will reference more than
one dimension level.

If no surrogate key is defined, then only the leaf-level dimension records are saved
in the dimension table, the parent level information is stored in extra columns in
the leaf-level records. But there is no unique way to reference the upper level in
that case.

You do not need a surrogate key for any Type 1 dimensions, implemented by star or
snowflake, where only the leaf level(s) are referenced by a cube. Dimensions with
multiple hierarchies will still work with no surrogate key, as long as only the leaf
levels are referenced by the cube.

Overview of Slowly Changing Dimensions
A Slowly Changing Dimension (SCD) is a dimension that stores and manages both
current and historical data over time in a data warehouse. In data warehousing, there
are three commonly recognized types of SCDs. describes the types of SCDs, as
described in Table 3–1.

Use Type 2 and Type 3 SCDs to store and manage both current and historical data over
time in a data warehouse. Type 1 dimensions, referred to as dimensions, do not
preserve historical data.

Additional Attributes for Slowly Changing Dimensions (SCDs)
To create a Type 2 SCD or a Type 3 SCD, in addition to the regular dimension
attributes, you need additional attributes that perform the following roles:

■ Triggering Attributes: These are attributes for which historical values must be
stored. For example, in the PRODUCTS dimension, the attribute PACKAGE_TYPE
of the Product level can be a triggering attribute. This means that when the value
of this attribute changes, the old value needs to be stored.

Table 3–1 Types of Slowly Changing Dimensions

Type Description

Type 1 Stores only one version of the dimension record. When a change is made, the
record is overwritten and no historic data is stored.

Type 2 Stores multiple versions of the same dimension record. When the dimension
record is modified, new versions are created while the old ones are retained.

Type 3 Stores one version of the dimension record. This record stores the previous
value and current value of selected attributes.

Overview of Dimensional Objects

3-4 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ Effective Date: This attribute stores the start date of the record's life span.

■ Expiration Date: This attribute stores the end date of the record's life span.

■ Previous Attribute: For Type 3 SCDs only, this attribute stores the previous value
of a versioned attribute.

An attribute can play only one of the above roles. For example, an attribute cannot be a
regular attribute and an effective date attribute. When you use the wizard to create a
Type 2 SCD or a Type 3 SCD, Warehouse Builder creates the required additional
attributes.

Overview of Defining Type 2 Slowly Changing Dimensions
A Type 2 SCD retains the full history of values. When the value of a triggering
attribute changes, the current record is closed. A new record is created with the
changed data values and this new record becomes the current record. Each record
contains the effective date and expiration date to identify the time period for which the
record was active. Warehouse Builder also enables you to set a specific non-null date
value as the expiration date. The current record is the one with a null or the previously
specified value in the expiration date.

All the levels in a dimension need not store historical data. Typically, only the lowest
levels is versioned.

To define a Type 2 Slowly Changing Dimension (SCD), you must identify the
following:

■ For the level that stores historical data, specify the attributes used as the effective
date and the expiration date.

■ Choose the level attribute(s) that will trigger a version of history to be created.

You cannot choose the surrogate identifier, effective date attribute, or expiration
date attribute as the triggering attribute.

Each version of a record is assigned a different surrogate identifier. The business
identifier connects the different versions together in a logical sense. Typically, if there
is a business need, Type 2 SCDs are used.

Type 2 SCD Example
Consider the Customers Type 2 SCD that contains two levels, Household and
Customer. Table 3–2 lists dimension attributes of the Customers Type 2 SCD.

Customer is the leaf level and Household is the non-leaf level.

Table 3–2 Dimension Attributes of the Customers Type 2

Attribute Name Identifier

ID Surrogate identifier

BUSN_ID Business identifier

ADDRESS

ZIP

MARITAL_STATUS

HOME_PHONE

EFFECTIVE_DATE Effective Date

EXPIRATION_DATE Expiration Date

Overview of Dimensional Objects

Defining Dimensional Objects 3-5

The Household level implements the following attributes: ID, BUSN_ID, ADDRESS,
ZIP, EFFECTIVE_DATE, and EXPIRATION_DATE. The Customer level implements the
following attributes: ID, BUSN_ID, MARITAL_STATUS, HOME_PHONE, EFFECTIVE_
DATE, and EXPIRATION_DATE.

The Customers_tab table implements the Customers Type 2 SCD (for a relational or
ROLAP implementation). Table 3–3 lists the columns in the Customers_tab table,
along with details about the dimension level and the attribute that each column
implements.

To create the Customers Type 2 SCD:

■ Specify that the ZIP attribute of the Household level and the MARITAL_STATUS
attribute of the Customer level are the triggering attributes.

■ Use two additional attributes to store the effective date and the expiration date of
the level records. When you use the Create Dimension wizard, Warehouse Builder
creates these additional attributes for the lowest level only. If you use the
Dimension Editor, you must explicitly create these attributes and apply them to
the required levels.

Overview of Hierarchy Versioning
For Type 2 SCDs, when the non-leaf level of a dimension contains versioned attributes,
the versioning of this non-leaf level results in the versioning of its corresponding child
records, if they have effective date and expiration date attributes. For example, in the
Customers Type 2 SCD described in "Type 2 SCD Example" on page 3-4, when the
value of the H_ZIP is updated in a particular Household level record, the child records
corresponding to this Household level are automatically versioned.

Hierarchy versioning is not enabled by default for Type 2 SCDs. Thus, when you
create a Type 2 SCD using the Create Dimension Wizard, hierarchy versioning is
disabled. Use the Dimension Editor to enable hierarchy versioning.

Table 3–3 Columns that Implement the Customers Type 2 SCD Level Attributes

Column Name in the
Customers_tab table Level Name Dimension Attribute Name

DIMENSION_KEY

H_ID Household ID

H_BUSN_ID Household BUSN_ID

H_ADDRESS Household ADDRESS

H_ZIP Household ZIP

H_EFFECTIVE_DATE Household EFFECTIVE_DATE

H_EXPIRATION_DATE Household EXPIRATION_DATE

C_ID Customer ID

C_BUSN_ID Customer BUSN_ID

C_MARITAL_STATUS Customer MARITAL_STATUS

C_HOME_PHONE Customer HOME_PHONE

C_EFFECTIVE_DATE Customer EFFECTIVE_DATE

C_EXPIRATION_DATE Customer EXPIRATION_DATE

Overview of Dimensional Objects

3-6 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Steps to Enable Hierarchy Versioning
1. Right-click the Type 2 SCD in the Projects Navigator and select Open.

The Dimension Editor is displayed.

2. Navigate to the SCD tab.

3. Click Settings to the right of the Type 2: Store the Complete change history option.

The Type 2 Slowly Changing Dimension dialog box is displayed. The attributes of
each level are displayed under the level node.

4. In the child level that should be versioned when its parent attribute changes, for
the attribute that represents the parent attribute of this child level, select Trigger
History in the Record History column.

For example, you create the Customers Type 2 SCD using the Create Dimension
Wizard. Then open the editor for this Type 2 SCD and navigate to the Type 2
Slowly changing Dimension dialog box. The Customer level has an attribute
called HOUSEHOLD_ID. This attribute represents the parent attribute of each
Customer record. For the HOUSEHOLD_ID attribute, select Trigger History in the
Record History column.

Overview of Defining Type 3 Slowly Changing Dimensions (SCDs)
A Type 3 Slowly Changing Dimension (SCD) stores two versions of values for certain
selected level attributes. Each record stores the previous value and the current value of
the versioned attributes. When the value of any of the versioned attributes changes,
the current value is stored as the old value and the new value becomes the current
value. Each record stores the effective date that identifies the date from which the
current value is active. This doubles the number of columns for the versioned
attributes and is used rarely.

Before you define a Type 3 SCD, identify the following:

1. For each level, specify which attributes should be versioned. That is, identify
which attributes should store the previous value as well as the current value.

2. For each versioned attribute, specify the attribute that stores the previous value.

The following restrictions apply to attributes that can have a previous value.

■ An attribute specified as a previous value cannot have further previous
values.

■ The surrogate identifier cannot have previous values.

3. For each level that is versioned, specify the attribute that stores the effective date.

Warehouse Builder recommends that you do not include previous value attributes in
the business identifier of a Type 3 SCD.

Type 3 SCD Example
The PRODUCTS dimension described in "Dimension Example" on page 3-14 can be
created as a Type 3 SCD. The attributes PACKAGE_TYPE and PACKAGE_SIZE of the
Product level should be versioned. You define two additional attributes to store the
previous values, say PREV_PACK_SIZE and PREV_PACK_TYPE in the Product level.
Suppose the value of the PACKAGE_TYPE attribute changes, Warehouse Builder stores
the current value of this attribute in PREV_PACK_TYPE and stores the new value in the
PACKAGE_TYPE attribute. The effective date attribute can be set to the current system
date or to any other specified date.

Overview of Dimensional Objects

Defining Dimensional Objects 3-7

Overview of Cubes
Cubes contain measures and link to one or more dimensions. The axes of a cube
contain dimension members and the body of the cube contains measure values. Most
measures are additive. For example, sales data can be organized into a cube whose
edges contain values for Time, Products, and Promotions dimensions and whose body
contains values from the measures Value sales, and Dollar sales.

A cube is linked to dimension tables over foreign key constraints. Since data integrity
is vital, these constraints are critical in a data warehousing environment. The
constraints enforce referential integrity during the daily operations of the data
warehouse.

Data analysis applications typically aggregate data across many dimensions. This
enables them to look for anomalies or unusual patterns in the data. Using cubes is the
most efficient way of performing these type of operations. In a relational
implementation, when you design dimensions with warehouse keys, the cube row
length is usually reduced. This is because warehouse keys are shorter than their
natural counterparts. This results is lesser amount of storage space needed for the cube
data. For a MOLAP implementation, OLAP uses VARCHAR2 keys.

A typical cube contains:

■ A primary key defined on a set of foreign key reference columns or, in the case of a
data list, on an artificial key or a set of warehouse key columns. When the cube is a
data list, the foreign key reference columns do not uniquely identify each row in
the cube.

■ A set of foreign key reference columns that link the table with its dimensions.

To create cubes, you must define the cube measures and the cube dimensionality. For
more information about measures and cube dimensionality, see Oracle Warehouse
Builder Concepts.

Orphan Management for Dimensional Objects
Warehouse Builder’s orphan management policy enables you to manage orphan
records in dimensional objects (dimensions and cubes). An orphan record is one that
does not have a corresponding existing parent record. Orphan management automates
the process of handling source rows that do not meet the requirements necessary to
form a valid dimension or cube record.

Orphan records can occur when:

■ a record that is loaded into a dimensional object does not have a corresponding
parent record.

A dimension record is considered an orphan if one or more of its level references is
null or nonexistant. A cube record is considered an orphan if one or more
dimension records that it references is either nonexistent or null.

■ a record is deleted from a dimensional object. This could result in the child records
of the deleted record not having an existing parent record.

Warehouse Builder enables you to specify different orphan management policies for
loading dimensional object data and for removing dimensional object data.

Note: Orphan management is not supported for MOLAP dimensions
and cubes.

Overview of Dimensional Objects

3-8 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Orphan Management While Loading Data Into Dimensional Objects
An orphan record is created while loading data into a dimensional object if you insert
a record that does not have an existing parent record. For example, you load data into
the City level of the Geography dimension. The value of the State attribute in this
record does not exist in the State level. This record is an orphan record. Or you load
data into the SALES cube, but the value for the Customer ID does not exist in the
Customers dimension.

Warehouse Builder enables you to specify the integrity policy used while loading
orphan records into a dimensional object. You can specify different actions for records
that have a null parent record and records that have an invalid parent record.

The orphan management policy options that you can set for loading are:

■ Reject Load: The record is not inserted.

■ Default Parent: You can specify a default parent record. This default record is
used as the parent record for any record that does not have an existing parent
record. If the default parent record does not exist, Warehouse Builder creates the
default parent record.

You specify the attribute values of the default parent record at the time of defining
the dimensional object. If any ancestor of the default parent does not exist,
Warehouse Builder also creates this record.

■ No Maintenance: This is the default behavior. Warehouse Builder does not
actively detect, reject, or fix orphan records.

Orphan Management While Removing Data From Dimensional Objects
Orphan records can be created while removing data if the record that is being removed
has corresponding child records. For example, you remove a record in the State level
of the Geography dimension. This state has city records that refer to it. All the city
records that refer to the deleted state record will become orphan records.

While removing data from a dimension, you can select one of the following orphan
management policies:

■ Reject Removal: Warehouse Builder does not allow you to delete the record if it
has existing child records.

■ No Maintenance: This is the default behavior. Warehouse Builder does not
actively detect, reject, or fix orphan records.

Error Tables
Error tables store any records that are detected as anomalous, by Orphan
Management, during a load or remove operation on a dimension. Error tables are
created when you deploy a dimension for the first time if you select the Deploy Error
Tables option on the Orphan tab of the dimension editor.

Following are the records that appear in error tables:

■ Records that are not inserted during a load operation

See Also:

■ "Orphan Tab" on page 3-28 for details about setting an orphan
management policy for dimensions

■ "Orphan Tab" on page 3-51 for details about setting an orphan
management policy for cubes

Overview of Implementing Dimensional Objects

Defining Dimensional Objects 3-9

■ Records whose parents are defaulted during the load operation

■ Records that could not be deleted during a remove operation

Warehouse Builder creates one error table for each implementation object. For
example, if a dimension is implemented using a snowflake schema, multiple error
tables are created. If the dimension is implemented using a star schema, one error table
is created. The name of the error table is the same as the implementation object
suffixed with an _ERR. If the implementation table is called CITY, then the error table
is called CITY_ERR.

Overview of Implementing Dimensional Objects
To implement a dimensional object is to create the physical structure of the
dimensional object. Warehouse Builder provides the following implementations for
dimensional objects:

■ Relational Implementation of Dimensional Objects

■ ROLAP Implementation of Dimensional Objects

■ MOLAP Implementation of Dimensional Objects

The implementation is set using the Storage page of the Wizard used to create the
dimensional object or the Storage tab of the object editor. You can further refine the
implementation deployment options using the Deployment Option configuration
parameter. For more information about setting this parameter, see "Configuring
Dimensions" on page 3-37 and "Configuring Cubes" on page 3-54.

Relational Implementation of Dimensional Objects
A relational implementation stores the dimensional object and its data in a relational
form in the database. The dimensional object data is stored in implementation objects
that are typically tables. Any queries that are executed on the dimensional object
obtain data from these tables. Warehouse Builder creates the DDL scripts that create
the dimensional object. You can then deploy these scripts to the database using the
Control Center.

For relational dimensions, Warehouse Builder can use a star schema, a snowflake
schema, or a manual schema to store the implementation objects.

Note: Since orphan management is not supported for MOLAP
dimensional objects, error tables are created for dimensions and cubes
that have a relational or ROLAP implementation only.

Note: To use a MOLAP implementation, you must have the
following:

■ Oracle Database 10g Enterprise Edition with the OLAP option

■ Oracle Database 11g Enterprise Edition with the OLAP option

■ OLAP 10.1.0.4 or higher

See Also: Oracle Warehouse Builder Concepts for more information
about how the star schema and snowflake schema store dimension
data.

Overview of Implementing Dimensional Objects

3-10 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

When you use the wizard to define dimensional objects, Warehouse Builder creates
the database tables that store the dimensional object data. It also defines the
association between the dimension object attributes and the implementation tables
that defines the table columns that store the dimensional object data.

When you define a dimensional object using the editors, you can decide whether you
want Warehouse Builder to create the implementation tables or you want to store the
dimensional object data in your own tables and views. If you want Warehouse Builder
to create implementation objects, perform auto binding for the dimensional object. To
use your own implementation tables to store the dimensional object data, perform
manual binding.

Binding
Binding is the process of connecting the attributes of the dimensional object to the
columns in the table or view that store their data. You perform binding only for
dimensional objects that have a relational or ROLAP implementation. For
multidimensional objects, binding is implicit and is resolved in the analytic
workspace.

For dimensions, you connect the level attributes and level relationships to the columns
in the implementation objects. For cubes, you connect the measures and dimension
references to implementation table columns.

Warehouse Builder provides two methods of binding: Auto Binding and Manual
Binding.

When to Perform Binding

■ When you create a dimensional object using the wizard, the object will be bound
for you. If you make any changes to the dimensional object using the editor, then
you must re-bind the object before you deploy them.

■ When you create a dimensional object using the editor, you must bind the
dimensional object to its implementation objects before deployment.

■ When you make any change to a dimensional object definition using the editors,
you must rebind the dimensional object to its implementation objects.

Auto Binding
In auto binding, Warehouse Builder creates the implementation tables, if they do not
already exist. The attributes and relationships of the dimensional object are then
bound to the columns that store their data. You can perform auto binding using both
the wizards and the editors.

In the case of a dimension, the number of tables used to store the dimension data
depends on the options you select for the storage.

When you use the editors to create dimensional objects, you can perform both auto
binding and manual binding.

To perform auto binding:

1. In the Projects Navigator, right-click the dimensional object and select Open.

Note: For a relational implementation, you cannot view the data
stored in the dimensional object using the Data Viewer. However, you
can view the data stored in the implementation tables of the
dimensional object using the Data Viewer.

Overview of Implementing Dimensional Objects

Defining Dimensional Objects 3-11

The editor for this dimensional object is displayed.

2. On the Physical Bindings tab, select node that represents the dimensional object.

3. From the File menu, select Bind.

If the Bind option is not enabled, verify if the dimensional object uses a relational
or ROLAP implementation. In the case of dimensions, ensure that the Manual
option is not set in the Implementation section of the Storage tab.

Alternatively, you can perform auto binding by right-clicking the dimensional object in
the Projects Navigator and selecting Bind.

Manual Binding
In manual binding, you must explicitly bind the attributes of the dimensional objects
to the database columns that store their data. You use manual binding when you want
to bind a dimensional object to existing tables or views.

If a dimensional object is already bound to certain implementation objects (as shown
on the Physical Bindings tab of the Dimension Editor), unbind the dimensional object
and then perform manual binding. For details about unbinding dimensional objects,
see "Unbinding" on page 3-12.

To perform manual binding for a dimensional object:

1. Create the implementation objects (tables or views) that you will use to store the
dimensional object data.

In the case of relational or ROLAP dimensions, create the sequence used to load
the surrogate identifier of the dimension. You can choose to use an existing
sequence.

2. In the Projects Navigator, right-click the dimensional and select Open.

The editor for the dimensional object is displayed.

3. On the Physical Bindings tab, right-click a blank area, select Add and then the type
of object that represents the implementation object.

Warehouse Builder displays the Add a New or Existing <Object> dialog box. For
example, if the dimension data is stored in a table, right-click a blank area on the
Physical Bindings tab, select Add and then Table. The Add a New or Existing
Table dialog box is displayed.

4. Choose the Select an existing <Object> option and then select the data object
from the list of objects displayed in the selection tree.

5. Click OK.

A node representing the object that you just added is displayed on the canvas.

6. For dimensions, if more than one data object is used to store the dimension data,
perform steps 3 to 5 for each data implementation object.

7. For dimensions, map the attributes in each level of the dimension to the columns
that store their data. Also map the level relationships to the database column that
store their data.

For cubes, map the measures and dimension references to the columns that store
the cube data.

To map to the implementation object columns, hold down your mouse on the
dimension or cube attribute, drag, and then drop on the column that stores the
attribute value.

Overview of Implementing Dimensional Objects

3-12 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

For example, for the PRODUCTS dimension described in "Dimension Example" on
page 3-14, the attribute NAME in the Groups level of the PRODUCTS dimension is
stored in the GROUP_NAME attribute of the PRODUCTS_TAB table. Hold down the
mouse on the NAME attribute, drag, and drop on the GROUP_NAME attribute of the
PRODUCTS_TAB table.

Unbinding
Warehouse Builder also enables you to unbind a dimensional object. Unbinding
removes the connections between the dimensional object and the tables that store its
data.

To unbind a dimensional object from its current implementation, select the
dimensional object in the Projects Navigator and, from the File menu, select Unbind.
Unbinding removes the bindings between the dimensional object and its
implementation objects. However, it does not delete the implementation objects.

ROLAP Implementation of Dimensional Objects
A ROLAP implementation, like a relational implementation, stores the dimensional
object and its data in a relational form in the database. Additionally, depending on the
type of ROLAP implementation, it either creates CWM2 metadata in the OLAP catalog
or OLAP cube materialized views.

ROLAP implementation of dimensional objects can be classified as follows.

ROLAP Implementation
The dimensional object and its data are stored in a relational form in the database and
the CWM2 metadata for the dimensional object is stored in the OLAP catalog. This
enables you to query the dimensional object from Discoverer (for OLAP).

ROLAP with MVs Implementation
The dimensional object and its data are stored in a relational form in the database.
Additionally, cube-organized materialized views are created in an analytic workspace.

About OLAP Catalog
The OLAP catalog is the metadata repository provided for the OLAP option in the
Oracle Database. This metadata describes the data stored in relational tables.

When you deploy a dimensional object using Warehouse Builder, you can specify if
the dimensional object metadata should be stored in the OLAP catalog.

OLAP metadata is dynamically projected through a series of views called the active
catalog views (views whose names begin with ALL_CWM2_AW).

In Oracle Database 10g, the OLAP catalog metadata is used by OLAP tools and
applications to access data stored in relational star and snowflake schemas. External
application such as Discoverer use the OLAP catalog to query relational and
multidimensional data. The application does not need to be aware of whether the data
is located in relational tables or in analytic workspaces, nor does it need to know the
mechanism for accessing it.

The OLAP catalog uses the metadata it stores to access data stored in relational tables
or views. The OLAP catalog defines logical multidimensional objects and maps them

Note: In Oracle Warehouse Builder 11g Release 2 (11.2), only star
schema tables is supported for the ROLAP with MVs implementation.

Overview of Implementing Dimensional Objects

Defining Dimensional Objects 3-13

to the physical data sources. The logical objects are dimensions and cubes. The
physical data sources are columns of a relational table or view.

MOLAP Implementation of Dimensional Objects
In a MOLAP implementation, the dimensional object data is stored in an analytic
workspace in Oracle Database 10g or Oracle Database 11g. This analytic workspace, in
turn, is stored in the database.

If the Oracle location of the computer containing the AW uses Oracle Database 10g,
then the OLAP 10g form analytic workspaces are generated. If the location used Oracle
Database 11g, the OLAP 11g form analytic workspaces are generated.

Analytic Workspace
An analytic workspace is a container within the Oracle Database that stores data in a
multidimensional format. Analytic workspaces provide the best support to OLAP
processing. An analytic workspace can contain a variety of objects such as dimensions
and variables.

An analytic workspace is stored in a relational database table, which can be
partitioned across multiple disk drives like any other table. You can create many
analytic workspaces within a single schema to share among users. An analytic
workspace is owned by a particular user and other users can be granted access to it.
The name of a dimensional object must be unique within the owner's schema. For
more information about analytic workspaces, see Oracle OLAP User's Guide.

Deployment Options for Dimensional Objects
After you define dimensional objects, you must deploy them to instantiate them in the
database. To specify the type of implementation for dimensional objects, you set the
configuration parameter Deployment Option.

Warehouse Builder provides the following deployment options for dimensions:
Deploy All, Deploy Data Objects Only, Deploy to Catalog, and Deploy Aggregation.

Deploy All For a relational or ROLAP implementation, the dimension is deployed to
the database and a CWM definition to the OLAP catalog. For a ROLAP with MVs
implementation, the dimension is deployed to the database and cube-organized
materialized views are created in an analytic workspace. For a MOLAP
implementation, the dimension is deployed to the analytic workspace.

Deploy Data Objects Only Deploys the dimension only to the database. You can
select this option only for dimensions that use a relational or a ROLAP
implementation.

Deploy to Catalog Deploys the CWM definition to the OLAP catalog only. Use this
option if you want applications such as Discoverer for OLAP to access the dimension
data after you deploy data only. You can also use this option if you previously
deployed with "Data Objects Only" and now want to deploy the CWM Catalog
definitions without redeploying the data objects again.

Deploy Aggregation Deploys the aggregations defined on the cube measures. This
option is available only for cubes.

Creating Dimensions

3-14 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Creating Dimensions
To create dimensions, use one of the following methods:

■ Creating Dimensions Using the Create Dimension Wizard

The wizard enables you to create a fully functional dimension object quickly.
When you use the wizard, many settings are defaulted to the most commonly
used values. You can modify these settings later using the Dimension Editor. If
you choose a relational implementation for the dimension, the implementation
tables and the dimension bindings are also created in the workspace.

For more information about the defaults used by the Dimension wizard, see
"Defaults Used By the Create Dimension Wizard" on page 3-20.

■ Creating Dimensions Using the Dimension Editor

The Dimension Editor gives you full control over all aspects of the dimension
definition and implementation. This provides maximum flexibility. Use the editor
to create a dimension from scratch or to edit a previously created dimension.

■ Using the Time Dimension wizard

The Time Dimension wizard enables you to create and populate time dimensions.
For more information about the Time Dimension wizard, see "Creating Time
Dimensions" on page 3-56.

Dimension Example
An example of a dimension is the Products dimension that you use to organize
product data. Table 3–4 lists the levels in the PRODUCTS dimension and the surrogate
identifier and business identifier for each of the levels in the dimension.

The PRODUCTS dimension contains the following hierarchy:

Hierarchy 1: Total > Groups > Product

Table 3–4 Products Dimension Level Details

Level Attribute Name Identifier

Total ID Surrogate

Name Business

Description

Groups ID Surrogate

Name Business

Description

Product ID Surrogate

UPC Business

Name

Description

Package Type

Package Size

Creating Dimensions

Defining Dimensional Objects 3-15

Creating Dimensions Using the Create Dimension Wizard
To create a dimension using the Create Dimension wizard:

1. From the Projects Navigator expand the Databases node and then the Oracle node.

2. Expand the module where you want to create the dimension.

3. Right-click the Dimensions node and select New Dimension.

Warehouse Builder displays the Welcome page of the Create Dimension wizard.
Click Next to proceed. The wizard guides you through the following pages:

■ Name and Description Page on page 3-15

■ Storage Type Page on page 3-15

■ Dimension Attributes Page on page 3-17

■ Levels Page on page 3-18

■ Level Attributes Page on page 3-18

■ (Relational and ROLAP dimensions only) Slowly Changing Dimension Page
on page 3-19

■ Pre Create Settings Page on page 3-19

■ Dimension Creation Progress Page on page 3-20

■ Summary Page on page 3-20

Name and Description Page
Use the Name and Description page to describe your dimension. Enter the following
information on this page:

■ Name: This is the name used to refer to the dimension. The dimension name must
be unique within a module.

■ Description: You can type an optional description for the dimension.

Storage Type Page
Use the Storage Type page to specify the type of storage for the dimension. The storage
type determines how the dimension data is physically stored in the database. The
options you can select for storage type are:

■ ROLAP: Relational storage

■ ROLAP: with MVs

■ MOLAP: Multidimensional storage

You select the storage type based on the volume of data stored at the lowest level of
the entire cube and the refresh rate required.

ROLAP: Relational storage Warehouse Builder stores the dimension definition and
its data in a relational form in the database. Select this option to create a dimension
that uses a relational or ROLAP implementation.

Relational storage is preferable if you want to store detailed, high volume data or you
have high refresh rates combined with high volumes of data. Use relational storage if
you want to perform one of the following:

■ Store detailed information such as call detail records, point of sales (POS) records
and other such transaction oriented data.

Creating Dimensions

3-16 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ Refresh high volumes of data at short intervals.

■ Detailed reporting such as lists of order details.

■ Ad hoc queries in which changing needs require more flexibility in the data
model.

Operational data stores and enterprise data warehouses are typically implemented
using relational storage. You can then derive multi-dimensional implementations from
this relational implementation to perform different analysis types.

If the database containing the target schema has the OLAP option installed, you can
also deploy the dimensions to the OLAP catalog.

When you choose a relational implementation for a dimension, the implementation
tables used to store the dimension data are created. The default implementation of the
dimension is using a star schema. This means that the data for all the levels in the
dimension is stored in a single database table.

ROLAP: with MVs Warehouse Builder stores the dimension definition and its data in
a relational form in the database. Additionally, cube-organized MVs are created in the
analytic workspace. Select this option to create a dimension that uses a relational
implementation and stores summaries in the analytic workspace.

Using this option provides summary management based on cube-organized MVs in
Oracle 11g Database. Query performance is greatly improved, without the need to
make any modification to your queries.

When you choose a ROLAP with MVs implementation:

■ the implementation tables used to store the dimension data are created. The
default implementation of the dimension is using a star schema.

■ the dimension is stored in an analytic workspace that uses the same name as the
Oracle module to which the dimension belongs. The tablespace that is used to
store the analytic workspace is the tablespace that is defined as the users
tablespace for the schema that contains the dimension metadata.

MOLAP: Multidimensional storage Warehouse Builder stores the dimension
definition and dimension data in an analytic workspace in the database. Select this
option to create a dimension that uses a MOLAP implementation.

 Multidimensional storage is preferable when you want to store aggregated data for
analysis. The refresh intervals for a multidimensional storage are usually longer than
relational storage as data needs to be pre-calculated and pre-aggregated. Also, the data
volumes are typically smaller due to higher aggregation levels. Use multidimensional
storage to perform the following:

■ Advanced analysis such as trend analysis, what-if analysis, or to forecast and
allocate data.

■ Constant analysis using a well-defined consistent data model with fixed query
patterns.

When you choose a MOLAP implementation, the dimension is stored in an analytic
workspace that uses the same name as the Oracle module to which the dimension
belongs. The tablespace that is used to store the analytic workspace is the tablespace
that is defined as the users tablespace for the schema that contains the dimension
metadata.

Creating Dimensions

Defining Dimensional Objects 3-17

Dimension Attributes Page
Use the Dimension Attributes page to define the dimension attributes. A dimension
attribute is applicable to one or more levels in the dimension. By default, the following
attributes are created for each dimension: ID, Name, and Description. You can rename
the ID attribute or delete it.

Specify the following details for each dimension attribute:

■ Name: This is the name of the dimension attribute. The name must be unique
within the dimension.

■ Description: Type an optional description for the dimension attribute.

■ Identifier: Select the type of dimension attribute. Select one of the following
options:

Surrogate: Indicates that the attribute is the surrogate identifier of the dimension.
Specifying a surrogate identifier for a dimension is optional.

Business: Indicates that the attribute is the business identifier of the dimension

Parent: Since you can create values-based hierarchies only using the Dimension
Editor, this option is displayed only in the Attributes tab of the Dimension Editor.
In a value-based hierarchy, select Parent indicates that the attribute stores the
parent value of an attribute.

If the attribute is a regular dimension attribute, leave this field blank.

The options displayed in the Identifier list depend on the type of dimension.
When you create a dimension with a relational or ROLAP implementation, only
the Surrogate and Business options are displayed. For MOLAP dimensions, only
the Business and Parent options are displayed.

■ Data Type: Select the data type of the dimension attribute from the list.

■ Length: For character data types, specify the length of the attribute.

■ Precision: For numeric data types, define the total number of digits allowed for
the column.

■ Scale: For numeric data types, define the total number of digits to the right of the
decimal point.

■ Seconds Precision: Represents the number of digits in the fractional part of the
datetime field. It can be a number between 0 and 9. The seconds precision is used

Note: For information about certain limitations of deploying
dimensions to the OLAP catalog, see "Limitations of Deploying
Dimensions to the OLAP Catalog" on page 3-30.

Note: You can create value-based hierarchies only when you choose
a MOLAP implementation for the dimension.

Note: The following data types are not supported for MOLAP
implementations: BLOB, INTERVAL DAY TO SECOND, INTERVAL
YEAR TO MONTH, RAW, TIMESTAMP WITH TIME ZONE, TIMESTAMP
WITH LOCAL TIME ZONE.

Creating Dimensions

3-18 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

only for TIMESTAMP, TIMESTAMP WITH TIME ZONE, and TIMESTAMP WITH
LOCAL TIME ZONE data types.

■ Descriptor: Select the type of descriptor. The options are: Short Description, Long
Description, End date, Time span, Prior period, and Year Ago Period.

Descriptors are very important for MOLAP implementations. For example, in a
custom time dimension, you must have Time Span and End Date to allow time
series analysis.

Levels Page
The Levels page defines the levels of aggregation in the dimension. A dimension must
contain at least one level. The only exception is value-based hierarchies that contain no
levels. You can create a value-based hierarchy using the Dimension Editor only.

Enter the following details on the Levels page:

■ Name: This is the name of the level. The level name must be unique within the
dimension.

■ Description: Type an optional description for the level.

List the levels in the dimension such that the parent levels appear above the child
levels. Use the arrow keys to move levels so that they appear in this order.

Warehouse Builder creates a default hierarchy called STANDARD that contains the
levels in the same order that you listed them on the Levels page. The attributes used to
store the parent key references of each level are also created. For a relational or ROLAP
dimension, two attributes are created, one for the surrogate identifier and one for the
business identifier, that correspond to the parent level of each level. For a MOLAP
dimension, for each level, one attribute that corresponds to the business identifier of
the parent level is created.

For example, the Products dimension contains the following levels: Total, Groups, and
Product. Two level relationships are created in the dimension, one each under the
Product and Groups levels. For relational or ROLAP dimensions, these level
relationships reference the surrogate identifier of the parent level. Level relationships
are only displayed in the Physical Bindings Tab of the Dimension Editor.

Level Attributes Page
The Level Attributes page defines the level attributes of each dimension level. You
define level attributes by selecting the dimension attributes that apply to the level. The
dimension attributes are defined on the Dimension Attributes page of the Create
Dimension wizard.

The Level Attributes page contains two sections: Levels and Level Attributes.

Levels The Levels section lists all the levels defined in the Levels page of the Create
Dimension wizard. Select a level in this section to specify the dimension attributes that
this level implements. You select a level by clicking the level name.

Level Attributes The Level Attributes section lists all the dimension attributes
defined in the Dimension Attributes page. For each level, choose the dimension
attributes that the level implements. To indicate that a dimension attribute is
implemented by a level, select the Applicable option for the dimension attribute. The

Note: To create additional hierarchies, use the Hierarchies tab of the
Dimension Editor as described in Hierarchies Tab on page 3-26.

Creating Dimensions

Defining Dimensional Objects 3-19

name of the level attribute can be different from that of the dimension attribute. Use
the Level Attribute Name field to specify the name of the level attribute.

For example, to specify that the dimension attributes ID, Name, Description, and
Budget are implemented by the State level:

1. Select the State level in the Levels section.

2. In the Level Attributes section, select the Applicable option for the attributes ID,
Name, Description, and Budget.

By default, the following defaults are used:

■ The attributes ID, Name, and Description are applicable to all levels.

■ All dimension attributes are applicable to the lowest level in the dimension.

Slowly Changing Dimension Page
Use of this functionality requires the Warehouse Builder Enterprise ETL Option.

The Slowly Changing Dimension page enables you to define the type of slowly
changing policy used by the dimension. This page is displayed only if you had chosen
Relational storage (ROLAP) as the storage type on the Storage Type Page.

For more information about Slowly Changing Dimensions concepts, see Oracle
Warehouse Builder Concepts.

Select one of the following options for the slowly changing policy:

■ Type 1: Do not store history: This is the default selection. Warehouse Builder
creates a dimension that stores no history. This is a normal dimension.

■ Type 2: Store the complete change history: Select this option to create a Type 2
Slowly Changing Dimension. Warehouse Builder creates the following two
additional dimension attributes and makes them applicable for the lowest level in
the Type 2 SCD:

■ Effective date

■ Expiration date

All the attributes of the lowest level in the Type 2 SCD, except the surrogate and
business identifier, are defined as the triggering attributes.

■ Type 3: Store only the previous value: Select this option to create a Type 3 Slowly
Changing Dimension. Warehouse Builder assumes that all the level attributes at
the lowest level, excluding the surrogate ID and business ID, should be versioned.
For each level attribute that is versioned, an additional attribute is created to store
the previous value of the attribute.

Pre Create Settings Page
The Pre Create Settings page displays a summary of the options selected on the
previous pages of the Create Dimension wizard. This includes the attributes, levels,
hierarchies, storage type, and the slowly changing policy used for the dimension.
Warehouse Builder uses these settings to create the dimension definition and the
database tables that implement the dimension. It also binds the dimension attributes to
the table columns that store the attribute data.

Note: You cannot create a Type 2 or Type 3 Slowly Changing
Dimension if the type of storage is MOLAP.

Creating Dimensions

3-20 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Click Next to proceed with the implementation of the dimension. To change any of the
options you previously selected, click Back.

Dimension Creation Progress Page
The Dimension Creation Progress page displays the progress of the dimension
implementation that was started on the Pre-Create Settings page. The Message Log
section on this page provides information about the individual tasks completed during
the dimension implementation. Click Next to proceed.

Summary Page
The Summary page provides a brief summary of the options that you selected using
the Create Dimension wizard. Use the Summary page to review the selected options.
Click Finish to create the dimension. You now have a fully functional dimension. This
dimension is displayed under the Dimensions node of the Projects Navigator.

Warehouse Builder creates the metadata for the following in the workspace:

■ The dimension object.

■ The objects that store the dimension data.

For a relational implementation, a database table that stores the dimension data is
created. Warehouse Builder binds the attributes in the dimension to the database
columns used to store their values.

For a MOLAP implementation, the analytic workspace that stores the dimension
data is created.

■ (Relational and ROLAP dimensions only) The database sequence used to generate
the surrogate identifier for all the dimension levels.

Warehouse Builder creates the definitions of these objects in the workspace and not
the objects themselves.

Deploying Dimensions To create the dimension in the target schema, you must
deploy the dimension. For a ROLAP dimension, ensure that you deploy the sequence
and the implementation tables before you deploy the dimension. Alternatively, you
can deploy all these objects at the same time. For more information see "ROLAP
Implementation of Dimensional Objects" on page 3-12.

Defaults Used By the Create Dimension Wizard
When you create a dimension using the Create Dimension wizard, default values are
set for some of the attributes that are used to create the dimension. The following
sections describe the defaults used.

Storage
For a relational storage, the star schema is used as the default implementation method.

Note: Review this page carefully as it summarizes the
implementation and its objects.

Note: When you delete a dimension, the associated objects such as
sequence, database tables, or AWs are not deleted. You must explicitly
delete these objects.

Creating Dimensions

Defining Dimensional Objects 3-21

When you choose multidimensional storage, the dimension is stored in an analytic
workspace that has the same name as the Oracle module in which the dimension is
defined. If the analytic workspace does not exist, it is created. The analytic workspace
is stored in the users tablespace of the schema that owns the Oracle module.

Dimension Attributes
Warehouse Builder creates default dimension attributes with the properties specified
in Table 3–5.

You can add additional attributes. For your dimension to be valid, you must define the
surrogate and business identifiers.

Hierarchies
Warehouse Builder creates a default hierarchy called STANDARD that contains all the
levels listed on the Levels page of the Create Dimension wizard. The hierarchy uses
the levels in the same order that they are listed on the Levels page.

Level Attributes
The ID, Name, and Description attributes are applicable to each level defined in the
dimension. All the dimension attributes are applicable to the lowest level in the
dimension. The lowest level is the level that is defined last on the Levels page.

Slowly Changing Dimensions
When you create a Type 2 SCD, all the attributes of the lowest level, except the
surrogate identifier and the business identifier, are versioned. Two additional
attributes are created to store the effective date and the expiration date of each record.
For example, if you create the Products dimension described in "Dimension
Example" as a Type 2 SCD, the attributes UPC, Package_type, and Package_size
are versioned. Warehouse Builder creates two additional attributes called
EXPIRATION_DATE and EFFECTIVE_DATE, of data type DATE, to store the effective
date and expiration date of versioned records.

For a Type 3 SCD, all level attributes of the lowest level, except the surrogate identifier
and the primary identifier, are versioned. Warehouse Builder creates additional
attributes to store the previous value of each versioned attribute. Additionally, an
attribute to store the effective date is created. For example, if you create the Products
dimension described in "Dimension Example" as a Type 3 SCD, additional attributes
called PREV_DESCRIPTION, PREV_PACKAGE_TYPE, PREV_PACKAGE_SIZE, and
PREV_UPC are created to store the previous values of the versioned attributes. These
data type for these attributes are the same the ones used to store the current value of
the attribute. Warehouse Builder also creates an attribute EFFECTIVE_TIME to store
the effective time of versioned records. This attribute uses the DATE data type.

Table 3–5 Default Dimension Attributes

Dimension Attribute Name Identifier Data Type

ID Surrogate NUMBER

Name Business VARCHAR2

Description VARCHAR2

Creating Dimensions

3-22 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Orphan Management Policy
For relational and ROLAP dimensions, the default orphan management policy for
loading data into and removing data from dimensions is No Maintenance.

The Deploy Error Tables option is deselected.

Implementation Objects
For each dimension, in addition to the dimension object, certain implementation
objects are created. The number and type of implementation objects depends on the
storage type of the dimension.

For time dimensions, irrespective of the storage type, a map that loads the time
dimension is created. The name of the map is the dimension name followed by '_
MAP'. For example, the map that loads a time dimension called TIMES will be called
TIMES_MAP.

ROLAP: Relational Storage
For a relational storage, the following implementation objects are created:

Table: A table with the same name as the dimension is created to store the dimension
data. A unique key is created on the dimension key column. For example, when you
define a dimension called CHANNELS, a table called CHANNELS_TAB is created to store
the dimension data. Also, a unique key called CHANNELS_DIMENSION_KEY_PK is
created on the dimension key column.

Sequence: For a dimension that uses a relational storage, a sequence that loads the
dimension key values is created. For example, for the dimension called CHANNELS, a
sequence called CHANNELS_SEQ is created.

ROLAP: with MVs
For a ROLAP with MVs implementation, the implementation table and the sequence
that loads the surrogate identifier, as described in "ROLAP: Relational Storage" on
page 3-22, are created. Additionally, an analytic workspace with the same name as the
Oracle module containing the dimension is created.

MOLAP: Multidimensional Storage
For a multidimensional storage, if it does not already exist, an analytic workspace with
the same name as the Oracle module that contains the dimension is created. For
example, if you create a dimension called PRODUCTS in the SALES_WH module, the
dimension is stored in an analytic workspace called SALES_WH. If an analytic
workspace with this name does not already exist, it is first created and then the
dimension is stored in this analytic workspace.

Creating Dimensions Using the Dimension Editor
The Dimension Editor enables advanced users to create dimensions according to their
requirements. You can also edit a dimension using the Dimension Editor.

Use the Dimension Editor to create a dimension if you want to perform one of the
following:

■ Use the snowflake implementation methods.

■ Create value-based hierarchies.

■ Create dimension roles.

■ Skip levels in a hierarchy.

Creating Dimensions

Defining Dimensional Objects 3-23

■ Use existing database tables or views to store the dimension data. This is referred
to as manual binding.

■ Specify an orphan management policy.

■ Create more than one hierarchies in a dimension.

To define a dimension using the Dimension Editor:

1. From the Projects Navigator expand the Databases node and then the Oracle node.

2. Expand the target module where you want to create the dimension.

3. Right-click Dimensions and select New.

The New Gallery dialog box is displayed.

4. Select Dimension without using Wizard and click OK.

Warehouse Builder displays the Create Dimension dialog box.

5. Specify a name and an optional description for the dimension and click OK.

The Dimension Editor is displayed with the Name tab containing the name and
description you provided.

To define the dimension, provide information about the following tabs:

■ Name Tab on page 3-23

■ Storage Tab on page 3-24

■ Attributes Tab on page 3-25

■ Levels Tab on page 3-25

■ Hierarchies Tab on page 3-26

■ SCD Tab on page 3-27

■ Orphan Tab on page 3-28

■ Physical Bindings Tab on page 3-29

6. For dimensions that have a relational or ROLAP with MVs implementation, bind
the attributes in the dimension to the database columns that store their data, see
"Physical Bindings Tab" on page 3-29.

Name Tab
Use the Name tab to describe your dimension. You also specify the type of dimension
and the dimension roles on this tab.

The Name field represents the name of the dimension. The dimension name must be
unique within the module. Use the Description field to enter an optional description
for the dimension.

Dimension Roles Use the Dimension Roles section to define dimension roles. You
define the following for each dimension role:

Note: When you use the Dimension Editor to create a dimension that
has a relational implementation, the physical structures that store the
dimension data are not automatically created. You must create these
structures either manually or using the Bind option in the File menu.

Creating Dimensions

3-24 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ Name: Represents the name of the dimension role.

■ Description: Specify an optional description for the dimension role.

Storage Tab
Use the Storage tab to specify the type of storage for the dimension. The storage
options you can select are described in the following sections.

ROLAP: Relational Storage Select the Relational option to store the dimension and
its data in a relational form in the database. Use this option to create a dimension that
uses a relational or ROLAP implementation.

For a relational storage, you can select one of the following methods to implement the
dimension:

■ Star schema: Implements the dimension using a star schema. This means that the
dimension data is stored in a single database table or view.

■ Snowflake schema: Implements the dimension using a snowflake schema. This
dimension data is stored in more than one database table or view.

■ Manual: You must explicitly bind the attributes from the dimension to the
database object that stores their data. When you select this option, you are
assigned write access to the Physical Binding tab in the Dimension Editor and the
auto binding feature is disabled so that you do not accidentally remove the
bindings that you manually created.

When you perform auto binding, these storage settings are used to perform auto
binding.

Click Create composite unique key to create a composite unique key on the business
identifiers of all levels. For example, if your dimension contains three levels, when you
create a composite unique key, a unique key that includes the business identifiers of all
three levels is created. Creating a composite unique key enforces uniqueness of a
dimension record across the dimension at the database level.

If the database containing the target schema has the OLAP option installed, you can
also deploy the dimensions to the OLAP catalog by setting the configuration
parameter as described in "Specifying How Dimensions are Deployed" on page 3-38.

ROLAP: with Cube MVs Warehouse Builder stores the dimension definition and its
data in a relational form in the database. Additionally, materialized view summaries
are created for the implementation tables in the analytic workspace. Select this option
to create a dimension that uses a ROLAP implementation and stores summaries in the
analytic workspace.

When you choose a ROLAP with MVs implementation, specify the name of the
analytic workspace that should store the summary data using the AW Name field in
the MOLAP: Multidimensional storage section.

MOLAP: Multidimensional storage Select the MOLAP option to store the dimension
and its data in a multidimensional form in the database. Use this option to create a
dimension that uses a MOLAP implementation. The dimension data is stored in an
analytic workspace.

Enter values for the following fields:

See Also: Oracle Warehouse Builder Concepts for more information
about dimension roles.

Creating Dimensions

Defining Dimensional Objects 3-25

■ AW Name: Enter the name of the analytic workspace that stores the dimension
data. Alternatively, you can click the Select button to display a list of MOLAP
objects in the current project. Warehouse Builder displays a node for each module
in the project. Expand a module to view the list of dimensional objects in the
module. Selecting an object from list stores the dimension in the same analytic
workspace as the selected object.

■ AW Tablespace Name: Enter the name of the tablespace in which the analytic
workspace is stored.

Dimensions with multiple hierarchies can sometimes use the same source column for
aggregate levels (that is, any level above the base). In such cases, you select the
Generate surrogate keys in the analytic workspace option. During a load operation,
the level name is added as a prefix to each value. It is recommended that you select
this option unless you know that every dimension member is unique.

If you are sure that dimension members are unique across levels, then you can use the
exact same names in the analytic workspace as the source. For example, if your
relational schema uses numeric surrogate keys to assure uniqueness, you need not
create new surrogate keys in the analytic workspace. The Use natural keys from data
source option enables you to use the same natural keys from the source in the analytic
workspace.

Attributes Tab
Use the Attributes tab to define the dimension attributes. The Attributes tab contains
two sections: Sequence and Dimension Attributes.

Sequence The Sequence attribute is required only for dimensions that have a
relational implementation and that have a surrogate identifier defined. Use the
Sequence field to specify the name of the database sequence that populates the
dimension key column. Click Select to the right of this field to display the Available
Sequences dialog box. This dialog box contains a node for each module in the project.
Expand a module node to view the sequences contained in the module. Select a
sequence from the displayed list.

Dimension Attributes Use the Dimension Attributes section to define the details of
the dimension attributes as described in "Dimension Attributes Page" on page 3-17.

Levels Tab
Use the Levels tab to define the dimension levels and the attributes for each level in
the dimension. You also use this tab to create value-based hierarchies.

Before you define level attributes, ensure that the dimension attributes are defined on
the Dimension Attributes tab. To define the level attributes for a level, you must select
the dimension attributes that the level implements. The Levels tab contains two
sections: Levels and Level Attributes.

Levels The Levels section displays the levels in the dimension. Provide the following
details for each level:

■ Name: Enter the name of the dimension level. The name must be unique within
the dimension.

Note: If you edit a dimension and change the Storage type from
ROLAP to MOLAP, the data type of the surrogate identifier is
changed to VARCHAR2.

Creating Dimensions

3-26 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ Description: Enter an optional description for the level.

Level Attributes The Level Attributes section lists all the dimension attributes
defined on the Attributes tab. The values that you specify in this section are applicable
to the level selected in the Levels section. The Level Attributes section contains the
following:

■ Dimension Attribute Name: Represents the name of the dimension attribute.

■ Applicable: Select the Applicable option if the level selected in the Levels section
implements this dimension attribute.

■ Level Attribute Name: Represents the name of the level attribute. Use this field to
specify a name for the level attribute, a name that is different from that of the
dimension attribute. This is an optional field. If you do not specify a name, the
level attribute will have the same name as the dimension attribute.

■ Description: Specify an optional description for the level attribute.

■ Default Value: Specify the default value of the level attribute.

For example, to specify that the Groups level implements the dimension attributes ID,
Name, and Description:

■ Select the Groups level in the Levels section.

■ In the Level Attributes section, select the Applicable option for the ID, Name, and
Description attributes.

Hierarchies Tab
Use the Hierarchies tab to create dimension hierarchies. The Hierarchies tab contains
two sections: Hierarchies and Levels.

Hierarchies Use the Hierarchies section to define the hierarchies in the dimension.
For each hierarchy, define the following:

■ Hierarchy: Represents the name of the hierarchy. To create a new hierarchy, enter
the name of the hierarchy in this field.

■ Value-based: Select this option to create a value-based hierarchy. A value-based
hierarchy contains no levels. It must have an attribute identified as the parent
identifier. Since you can create value-based hierarchies only for MOLAP
dimensions, this option is displayed only if you select MOLAP: Multidimensional
storage on the Storage tab.

■ Description: Enter an optional description for the hierarchy.

■ Default: Select the Default option if the hierarchy is the default hierarchy for the
dimension. When a dimension has more than one hierarchy, query tools show the
default hierarchy. It is recommended that you set the most commonly used
hierarchy as the default hierarchy.

To delete a hierarchy, right-click the cell to the left of the Hierarchy field and select
Delete. Alternatively, you can select the hierarchy by clicking the cell to the left of the
Hierarchy field and press the Delete button.

When you create a hierarchy, ensure that you create the attributes that store the parent
level references for each level. For a relational or ROLAP dimension, create two

See Also: Oracle Warehouse Builder Concepts for information about
value-based hierarchies

Creating Dimensions

Defining Dimensional Objects 3-27

attributes to store the surrogate identifier reference and business identifier reference of
each level. For a MOLAP dimension, create one attribute to store the reference to the
business identifier of the parent level of each level.

Levels The Levels section lists all the levels defined on the Levels tab of the
Dimension Editor. Use this section to specify the levels used in each hierarchy. The
Levels section contains the following:

■ Level: Represents the name of the level. Click the list to display all the levels
defined in the dimension.

■ Skip to Level: Represents the parent level of the level indicated by the Level field.
Use this field to define skip-level hierarchies.

For example, the Products dimension contains the following hierarchy:

Total > Product

This hierarchy does not include the Groups level. Thus the Product level must skip
the Groups level and use the Total level as a parent. To create this hierarchy, select
the Product level in the Level field and select Total from the Skip to Level list.

■ Summary Level: Represents the dimension level used to load summaries in the
analytic workspace. This option is displayed only if you select ROLAP: with Cube
MVs on the Storage tab.

Use the arrows to the left of the Levels section to change the order in which the levels
appear in the section.

SCD Tab
Use this tab to specify the type of slowly changing policy that the dimension
implements. Since you can create a Slowly Changing Dimension only for dimensions
that use a relational implementation, the options on this tab are enabled only if you
select ROLAP: Relational Storage or ROLAP: with Cube MVs on the Storage tab.

The options that you can select for slowly changing policy are:

■ Type 1: Do not keep history: Creates a normal dimension that stores no history.

■ Type 2: Store the complete change history: Select this option to create a Type 2
SCD. Click Settings to specify the additional details such as triggering attribute,
effective date and expiration date for each level.as described in "Creating Type 2
Slowly Changing Dimensions Using the Dimension Editor" on page 3-32.

■ Type 3: Store only the previous value: Select this option to create a Type 3 SCD.
Click Settings to specify the additional details such as effective date and the
attributes used to store the previous value of versioned attributes as described in
"Creating Type 3 Slowly Changing Dimensions Using the Dimension Editor" on
page 3-35.

Note: If you choose a MOLAP implementation on the Storage Tab,
the options on this tab are disabled.

Note: You cannot create a Type 2 or Type 3 Slowly Changing
Dimension if you have specified the type of storage as MOLAP.

Creating Dimensions

3-28 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

When you create a Type 2 or Type 3 SCD using the Dimension Editor, you must create
the dimension attributes that store the effective data and expiration date and apply
them to the required levels.

Orphan Tab
The Orphan tab defines the orphan management policy used while loading data into
the dimension or removing data from the dimension. This tab contains two sections:
Orphan Management for Removal and Orphan Management for Loading.

Orphan Management for Loading Use this section to specify the orphan management
policy for loading data into a dimension. You can specify different orphan
management policies for records that have null parent records and records that have
invalid parent records. Use the options under the heading Null parent key values to
specify the orphan management policy for records that have a null parent. Use the
options under the heading Invalid parent key values to specify the orphan
management policy for records that have an invalid parent record.

For records with a null parent and records with an invalid parent, select one of the
following orphan management policies:

■ No Maintenance: Warehouse Builder does not actively detect, reject, or fix orphan
rows.

■ Default Parent: Warehouse Builder assigns a default parent row for any row that
does not have an existing parent row at the time of loading data. You use the
Settings button to define the default parent row. For more information about
assigning a default parent row, refer "Specifying the Default Parent for Orphan
Rows" on page 3-28.

■ Reject Orphan: Warehouse Builder does not insert the row if it does not have an
existing parent row.

Orphan Management for Removal You use this section to specify the orphan
management policy for removing data from a dimension. Select one of the following
options:

■ No maintenance: Warehouse Builder does not actively detect, reject, or fix orphan
rows.

■ Reject Removal: Warehouse Builder does not remove a row if the row has existing
child rows.

Deployment Options

Select Deploy Error Table(s) to generate and deploy the error tables related to orphan
management along with the dimension.

Specifying the Default Parent for Orphan Rows
Use the Default Parent dialog to specify the default parent record of an orphan row.
You can specify a default parent record for all the dimension levels.

The Default Parent dialog contains a row for each dimension level. displays a table
that contains the following four columns:

■ Levels: The Levels column displays a node for each level in the dimension.
Expand a level node to display all the attributes in the level.

■ Identifying Attribute: Represents the name of the level attribute.

■ Data Type: Displays the data type of the attribute.

Creating Dimensions

Defining Dimensional Objects 3-29

■ Default Value: Specify a default value for the level attribute.

Physical Bindings Tab
Use the Physical Bindings tab to bind the dimension to its implementation objects.
Binding is the process of specifying the database columns that will store the data of
each attribute and level relationship in the dimension. When you use the Create
Dimension wizard to create a dimension, binding is automatically performed. When
you use the editor to create a dimension, you must specify the details of the database
tables or views that store the dimension data.

Choose one of the following options to bind dimension attributes to the database
columns that store their data:

■ Auto binding

■ Manual binding

Auto Binding When you perform auto binding, Warehouse Builder maps the
attributes in the dimension to the database columns that store their data. When you
perform auto binding for the first time, Warehouse Builder also creates the tables that
are used to store the dimension data.

To perform auto binding, select the dimension in the Projects Navigator or on the
Physical Bindings tab. From the file menu, select Bind. Alternatively, right-click the
dimension in the Projects Navigator and select Bind. For more information about the
auto binding rules, see "Auto Binding" on page 3-10.

When you perform auto binding on a dimension that is already bound, Warehouse
Builder uses the following rules:

■ If the implementation method of the dimension remains the same, Warehouse
Builder rebinds the dimensional object to the existing implementation objects. The
implementation method can be either Star or Snowflake.

For example, you create a Products dimension using the star schema
implementation method and perform auto binding. The dimension data is stored
in a table called Products. You modify the dimension definition at a later date but
retain the implementation method as star. When you now auto bind the Products
dimension, Warehouse Builder rebinds the Products dimension attributes to the
same implementation tables.

■ If the implementation method of a dimension is changed, Warehouse Builder
deletes the old implementation objects and creates a new set of implementation
tables. If you want to retain the old implementation objects, you must first unbind
the dimensional object and then perform auto binding.

For example, you create a Products dimension using the star schema
implementation method and bind it to the implementation table. You now edit this
dimension and change its implementation method to snowflake. When you now
perform auto binding for the modified Products dimension, Warehouse Builder
deletes the table that stores the dimension data, creates new implementation
tables, and binds the dimension attributes and relationships to the new
implementation tables.

Manual Binding In manual binding, you must explicitly bind the attributes in each
level of the dimension to the database columns that store their data. You can either
bind to existing tables or create new tables and bind to them. You would typically use
manual binding to bind existing tables to a dimension. Use manual binding if no auto
binding or rebinding is required.

Creating Dimensions

3-30 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

To perform manual binding:

1. In the Projects Navigator, right-click the dimension and select Open.

Warehouse Builder displays the editor for this dimension.

2. On the Physical Bindings tab, right-click a blank area, select Add and then select
the type of database object that stores the dimension data.

For example, if the dimension data is stored in a table, right-click a blank area on
the Physical Bindings tab, select Add and then Table. Warehouse Builder displays
the Add a new or existing Table dialog box. To store the dimension data, you
either select an existing table or create a new table.

3. Repeat Step 2 as many times as the number of database objects that are used to
store the dimension data. For example, if the dimension data is stored in three
database tables, perform Step 2 thrice.

4. Bind each attribute in the dimension to the database column that stores its data.

After you define a dimension and perform binding (for ROLAP dimensions only), you
must deploy the dimension and its associated objects. For more information about
deploying dimensions, see "Deploying Dimensions" on page 3-20.

Limitations of Deploying Dimensions to the OLAP Catalog
For dimensions with a ROLAP implementation, there are implications and limitations
related to the various dimension structures when either reporting on the underlying
tables or deploying to the OLAP catalog. Although the dimension may be successfully
deployed, errors could occur when other applications, such as Oracle Discoverer
access the OLAP catalog.

The following are items that are affected by this limitation:

■ No reporting tool has metadata about all aspects of dimensional metadata we
capture, so this must be incorporated into the query/reports. Otherwise you will
see odd information because of the way the data is populated in the
implementation tables.

The dimension and cube implementation tables store solved rows which contain
negative key values. You can filter out these rows in your queries or reports. When
you create a query or report, use the view that is associated with a dimension
instead of the dimension itself. Each dimension has a view that is associated with
it. The view name is specified in the configuration parameter View Name of the
dimension or cube.

■ Skip-level hierarchies and ragged hierarchy metadata is not deployed to the OLAP
catalog.

If you create a dimension that contains skip-level or ragged hierarchies, the
metadata for these is stored in the Warehouse Builder repository but is not
deployed to the OLAP catalog.

■ Dimensions with multiple hierarchies must have all dimension attributes mapped
along all the hierarchies.

Using Control Rows
Control rows enable you to link fact data to a dimension at any level. For example, you
may want to reuse a Time dimension in two different cubes to record the budget data
at the month level and the actual data at the day level. Because of the way dimensions

Creating Slowly Changing Dimensions

Defining Dimensional Objects 3-31

are loaded with control rows, you can perform this without any additional definitions.
Each member in a dimension hierarchy is represented using a single record.

Warehouse Builder creates control rows when you load data into the dimension. All
control rows have negative dimension key values starting from -2. For each level value
of higher levels, a row is generated that can act as a unique linking row to the fact
table. All the lower levels in this linking or control rows are nulled out.

Consider the Products dimension described in "Dimension Example" on page 3-14.
You load data into this dimension from a table that contains four categories of
products. Warehouse Builder inserts control rows in the dimension as shown in
Table 3–6. These rows enable you to link to a cube at any dimension level. Note that
the table does not contain all the dimension attribute values.

Determining the Number of Rows in a Dimension
To obtain the real number of rows in a dimension, count the number of rows by
including a WHERE clause that excludes the NULL rows. For example, to obtain a count
on Products, count the number of rows including a WHERE clause to exclude NULL
rows in Product.

Creating Slowly Changing Dimensions
You can create an SCD either using the Create Dimension Wizard or the Dimension
Editor.

To create an SCD using the Create Dimension Wizard, use the Slowly Changing
Dimension page of the Create Dimension Wizard. You only specify the type of SCD
that you want to create on this page. Warehouse Builder assumes default values for all
other required parameters. For more information about the Slowly Changing
Dimension page, see "Slowly Changing Dimension Page" on page 3-19.

To create a Type 2 SCD or a Type 3 SCD, in addition to the regular dimension
attributes, you need additional attributes that perform the following roles.

Triggering Attribute
These are attributes for which historical values must be stored. For example, in the
PRODUCTS dimension, the attribute PACKAGE_TYPE of the Product level can be a
triggering attribute. This means that when the value of this attribute changes, the old
value needs to be stored.

Table 3–6 Control Rows Created for the Products Dimension

Dimension Key Total Name Categories Name Product Name

-3 TOTAL

-9 TOTAL Hardware

-10 TOTAL Software

-11 TOTAL Electronics

-12 TOTAL Peripherals

Note: Type 1 does not require additional licensing; however, Type 2
and Type 3 SCDs require the Warehouse Builder Enterprise ETL
Option.

Creating Slowly Changing Dimensions

3-32 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Effective Date
This attribute stores the start date of the record's life span.

Expiration Date
This attribute stores the end date of the record's life span.

An attribute can play only one of the above roles. For example, an attribute cannot be a
regular attribute and an effective date attribute. When you use the wizard to create a
Type 2 SCD or a Type 3 SCD, Warehouse Builder creates the required additional
attributes.

Creating Type 2 Slowly Changing Dimensions Using the Dimension Editor
A Type 2 SCD stores the full history of values for each attribute and level relationship.

To create a Type 2 SCD using the Dimension Editor, define the following:

■ The attributes that trigger history saving.

■ The attributes that store the effective date and the expiration date.

To create a Type 2 SCD using the Dimension Editor:

1. From the Projects Navigator, expand the Databases node and then the Oracle
node.

2. Expand the target module where you want to create the Type 2 SCD.

3. Right-click Dimensions, select New, then Dimension without using Wizard.

4. Provide information about the Name tab of the Dimension Editor as described in
the "Name Tab" on page 3-23.

5. On the Attributes tab, for each level, create two additional attributes to store the
effective date and the expiration date. For more information about creating
attributes, see "Attributes Tab" on page 3-25.

6. Provide information about the following tabs of the Dimension Editor:

■ Levels Tab on page 3-25

■ Hierarchies Tab on page 3-26

7. On the Slowly Changing tab, select the Type 2: Store the complete change history
option.

8. Click Settings to the right of this option.

Warehouse Builder displays the Type 2 Slowly Changing Policy dialog box.
Specify the details of the Type 2 SCD as described in "Type 2 Slowly Changing
Dimension Dialog Box" on page 3-32.

9. Provide information about the Storage Tab of the Dimension Editor.

Type 2 Slowly Changing Dimension Dialog Box
Use the Type 2 Slowly Changing Dimension dialog box to specify the effective date
attribute, expiration date attribute, and the versioned attribute. This dialog box

Note: You can create a Type 2 SCD only for dimensions that have a
relational implementation.

Creating Slowly Changing Dimensions

Defining Dimensional Objects 3-33

displays a table that contains the following columns: Levels, Identifying Attribute,
Data Type, and Record History.

■ Levels: Represents the levels in the dimension. Expand a level node to view its
level attributes.

■ Identifying Attribute: Represents the level attribute.

■ Data Type: Represents the data type of the level attribute.

■ Record History: Use this list to indicate that an attribute is versioned or that it
stores the effective date or expiration date of the level record.

– Trigger History: Select this option for an attribute if the attribute should be
versioned.

– Effective Date: Select this option for an attribute if it stores the value of the
effective date of the level record.

– Expiration Date: Select this option for an attribute id it stores the expiration
date of the level record.

The surrogate ID and the business ID of a level cannot be versioned.

For example, in the PRODUCTS Type 2 SCD, the attributes that store the effective date
and expiration date are EFFECTIVE_TIME and EXPIRATION_TIME respectively. You
must create these dimension attributes and apply them to the Product level. The
attribute PACKAGE_TYPE should be versioned. Thus, for this attribute, you select
Trigger history under the Record History column. When the value of the PACKAGE_
TYPE attribute changes, the existing record is closed and a new record is created using
the latest values.

Updating Type 2 Slowly Changing Dimensions
All the levels in a dimension need not store historical data. Typically, only the lowest
level, also called the leaf level, stores historical data. However, you can also store
historical data for other dimension levels.

When a record in a Type 2 SCD is versioned, the old record is marked as closed and a
new record is created with the updated values. The expiration date of the record is set
to indicate that it is closed. The new record is referred to as the current record and, by
default, has a default expiration of NULL. While loading data into the Type 2 SCD,
you can set the expiration date by using the configuration parameters for the
Dimension operator. For more information, see "Dimension Operator" on page 25-14.

You can update the following in a Type 2 SCD:

■ Leaf level attribute

■ Leaf level versioned attribute

■ Non-leaf level attribute

■ Non-leaf level versioned attribute

■ Leaf level parent attribute

The following sections describe the Warehouse Builder functionality for these update
operations.

Updating a Leaf Level Attribute

When you update a leaf level attribute, the value of this attribute is updated in the
corresponding record.

Creating Slowly Changing Dimensions

3-34 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

For example, if you update the value of C_HOME_PHONE in a Customer level record,
the record is updated with the changed phone number.

Updating a Leaf Level Versioned Attribute

When you update a leaf level versioned attribute, the current record is marked as
closed. A new record is created with the updated value of the versioned attribute.

For example, if you update the marital status of a customer, the current record is
marked as closed. A new record with the updated marital status is created for that
customer.

Updating a non-leaf Level Attribute

When you update an attribute in a non-leaf level, the open records of the non-leaf level
and the child records corresponding to this non-leaf level are updated with the new
value.

For example, when you update the H_ADDRESS attribute in a Household level record,
the current open record for that household is updated. All open child records
corresponding to that particular household are also updated.

Updating a non-leaf Level Versioned Attribute

The update functionality depends on whether hierarchy versioning is enabled or
disabled.

Hierarchy Versioning Disabled

The non-leaf level record corresponding to the versioned attribute is closed and a new
record is created with the updated value. The child records of this non-leaf level record
are updated with the changed value of the non-leaf level versioned attribute.

For example, when the value of H_ZIP in a Household level record is updated, the
current open record for that household is closed. A new record with the updated value
of H_ZIP is created. The value of H_ZIP is updated in all the child records
corresponding to the updated household record.

Hierarchy Versioning Enabled

The non-leaf level record corresponding to the versioned attribute is closed and a new
record is created with the updated value. Child records corresponding to this non-leaf
level record are also closed and new child records are created with the updated value.

For example, when the value of H_ZIP in a Household level record is updated, the
current open record for that household and its corresponding child records are closed.
New records are created, with the updated value, for the household and for the child
records corresponding to this household.

Updating the Leaf Level Parent Attribute

In addition to updating the level attributes in a Type 2 SCD, you can also update the
parent attribute of a child record. In the Customers Type 2 SCD, the attribute H_
BUSN_ID in a Customer record stores the parent attribute of that customer. The
update functionality for the leaf level parent attribute depends on whether hierarchy
versioning is enabled or disabled.

Hierarchy Versioning Disabled

The child record is updated with the new parent attribute value.

Creating Slowly Changing Dimensions

Defining Dimensional Objects 3-35

For example, when you update the value of the H_BUSN_ID attribute representing the
parent record of a Customer record, the Customer record is updated with the new
values.

Hierarchy Versioning Enabled

The child record is closed and a new record with the changed parent attribute value is
created.

For example, when you update the H_BUSN_ID attribute of a customer record, the
current customer record is closed. A new customer record with the updated H_BUSN_
ID is created.

Creating Type 3 Slowly Changing Dimensions Using the Dimension Editor
A Type 3 SCD stores two versions of values for certain selected attributes. You can
create a Type 3 SCD only for dimensions that have a relational implementation.
Specify the following:

■ The attributes that should be versioned.

■ The attributes that will store the previous value of each versioned attribute.

For each versioned attribute, you must create an additional attribute to store the
previous value of the attribute. For example, if you want to version the Population
attribute, you create an additional attribute to store the previous value of
population.

To create a Type 3 SCD:

1. From the Projects Navigator, expand the Database node and then the Oracle node.

2. Expand the target module where you want to create the Type 3 SCD.

3. Right-click Dimensions, select New.

The New Gallery dialog box is displayed.

4. Select Dimension without Using Wizard and click OK.

5. Provide information about the Name tab of the Dimension Editor as described in
"Name Tab" on page 3-23.

6. On the Attributes tab, for each level, create an additional attribute to store the
expiration date of the attributes in the level as described in "Attributes Tab" on
page 3-25.

Consider an example where you want to store previous values for the package_
type and package_size attributes of the Products dimension. In this case, create
two new attributes prev_package_type and prev_package_size to store the
previous values of these attributes.

7. Provide information about the following tabs of the Dimension Editor:

■ Levels Tab on page 3-25

■ Hierarchies Tab on page 3-26

8. On the Slowly Changing tab, select the Type 3: Store only the previous value
option. Click Settings to the right of this option.

Warehouse Builder displays the Type 3 Slowly Changing Policy dialog box.
Specify the details of the Type 2 SCD using this dialog box as described in "Type 3
Slowly Changing Dimension Dialog Box" on page 3-36.

9. Provide information about the Storage Tab of the Dimension Editor.

Editing Dimension Definitions

3-36 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Type 3 Slowly Changing Dimension Dialog Box
Use the Type 3 Slowly Changing Dimension dialog box to specify the implementation
details. Use this dialog box to select the attribute that stores effective date, the
attributes that should be versioned, and the attributes that store the previous value of
the versioned attributes.

This dialog box displays a table that contains four columns: Levels, Identifying
Attribute, Previous Attribute, and Record History.

■ Levels: Displays the levels in the dimension. Expand a level node to view the level
attributes.

■ Identifying Attribute: Represents the level attribute.

■ Previous Attribute: Represents the attribute that stores the previous value of the
versioned attribute. Use the list to select the previous value attribute. Specify a
previous value attribute only for versioned attributes. You must explicitly create
the attributes that store the previous values of versioned attributes. Again, create
these as dimension attributes and apply them to the required level.

■ Effective: Indicates if an attribute stores the effective date. If the attribute stores
the effective date, select Effective date from the Effective list.

The surrogate ID of a level cannot be versioned.

Consider the PRODUCTS Type 3 SCD. The EFFECTIVE_TIME attribute stores the
effective date of the Product level records. The PACKAGE_TYPE attribute of the
Product level should be versioned. The attribute that stores the previous value of this
attribute, represented by the Previous Attribute column, is PREVIOUS_PACKAGE_
TYPE. When the value of the PACKAGE_TYPE attribute changes, Warehouse Builder
does the following:

■ Moves the existing value of the PACKAGE_TYPE attribute the PREVIOUS_
PACKAGE_TYPE attribute.

■ Stores the new value of population in the PACKAGE_TYPE attribute.

Editing Dimension Definitions
Use the Dimension Editor to edit the definition of a dimension. When you edit a
dimension definition, the changes are made only in the object metadata. To update the
physical object definition, deploy the modified dimension using the Control Center.

To edit a dimension or Slowly Changing Dimension definition:

Right-click the dimension in the Projects Navigator and select Open.

or

Double-click the dimension in the Projects Navigator.

The Dimension Editor is displayed. Modify the definition using the tabs in the
Dimension Editor.

Note: Once you create a Slowly Changing Dimension, you cannot
modify its type using the Dimension Editor.

Configuring Dimensions

Defining Dimensional Objects 3-37

For more information about these tabs, see the following sections:

■ Creating Dimensions Using the Dimension Editor on page 3-22

■ Type 2 Slowly Changing Dimension Dialog Box on page 3-32

■ Type 3 Slowly Changing Dimension Dialog Box on page 3-36

Configuring Dimensions
When you configure a dimension, you configure both the dimension and the
underlying table.

To configure the physical properties for a dimension:

1. From the Projects Navigator, right-click the dimension name and select Configure.

The Configuration tab is displayed.

2. Configure the dimension parameters listed under the following categories.

For a dimension that uses a relational or ROLAP implementation, you can also
configure the implementation tables. For more information, see "Configuring
Tables" on page 2-48.

Identification
Deployable: Select TRUE to indicate if you want to deploy this dimension. Warehouse
Builder generates scripts only for table constraints marked deployable.

Deployment Options: Use this parameter to specify the type of implementation for
the dimension. Select one of the following options: Deploy All, Deploy Data Objects
Only, Deploy to Catalog Only.

For more information about deployment options, see "Specifying How Dimensions are
Deployed" on page 3-38.

View Name: Specify the name of the view that is created to hide the control rows in
the implementation table that stores the dimension data. This is applicable for
relational or ROLAP dimensions that use a star schema. The default view name, if you
do not explicitly specify one, is the dimension name suffixed with "_v".

Visible: This parameter is not used in code generation.

Summary Management
The parameters in this section need to be set only if the dimension uses a ROLAP with
MVs implementation.

■ Enable MV Refresh: Enables the materialized views that store the summary data
to be refreshed. The default value of this parameter is False.

■ MV Constraints: Set either TRUSTED or ENFORCED for this parameter.

Trusted constraints result in a more efficient refresh operation. Setting this
parameter to Trusted allows use of non-validated RELY constraints and rewrite

Note: When you modify the implementation (star or snowflake) of a
relational or ROLAP dimension, ensure that you first unbind the
dimension and then perform binding. This creates the physical
bindings according to the modified implementation.

Configuring Dimensions

3-38 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

against materialized views during refresh. However, if the trusted constraint
information is invalid, the refresh may corrupt the materialized view.

Setting this parameter to Enforced allows the use of only validated, enforced
constraints and rewrite against materialized views.

■ Refresh Mode: Select either Fast, Complete, or Force for this parameter.

For Complete refresh, the materialized view's defining query is recalculated.

For Fast refresh, only changed rows are inserted in the cube and the affected areas
of the cube are re-aggregated.

Force refresh first applies Fast refresh. If this is not possible, it applies Complete
refresh.

■ Refresh Next Date: Represents the next data on which the materialized views
should be refreshed.

■ Refresh On: Set to DEMAND or ONDATE.

Setting this parameter to Demand causes the materialized views to be updated on
demand. Setting to ONDATE refreshes the materialized views on the date
specified in the Refresh Next Date parameter.

■ Refresh Start Date: Represents the date on which to begin refreshing the
materialized views.

Specifying How Dimensions are Deployed
You can specify the form in which dimensions are deployed to the target schema by
setting the Deployment Option configuration parameter. The values you can set for
deployment option of dimensions are: Deploy All, Deploy Data Objects Only, and
Deploy to Catalog. For steps on setting the Configuration Options parameter, see
"Configuring Dimensions" on page 3-37.

In addition to the Deployment Option configuration parameter, the form in which
dimensions are deployed also depends on the generation mode you specify. The
PL/SQL Generation Mode parameter of the Oracle module containing the dimension
represents the Oracle Database to which objects in the module are deployed. You can
set the PL/SQL Generation Mode to one of the following options: Default, Oracle10g,
Oracle10gR2, Oracle11gR1, Oracle11gR2, Oracle8i, and Oracle9i. For more information,
see "Configuring Target Modules" on page 2-46.

Table 3–7 describes how dimensions with ROLAP implementations are deployed on
different Oracle Database versions.

Table 3–8 describes how dimensions with a MOLAP implementation are deployed on
different Oracle Database versions.

Table 3–7 Deployment Options for ROLAP Dimensions

Deployment
Option

Target Schema: Oracle
Database 10g, ROLAP
Implementation

Target Schema: Oracle
Database 11g, ROLAP
Implementation

Target Schema: Oracle
Database 11g, ROLAP with
MVs Implementation

Deploy Data
Objects

relational dimension DDL relational dimension DDL relational dimension DDL

Deploy to
Catalog

CWM2 CWM2 11g form AW+

Deploy All relational dimension DDL and
CWM2

relational dimension DDL and
CWM2

relational dimension DDL and
11g form AW+

Creating Cubes

Defining Dimensional Objects 3-39

Creating Cubes
Warehouse Builder provides the following two methods of creating a cube:

■ Using the Create Cube Wizard to Create Cubes

Use the Create Cube wizard to create a basic cube quickly. Warehouse Builder
assumes default values for most of the parameters and creates the database
structures that store the cube data.

■ Using the Cube Editor to Create Cubes

Use the Cube Editor to create a cube when you want to specify certain advanced
options such as aggregation methods and solve dependency order. These options
are not available when you use the Create Cube wizard.

Alternatively, you can use the Create Cube wizard to quickly create a basic cube object.
Then use the Cube Editor to specify the other options.

About Calculated Measures in Cubes
While defining measures in a cube, you can also create calculated measures. A
calculated measure is a measure whose data is not stored. Its value is calculated when
required using the expression defined for the measure.

Calculated measures can be classified into the following two types:

■ Standard Calculation

■ Custom Expression

Standard Calculation
Standard calculations are based on the templates. Warehouse Builder enables you to
define the following standard calculations: Basic Arithmetic, Advanced Arithmetic,
Prior/Future Comparison, and Time Frame.

Basic Arithmetic
This type enables you to perform basic arithmetic calculations such as the following.
Table 3–9 lists the basic arithmetic calculations.

Table 3–8 Deployment Options for Dimensions with a MOLAP Implementation

Deployment Option Target Schema: Oracle 10g Database Target Schema: Oracle 11g Database

Deploy Data Objects 10g form AW 11g form AW

Deploy to Catalog 10g form AW 11g form AW

Deploy All n/a n/a

Table 3–9 List of Basic Calculated Measures

Calculation Name Description

Addition Use this calculation to add either two measures or a measure
and a number.

Subtraction Use this calculation to subtract two measures or a measure and a
number.

Multiplication Use this calculation to multiply two measures or a measure and
a number.

Creating Cubes

3-40 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Advanced Arithmetic
This type enables you to create the advanced calculations such as the ones defined in
Table 3–10.

Prior/Future Comparison
Use this type to define prior and future value calculations such as the ones described
in Table 3–11.

Division Use this calculation to divide two measures or a measure and a
number.

Ratio

Table 3–10 List of Advanced Arithmetic Calculated Measures

Calculation Name Description

Cumulative Total Use this calculation to return the cumulative total of measure
data over time periods within each level of a specified
dimension.

For example, Cumulative Sales for 2001= Sales Q1 + Sales Q2 +
Sales Q3 + Sales Q4

Index Use this calculation to return the ratio of a measure's value as a
percentage of a baseline value for the measure. The formula for
the calculation is:

(Current member / Base Line member)

For example, Consumer Price Index (assuming baseline cost of
goods is 1967) = (2001 Cost of Goods/1967 Cost of Goods)) * 100

Percent Markup Use this calculation to return the percentage markup between
two measures where the basis for the calculation is the older
measure. The formula used for this calculation is: (y-x)/x.

For example, the new price is 110 and the old price is 100. The
percentage markup is calculated:

(110-100)/100 = +10%.

Percent Variance Use this calculation to return the percent difference between a
measure and a target for that measure. For example, the
percentage variance between sales and quota is:

(Sales-Quota)/Quota.

Rank Use this calculation to return the numeric rank value of each
dimension member based on the value of the specified measure.
For example, the rank of TV sales where DVD is 150, TV is 100,
and Radio is 50 would be 2.

Share Use this calculation to return the ratio of a measure's value to the
same measure value for another dimension member or level.
The formula for this calculation is:

(Current member / Specified member).

Variance Use this calculation to calculate the variance between a base
measure and a target for that measure. An example of variance
is:

Sales Variance = Sales - Sales Forecast.

Table 3–9 (Cont.) List of Basic Calculated Measures

Calculation Name Description

Creating Cubes

Defining Dimensional Objects 3-41

Time Frame
This type enables you to create the time series calculations listed in Table 3–12.

Custom Expression
Select the Custom Expression option to specify an expression that is used to compute
the calculated measure.

Table 3–11 List of Prior/Future Comparison Calculated Measures

Calculated Measure Name Description

Prior Value Use this calculation to return the value of a measure from an
earlier time period.

Difference from Prior Period Use this calculation to return the difference between the current
value of a measure and the value of that measure from a prior
period. The formula for this calculation is:

(Current Value - Previous Value)

Percent Difference from
Prior Period

Use this calculation to return the percentage difference between
the current value of a measure and the value of that measure
from a prior period. The formula for this calculation is:

((Current Value - Previous Value) / Previous Value)

Future Value Use this calculation to return the value of an item for a future
time period. For example, Sales a Year from Now = Sales from
October 2006 if the current time is October 2005.

Table 3–12 List of Time Series Calculated Measures

Calculated Measure Name Description

Moving Average Use this calculation to return the average value for a measure
over a rolling number of time periods. And example of this
calculation is:

Moving average sales for the last 3 months = (Jan Sales + Feb
Sales + March Sales)/3

Moving Maximum Use this calculation to return the maximum value for a measure
over a rolling number of time periods. An example of this
calculation is:

Moving maximum sales for the last 3 months = the largest Sales
value for Jan, Feb, and March.

Moving Minimum Use this calculation to return the minimum value for a measure
over a rolling number of time periods. An example of this
calculation is:

Moving minimum sales for the last 3 months = the smallest Sales
value for Jan, Feb, and March.

Moving Total Use this calculation to return the total value for a measure over a
rolling number of time periods. An example of this calculation
is:

Moving total sales for the last 3 months = (Jan Sales + Feb Sales
+ March Sales).

Period to Date Use this calculation to sum measure data over time periods, to
create cumulative measure data. An example of this calculation
is:

Year-to-date sales to March = Jan Sales + Feb Sales + March
Sales.

Creating Cubes

3-42 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Cube Example
The Sales cube stores aggregated sales data. It contains the following two measures:
Value_sales and Dollar_sales.

■ Value_sales: Stores the amount of the sale in terms of the quantity sold.

■ Dollar_sales: Stores the amount of the sale.

Table 3–13 describes the dimensionality of the Sales cube. It lists the name of the
dimension and the dimension level that the cube references.

Using the Create Cube Wizard to Create Cubes
Use the following steps to create a cube using the wizard:

1. From the Projects Navigator expand the Databases node and then the Oracle node.

2. Expand the target module where you want to create the cube.

3. Right-click Cubes, select New Cube.

Warehouse Builder displays the Welcome page of the Cube wizard. Click Next to
proceed. The wizard guides you through the following pages:

■ Name and Description Page on page 3-42

■ Storage Type Page on page 3-42

■ Dimensions Page on page 3-44

■ Measures Page on page 3-44

■ Summary Page on page 3-45

Name and Description Page
Use the Name and Description page to describe the cube. Enter the following details
on this page:

■ Name: The name of the cube. The cube name must be unique within the module.

■ Description: Specify an optional description for the cube.

Storage Type Page
Use the Storage Type page to specify the type of storage for the cube. The storage type
determines how the cube data is physically stored in the database. The options you
can select for storage type are:

■ ROLAP: Relational storage

■ ROLAP: with MVs

■ MOLAP: Multidimensional storage

You select the storage type based on the volume of data stored at the lowest level of
the entire cube and the refresh rate required.

Table 3–13 Dimensionality of the Sales Cube

Dimension Name Level Name

Products Product

Customers Customer

Times Day

Creating Cubes

Defining Dimensional Objects 3-43

ROLAP: Relational storage
Warehouse Builder stores the cube definition and its data in a relational form in the
database. Use this option to create a cube that has a relational or ROLAP
implementation.

Relational storage is preferable if you want to store detailed, high volume data or you
have high refresh rates combined with high volumes of data. Use relational storage if
you want to perform one of the following:

■ Store detailed information such as call detail records, point of sales (POS) records
and other such transaction oriented data.

■ Refresh high volumes of data at short intervals.

■ Detailed reporting such as lists of order details.

Operational data stores and enterprise data warehouses are typically implemented
using relational storage. You can then derive MOLAP implementations from this
relational implementation to perform different types of analysis.

If the database containing the target schema has the OLAP option installed, you can
also deploy the dimensions to the OLAP catalog.

When you choose a relational implementation for a cube, the implementation table
used to store the cube data is created.

ROLAP: with MVs
Warehouse Builder stores the cube definition and its data in a relational form in the
database. Additionally, cube-organized MVs are created in the analytic workspace.
Select this option to create a cube that uses a ROLAP implementation and stores
summaries in the analytic workspace.

Using this option provides summary management based on cube-organized MVs in
Oracle 11g Database. Query performance is greatly improved, without the need to
make any modification to your queries.

Cubes created using the ROLAP: with MVs implementation can only store summary
data in the cube MV.

When you choose the ROLAP with MVs implementation:

■ the implementation table used to store the cube data is created.

■ the cube is stored in an analytic workspace that uses the same name as the Oracle
module to which the dimension belongs. The tablespace that is used to store the
analytic workspace is the tablespace that is defined as the users tablespace for the
schema that contains the dimension metadata.

MOLAP: Multidimensional storage
Warehouse Builder stores the cube definition and the cube data in an analytic
workspace in the database. Use this option to create a cube that has a MOLAP
implementation.

Multidimensional storage is preferable when you want to store aggregated data for
analysis. The refresh intervals for a multidimensional storage are usually longer than
relational storage as data needs to be pre-calculated and pre-aggregated. Also, the data

Note: If a cube uses the ROLAP: with Cube MVs implementation, all
dimensions that this cube references must also use the ROLAP: with
Cube MVs implementation.

Creating Cubes

3-44 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

volumes are typically smaller due to higher aggregation levels. Use multidimensional
storage to perform the following:

■ Advanced analysis such as trend analysis, what-if analysis, or to forecast and
allocate data

■ Drill and pivot data with instant results

When you choose a MOLAP implementation, the name used to store the cube in the
analytic workspace is generated. If no analytic workspace exists, one is created using
the name you specify.

Dimensions Page
The Dimensions page defines the dimensionality of the cube. A cube must refer to at
least one dimension. You define dimensionality by selecting the dimensions that the
cube references. You can use the same dimension to define multiple cubes. For
example, the dimension TIMES can be used by the SALES cube and the COST cube.

The Dimensions page contains two sections: Available Dimensions and Selected
Dimensions.

Available Dimensions The Available Dimensions section lists all the dimensions in
the workspace. Each module in the project is represented by a separate node. Expand a
module node to view all the dimensions in that module.

Warehouse Builder filters the dimensions displayed in the Available Dimensions
section based on the implementation type chosen for the dimension. If you select
ROLAP as the storage type, only dimensions that have a relational implementation are
listed. If you select MOLAP as the storage type, only dimensions stored in an analytic
workspace are listed.

Selected Dimensions The Selected Dimensions section lists the dimensions that you
selected in the Available Dimensions section. Use the right arrow to the move a
dimension from the Available Dimensions list to the Selected Dimensions list.

Measures Page
Use the Measures page to define the measures of the cube. For each measure, specify
the following details:

■ Name: The name of the measure. The name of the measure must be unique within
the cube.

■ Description: An optional description for the measure.

■ Data Type: Select the data type of the measure.

■ Length: Specify length for character data types only.

■ Precision: Define the total number of digits allowed for the measure. Precision is
defined only for numeric data types.

■ Scale: Define the total number of digits to the right of the decimal point. Scale is
defined only for numeric data types.

Note: The following data types are not supported for MOLAP
implementations: BLOB, INTERVAL DAY TO SECOND, INTERVAL
YEAR TO MONTH, RAW, TIMESTAMP WITH TIME ZONE, TIMESTAMP
WITH LOCAL TIME ZONE.

Creating Cubes

Defining Dimensional Objects 3-45

■ Seconds Precision: Represents the number of digits in the fractional part of the
datetime field. It can be a number between 0 and 9. The seconds precision is used
only for TIMESTAMP, TIMESTAMP WITH TIME ZONE, and TIMESTAMP WITH
LOCAL TIME ZONE data types.

Summary Page
Use the Summary page to review the options that you specified using the Cube
wizard. Click Finish to complete defining the cube. This cube is displayed under the
Cubes node of the Projects Navigator.

Warehouse Builder creates the metadata for the following in the workspace:

■ The cube object.

■ The definition of the table that stores the cube data.

For a relational or ROLAP implementation, the definition of the database table
that stores the cube data is created. Additionally, foreign keys are created in the
table that stores the cube data to each data object that stores the data relating to the
dimension the cube references.

For a MOLAP implementation, the analytic workspace that stores the cube data is
created. The wizard only creates the definitions for these objects in the workspace.
It does not create the objects in the target schema.

Deploying Cubes To create the cube and its associated objects in the target schema,
you must deploy the cube. Before you deploy a ROLAP cube, ensure that you
successfully deploy the database table that stores the cube data. Alternatively, you can
deploy both the table and the cube together. For more information, see "MOLAP
Implementation of Dimensional Objects" on page 3-13.

Defaults Used by the Create Cube Wizard
When you create a cube using the Create Cube wizard, the following defaults are used:

■ MOLAP Storage: The cube is stored in an analytic workspace that has the same
name as the Oracle module in which the cube is created. The analytic workspace is
stored in the users tablespace of the schema that owns the Oracle module.

■ Solve: By default, the cube is solved on demand.

■ Aggregation Function: The default aggregation function for all dimensions that
the cube references is SUM.

Using the Cube Editor to Create Cubes
The Cube Editor enables advanced users to create cubes according to their
requirements. You can also use the Cube Editor to edit a cube.

Use the Cube Editor to create a cube if you must:

■ Specify the dimensions along which the cube is sparse.

■ Define aggregation methods for the cube measures.

■ Precompute aggregations for a level.

Note: When you delete a cube, the associated objects such as the
database table or analytic workspace are not deleted. You must
explicitly delete these objects.

Creating Cubes

3-46 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

To create a cube using the Cube Editor:

1. From the Projects Navigator expand the Databases node and then the Oracle node.

2. Expand the target module where you want to create the cube.

3. Right-click Cubes, select New.

The New Gallery dialog Box is displayed.

4. Select Cube without using Wizard and click OK.

Warehouse Builder displays the Cube Editor. To define a cube, provide
information about the following tabs of the Cube Details panel:

■ Name Tab on page 3-46

■ Storage Tab on page 3-46

■ Dimensions Tab on page 3-47

■ Measures Tab on page 3-49

■ Aggregation Tab on page 3-50

■ Orphan Tab on page 3-51

■ Physical Bindings Tab on page 3-51

When you use the Cube Editor to create a cube, the physical objects that store the
cube data are not automatically created. You must create these objects.

5. To bind the cube measures and the dimension references to the database columns
that store their data, see "Physical Bindings Tab" on page 3-51. You perform this
step only for cubes that use a ROLAP implementation.

Name Tab
Use the Name tab to describe the cube. Specify the following details on this tab:

■ Name: Specify a name for the cube. The cube name must be unique within the
module.

■ Description: Specify an optional description for the cube.

Storage Tab
The Storage tab specifies how the cube and its data should be stored. You can select
either Relational or MOLAP as the storage type.

ROLAP: Relational Storage Select the ROLAP: Relational storage option to store the
cube definition and its data in a relational form in the database. Use this option to
create a cube that has a relational or ROLAP implementation. The cube data is stored
in a database table or view.

Select the Create bitmap indexes option to generate bitmap indexes on all the foreign
key columns in the fact table. This is required for a star query. For more information,
see Oracle Database Data Warehousing Guide.

Select the Create composite unique key option to create a unique key on the
dimension foreign key columns.

If the database containing the target schema has the OLAP option installed, you can
also deploy the dimensions to the OLAP catalog.

Creating Cubes

Defining Dimensional Objects 3-47

ROLAP: with Cube MVs Select the ROLAP: with Cube MVs option to store the
dimension definition and its data in a relational form in the database and cube
materialized view summaries in the analytic workspace.

When you choose a ROLAP with MVs implementation, specify the name of the
analytic workspace that should store the summary data using the AW Name field in
the MOLAP: Multidimensional storage section.

MOLAP: Multidimensional storage Select the MOLAP: Multidimensional storage
option to store the cube data in an analytic workspace. Use this option to create a cube
with a MOLAP implementation. Use the Analytic Workspace section to specify the
storage details. Enter the following details in this section:

■ AW Name: This field specifies the name of the analytic workspace that stores the
cube definition and cube data. Use the Select button to display the Analytic
Workspaces dialog box. This dialog box lists the dimensional objects in the current
project. Selecting an object from list stores the cube in the same analytic workspace
as the selected object.

■ AW Tablespace Name: Represents the name of the tablespace in which the
analytic workspace is stored. If you do not specify a name, the analytic workspace
is stored in the default users tablespace of the owner of the Oracle module.

Dimensions Tab
Use the Dimensions tab to define the dimensionality of the cube. This tab displays a
table that you use to select the dimensions that the cube references and the Advanced
button. You can change the order of the dimensions listed in this tab by using the
arrows on the left of this tab. The Advanced button is enabled only for cubes that use
MOLAP implementation or ROLAP with cube MVs implementation.

Use the Advanced button to define the sparsity of the dimensions referenced by the
cube. Clicking this button displays the Advanced dialog box. Since you can define
sparsity only for MOLAP cubes, the Advanced button is enabled only if the Storage
type is MOLAP. For more information about the Sparsity dialog box, see "Advanced
Dialog Box" on page 3-48.

The table on the Dimensions tab contains the following columns:

■ Dimension: This field represents the name of the dimension that the cube
references. Click the Ellipsis button in this field to display the Available Modules
dialog box. This dialog box displays the list of dimensions in the current project.
Select a dimension from this list.

Warehouse Builder filters the dimensions displayed in this list based on the
storage type specified for the cube. If you define a relational implementation for
the cube, only those dimensions that use a relational implementation are
displayed. If you define a MOLAP implementation for the cube, only the
dimensions that use a MOLAP implementation are displayed.

■ Level: The Levels displays all the levels in the dimension selected in the
Dimension field. Select the dimension level that the cube references.

Note: If a cube uses the ROLAP: with Cube MVs implementation, all
dimensions that this cube references must also use the ROLAP: with
Cube MVs implementation.

Creating Cubes

3-48 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ Role: The Role list displays the dimension roles, if any, that the selected dimension
contains. Select the dimension role that the cube uses. You can specify dimension
roles for relational dimensions only.

Advanced Dialog Box Use the Advanced dialog box to specify the sparsity of the
dimensions that the cube references. Sparsity is applicable for only for MOLAP cubes
and ROLAP cubes that are implemented using cube MVs. For more information about
sparsity, see Oracle OLAP User's Guide.

This dialog box displays a table that contains two columns: Dimensions and Sparsity.

■ Dimensions: This column displays all the dimensions listed on the Dimension tab
of the Cube Editor. The dimensions are listed in the order in which they appear on
the Dimensions tab. To change the order in which the dimensions appear on this
dialog box, you must change the order in which the dimensions are listed on the
Dimensions Tab of the Cube Editor.

■ Sparsity: Sparsity specifies that the cube data is sparse along a particular
dimension. Select Sparsity for a dimension reference if the cube data is sparse
along that dimension. For example, if the data in the SALES cube is sparse along
the Promotions dimension, select Sparsity for the Promotions dimension.

All the sparse dimensions in a cube must be grouped together starting from the
least sparse to the most sparse. For example, the Sales cube references the
dimensions Times, Products, Promotions, and Channels. This is the order in which
the dimensions are listed in the Advanced dialog box. The cube data is sparse
along the dimensions Promotions and Channels, with Promotions being the most
sparse. Then all these dimensions should appear as a group in the following order:
Times, Products, Channels, and Promotions. You cannot have any other dimension
listed in between these dimensions.

Use the following guidelines to order dimensions:

– List the time dimension first to expedite data loading and time-based analysis.
Time is often a dense dimension, although it may be sparse if the base level is
Day or the cube has many dimensions.

– List the sparse dimensions in order from the one with the most members to
the one with the least. For a compressed cube, list the sparse dimensions in
order from the one with the least members to the one with the most.

Defining sparsity for a cube provides the following benefits:

– Improves data retrieval speed.

– Reduces the storage space used by the cube.

Compress Cube Select this option to compress the cube data and then store it.
Compressed storage uses less space and results in faster aggregation than a normal
space storage. For more details on compressing cubes, see Oracle OLAP User's Guide.

Compressed storage is normally used for extremely sparse cubes. A cube is said to be
extremely sparse if the dimension hierarchies contain levels with little change to the
number of dimension members from one level to the next. Thus many parents have
only one descendent for several contiguous levels. Since the aggregated data values do
not change from one level to the next, the aggregate data can be stored once instead of
repeatedly.

For compressed composites, you can only choose SUM and non-additive aggregation
operators.

Creating Cubes

Defining Dimensional Objects 3-49

Partition Cube Select this option to partition the cube along one of its dimensions.
Partitioning a cube improves the performance of large measures.

Use the table below the Partition Cube option to specify the dimension along which
the cube is partitioned. The specified dimension must have at least one level-based
hierarchy and its members must be distributed evenly, such that every parent at a
particular level has roughly the same number of children. Use the Dimension column
to select the dimension along which the cube is partitioned. Use the Hierarchy and
Level columns to select the dimension hierarchy and level.

Time is usually the best choice to partition a cube because it meets the required
criteria. In addition, data is loaded and rolled off by time period, so that new partitions
can be created and old partitions dropped as part of the data refresh process.

Use a Global Index Select this option to create a global partitioned index.

Measures Tab
Use the Measures tab to define the cube measures. Specify the following details for
each measure:

■ Name: The name of the measure. The measure name must be unique within the
cube.

■ Description: An optional description for the measure.

■ Data Type: The data type of the measure.

■ Length: The maximum number of bytes for the measure. Length is specified only
for character data.

■ Precision: Define the total number of digits allowed for the column. Precision is
defined only for numeric data types.

■ Scale: Define the total number of digits to the right of the decimal point. Scale is
defined only for numeric data types.

■ Seconds Precision: Represents the number of digits in the fractional part of the
datetime field. It can be a number between 0 and 9. The seconds precision is used
only for TIMESTAMP, TIMESTAMP WITH TIME ZONE, and TIMESTAMP WITH
LOCAL TIME ZONE data types.

■ Expression: Use this field to define a calculated measure. A calculated measure is
a measure whose data is not stored. Its value is calculated when required using the
expression defined. Click the Ellipsis button to display the Calculated Measure
wizard. For more information about the Calculated Measure wizard, see
"Calculated Measure Wizard" on page 3-50.

You can use any other measures defined in the cube to create an expression for a
measure. The expression defined can be validated only at deploy time.

Click the Generate Calculated Measures button to generate a series of standard
calculations for a base measure. This is a time-saver operation for creating share, rank
and time based calculations. Any calculated measure that you create using this option
can also be created manually using the Calculated Measure wizard.

Note: You can create calculated measures for MOLAP dimensions
only.

Creating Cubes

3-50 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Calculated Measure Wizard
Use the Calculated Measure wizard to create calculated measures in a cube that uses a
MOLAP implementation. These calculated measures, just like the other measures
defined on the cube, are deployed to an analytic workspace. The wizard enables you
create certain extra calculations that are not created when you click Generate
Calculated Measures.

Define Calculated Measure Details Use this page to define the details of the calculated
measure. The contents of this page depend on the type of calculation you chose on the
Select Calculated Measure Type page. For example, if you choose addition as the
calculated measure type, this page displays the two lists that enable you to select the
measure s that should be added.

If you chose Custom Expression on the Select Calculated Measure Type page, the
Expression Builder interface is displayed. Use this interface to define a custom
measure. For more information about the Expression Builder, see "About the
Expression Builder" on page 26-3.

Reviewing the Summary Information Use the Finish page to review the information
defined for the calculated measure. Click Back to change any of the selected values.
Click Finish to complete the calculated measure definition.

Aggregation Tab
Use the Aggregation tab to define the aggregations that must be performed for each
dimension that the cube references. You select the aggregate function that is used to
aggregate data. You can also precompute measures along each dimension that the cube
references. By default, aggregation is performed for every alternate level starting from
the lowest level. The default aggregate function is SUM. For more details on the
strategies for summarizing data, see the chapter about summarizing data in the Oracle
OLAP User's Guide.

Specify the following options on the Aggregations tab:

■ Cube Aggregation Method: Select the aggregate function used to aggregate the
cube data. The default selection is SUM.

■ Summary Refresh Method: Select the data refresh method. The options you can
select are On Demand and On Commit.

Summary Strategy for Cube Use this section to define levels along which data
should be precomputed for each dimension. The Dimension column lists the
dimensions that the cube references. To select the levels in a dimension for which data
should be precomputed, click the Ellipsis button in the PreCompute column to the
right of the dimension name. The PreCompute dialog box is displayed. Use this dialog
box to select the levels in the dimension along which the measure data is
precomputed. You can specify the levels to be precomputed for each dimension
hierarchy. By default, alternate levels, starting from the lowest level, are precomputed.

Precomputing ROLAP Cubes For ROLAP cubes, aggregation is implemented by creating
materialized views that store aggregated data. These materialized views improve
query performance. For MOLAP implementations, the aggregate data is generated and

Note: You cannot define aggregations for pure relational cubes
(cubes implemented in a relational schema in the database only and
not in OLAP catalog).

Creating Cubes

Defining Dimensional Objects 3-51

stored in the analytic workspace along with the base-level data. Some of the aggregate
data is generated during deployment and the rest is aggregated on the fly in response
to a query, following the rules defined in the Aggregation tab.

Orphan Tab
Use the Orphan tab to specify the orphan management policy to use while loading
data into the cube. The Orphan tab contains two sections: Null Dimension key values
and Invalid dimension key values, that you use to specify the action to be taken for
cube records with null dimension key values and cube records with invalid dimension
key values respectively.

Select one of the following options to specify the orphan management policy for cube
records with null and invalid dimension key values:

■ No Maintenance: Warehouse Builder does not actively detect, reject, or fix orphan
rows.

■ Default Dimension Record: Warehouse Builder assigns a default dimension
record for any row that has an invalid or null dimension key value. Use the
Settings button to define the default parent row.

■ Reject Orphan: Warehouse Builder does not insert the row if it does not have an
existing dimension record.

Select Deploy Error Table(s) to generate and deploy the error tables related to orphan
management along with the dimension.

Physical Bindings Tab
After you define the cube structure, you must specify the details of the database tables
or views that store the cube data. The Physical Bindings tab enables you to define the
implementation objects for cubes. Choose one of the following options to bind the
cube to the database object that stores its data:

■ Auto binding

■ Manual binding

Auto Binding When you perform auto binding, the measures and dimension
references of the cube are automatically mapped to the database columns that store
their data.

To perform auto binding, select the cube in the Projects Navigator. From the File menu,
click Bind. Warehouse Builder maps the measures and dimension references in the
cube to the table that stores the cube data.

Manual Binding In manual binding, you must explicitly map the measures and
dimension references in the cube to the database objects that store their data. You can
either store the cube data in existing tables or create new tables.

To perform manual binding:

Note: The materialized views created to implement ROLAP
aggregation are not displayed under the Materialized Views node in
the Projects Navigator.

See Also: Oracle Warehouse Builder Concepts for information about
auto binding rules.

Creating Cubes

3-52 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

1. Open the Cube Editor for the cube and navigate to the Physical Bindings tab.

2. Right-click a blank area, select Add and then select the type of objects that will
store the cube data. For example, if the cube data will be stored in a table,
right-click a blank area, select Add and then Table.

Warehouse Builder displays the Add a new or Existing table dialog box. You
either select an existing table or create a new table to store the cube data.

3. Map each attribute in the dimension to the database column that stores its data.

After you define the cube using the Data Object and perform binding (for ROLAP
cubes only), you must deploy the cube. For more information about deploying cubes,
see "Deploying Cubes" on page 3-45.

Cubes Stored in Analytic Workspaces
Cubes that use a MOLAP implementation are stored in analytic workspaces. The
analytic workspace engine in Oracle Database 10g provides APIs called AWXML.
These APIs enable both client/server usage (as in Analytic Workspace Manager) and
batch-like usage with java stored procedures. This section describes implementation
details for MOLAP cubes.

Ragged Cube Data
If you select Use natural keys from data source on the Storage tab of a dimension,
mapping code (AWXML mapping code) that can handle ragged fact data for any cube
that uses this dimension is generated. The source column for the cube dimension level
is actually mapped to every parent level also. This enables ragged fact data to be
loaded.

If you select Generate surrogate keys in the analytic workspace on the Storage tab of
a dimension, when you create a mapping that loads data at the level of this dimension,
you will be loading cube dimension members for this level only.

Defining Aggregations
Warehouse Builder enables you to reuse existing dimensions without the need of
defining additional hierarchies. Aggregations are generated based on the cube
dimension level references you define. Only hierarchies where the cube dimension
level is a member will be included in the aggregation. If the cube dimension level
referenced is a non-leaf level of the hierarchy, then levels lower in the hierarchy will be
excluded when the cube or measures are solved. For example, if you have two cubes,
BUDGET and SALES, they can share the same dimension definitions without
additional dimension hierarchy definitions.

Auto Solving MOLAP Cubes
An important attribute of the OLAP AWXML engine is its ability to auto-solve cubes
that are stored in analytic workspaces. You can auto-solve both compressed and
non-compressed cubes. A compressed cube is one for which the Compress Cube
option on the Advanced Dialog Box is selected.

A cube is auto-solved if any of the following conditions are satisfied:

■ The cube is compressed

■ The cube is not compressed, and the following additional conditions are true:

– The solve property for all the measures is set to Yes.

Creating Cubes

Defining Dimensional Objects 3-53

– The dimension levels that the cube references are at the leaf level of all
hierarchies the level is a member of.

■ Mapping that contains the cube is executed

Incremental Aggregation of cube is dependent on auto-solve (load and aggregate in
one operation). Incremental aggregation is a property of the cube operator in the
mapping and applies only to auto-solved cubes.

Warehouse Builder can generate cubes that are not auto-solved cubes if any of the
following conditions are true:

■ The cube is solved by the mapping that loads the cube

■ Warehouse Builder transformations are used to solve the cube

■ The cube is non-compressed and any of the following conditions are true:

– Some of the measures have the Solve property set to No.

– The dimension levels that the cube references are non-leaf levels of a hierarchy
the level is a member of.

Solving Cube Measures
You can choose to solve only one cube measure for both compressed and
non-compressed cubes. A compressed cube is one for which the Compress Cube
option on the Advanced Dialog Box is selected.

To solve only one measure in a compressed cube, use the following steps:

1. Open the Cube Editor for the cube and navigate to the Aggregation tab.

You can open the Cube Editor by double-clicking the cube name in the Projects
Navigator.

2. Select the measure that you want to solve on the Measures section of the
Aggregation tab.

3. The Aggregation for measure section displays a row for each dimension that the
cube references. In the row that represents the dimension along which you want to
solve the cube, select NOAGG in the Aggregation Function column.

To solve only one measure in a non-compressed cube, you will need the latest database
patch 10.2.0.2. If you have Oracle Database 10g Release 1 (10.1), refer to bug 4550247
for details about a patch. The options defined on cube measures for solve indicate
which measures will be included in the primary solve. The solve indicator on the cube
operator in the map however indicates whether this solve will be executed or not. So
the map can just load data or load and solve the data.

Solving Cubes Independent of Loading
You can solve cubes independent of loading using the predefined transformation WB_
OLAP_AW_PRECOMPUTE. This function also enables you to solve measures
independently of each other. This transformation function is available in the Globals
Navigator under the Public Transformations node in the OLAP category of the
Predefined node.

The following example solves the measure SALES in the SALES_CUBE:

declare
 rslt VARCHAR2(4000);
begin
 rslt:=WB_OLAP_AW_PRECOMPUTE(’MART’,’SALES_CUBE’,’SALES’);
end;

Editing Cube Definitions

3-54 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

/

This function contains parameters for parallel solve and maximum number of job
queues. If the cube is being solved in parallel, an asynchronous solve job is launched
and the master job ID is returned through the return value of the function.

Calculation Plans Generated The following calculation plans are generated:

■ Calculation plan for the cube

■ Calculation plan for each stored measure

This allows measures to be solved individually after a data load, or entire cubes to be
solved. The actual calculation plan can also exclude levels based on the metadata.

Parallel Solving of Cubes
You can enable parallel solving of cubes by configuring the mapping that loads the
cube. The cube operator has a property called Allow Parallel Solve and also a
property for the Max Job Queues Allocated. These two properties determine if
parallel solving is performed and also the size of the job pool. The default is to let the
AWXML engine determine this value.

Output of a MOLAP Cube Mapping
When you execute a mapping that loads a cube, one of the output parameters is AW_
EXECUTE_RESULT. When the map is executed using parallel solve, this output
parameter will contain the job ID. You can then use the following data dictionary
views to determine when the job is complete and what to do next:

■ ALL_SCHEDULER_JOBS

■ ALL_SCHEDULER_JOB_RUN_DETAILS

■ ALL_SCHEDULER_RUNNING_JOBS

If the mapping is not executed using parallel solve, the AW_EXECUTE_RESULT
output parameter will return the 'Successful' tag or an error. For more information
about the error, see the OLAPSYS.XML_LOAD_LOG table.

Editing Cube Definitions
You can edit a cube and alter its definition using the Cube Editor. When you edit a
dimension definition, the changes are made only in the object metadata. To update the
physical object definition, deploy the modified dimension using the Control Center.

To edit a cube definition:

Right-click the cube in the Projects Navigator and select Open.

or

Double-click the cube in the Projects Navigator.

The Cube Editor is displayed. Edit the cube definition using these tabs. For more
information about the tabs in the Cube Editor, see Using the Cube Editor to Create
Cubes on page 3-45.

Configuring Cubes
When you configure a cube, you configure both the cube and the underlying table.

Configuring Cubes

Defining Dimensional Objects 3-55

To configure the physical properties for a cube:

1. From the Projects Navigator, right-click the cube name and select Configure.

The Configuration tab for the cube is displayed.

2. Configure the cube parameters listed in the following categories.

In addition to these parameters, use the following are some guidelines for
configuring a cube.

■ Foreign Key constraints exist for every dimension.

■ Bitmap indexes have been generated for every foreign key column to its
referenced dimension.

Identification
Deployable: Select TRUE to indicate if you want to deploy this cube. Warehouse
Builder generates scripts only for table constraints marked deployable.

Deployment Options: Use this parameter to specify the type of implementation for
the cube. The options are:

■ Deploy All: For a relational or ROLAP implementation, the cube is deployed to
the database and a CWM definition to the OLAP catalog. For a MOLAP
implementation, the cube is deployed to the analytic workspace.

■ Deploy Data Objects only: Deploys the cube only to the database. You can select
this option only for cubes that have a relational implementation.

■ Deploy to Catalog only: Deploys the CWM definition to the OLAP catalog only.
Use this option if you want applications such as Discoverer for OLAP to access the
cube data after you deploy data only. Use this option if you previously deployed
with "Data Objects Only" and now want to deploy the CWM Catalog definitions
without redeploying the data objects again.

■ Deploy Aggregation: Deploys the aggregations defined on the cube measures.

Materialized View Index Tablespace: The name of the tablespace that stores the
materialized view indexes.

Materialized View Tablespace: The name of the tablespace that stores the
materialized view created for the cube.

Visible: This parameter is not used in code generation.

Summary Management
■ Cost Based Aggregation: This parameter is applicable to MOLAP cubes and

ROLAP cubes with OLAP summaries (materialized views). Represents the
percentage of preaggregation for cubes.

Setting a value of 0 for this parameter does not create any aggregate values. The
aggregations are computed at runtime. Subsequently, this value results in the
fastest maintenance and the least storage space. However, it also results in the
slowest query response time.

Setting a value of 100 for this parameter creates all the aggregate values. These
values just need to be fetched when a query is executed. This value results in the
fastest query response time. However, the maintenance is slow and a lot of storage
space is used.

Creating Time Dimensions

3-56 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ Enable Query Rewrite: Set this parameter to ENABLE to enable query rewrite.
The query rewrite mechanism in the Oracle server automatically rewrites SQL
queries to use existing materialized views. This improves query performance.

Set this parameter only if the cube uses a ROLAP with MVs implementation.

For information about the parameters Enable MV Refresh, MV constraints, Refresh
Mode, Refresh Next Date, Refresh On, and Refresh Start Date, see "Summary
Management" on page 3-37.

Specifying How Cubes are Deployed
You can specify the form in which cubes are deployed to the target schema by setting
the Deployment Option configuration parameter. The values you can set for
deployment option of cubes are: Deploy All, Deploy Data Objects Only, Deploy to
Catalog, and Deploy Aggregation. For steps on setting the Configuration Options
parameter, see "Configuring Cubes" on page 3-54.

In addition to the Deployment Option configuration parameter, the form in which
cubes are deployed also depends on the generation mode you specify. The PL/SQL
Generation Mode parameter of the Oracle module containing the cube represents the
Oracle Database to which objects in the module are deployed. You can set the PL/SQL
Generation Mode to one of the following options: Default, Oracle10g, Oracle10gR2,
Oracle11gR1, Oracle11gR2, Oracle8i, and Oracle9i. For more information, see
"Configuring Target Modules" on page 2-46.

Table 3–14 describes how cubes with ROLAP implementations are deployed on
different Oracle Database versions.

Table 3–15 describes how cubes with a MOLAP implementation are deployed on
different Oracle Database versions.

Creating Time Dimensions
Warehouse Builder provides the Create Time Dimension wizard that enables you to
create a fully functional time dimension quickly. The mapping that populates the time
dimension is also created automatically. When you choose a relational implementation
for a time dimension, the implementation objects that store the time dimension data
are also created.

Table 3–14 Deployment Options for ROLAP Cubes

Deployment
Option

Target Schema: Oracle
Database 10g, ROLAP
Implementation

Target Schema: Oracle
Database 11g, ROLAP
Implementation

Target Schema: Oracle
Database 11g, ROLAP with
MVs Implementation

Deploy Data
Objects

n/a n/a n/a

Deploy to
Catalog

CWM2 CWM2 11g form AW+

Table 3–15 Deployment Options for Cubes with a MOLAP Implementation

Deployment Option Target Schema: Oracle Database 10g Target Schema: Oracle Database 11g

Deploy Data Objects 10g form AW 11g form AW

Deploy to Catalog 10g form AW 11g form AW

Deploy All n/a n/a

Creating Time Dimensions

Defining Dimensional Objects 3-57

You can also use the Dimension to define a time dimension with your own
specifications. In this case, you must create the implementation objects and the map
that loads the time dimension.

Creating a Time Dimension Using the Time Dimension Wizard
Use the following steps to create a time dimension using the Create Time Dimension
wizard:

1. From the Projects Navigator expand the Databases node and then the Oracle
node.

2. Expand the target module where you want to create a time dimension.

3. Right-click Dimensions, select New.

The New Gallery dialog box is displayed.

4. Select Time Dimension and click OK.

Warehouse Builder displays the Welcome page of the Create Time Dimension
wizard. Click Next to proceed. The wizard guides you through the following
pages:

■ Name and Description Page on page 3-57

■ Storage Page on page 3-57

■ Data Generation Page on page 3-58

■ Levels Page (Calendar Time Dimension Only) on page 3-58

■ Levels Page (Fiscal Time Dimension Only) on page 3-59

■ Pre Create Settings Page on page 3-59

■ Time Dimension Progress Page on page 3-59

■ Summary Page on page 3-59

Name and Description Page
The Name page describes the time dimension. Provide the following details on the
Name page:

■ Name: Type the name of the time dimension. The name must be unique within a
module.

■ Description: Type an optional description for the time dimension.

Storage Page
Use the Storage page to specify how the time dimension data should be stored in the
database. You select the storage type based on the volume of data stored at the lowest
level of the entire cube and the refresh rate required. The storage type options are:

■ ROLAP: Relational storage: Stores the time dimension definition in a relational
form in the database. Select this option to create a time dimension that uses a
relational or ROLAP implementation.

Warehouse Builder automatically creates the underlying tables required to
implement this time dimension. A star schema is used to implement the time
dimension.

If the database containing the target schema has the OLAP option installed, you
can also deploy the dimensions to the OLAP catalog.

Creating Time Dimensions

3-58 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ ROLAP with MVs: Stores the time dimension definition and its data in a
relational form in the database. Additionally, cube-organized MVs are created in
the analytic workspace. Select this option to create a dimension that uses a
relational implementation and stores summaries in the analytic workspace.

Using this option provides summary management based on cube-organized MVs
in Oracle Database 11g. Query performance is greatly improved, without the need
to make any modification to your queries.

■ MOLAP: Multidimensional storage: Stores the time dimension definition and
data in an analytic workspace. Select this option to create a time dimension that
uses a MOLAP implementation.

Warehouse Builder stores the time dimension in an analytic workspace with same
name as the module. The tablespace that is used to store the analytic workspace is
the tablespace that is defined as the users tablespace for the schema that contains
the dimension metadata.

For more information about these options, see "Storage Type Page" on page 3-15.

Data Generation Page
Use the Data Generation page to specify additional information about the time
dimension such as the type of time dimension and the range of data stored in it. This
page contains details about the range of data stored in the time dimension and the
type of temporal data.

Range of Data The Range of Data section specifies the range of the temporal data
stored in the time dimension. To specify the range, define the following:

■ Start year: The year from which to store data in the time dimension. Click the list
to select a starting year.

■ Number of years: The total number of years, beginning from Start Year, for which
the time dimension stores data. Specify the number of years by selecting a value
from the list.

Type of Time Dimension Use the Type of Time Dimension section to specify the type
of time dimension to create. Select one of the following options for type of time
dimension:

■ Calendar: Creates a calendar time dimension.

■ Fiscal: Creates a fiscal time dimension. Enter the following additional details to
create a fiscal time dimension:

■ Fiscal Convention: Select the convention that you want to use to represent the
fiscal months. The options available are 544 and 445.

■ Fiscal Year Starting: Select the date and month from which the fiscal year
starts.

■ Fiscal Week Starting: Select the day from which the fiscal week starts.

Levels Page (Calendar Time Dimension Only)
Use the Levels page to select the calendar hierarchy that should be created and the
levels that it contains. Since there is no drill-up path from the Calendar Week level to
any of the levels above it, the following two options are provided to create a calendar
hierarchy:

■ Normal Hierarchy

Creating Time Dimensions

Defining Dimensional Objects 3-59

■ Week Hierarchy

Normal Hierarchy The Normal Hierarchy contains the following levels:

■ Calendar year

■ Calendar quarter

■ Calendar month

■ Day

Select the levels to be included in the calendar hierarchy. You must select at least two
levels.

Week Hierarchy The Week Hierarchy contains two levels: Calendar Week and Day.
Use this hierarchy to create a hierarchy that contains the Calendar Week level. When
you select the Week Hierarchy option, both these levels are selected by default.

Levels Page (Fiscal Time Dimension Only)
Use the Levels page to select the levels that should be included in the fiscal hierarchy.
The levels you can select are:

■ Fiscal year

■ Fiscal quarter

■ Fiscal month

■ Fiscal week

■ Day

You must select a minimum of two levels. Warehouse Builder creates the fiscal
hierarchy that contains the selected levels. To create additional hierarchies, use the
Dimension Editor. For more information about using the Dimension Editor, see
"Editing Time Dimension Definitions" on page 3-60.

Pre Create Settings Page
The Pre Create Settings page displays a summary of the options you selected on the
previous pages of the Create Time Dimension wizard. This includes the attributes,
levels, hierarchies, and the name of the map that is used to populate the time
dimension. Warehouse Builder uses these settings to create the objects that implement
the time dimension. Click Next to proceed with the implementation of the wizard.
Click Back to change any options that you selected on the previous wizard pages.

Time Dimension Progress Page
The Time Dimension Progress page displays the progress of the time dimension
implementation. The progress status log on this page lists the activities that are
performed by the Time Dimension wizard to implement the time dimension. After the
process is completed, click Next to proceed.

Summary Page
The Summary page summarizes the options selected in the wizard pages. Use this
page to review the options you selected.

Click Finish to complete the creation of the time dimension. You now have a fully
functional time dimension. This dimension is displayed under the Dimensions node of

Creating Time Dimensions

3-60 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

the Projects Navigator. The mapping that loads this time dimension is displayed under
the Mappings node in the Projects Navigator.

Warehouse Builder creates the following objects:

■ The time dimension object.

■ The sequence that populates the surrogate ID of the time dimension levels

■ The physical structures that store the time dimension data.

For a relational implementation, the database tables that store the dimension data
are created in the workspace. Warehouse Builder also binds the time dimension
attributes to the database columns that store their values. For a MOLAP
implementation, the analytic workspace that stores the time dimension and its
data is created.

■ A mapping that populates the time dimension.

Defaults Used by the Time Dimension Wizard
When you create a time dimension using the Time Dimension wizard, the following
defaults are used:

■ Storage: The default implementation for the relational storage is the star schema.
For a MOLAP implementation, the dimension is stored in an analytic workspace
that has the same name as the Oracle module in which the time dimension is
created. The analytic workspace is stored in the tablespace that is assigned as the
users tablespace for the schema that owns the Oracle module containing the
dimension.

■ Hierarchy: A standard hierarchy that contains all the levels listed on the Levels
page of the Create Dimension wizard is created. The hierarchy contains the levels
in the same order that they are listed on the Levels page.

Editing Time Dimension Definitions
To edit a time dimension:

1. From the Projects Navigator expand the Databases node then the Oracle node.

2. Expand the target module that contains the time dimension to be edited.

3. Right-click the time dimension that you want to edit and select Open. You can also
double-click the time dimension. Warehouse Builder displays the Dimension
Editor for the time dimension.

4. Edit the information about the following tabs:

■ Name Tab on page 3-61

■ Storage Tab on page 3-61

■ Attributes Tab on page 3-62

■ Levels Tab on page 3-62

■ Hierarchies Tab on page 3-62

Note: When you delete a time dimension, the table, sequence, and
the mapping associated with the time dimension are not deleted. You
must explicitly delete these objects.

Creating Time Dimensions

Defining Dimensional Objects 3-61

When you modify a time dimension, a new population map and new implementation
tables are created. You can choose to either delete the existing population map and
implementation tables or to retain them.

Use the Mapping Editor to modify the time dimension population map. You must
deploy the mapping that populates the time dimension.

If you delete the population map before deploying the map, you cannot populate data
into the time dimension. The work around is to run the time dimension wizard again
and create another dimension population map.

Name Tab
Use the Name tab to describe the Time dimension. Enter the following details on the
Name tab:

■ Name: The name of the time dimension. The name must be unique within the
module. For more information about naming conventions, see "Naming
Conventions for Data Objects" on page 2-8.

■ Description: An optional description for the time dimension.

■ Range of Data: Specifies the range of the data stored in the time dimension. To
specify the range, define the following:

■ Starting year: The year from which data should be stored in the time
dimension. Click the list to select a starting year.

■ Number of years: The total number of years, beginning from Starting Year, for
which the time dimension stores data. Select a value from the list.

Storage Tab
Use the Storage tab to specify the type of storage for the time dimension. The storage
options you can use are Relational or MOLAP.

Relational Selecting the Relational option stores the time dimension definition in a
relational form in the database. Select one of the following options for the relational
implementation of the time dimension:

■ Star schema: The time dimension is implemented using a star schema. This means
that the time dimension data is stored in a single database table or view.

■ Snowflake schema: The time dimension is implemented using a snowflake
schema. This means that the time dimension data is stored in multiple tables or
views.

If the database containing the target schema has the OLAP option installed, you can
also deploy the dimensions to the OLAP catalog.

MOLAP Select MOLAP to store the time dimension definition and data in an analytic
workspace in the database. This method uses an analytic workspace to store the time
dimension data. Provide the following details for a MOLAP implementation:

■ AW Name: Enter the name of the analytic workspace that stores the time
dimension. Click the Ellipsis button to display a list of available AWs. Warehouse
Builder displays a node for each module in the current project. Expand a module
to view the list of dimensional objects in the module. Selecting an object from list
stores the time dimension in the same analytic workspace as the selected object.

■ Tablespace Name: Enter the name of the tablespace that stores the analytic
workspace. If you do not enter a value, the analytic workspace is stored in the

Creating Time Dimensions

3-62 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

tablespace that is defined as the users tablespace for the schema containing the
time dimension metadata.

Attributes Tab
The Attributes tab defines the dimension attributes and the sequence used to populate
the dimension key of the time dimension. The Sequence field represents the name of
the sequence that populates the dimension key column of the time dimension. Use the
Select to the right of this field to select a sequence from the Available Sequences dialog
box. This dialog box lists all the sequences that belong to the current project.

Dimension Attributes The Dimension Attributes section lists the dimension
attributes of the time dimension. You also use this page to create new dimension
attributes. For each attribute, you specify the following details:

■ Name: The name of the dimension attribute. The attribute name must be unique
within the dimension.

■ Description: An optional description for the attribute.

■ Identifier: Represents the type of identifier of the attribute. The lists displays two
options: Surrogate and Business. Select the type of identifier.

■ Data Type: Select the data type of the attribute.

■ Length: Specify length only for character data types.

■ Precision: Define the total number of digits allowed for the column. Precision is
defined only for numeric data types.

■ Scale: Define the total number of digits to the right of the decimal point. Scale is
defined only for numeric data types.

■ Seconds Precision: Represents the number of digits in the fractional part of the
datetime field. It can be a number between 0 and 9. The seconds precision is used
only for TIMESTAMP, TIMESTAMP WITH TIME ZONE , and TIMESTAMP WITH
LOCAL TIME ZONE data types.

■ Descriptor: Select the type of descriptor. The options are: Short Description, Long
Description, Start date, End date, Time span, and Prior period.

Levels Tab
The Levels tab defines the levels in the time dimension. You can create additional
levels by entering the name and an optional description for the level in the Levels
section. For more information about the contents of the Levels tab, see "Level
Attributes Page" on page 3-18.

Hierarchies Tab
Use the Hierarchies tab to create additional hierarchies in the time dimension. When
you modify the time dimension definition, the map that populates it must reflect these
changes. Click Create Map to recreate the map that populates the time dimension. For
a fiscal time dimension, you can modify the fiscal settings by clicking Fiscal Settings.
The Fiscal Information Settings dialog box is displayed. Use this dialog box to modify
the fiscal convention, fiscal year start, and fiscal week start.

The Hierarchies tab contains two sections: Hierarchies and Levels.

■ Hierarchies: Use this section to create hierarchies. Warehouse Builder displays
any existing hierarchies in the time dimension. You create additional hierarchies
by specifying the name of the hierarchy and type of hierarchy. The options for

Populating Time Dimensions

Defining Dimensional Objects 3-63

type of hierarchy are None, Fiscal, Calendar Week, and Calendar Year. Use the
Default property to indicate which of the hierarchies is the default hierarchy.

■ Levels: The Levels section lists the levels in the time dimension. When you create a
new hierarchy, choose the levels that you want to include in your hierarchy by
selecting the Applicable option.

Modifying the Implementation of Time Dimensions
Use the Time Dimension editor to modify the implementation of a time dimension.
The implementation details determine if the time dimension is implemented using a
star schema or a snowflake schema.

For each time dimension, Warehouse Builder automatically creates a mapping that
loads the time dimension. Thus, when you modify a time dimension, the mapping that
loads the time dimension must also be modified.

To modify the implementation of a time dimension:

1. In the Projects Navigator, double-click the time dimension whose implementation
you want to modify.

The editor is opened for the time dimension.

2. On the Storage tab, under the ROLAP: Relational Storage option, select the new
implementation for the time dimension.

To change to a star schema implementation, select Star.

To change to a snowflake implementation, select Snowflake.

3. On the Hierarchies tab, click Create map.

This redefines the mapping that loads the time dimension based on the
implementation changes made.

The Physical Bindings tab displays the modified bindings for the time dimension.

Populating Time Dimensions
You populate a time dimension by creating a mapping that loads data into the time
dimension. When you create a time dimension using the Create Time Dimension
wizard, Warehouse Builder creates a mapping that populates the time dimension
based on the values of the following parameters:

■ Start year of the data

■ Number of years of the data

■ Start day and month of fiscal year (only for fiscal time dimensions)

■ Start day of fiscal week (only for fiscal time dimensions)

■ Fiscal type (only for fiscal time dimensions)

The values of these parameters are initialized at the time of creating the time
dimension using the Create Time Dimension wizard.

Note: You cannot use the Unbind option to unbind a time dimension
from its implementation objects.

Populating Time Dimensions

3-64 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Figure 3–1 displays a mapping to load a calendar time dimension. The Mapping Input
operator DATE_INPUTS represents the attributes needed to populate the time
dimension. The values of the attributes in this operator are set based on the values you
provide when you created the time dimension. You can modify these values by
double-clicking the DATE_INPUTS operator, clicking the Output Attributes link, and
modifying the values of the input parameters. However, when you modify parameter
values, you must regenerate the redeploy the mapping that loads the time dimension.

Figure 3–1 Mapping that Populates a Time Dimension

Dynamically Populating Time Dimensions
In certain warehouse scenarios, you may need to dynamically populate your time
dimension based on the current requirements. Although the values used to populate
the time dimension are set at the time of creating the time dimension, Warehouse
Builder enables you to modify these values and dynamically populate the time
dimension when required.

The Deployment Preferences contain a preference called Prompt for Execution
Parameters. Setting this parameter to True enables you to provide values for the input
parameters at runtime.

To dynamically populate time dimensions:

1. Ensure that the Prompt for Execution Parameters preference is set to True.

In the Tools menu, select Preferences to display the Preferences dialog box. In the
left panel, expand the OWB node, click Deployment in the left panel and select
Prompt for Execution Parameters.

2. Execute the mapping that loads the time dimension by right-clicking the mapping
and selecting Start.

The Input Parameters dialog box is displayed containing the input parameters that
are used to load the time dimension such as start year, number of years.

3. Set values for the parameters YEAR_START_DATE and NUMBER_YEARS and
click OK. For fiscal time dimensions, also set values for FISCAL_TYPE, DAYS_
OF_FISCAL_WEEK, and FISCALYEAR_START_DATE.

Overlapping Data Populations
You can run a map that populates the time dimension multiple times. During each run
you specify the attributes required to populate the time dimension. It is possible that a
run of the mapping may overlap with the previous runs, meaning you may attempt to

Populating Time Dimensions

Defining Dimensional Objects 3-65

load data that already exists in the time dimension. In such a case, if a record was
populated by a previous run, Warehouse Builder does not populate the data again.

For example, in the first run, you populate the time dimension with data from the year
2000 for 5 years. In the second run, you populate the time dimension with data from
2003 for 3 years. Since the records from beginning 2003 to end 2004 already exist in the
time dimension, they are not created again.

Populating Time Dimensions

3-66 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Part II
Performing ETL

Oracle Warehouse Builder enables you to perform Extract, Transform, and Load (ETL)
operations. You can choose among different methods of transforming source data
before loading it into your data warehouse. This part discusses deploying data and
ETL objects and data auditing.

This part contains the following chapters:

■ Chapter 4, "Overview of Transforming Data"

■ Chapter 5, "Creating PL/SQL Mappings"

■ Chapter 6, "Performing ETL Using Dimensional Objects"

■ Chapter 7, "Creating SQL*Loader, SAP, and Code Template Mappings"

■ Chapter 8, "Designing Process Flows"

■ Chapter 9, "Defining Custom Transformations"

■ Chapter 10, "Understanding Performance and Advanced ETL Concepts"

■ Chapter 11, "Scheduling ETL Jobs"

■ Chapter 12, "Deploying to Target Schemas and Executing ETL Logic"

■ Chapter 13, "Auditing Deployments and Executions"

■ Chapter 14, "Managing Metadata Dependencies"

■ Chapter 15, "Troubleshooting and Error Handling for ETL Designs"

■ Chapter 16, "Creating and Consuming Web Services in Warehouse Builder"

■ Chapter 17, "Moving Large Volumes of Data Using Transportable Modules"

Overview of Transforming Data 4-1

4
Overview of Transforming Data

One of the main functions of an Extract, Transform, and Load (ETL) tool is to
transform data. Oracle Warehouse Builder provides various methods of transforming
data. This chapter provides an overview of data transformation in Warehouse Builder.

This chapter contains the following topics:

■ About Data Transformation in Oracle Warehouse Builder

■ About Mappings

■ About Operators

■ About Transformations

■ About Transformation Libraries

About Data Transformation in Oracle Warehouse Builder
After you import your source data and define the target, you can consider how to
transform the source data into the output desired for the target. In Warehouse Builder,
you specify how to transform the data by designing mappings in the Mapping Editor.
A mapping is a Warehouse Builder entity that describes the sequence of operations
required to extract data from sources, transform the data, and load the data into one or
more targets.

The fundamental unit of design for a mapping is the operator. You use an operator to
represent each distinct operation you want to perform in the mapping. Operations
include extracting data, loading data, and transforming data (aggregating, joining,
performing a lookup, and so on). To indicate the order of operations, you connect the
mappings with data flow connections.

To specify data transformation in a mapping, select from the many prebuilt
transformation operators or design a new transformation. The prebuilt transformation
operators enable commonly performed operations such as filtering, joining, and
sorting. Warehouse Builder also includes prebuilt operators for complex operations
such as merging data, cleansing data, or profiling data.

If none of the prebuilt transformation operators meet your needs, you can design a
new one. You can design the new transformation operator based on the Oracle
Database library of PL/SQL functions, procedures, package functions, and package
procedures.

Extraction and loading operations are represented by any of the numerous source and
target operators. For example, a Table operator represents a table and a Flat File
operator represents a flat file. Whether that operator specifies an extraction or loading

About Mappings

4-2 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

operation depends on how you connect the operator relative to other operators in the
mapping.

An important distinction to understand is the difference between the operator in the
mapping and the object it represents. The operator and the object are separate entities
until you bind the two together. For example, when you add a table operator to a
mapping, you can bind that operator to a specific table in the repository. With the
operator bound to the table, you can synchronize changing definitions between the two.
If the table operator represents a target and you change the operator in the mapping,
then you can propagate those changes back to the table in the repository. If the
operator represents a source that incurred a change in its metadata definition, then you
can reimport the table in the Design Center and then propagate those changes to the
table operator in the Mapping Editor.

About Mappings
Mappings describe a series of operations that extract data from sources, transform it,
and load it into targets. They provide a visual representation of the flow of the data
and the operations performed on the data. When you design a mapping in Oracle
Warehouse Builder, you use the Mapping Editor interface.

 Alternatively, you can create and define mappings using OMB*Plus, the scripting
interface for Warehouse Builder as described in Oracle Warehouse Builder API and
Scripting Reference.

Based on the ETL logic that you define in a mapping, Warehouse Builder generates the
code required to implement your design. Warehouse Builder can generate code for the
following languages:

■ PL/SQL mappings, see "PL/SQL Mappings" on page 5-3

■ SQL*Loader mappings, see "SQL*Loader Mappings" on page 5-3

■ SAP ABAP mappings, see "SAP ABAP Mappings" on page 5-3

■ Code Template mappings, "Code Template (CT) Mappings" on page 5-3

About Operators
The basic design element for a mapping is the operator. Use operators to represent
sources and targets in the data flow. Also use operators to define how to transform the
data from source to target. The operators that you select as sources affect how you
design the mapping. Based on the operators that you select, Warehouse Builder
assigns the mapping to one of the following mapping generation languages. Each of
these code languages require you to adhere to certain rules when designing a
mapping.

■ SQL

For mappings that contains code templates, Warehouse Builder generates SQL
code.

■ PL/SQL

For all mappings that do not contain either a Flat File operator as a source or a
SAP/R3 source, Warehouse Builder generates PL/SQL code. Design
considerations for PL/SQL mappings depend upon whether you specify a
row-based or set-based operating mode as described in Chapter 10,
"Understanding Performance and Advanced ETL Concepts".

■ SQL*Loader

About Operators

Overview of Transforming Data 4-3

When you define a Flat File operator as a source, Warehouse Builder generates
SQL*Loader code. To design a SQL*Loader mapping correctly, follow the
guidelines described in "Flat File Source Operators" on page 25-32.

■ ABAP

When you define a SAP/R3 source, Warehouse Builder generates ABAP code. For
mapping design considerations for SAP sources, see "Creating SAP Extraction
Mappings" on page 7-4.

Types of Operators
As you design a mapping, you select operators from the Mapping Editor palette and
drag them onto the canvas.

This section introduces the types of operators and refers you to other chapters in this
manual for detailed information.

■ Source and Target Operators: These operators represent Oracle Database objects,
flat files, remote sources or targets, and non-Oracle sources and targets.

■ Remote and Non-Oracle Source and Target Operators: The special requirements
for using these operators are discussed in "Using Remote and non-Oracle Source
and Target Operators" on page 25-30.

■ Transformation Operators: These operators transform data.

■ Pre/Post Processing Operators: These operators call a function or procedure
before or after executing a mapping.

■ Pluggable Mapping Operators: These are mappings that function as operators in
other mappings.

■ Real-time Data Warehousing Operators: These operators are used in creating
realtime and batch mappings.

Source and Target Operators
Use source and target operators to represent relational database objects and flat file
objects.

Table 4–1 lists each source and target operator alphabetically and gives a brief
description. For more information about these operators, see Chapter 25, "Source and
Target Operators".

Table 4–1 Source and Target Operators

Icon Operator Name Description

Constant Produces a single output group that can contain one or
more constant attributes.

Construct Object Produces object types and collection types.

Cube Represents a cube that you previously defined.

Data Generator Provides information such as record number, system date,
and sequence values.

Dimension Represents a dimension that you previously defined.

About Operators

4-4 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Transformation Operators
To transform your source data, use data flow operators in your mapping.

Table 4–2 lists each data flow operator alphabetically and gives a brief description. For
more information about these operators, see Chapter 26, "Data Flow Operators",
Chapter 22, "Name and Address Cleansing", and Chapter 23, "Matching, Merging, and
Deduplication".

Expand Object Expands an object type to obtain the individual attributes
that comprise the object type.

External Table Represents an external table that you previously defined
or imported.

Flat File Represents a flat file that you previously defined or
imported.

Materialized View Represents a materialized view that you previously
defined

Queue Represents an advanced queue that you previously
defined.

Sequence Generates sequential numbers that increment for each row.

Table Represents a table that you previously defined or
imported.

Varray Iterator Iterates through the values in the table type.

View Represents a view that you previously defined or
imported.

Table 4–2 Data Flow Operators

Icon Operator Name Description

Aggregator Performs data aggregations, such as SUM and AVG, and
provides an output row set with aggregated data.

Anydata Cast Converts an object of type Sys.AnyData to either a primary
type or to a user-defined type.

Deduplicator Removes duplicate data in a source by placing a DISTINCT
clause in the select code represented by the mapping.

Expression Enables you to write SQL expressions that define
nonprocedural algorithms for one output parameter of the
operator. The expression text can contain combinations of input
parameter names, variable names, and library functions.

Filter Conditionally filters out rows from a row set.

Joiner Joins multiple row sets from different sources with different
cardinalities and produces a single output row set.

Lookup Performs a lookup of data from a lookup object such as a table,
view, materialized view, external table, cube, or dimension.

Table 4–1 (Cont.) Source and Target Operators

Icon Operator Name Description

About Operators

Overview of Transforming Data 4-5

Pre/Post Processing Operators
Use Pre/Post Processing operators to perform processing before or after executing a
mapping. The Mapping parameter operator is used to provide values to and from a
mapping.

Table 4–3 lists the Pre/Post Processing operators and the Mapping Parameter
operators and gives a brief description. For more details about these operators, see
Chapter 26, "Data Flow Operators".

Match Merge Data quality operator that identifies matching records and
merges them into a single record.

Name and Address Identifies and corrects errors and inconsistencies in name and
address source data.

Pivot Transforms a single row of attributes into multiple rows. Use
this operator to transform data that contained across attributes
instead of rows.

Set Operation Performs union, union all, intersect, and minus operations in a
mapping.

Sorter Sorts attributes in ascending or descending order.

Splitter operator Splits a single input row set into several output row sets using
a boolean split condition.

Subquery Filter filter rows based on the results of a subquery.

Table Function Enables you to develop custom code to manipulate a set of
input rows and return a set of output rows of the same or
different cardinality that can be queried like a physical table.

Transformation Transforms the attribute value data of rows within a row set
using a PL/SQL function or procedure.

Unpivot Converts multiple input rows into one output row. It enables
you to extract from a source once and produce one row from a
set of source rows that are grouped by attributes in the source
data.

Table 4–3 Pre/Post Processing Operators

Icon Operator Description

Mapping Input Parameter Passes parameter values into a mapping.

Mapping Output Parameter Sends values out of a mapping.

Post-Mapping Process Calls a function or procedure after executing a
mapping.

Pre-Mapping Process Calls a function or procedure prior to executing a
mapping.

Table 4–2 (Cont.) Data Flow Operators

Icon Operator Name Description

About Transformations

4-6 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Pluggable Mapping Operators
A pluggable mapping is a reusable grouping of mapping operators that behaves as a
single operator.

Table 4–4 lists the Pluggable Mapping operators and gives a brief description. For
more information, see Chapter 26, "Data Flow Operators".

Real-time Data Warehousing Operators
Real-time data warehousing operators enable you to use queues to perform Change
Data Capture. You can create mappings that capture changes in source objects and
then apply them to target tables.

Table 4–5 lists the real-time data warehousing operators.

About Transformations
Transformations are PL/SQL functions, procedures, packages, and types that enable
you to transform data. You use transformations when designing mappings and
process flows that define ETL processes.

Transformations are stored in the Warehouse Builder workspace and can be used in
the project in which they are defined.

Transformation packages are deployed at the package level but executed at the
transformation level.

Types of Transformations
In Warehouse Builder, transformations can be categorized as follows:

■ Predefined Transformations

■ Custom Transformations

The following sections provide more details about these types of transformations.

Predefined Transformations
Warehouse Builder provides a set of predefined transformations that enable you to
perform common transformation operations. These predefined transformations are

Table 4–4 Pluggable Mapping Operators

Icon Operator Description

Pluggable Mapping Represents a reusable mapping.

Pluggable Mapping Input
Signature

A combination of input attributes that flow into the
pluggable mapping.

Pluggable Mapping
Output Signature

A combination of output attributes that flow out of the
pluggable mapping.

Table 4–5 Pluggable Mapping Operators

Icon Operator Description

LCR Cast Expands an LCR (Logical Change Record) object into
its constituent columns.

LCR Splitter Directs changes to different tables along data flow
paths.

About Transformations

Overview of Transforming Data 4-7

part of the public Oracle Predefined library that consists of built-in and seeded
functions and procedures. You can directly use these predefined transformations to
transform your data.

Predefined transformations are organized into the following categories:

■ Administration

■ Character

■ Control Center

■ Conversion

■ Date

■ Numeric

■ OLAP

■ Others

■ SYS

■ Spatial

■ Streams

■ XML

For more information about the transformations that belong to each category, see
Chapter 28, "Warehouse Builder Transformations Reference".

Custom Transformations
A custom transformation is one that is created by the user. Custom transformations
can use predefined transformations as part of their definition.

Custom transformations contain the following categories:

■ Functions: The Functions category contains standalone functions. This category is
available under the Custom node of the Public Transformations node in the
Globals Navigator. It is also created automatically under the Transformations node
of every Oracle module, DB2 module, and SQL Server module in the Projects
Navigator.

Functions can be defined by the user or imported from a database. A function
transformation takes 0 to n input parameters and produces a result value.

■ Procedures: The Procedures category contains any standalone procedures used as
transformations. This category is available under the Custom node of the Public
Transformations node in the Globals Navigator. It is also automatically created
under the Transformations node of each Oracle module in the Globals Navigator.

Procedures can be defined by the user or imported from a database. A procedure
transformation takes 0 to n input parameters and produces 0 to n output
parameters.

■ Table functions: The Table Functions category contains any standalone table
functions you can use as transformations. This category is available under the
Custom node of the Public Transformations node in the Globals Navigator. It is
also automatically created under the Transformations node of each Oracle module
in the Projects Navigator.

The Table functions category is also listed under Packages. Any table functions
created here belong to the package.

About Transformation Libraries

4-8 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ Packages: The Packages category contains packages, which in turn contain
functions, procedures, table functions, and PL/SQL types. This category is
available under the Custom node of the Public Transformations node in the
Globals Navigator. It is also automatically created under the Transformations node
of each Oracle module in the Globals Navigator.

PL/SQL packages can be created or imported in Warehouse Builder. The package
body may be modified. For packages that are imported from database objects, the
package header (which is the signature for the function or procedure) cannot be
modified. However, for packages that are imported from Warehouse Builder, the
package header can be modified. For instructions, see "Importing
Transformations" on page 9-13

■ PL/SQL Types: The PL/SQL Types category contains any standalone PL/SQL
types. This includes PL/SQL record types, REF cursor types, and nested table
types. The PL/SQL Types category is automatically created in each package that
you define under the Packages node in the Transformations node of the Projects
Navigator. It is also available under every package that you define in the Globals
Navigator. In the Globals Navigator, expand the Public Transformations node, the
Oracle node, the Custom node, and then the Packages node to define PL/SQL
types under a package.

For further instructions, see "Defining Custom Transformations" on page 9-2.

About Transformation Libraries
A transformation library consists of a set of reusable transformations. Each time you
create a repository, Warehouse Builder creates a Transformation Library containing
transformation operations for that repository. This library contains the standard public
Oracle Predefined library and an additional library for each Oracle module defined
within the project.

Transformation libraries are available under the Public Transformations node of the
Globals Navigator in the Design Center.

Types of Transformation Libraries
Transformation libraries can be categorized as follows:

■ Public Oracle Predefined Library

This is a collection of predefined functions from which you can define procedures
for your public Oracle Custom library. The public Oracle Predefined library is
contained in the Globals Navigator. Expand the Pre-Defined node under the
Public Transformations node. Each category of predefined transformations is
represented by a separate node. Expand the node for a category to view the
predefined transformations in that category. For example, expand the Character
node to view the predefined character transformations contained in the public
Oracle Predefined library.

■ Public Oracle Custom Library

This is a collection of reusable transformations created by the user. These
transformations are categorized as functions, procedures, and packages defined
within your workspace.

The transformations in the public Oracle Custom library are available under the
Custom node of the Public Transformations node. Any transformation that you
create under this node is available across all projects in the workspace. For

About Transformation Libraries

Overview of Transforming Data 4-9

information about creating transformations in the public Oracle Custom library,
see "Defining Custom Transformations" on page 9-2.

When you deploy a transformation defined in the public Oracle Custom library,
the transformation is deployed to the location that is associated with the default
control center.

Accessing Transformation Libraries
Because transformations can be used at different points in the ETL process, Warehouse
Builder enables you to access transformation libraries from different points in the
Design Center.

You can access the transformation libraries using the following:

■ Expression Builder

While creating mappings, you may need to create expressions to transform your
source data. The Expression Builder interface enables you to create the expressions
required to transform data. Because these expressions can include
transformations, Warehouse Builder enables you to access transformation libraries
from the Expression Builder.

Transformation libraries are available under the Transformations tab of the
Expression Builder. The Private node under TRANSFORMLIBS contains
transformations that are available only in the current project. These
transformations are created under the Transformations node of the Oracle module.
The Public node contains the custom transformations from the public Oracle
Custom library and the predefined transformations from the public Oracle
Predefined library.

■ Add Transformation Operator dialog box

The Transformation operator in the Mapping Editor enables you to add
transformations, both from the public Oracle Predefined library and the public
Oracle Custom library, to a mapping. You can use this operator to transform data
as part of the mapping.

■ Function Editor, Procedure Editor, Edit Function dialog box, or Edit Procedure
dialog box

The Implementation tab of these editors enables you to specify the PL/SQL code
that is part of the function or procedure body. You can use transformations in the
PL/SQL code.

About Transformation Libraries

4-10 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Creating PL/SQL Mappings 5-1

5
Creating PL/SQL Mappings

After you create data object definitions in Oracle Warehouse Builder, you can design
extract, transform, and load (ETL) operations that move data from sources to targets.
In Warehouse Builder, you design these operations in a mapping.

You can also use the Mapping Debugger to debug data flows created in mappings.

This chapter contains the following topics:

■ Overview of Oracle Warehouse Builder Mappings

■ Example: Defining a Simple PL/SQL Mapping

■ Steps to Perform Extraction, Transformation, and Loading (ETL) Using Mappings

■ Defining Mappings

■ Adding Operators to Mappings

■ Connecting Operators, Groups, and Attributes

■ Editing Operators

■ Setting Mapping Properties

■ Configuring Mappings

■ Synchronizing Operators and Workspace Objects

■ Example: Using a Mapping to Load Transaction Data

■ Example: Using the Mapping Editor to Create Staging Area Tables

■ Using Pluggable Mappings

■ Copying Operators Across Mappings and Pluggable Mappings

■ Grouping Operators in Mappings and Pluggable Mappings

■ Locating Operators, Groups, and Attributes in Mappings and Pluggable Mappings

■ Debugging Mappings

Overview of Oracle Warehouse Builder Mappings
A mapping is a Warehouse Builder object that you use to perform extract, transform,
and load (ETL). A mapping defines the data flows for moving data from disparate
sources to your data warehouse.

You can extract data from sources that include, but are not limited to, flat files, Oracle
databases, SAP, or other heterogeneous databases such as SQL Server and IBM DB2.

Overview of Oracle Warehouse Builder Mappings

5-2 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Use mapping operators or transformations to transform the data, according to your
requirements, and to load the transformed data into the target objects.

As with other Warehouse Builder objects, after you define a mapping, you must
validate, generate, and deploy the mapping. Once you define and deploy a mapping,
you can execute the mapping using the Control Center Manager, schedule it for later
execution, or incorporate it in a process flow.

Types of Mappings
Warehouse Builder mappings can be classified according to the supported data
extraction technologies used in the mapping. The code generated by Warehouse
Builder depends on the sources and targets used in the mapping.

The different types of mappings include:

■ PL/SQL Mappings

■ SQL*Loader Mappings

■ SAP ABAP Mappings

■ Code Template (CT) Mappings

Warehouse Builder generates ETL code in different languages for the different
mapping types. The generated code is deployed to a target location, where it executes.
By selecting the appropriate data extraction technology for each mapping, you can
access a wide range of data source types, and satisfy different technical requirements,
such as performance and security.

See Also:

■ "Defining Mappings" on page 5-9 for information about defining
mappings

■ Chapter 26, "Data Flow Operators" for information about
mapping transformation operators and how to use them

■ Chapter 28, "Warehouse Builder Transformations Reference" for
more information about predefined Warehouse Builder
transformations

See Also:

■ "Deploying Objects" on page 12-6 for information about deploying
mappings

■ "Scheduling ETL Jobs" on page 11-1 for information about
scheduling ETL objects

■ "Designing Process Flows" on page 8-1 for information about
defining process flows

Note: Mappings other than PL/SQL mappings do not support all
Warehouse Builder data transformation capabilities. If you must use
one of the non-PL/SQL mapping types but you still need to perform
complex transformations supported only in PL/SQL mappings, use
the non-PL/SQL mapping to load a staging table, and then use a
PL/SQL mapping to perform the rest of the required transformation.

Overview of Oracle Warehouse Builder Mappings

Creating PL/SQL Mappings 5-3

PL/SQL Mappings
PL/SQL mappings are the default mapping type in Warehouse Builder and should be
used in most situations. For PL/SQL mappings, Warehouse Builder generates PL/SQL
code that is deployed to an Oracle Database location, where it executes.

Data extraction from other locations is primarily performed through database links to
other Oracle Databases or through Oracle Database gateways for non-Oracle data
sources. PL/SQL mappings offer the full range of Warehouse Builder data
transformation capabilities.

SQL*Loader Mappings
SQL*Loader mappings should be used to load large volumes of data from flat files
with maximum performance. For SQL*Loader mappings, Warehouse Builder
generates SQL*Loader control files. The control file is deployed to the target database,
where SQL*Loader executes, loading the source data into the database.

SAP ABAP Mappings
ABAP mappings are the only supported method of extracting data from SAP R/3
source systems. For ABAP mappings, Warehouse Builder generates ABAP code. This
code can then be deployed to an SAP R/3 instance automatically or manually by an
administrator, depending upon security and other administrative requirements
specific to the SAP environment. The ABAP code executes, generating a flat file as
output, which is then transparently moved to the target database system and loaded
into the Oracle target database.

Code Template (CT) Mappings
Code templates provide a general framework for implementing data extraction,
movement, and loading mechanisms. For Code Template (CT) mappings, Warehouse
Builder generates data extraction or other mapping code based on the contents of a
code template. This code is then deployed to a remote agent on a target system, where
it executes. The technology used to load data into the target database depends upon
the contents of the code template. Warehouse Builder provides a collection of code
templates that implement common data extraction methods. Other code templates use
bulk data extraction and loading tools for faster and more flexible data movement.

Choose CT mappings when you need to:

■ Access a data source without using Oracle Database gateways or ODBC, or you
have a specific need for JDBC connectivity. Warehouse Builder provides code
templates that support access to any JDBC data source or target.

■ Load data from an XML source file.

Note: SQL*Loader mappings support only a subset of
transformations available in PL/SQL mappings. For information
about the limitations on the transformations available in SQL*Loader
mappings, see Chapter 26, "Data Flow Operators".

Note: ABAP mappings support only a subset of transformations
available in PL/SQL mappings. For information about the limitations
on the transformations available in ABAP mappings, see Chapter 26,
"Data Flow Operators".

Overview of the Mapping Editor

5-4 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ Perform bulk data unloads and loads for maximum data movement performance.
Warehouse Builder provides code templates to support bulk data movement from
some common databases. You can write your own code templates for sources not
supported by the Warehouse Builder-provided code templates.

■ Implement ETL processes where data moves from a non-Oracle database source
directly to a non-Oracle database target. For example, you can define an ETL
process that extracts from an IBM DB2 source and loads a Microsoft SQL Server
target directly.

■ Implement new data integration patterns without requiring changes to Warehouse
Builder itself. Code templates provide maximum data integration flexibility for
business and technical requirements beyond those supported by Warehouse
Builder out of the box.

Overview of the Mapping Editor
The Mapping Editor is built around the Mapping Editor canvas, on which the
operators and connections in a mapping are displayed graphically and can be
manipulated. Several other Design Center panels are context-sensitive and display
mapping-related items when a mapping is open in the Mapping Editor. These include
the following:

■ Component Palette: Displays operators that you can use in a mapping. Select an
object, either from the canvas or Projects Navigator, and Warehouse Builder
displays the object properties in the Property Inspector.

Use the filter at the top of the palette to limit the display of operators to a
particular type. For example, select Transformation Operators in the filter to
display only operators that transform data.

■ Structure View: Displays a hierarchical view of the operators, attribute groups,
and attributes in the mapping.

■ Bird's Eye View: Displays the layout of the entire mapping. Enables you to move
the view of the canvas with a single mouse dragging operation. You can thus
reposition your view of the canvas without using the scroll bars.

The Bird's Eye View displays a miniature version of the entire canvas. It contains a
blue box that represents the portion of the canvas that is currently in focus. For
mappings that span more than the canvas size, click the blue box and drag it to the
portion of the canvas that you want to focus on.

■ Property Inspector: Displays the properties of the mapping, operators, attribute
groups, or attributes currently selected in the Mapping Editor canvas.

■ Mapping Debug Toolbar: Displays icons for each command used in debugging
mappings. When you are debugging mappings, the Debug toolbar is displayed at
the top of the Mapping Editor canvas.

■ Diagram Toolbar: Displays icons for each command used to navigate the canvas
and change the magnification of objects on the canvas.

Note: CT mappings support only a subset of transformations
available in PL/SQL mappings. For information about the limitations
on the transformations available in CT mappings, see "Mapping
Operators that are Only Supported Directly in Oracle Target CT
Mappings" on page 7-16.

Overview of the Mapping Editor

Creating PL/SQL Mappings 5-5

Mapping Editor Canvas
The Mapping Editor canvas is the area that you use to graphically design your
mappings. Mappings define how data extracted from the source is transformed before
being loaded into the targets.

The Mapping Editor canvas contains two tabs: Logical View and Execution View.

Logical View
The Logical view of the Mapping Editor enables you to design the data flows that
define your mapping. You first drag and drop operators representing the source
objects, the target objects, and the transformations. Next you establish a data flow
between these operators that represents the data transformation by drawing data flow
connections between operators.

Execution View
Use the Execution View of the Mapping Editor to define execution units for Code
Template (CT) mappings. The Execution View is available only when you create CT
mappings.

An execution unit represents the set of related tasks that are to be performed using a
code template. A code template contains the logic to perform a particular ETL
processing on a particular platform during runtime, such as moving data between two
Oracle Database instances, or unloading data from a DB2 database into a flat file. An
execution unit can be implemented by a single generated script such as a PL/SQL
package or by a code template.

Execution units enable you to break up your mapping execution into smaller related
units. Each execution unit may be associated with a code template that contains the
template to perform the required data integration task on the specified platform. An
execution unit can be implemented by a single generated script such as a PL/SQL
package or by a code template.

The Execution View tab of the Mapping Editor displays the operators and data flows
from the Logical View in an iconized form. You cannot edit operators or create data
flows in the Execution View. You can only perform these tasks using the Logical View.

The contents of the Execution Unit view are based on the selected configuration. Thus,
you can use different code templates for different configurations. For example, if you
have two configurations, Development and QA, you can use one set of code templates
for Development and another for QA.

Execution View Menu and Toolbars
When you select the Execution View tab, the Execution menu is displayed in the
Design Center and an Execution toolbar is displayed at the top of the Mapping Editor
canvas. Use the options in the Execution menu or the Execution toolbar to:

■ Create and delete execution units

■ Define default execution units

See Also:

■ "Adding Operators to Mappings" on page 5-12 for information
about adding source, target, and transformation operators.

■ "Connecting Operators, Groups, and Attributes" on page 5-14 for
information about connecting operators in the mapping.

Example: Defining a Simple PL/SQL Mapping

5-6 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ Associate code templates with execution units

Mapping Editor Display Options
You can control how the editor displays the mappings on the canvas by selecting
Graph from the menu bar and then selecting Options. Warehouse Builder displays the
Options dialog box that enables you to set display options for the Mapping Editor
canvas.

The Options dialog box contains the following options. You can either select or
deselect any of these options.

■ Input Connector: Select this option to display an arrow icon on the left of
attributes that you can use as input attributes.

■ Key Indicator: Select this option to display a key icon to the left of the attribute
that is a foreign key attribute in an operator.

■ Data Type: Select this option to display the data type of attributes in all operators.

■ Output Connector: Select this option to display an arrow icon on the right of
attributes that you can use as output attributes.

■ Enable Horizontal Scrolling: Select this option to enable horizontal scrolling for
operators.

■ Automatic Layout: Select this option to use an automatic layout for the mapping.

Example: Defining a Simple PL/SQL Mapping
This section describes the creation of a basic PL/SQL mapping that loads data from a
source table to a target table. The purpose of this example is to illustrate the use of
mappings and help you understand the objective achieved by creating mappings.
Because the example is very basic, it does not perform any transformation on the
source data. However, in a typical data warehousing environment, transformations are
an integral part of mappings.

The SALES table contains the sales data of an organization. This table is located in the
SRC schema in an Oracle Database. You need to load this sales data into the target
table SALES_TGT, located in the TGT schema in your data warehouse. Both source and
target tables contain the same number of columns with the same column names.

You define a PL/SQL mapping that defines how data from the source table is loaded
into the target table.

To define a mapping that loads data from a source Oracle Database table to a target
Oracle Database table:

1. If you have not already done so, in the Projects Navigator, create an Oracle module
corresponding to the source. This module, called SRC_MOD, is associated with a
location SRC_LOC that corresponds to the SRC schema. Also, import the SALES
table into the SRC_MOD module.

2. In the Projects Navigator, create the target module whose location corresponds to
the data warehouse schema in which your target table is located.

Create the WH_TGT Oracle module, with its associated location TGT_LOC
corresponding with the TGT schema.

3. In the Projects Navigator, expand the WH_TGT module.

4. Right-click the Mappings node and select New Mapping.

Example: Defining a Simple PL/SQL Mapping

Creating PL/SQL Mappings 5-7

The Create Mapping dialog box is displayed.

5. Provide the following information about the mapping and click OK.

■ Name: Enter the name of the mapping.

■ Description: Enter an optional description for the mapping.

The Mapping Editor is displayed. Use this interface to define the data flow
between source and target objects.

6. Expand the Tables node under the SRC_MOD module.

7. Drag and drop the SALES table from the Projects Navigator to the Mapping Editor
canvas.

The operator representing the SALES table is added to the canvas. The operator
name appears in the upper-left corner. Below the operator name is the name of the
group. The name and number of groups depend on the type of operator. Table
operators have one group called INOUTGRP1. Below the group, the attribute
names and their data types are listed.

8. From the Projects Navigator, drag and drop the SALES_TGT table, under the WH_
TGT module, to the Mapping Editor canvas.

The operator representing the SALES_TGT table is added to the canvas. You can
view each attribute name and data type.

9. Connect the attributes of the source table SALES to the corresponding attributes in
the target table SALES_TGT.

To connect all attributes in the operator, click and hold down your left mouse
button on the group INOUTGRP1 of the SALES operator, drag, and release the
mouse button on the group INOUTGRP1 of the SALES_TGT operator.

The Connect dialog box is displayed.

10. In the Connection Options section, select Match by name of source and target
operators and click Preview.

The Connections section displays the association between the source and target
attributes. The Source Attribute column lists the source table attributes and the
Target Attribute column lists the attributes in the target table to which the source
attributes are loaded.

11. Click OK to close the Connect dialog box.

The completed mapping looks as shown in Figure 5–1.

Figure 5–1 Mapping that Loads Data from Source Table to Target Table

See Also: "Connecting Operators, Groups, and Attributes" on
page 5-14 for details about connecting attributes

Steps to Perform Extraction, Transformation, and Loading (ETL) Using Mappings

5-8 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

12. Validate the mapping by selecting the mapping in the Projects Navigator and
clicking the Validate icon. Or, right-click the mapping in the Projects Navigator
and select Validate.

Validation runs tests to verify the metadata definitions and configuration
parameters in the mapping. Resolve validation errors, if any.

13. Generate the mapping by selecting the mapping in the Projects Navigator and
clicking the Generate icon. Or, right-click the mapping in the Projects Navigator
and select Generate.

Generation creates the scripts that will be used to create the mapping in the target
schema. Resolve generation errors, if any, and regenerate the mapping.
Warehouse Builder creates the scripts for this mapping.

You have now defined a mapping that extracts data from a source table called SALES
and loads it into a target table called SALES_TGT. The metadata for this mapping is
stored in the repository. And, after successful generation, the scripts to create this
mapping in the target schema are ready.

To perform ETL and transfer the data from the source table to the target table, you
must first deploy the mapping to the target schema, and then execute the mapping as
defined in "Starting ETL Jobs" on page 12-9.

Steps to Perform Extraction, Transformation, and Loading (ETL) Using
Mappings

Before You Begin
First verify that your project contains a target module or a Template Mappings module
with a defined location. You must create your mapping in this module.

Also import any existing data you intend to use as sources or targets in the mapping.

To define mappings that perform ETL:

1. In the Projects Navigator, define the mapping that contains the logic for
performing ETL.

See "Defining Mappings" on page 5-9 for more information about defining
mappings and "Creating Code Template (CT) Mappings" on page 7-12 for
information about creating CT mappings.

2. In the Mapping Editor, add the required operators to the mapping. Operators
enable you to perform ETL.

See "Adding Operators to Mappings" on page 5-12 for more information about
adding operators.

3. Connect the operators in the mapping to define how data from the source objects
should be transformed before loading it into the target objects.

See "Connecting Operators, Groups, and Attributes" on page 5-14 for information
about establishing connections between operators.

4. (Optional) Edit the operators in the mapping to set operator, group, or attribute
properties. You may need to edit operators to specify how a certain transformation
is to be performed. For example, if you use the Filter operator to restrict the rows
loaded into the target, edit the Filter operator and specify the condition that
should be used to filter rows.

Defining Mappings

Creating PL/SQL Mappings 5-9

See "Editing Operators" on page 5-20 for more information about editing operators
in mappings.

5. Configure the mapping.

For PL/SQL mappings, see "Configuring Mappings" on page 5-25. For CT
mappings, see "Setting Options for Code Templates in Code Template Mappings"
on page 7-28.

6. Validate the mapping by right-clicking the mapping in the Projects Navigator and
selecting Validate.

Validation verifies the metadata definitions and configuration parameters of the
mapping to check if they conform to the rules defined by Warehouse Builder for
mappings.

7. Generate the mapping by right-clicking the mapping in the Projects Navigator and
selecting Generate.

Generation uses the metadata definitions and configuration settings to create the
code that is used to create the mapping in the target schema.

When you generate a mapping, the generated code contains comments that help
you identify the operator for which the code is generated. This enables you to
debug errors that you may encounter when you deploy the mapping.

8. Deploy the mapping to the target schema to create the PL/SQL code generated for
the mapping to the target schema.

For more information about deployment, see "Deploying Objects" on page 12-6.

9. Execute the mapping to extract data from the source table and load it into the
target table.

For more information about executing ETL objects, see "Starting ETL Jobs" on
page 12-9.

Subsequent Steps
After you design a mapping and generate its code, you can create a process flow or
proceed directly with deployment followed by execution.

Use process flows to interrelate mappings. For example, you can design a process flow
such that the completion of one mapping triggers an email notification and starts
another mapping. For more information, see Chapter 8, "Designing Process Flows".

After you design mappings, generate code for them, and deploy them to their targets,
you can:

■ Execute the mappings immediately as described in "Starting ETL Jobs" on
page 12-9.

■ Schedule the mappings for later execution as described in "Scheduling ETL Jobs"
on page 12-1.

■ Create process flows, to orchestrate the execution of one or more mappings, along
with other activities as described in "Designing Process Flows" on page 8-1.

Defining Mappings
A mapping is a Warehouse Builder object that contains the metadata regarding the
transformation performed by the mapping. The metadata includes details of the
sources from which data is extracted, the targets into which the transformed data is
loaded, and the settings used to perform these operations.

Defining Mappings

5-10 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Steps to Define a Mapping
1. In the Projects Navigator, expand the project, the Databases node, the Oracle node,

and then the Oracle module in which you want to define the mapping.

2. Right-click the Mappings node and select New Mapping.

Warehouse Builder opens the Create Mapping dialog box.

3. Enter a name and an optional description for the new mapping.

For rules on naming and describing mappings, see "Rules for Naming Mappings"
on page 5-10.

4. Click OK.

Warehouse Builder stores the definition for the mapping and inserts its name in
the Projects Navigator. Warehouse Builder opens a Mapping Editor for the
mapping and displays the name of the mapping in the title bar.

Steps to Open a Previously Created Mapping
1. In the Projects Navigator, expand the project, the Databases node, the Oracle node,

and then the Oracle module in which the mapping is defined.

2. Expand the Mappings node.

3. Open the Mapping Editor in one of the following ways:

■ Double-click a mapping.

■ Select a mapping and then from the File menu, select Open.

■ Select a mapping and press Ctrl + O.

■ Right-click a mapping, and select Open.

Warehouse Builder displays the Mapping Editor.

Rules for Naming Mappings
The rules for naming mappings depend on the naming mode that you select in the
Naming Preferences section of the Preferences dialog box. Warehouse Builder
maintains a business and a physical name for each object in the workspace. The
business name is a unique descriptive name that makes sense to a business-level user
of the data. The physical name is the name Warehouse Builder uses when generating
code.

When you name objects while working in one naming mode, Warehouse Builder
creates a default name for the other mode. Therefore, when working in the business
name mode, if you assign a name to a mapping that includes mixed cases, special
characters and spaces, Warehouse Builder creates a default physical name for you. For
example, if you save a mapping with the business name My Mapping (refer to
doc#12345), the default physical name is MY_MAPPING_REFER_TO_DOC#12345.

When you name or rename objects in the Mapping Editor, use the following naming
rules.

Note: When you open a mapping that was created using OMB*Plus,
although the mapping has multiple operators, it may appear to
contain only one operator. To view all the operators, click the Auto
Layout icon in the toolbar.

Defining Mappings

Creating PL/SQL Mappings 5-11

Naming and Describing Mappings
In the physical naming mode, a mapping name can be from 1 to 30 alphanumeric
characters, and blank spaces are not allowed. In the business naming mode, the limit is
200 characters and blank spaces and special characters are allowed. In both naming
modes, the name should be unique across the project.

Note for scheduling mappings: If you intend to schedule the execution of the
mapping, there is an additional consideration. For any ETL object that you want to
schedule, the limit is 25 characters for physical names and 1995 characters for business
names. Follow this additional restriction to enable Warehouse Builder to append, to
the mapping name, the suffix _job and other internal characters required for
deployment and execution.

After you create the mapping definition, you can view its physical and business name
in the Property Inspector.

Edit the description of the mapping as necessary. The description can be up to 4,000
alphanumeric characters and can contain blank spaces.

Rules for Naming Attributes and Groups
You can rename groups and attributes independent of their sources. Attribute and
group names are logical. Although attribute names of the object are often the same as
the attribute names of the operator to which they are bound, their properties remain
independent of each other.

Rules for Naming Operators
Business names for the operators must meet the following requirements:

■ The length of the operator name can be any string of 200 characters.

■ The operator name must be unique within its parent group. The parent group
could be either a mapping or its parent pluggable mapping container.

Physical names for operators must meet the following requirements:

■ The length of the operator name must be between 1 and 30 characters.

■ The operator name must be unique within its parent group. The parent group
could be either a mapping or its parent pluggable mapping container.

■ The operator name must conform to the syntax rules for basic elements as defined
in the Oracle Database SQL Language Reference.

In addition to physical and business names, some operators also have bound names.
Every operator associated with a workspace object has a bound name. During code
generation, Warehouse Builder uses the bound name to reference the operator to its
workspace object. Bound names have the following characteristics:

■ Bound names need not be unique.

■ Bound names must conform to the general Warehouse Builder physical naming
rules, except if the object was imported and contains restricted characters such as
spaces.

■ Typically, you do not change bound names directly. Instead, you change these by
synchronizing with a workspace object outside the mapping.

■ In physical naming mode, when you modify the physical name of an operator
attribute, Warehouse Builder propagates the new physical name as the bound
name when you synchronize.

Adding Operators to Mappings

5-12 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Adding Operators to Mappings
Operators enable you to perform data transformations. Some operators are bound to
workspace objects while others are not. Many operators that represent built-in
transformations (such as Joiner, Filter, and Aggregator) do not directly refer to
underlying workspace objects, and therefore are not bound. Other operators, such as
Table, View, Dimension, and Cube, do refer to objects in the workspace, and therefore
can be bound.

As a general rule, when you add a data source or target operator such as a Table
operator to a mapping, that operator refers to a table defined in the workspace,
although it is not the same object as the table itself. Source and target operators in
mappings are said to be bound to underlying objects in the workspace. Note that it is
possible for multiple operators in a single mapping to be bound to the same
underlying object. For example, to use a table EMP as a source for two different
operations in a mapping, you can add two table operators named EMP_1 and EMP_2
to the mapping and bind them to the same underlying EMP table in the workspace.

To distinguish between the two versions of operators, this chapter refers to objects in
the workspace either generically as workspace objects or specifically as workspace tables,
workspace views, and so on. This chapter refers to operators in the mapping as Table
operators, View operators, and so on. Therefore, when you add a dimension to a
mapping, refer to the dimension in the mapping as the Dimension operator and refer to
the dimension in the workspace as the workspace dimension.

Warehouse Builder maintains separate workspace objects for some operators. This
enables you to work on these objects independently. You can modify the workspace
object without affecting the logic of the mapping. After modification, you can decide
how to synchronize the discrepancy between the workspace object and its
corresponding operator. This provides maximum flexibility during your warehouse
design.

For example, when you reimport a new metadata definition for the workspace table,
you may want to propagate those changes to the Table operator in the mapping.
Conversely, as you make changes to a Table operator in a mapping, you may want to
propagate those changes back to its associated workspace table. You can accomplish
these tasks by a process known as synchronizing.

Operators that Bind to Workspace Objects
The operators that you can bind to associated objects in the workspace are as follows:

Construct Object
Cube
Dimension
Expand Object
External Table
Flat File
Lookup
Materialized View
Pluggable Mapping
Pre-Mapping Process
Post-Mapping Process
Queue
Sequence

See Also: "Synchronizing Operators and Workspace Objects" on
page 5-26 for more information about synchronizing mapping
operators and workspace objects.

Adding Operators to Mappings

Creating PL/SQL Mappings 5-13

Table Function
Table
Transformation
Varray Iterator
View

To add an operator to a mapping:

1. Open the Mapping Editor.

2. From the Component Palette, drag an operator icon and drop it onto the canvas.
Alternatively, from the Graph menu, select Add, the type of operator you want to
add, and then the operator.

If the Component Palette is not displayed, select Component Palette from the
View menu.

If you select an operator that you can bind to a workspace object, the Mapping
Editor displays the Add operator_name Operator dialog box. For details on how
to use this dialog box, see "Using the Add Operator Dialog Box to Add Operators"
on page 5-13.

If you select an operator that you cannot bind to a workspace object, Warehouse
Builder may display a wizard or dialog box to help you create the operator.

3. Follow any prompts that are displayed by Warehouse Builder and click OK.

The Mapping Editor displays the operator maximized on the canvas. The operator
name appears in the upper-left corner. You can view each attribute name and data
type.

If you want to minimize the operator, click the arrow in the upper-right corner and
the Mapping Editor displays the operator as an icon on the canvas. To maximize
the operator, double-click the operator on the canvas.

Using the Add Operator Dialog Box to Add Operators
The Add Operator dialog box enables you to add operators to a mapping. When you
add an operator that you can bind to a workspace object, the Mapping Editor displays
the Add operator_name Operator dialog box.

Select one of the following options on this dialog box:

■ Create Unbound Operator with No Attributes

■ Select from Existing Repository Object and Bind

Create Unbound Operator with No Attributes
Select Create unbound operator with no attributes to define a new workspace object
that is not bound to a workspace object, such as a new staging area table or a new
target table.

In the New Operator Name field, enter a name for the new operator. Warehouse
Builder displays the operator on the canvas without any attributes.

You can now add and define attributes for the operator as described in "Editing
Operators" on page 5-20. Next, to create the new workspace object in a target module,
right-click the operator and select Create and Bind.

For an example of how to use this option in a mapping design, see "Example: Using
the Mapping Editor to Create Staging Area Tables" on page 5-35.

Connecting Operators, Groups, and Attributes

5-14 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Select from Existing Repository Object and Bind
Click Select from existing repository object and bind to add an operator based on an
existing workspace object. The object may have been previously defined or imported
into the workspace.

Either type the prefix to search for the object or select from the displayed list of objects
within the selected module.

To select multiple items, press the Ctrl key as you click each item. To select a group of
items located in a series, click the first object in your selection range, press the Shift
key, and then click the last object.

You can add operators based on workspace objects within the same module as the
mapping or from other modules. If you select a workspace object from another
module, the Mapping Editor creates a connector, if one does not already exist. The
connector establishes a path for moving data between the mapping location and the
location of the workspace object.

Using Pseudocolumns ROWID and ROWNUM in Mappings
You can use the pseudocolumns ROWID and ROWNUM in mappings. The ROWNUM
pseudocolumn returns a number indicating the order in which a row was selected
from a table. The ROWID pseudocolumn returns the rowid (binary address) of a row in
a database table.

You can use the ROWID and ROWNUM pseudocolumns in Table, View, and Materialized
View operators in a mapping. These operators contain an additional column called
COLUMN USAGE that is used to identify attributes used as ROWID or ROWNUM. For
normal attributes, this column defaults to TABLE USAGE. To use an attribute for
ROWID or ROWNUM values, set the COLUMN USAGE to ROWID or ROWNUM
respectively.

You can map a ROWID column to any attribute of data type ROWID, UROWID, or
VARCHAR2. You can map ROWNUM column to an attribute of data type NUMBER or to
any other data type that allows implicit conversion from NUMBER.

Note that ROWID and ROWNUM pseudocolumns are not displayed in the object editors
since they are not real columns.

Connecting Operators, Groups, and Attributes
After you select mapping source operators, operators that transform data, and target
operators, you are ready to connect them. Data flow connections graphically represent
how the data flows from a source, through operators, and to a target. The Mapping
Connection dialog box assists you in creating data flows between operators.

You can connect operators by any of the following methods:

■ Connecting Operators: Define criteria for connecting groups between two
operators.

■ Connecting Groups: Define criteria for connecting all the attributes between two
groups.

■ Connecting Attributes: Connect individual operator attributes to each other, one
at a time.

■ Using an Operator Wizard: For operators such as the Pivot operator and Name
and Address operator, you can use the wizard to define data flow connections.

Connecting Operators, Groups, and Attributes

Creating PL/SQL Mappings 5-15

■ Using the Mapping Connection Dialog Box: Define criteria for connecting
operators, groups, or attributes.

To display the Mapping Connection dialog box, right-click an operator, group, or
attribute, select Connect To and then the name of the operator to which you want
to establish a connection. The Mapping Connections dialog box is displayed.

For more information about using this dialog box, see "Using the Mapping
Connection Dialog Box" on page 5-16.

After you connect operators, data flow connections are displayed between the
connected attributes.

Figure 5–2 displays a mapping with attributes connected.

Figure 5–2 Connected Operators in a Mapping

Connecting Operators
You can connect one operator to another if there are no existing connections between
the operators. Both of the operators that you want to connect must be displayed in
their icon form.

You can also connect from a group to an operator. Hold down the left-mouse button on
the group, drag and then drop on the title of the operator.

To connect one operator to another:

1. Select the operator from which you want to establish a connection.

2. Click and hold down the left mouse button while the pointer is positioned over
the operator icon.

3. Drag the mouse away from the operator and toward the operator icon to which
you want to establish a connection.

As you drag, a line appears indicating the connection.

4. Release the mouse button over the target operator.

The Mapping Connection dialog box is displayed. Use this dialog box to specify
connections between groups and attributes within these groups as described in
"Using the Mapping Connection Dialog Box" on page 5-16.

Connecting Groups
When you connect groups, the Mapping Editor assists you by either automatically
copying the attributes or prompts you for more information as described in "Using the
Mapping Connection Dialog Box" on page 5-16.

To connect one group to another:

1. Select the group from which you want to establish a connection.

Connecting Operators, Groups, and Attributes

5-16 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

2. Click and hold down the left mouse button while the pointer is positioned over
the group.

3. Drag the mouse away from the group and towards the group to which you want
to establish a connection.

As you drag, a line appears indicating the connection.

4. Release the mouse button over the target group.

If you connect from an operator group to a target group containing attributes, the
Mapping Connection Dialog Box is displayed. Use this dialog box to specify
connections between attributes as described in "Using the Mapping Connection
Dialog Box" on page 5-16.

If you connect from one operator group to a target group with no existing
attributes, the Mapping Editor automatically copies the attributes and connects the
attributes. This is useful for designing mappings such as the one shown in
"Example: Using the Mapping Editor to Create Staging Area Tables" on page 5-35.

Connecting Attributes
You can draw a line from a single output attribute of one operator to a single input
attribute of another operator.

To connect attributes:

1. Click and hold down the left mouse button while the pointer is positioned over an
output attribute.

2. Drag the mouse away from the output attribute and toward the input attribute to
which you want data to flow.

As you drag the mouse, a line appears on the Mapping Editor canvas to indicate a
connection.

3. Release the mouse over the input attribute.

4. Repeat Steps 1 through 3 until you create all the required data flow connections.

You can also select more than one attribute in Step 1. To select more than one attribute,
hold down the Ctrl key and select attributes by clicking them. If you select multiple
source attributes you can only release the mouse over a group and not over an output
attribute. The Mapping Connection dialog box is displayed. Use this dialog box to
define the data flow between the source attributes and target attributes.

As you connect attributes, remember the following rules:

■ You cannot connect to the same input or inout attribute twice.

■ You cannot connect attributes within the same operator.

■ You cannot connect out of an input-only attribute nor can you connect into an
output-only attribute.

■ You cannot connect operators in such a way as to contradict an established
cardinality. Instead, use a Joiner operator.

Using the Mapping Connection Dialog Box
The Mapping Connection dialog box enables you to define connections between
operators in the mapping. Typically, mappings contain numerous operators that
implement the complex transformation logic required for your data loading process.
The operators that you want to connect may be situated far away from each other on

Connecting Operators, Groups, and Attributes

Creating PL/SQL Mappings 5-17

the mapping and thus require scrolling. Warehouse Builder provides an efficient
method to connect operators, groups, and attributes by using the Mapping Connection
dialog box.

Figure 5–3 displays the Mapping Connection Dialog box.

Figure 5–3 Mapping Connection Dialog Box

Complete the following sections to define connections between operators:

■ (Optional) Attribute Group to Connect

■ Connection Options

■ Messages

■ Connections

Attribute Group to Connect
Use this section to select the source and target groups between which you want to
establish connections. This section is displayed only if you try to connect a source
operator to a target group, a source group to a target operator, or a source operator to a
target operator.

Source Group The Source Group corresponds to the group on the source operator
from which data flows. The Source Group list contains all the output groups and
input/output groups in the source operator. Select the group from which you want to
create a data flow.

Target Group The Target Group corresponds to the group on the operator to which
data flows. The Target Group list contains the input groups and input/output groups
in the target operator. Select the group to which you want to create a data flow.

Once you select the Source Group and Target Group, you can specify connections
between attributes in the source and target groups. Thus, you can establish data flows
between all groups of the source and target operators at the same time.

Connecting Operators, Groups, and Attributes

5-18 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Connection Options
The Connection Options section enables you to use different criteria to automatically
connect all the source attributes to the target attributes.

Select one of the following options for connecting attributes:

■ Copy Source Attributes to Target Group and Match

■ Match By Position of Source and Target Attributes

■ Match By Name of Source and Target Attributes

After you select the option that you use to connect attributes in the groups, click
Preview to view the mapping between the source and target attributes in the
Connections section. Review the mappings and click OK once you are satisfied that
the mappings are what you wanted.

Copy Source Attributes to Target Group and Match

Use this option to copy source attributes to a target group that already contains
attributes. The Mapping Editor connects from the source attributes to the new target
attributes based on the selections that you make in the Connect Operators dialog box.
Warehouse Builder does not perform this operation on target groups that do not
accept new input attributes, such as dimension and cube target operators.

Match By Position of Source and Target Attributes

Use this option to connect existing attributes based on the position of the attributes in
their respective groups. The Mapping Editor connects all attributes in order until all
attributes of the target are matched. If the source operator contains more attributes
than the target, then the remaining source attributes are left unconnected.

Match By Name of Source and Target Attributes

Use this option to connect attributes with matching names. By selecting from the list of
options, you connect between names that do not match exactly. You can combine the
following options:

■ Ignore case differences: Considers the same character in lower-case and
upper-case a match. For example, the attributes FIRST_NAME and First_Name
match.

■ Ignore special characters: Specify characters to ignore during the matching
process. For example, if you specify a hyphen and underscore, the attributes
FIRST_NAME, FIRST-NAME, and FIRSTNAME all match.

■ Ignore source prefix, Ignore source suffix, Ignore target prefix, Ignore target
suffix: Specify prefixes and suffixes to ignore during matching. For example, if
you select Ignore source prefix and enter USER_ into the text field, then the source
attribute USER_FIRST_NAME matches the target attribute FIRST_NAME.

Note: If you have created any connections for the selected source or
target group, when you select a different group, Warehouse Builder
displays a warning asking if you want to save the current changes.

Connecting Operators, Groups, and Attributes

Creating PL/SQL Mappings 5-19

Messages
This section displays any informational messages that result from previewing the
connection options. Information such as certain source or target attributes not
connected due to unresolved conflicts is displayed in this section.

Connections
The Connections section displays the connections between the source attributes
belonging to the Source Group and the target attributes belonging to the Target Group.
Any existing connections between attributes of the Source Group and Target Group are
displayed in this section.

This section contains two tabs: Source Connections and Target Connections. Both tabs
display a spreadsheet containing the Source Attribute and Target Attribute columns.
The Source Attribute column lists all attributes, or the attributes selected on the
canvas, for the group selected as the Source Group. The Target Attribute column lists
all the attributes of the group selected as the Target Group. Any changes that you
make on the Source Connections tab or the Target Connections tab are immediately
reflected in the other tab.

Source Connections Tab

The Source Connections tab enables you to quickly establish connections from the
Source Group. The Target Attribute column on this tab lists the attributes from the
Target Group. Use this tab to specify the source attribute from which each target
attribute is connected. For each target attribute, map zero or one source attribute. To
connect a particular source attribute to the listed target attribute, for each target
attribute, enter the name of the source attribute in the corresponding Source Attribute
column.

As you begin typing an attribute name, Warehouse Builder displays a list containing
the source attributes whose names begin with the letters you type. If you see the
source attribute that you want to connect in this list, select the attribute by clicking it.
You can use wild cards such as * and ? to search for the source attributes from which
you want to create a data flow. You can also sort the columns listed under Target
Attribute column. When the attribute name contains the space or comma characters,
use double quotes to quote the name of the source attribute.

Target Connections Tab

The Target Connections tab enables you to quickly establish connections to the Target
Group. The Source Attribute column displays the list of attributes from the Source
Group. Use this tab to specify the source attributes from which each target attribute is
connected. For each source attribute, enter the name of one or more target attributes in
the corresponding Target Attribute column. To connect a source attribute to more than
one target attributes, type the names of the source attributes separated by a comma in
the Target Attribute column.

As you begin typing an attribute name, Warehouse Builder displays a list containing
the target attributes whose names begin with the letters you type. If the target attribute
that you want to connect to is displayed in this list, select the attribute by clicking it.
You can also use wild cards such as * and ? to search for target attributes to which you
want to create a data flow. You can sort the columns listed under Source Attribute
column.

Editing Operators

5-20 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Editing Operators
Each operator has an editor associated with it. Use the operator editor to specify
general and structural information for operators, groups, and attributes. In the
operator editor you can add, remove, or rename groups and attributes. You can also
rename an operator.

For attributes that can have an expression associated with them, such as attributes in
the output group of a Constant, Expression, or Aggregator operator, you can also edit
the expression specified.

Editing operators is different from assigning loading properties and conditional
behaviors. To specify loading properties and conditional behaviors, use the properties
windows as described in "Configuring Mappings" on page 5-25.

To edit an operator, group, or attribute:

1. Select an operator from the Mapping Editor canvas.

Or select any group or attribute within an operator.

2. Right-click and select Open Details.

The Mapping Editor displays the operator editor with the Name Tab, Groups Tab,
and Input and Output Tabs for each type of group in the operator.

Some operators include additional tabs. For example, the Match Merge operator
includes tabs for defining Match rules and Merge rules.

3. Follow the prompts on each tab and click OK when you are finished.

Name Tab
The Name tab displays the operator name and an optional description. You can
rename the operator and add a description. Name the operator according to the
conventions listed in "Rules for Naming Mappings" on page 5-10.

Groups Tab
Edit group information on the Groups tab.

Each group has a name, direction, and optional description. You can rename groups
for most operators but cannot change group direction for any of the operators. A
group can have one of these directions: Input, Output, Input/Output.

Depending on the operator, you can add and remove groups from the Groups tab. For
example, you add input groups to Joiners and output groups to Splitters.

Input and Output Tabs
The operator editor displays a tab for each type of group displayed on the Groups tab.
Each of these tabs displays the attribute name, data type, length, precision, scale,
seconds precision, and optional description. Certain operators such as the Table or
View operators have only the Input/Output tab, instead of separate Input and Output
tabs. Edit attribute information on these tabs.

Figure 5–4 shows an Output Attributes tab on the operator editor. In this example, the
operator is an Aggregator, with separate Input and Output tabs.

Editing Operators

Creating PL/SQL Mappings 5-21

Figure 5–4 Output Tab on the Operator Editor

The tab contains a table that you can use to define output attributes. Each row on this
tab represents an attribute. The Mapping Editor disables properties that you cannot
edit. For example, if the data type is NUMBER, you can edit the precision and scale but
not the length.

You can add, remove, and edit attributes. To add an attribute, click on the Attribute
column of an empty row, enter the attribute name and then provide the other attribute
details such as data type, length, and description. To delete an attribute, right-click the
grey cell to the left of the attribute and select Remove.

To assign correct values for data type, length, precision, and scale in an attribute,
follow PL/SQL rules. When you synchronize the operator, Warehouse Builder checks
the attributes based on SQL rules.

You can also change the order of the attributes listed in the Input and Output tabs.
Select the row representing the attribute and use the arrow buttons to the left of the
attributes to reorder attributes in a group. Alternatively, hold down the left-mouse
button until you see a cross-hair and then drag the row to the position you want.

Associating Expressions with Operator Attributes
Attributes in certain operators such as Expression, Joiner, Aggregator, and Lookup can
have an expression associated with them. For such attributes, use the Expression
column of the attribute to specify the expression used to create the attribute value. You
can directly enter the expression in the Expression column. Figure 5–4 displays the
Expression column for an output attribute in the Aggregator operator. To use the
Expression Builder interface to define your expression, click the Ellipsis button to the
right of the Expression column.

For example, in an Aggregator operator, you create output attributes that store the
aggregated source columns. Use the Expression column for an output attribute to
specify the expression used to create the attribute value.

Editing Operators

5-22 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Using Display Sets
A display set is a graphical representation of a subset of attributes. Use display sets to
limit the number of attributes visible in an operator and simplify the display of a
complex mapping.

By default, operators contain three predefined display sets: ALL, MAPPED, and
UNMAPPED. Table 5–1 describes the default display sets.

Defining Display Sets
You can define display sets for any operator in a mapping.

To define a display set:

1. Right-click an operator, and select Define Display Set.

The Display Set dialog box is displayed as shown in Figure 5–5.

Figure 5–5 Display Set Dialog Box

2. Click the row below UNMAPPED and enter a name and description for the new
display set.

3. All available attributes for the operator appear in section called Attributes of
selected display set. The Type column is automatically set to User defined.

Table 5–1 Default Sets

Display Set Description

ALL Includes all attributes in an operator

MAPPED Includes only those attributes in an operator that are connected to
another operator

UNMAPPED Includes only those attributes that are not connected to other attributes

Setting Mapping Properties

Creating PL/SQL Mappings 5-23

You cannot edit or delete a Predefined attribute set.

4. In the Include column, select each attribute that you want to include in the display
set.

Click Select All to include all attributes and Deselect All to exclude all the
attributes.

5. Click OK.

The group for the operator now lists only those attributes contained within the
Attribute Set selected for display.

Selecting a Display Set
If a group contains more than one display set, you can select a different display set
from a list using the Graph menu.

To select a display set:

1. Right-click a group in an operator.

2. Click Select Display Set and select the desired display set.

Setting Mapping Properties
After you define a mapping, you can use the Property Inspector to set properties for
the mapping.

You can set the following properties:

■ Mapping Properties: Properties that affect the entire mapping. For example, you
can set the Target Load Order parameter defines the order in which targets are
loaded when the mapping is executed.

■ Operator Properties: Properties that affect the operator as a whole. The properties
you can set depend upon the operator type. For example, the steps for using
Oracle source and target operators differ from the steps for using flat file source
and target operators.

■ Group Properties: Properties that affect a group of attributes. Most operators do
not have properties for their groups. Examples of operators that do have group
properties include the Splitter operator and the Deduplicator operator.

■ Attribute Properties: Properties that pertain to attributes in source and target
operators. Examples of attribute properties are data type, precision, and scale.

Setting Operator, Group, and Attribute Properties
When you select an operator, group, or attribute on the Mapping Editor canvas, its
associated properties are displayed in the Property Inspector. Set values for the
required properties using the Property Inspector. The properties that you can set are
documented in the chapters that discuss the operators.

Setting Mapping Properties

5-24 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Setting Mapping Properties
To set properties for a mapping, select the Mapping in the Projects Navigator. The
Property Inspector displays the properties of the mapping.

You can set values for the following properties: Business Name, Physical Name,
Description, Execution Type, Target Load Order, Max Chunk Iterator Count, and Stop
Chunking if no Data.

Use the Target Load Order configuration parameter to specify the order in which
targets in the mapping are loaded as described in "Specifying the Order in Which
Target Objects in a Mapping Are Loaded" on page 5-24.

Max Chunk Iterator Count
The Max Chunk Iterator property represents the limit for the number of mapping
execution iterations used in chunk processing. This property prevents an infinite loop
during mapping processing. The default value of this property is 50.

Stop Chunking if no Data
While processing the mapping, the mapping package keeps track of the number of
source rows that have been loaded by all the loading procedures. If the Stop Chunking
if no Data property is selected, and if the total number of source rows processed for a
given map execution iteration is 0, the iteration loop is terminated and the chunk
processing is done.

Specifying the Order in Which Target Objects in a Mapping Are Loaded
If your mapping includes only one target or is a SQL*Loader or ABAP mapping, target
load ordering does not apply. Accept the default settings and continue with your
mapping design.

When you design a PL/SQL mapping with multiple targets, Warehouse Builder
calculates a default ordering for loading the targets. If you define foreign key
relationships between targets, Warehouse Builder creates a default order that loads the
parent and then the child. If you do not create foreign key relationships or if a target
table has a recursive relationship, Warehouse Builder assigns a random ordering as
the default.

You can override the default load ordering by setting the mapping property Target
Load Order. If you make a mistake when reordering the targets, you can restore the
default ordering by selecting the Reset to Default option. Or you can select Cancel to
discard your changes to the target order.

To specify the loading order for multiple targets:

1. Click whitespace in the mapping canvas to view the mapping properties in the
Property Inspector.

See Also:

■ "Source and Target Operators" on page 25-1

■ "Data Flow Operators" on page 26-1

■ "Using the Name and Address Operator to Cleanse and Correct
Name and Address Data" on page 22-19

■ "Using the Match Merge Operator to Eliminate Duplicate Source
Records" on page 23-22

Configuring Mappings

Creating PL/SQL Mappings 5-25

If the Property Inspector is not displayed, select Property Inspector from the View
menu.

2. Go to the Target Load Order property and click the Ellipsis button on the right of
this property.

Warehouse Builder displays the Target Load Order dialog box in which TARGET2
is listed before TARGET1.

3. To change the loading order, select a target and use the buttons to move the target
up or down on the list.

Reset to Default
Use the Reset to Default button to instruct Warehouse Builder to recalculate the target
loading order. You may want to recalculate if you made an error reordering the targets
or if you assigned an order and later changed the mapping design such that the
original order became invalid.

Configuring Mappings
After you define mappings, you can configure them to specify the physical properties
of the mapping and the operators contained in the mapping. Configuring a mapping
enables you to control the code generation, so that Warehouse Builder produces
optimized code for the mapping and for your particular environment.

Steps to Configure Mappings
Use the following steps to configure mappings.

1. In the Projects Navigator, right-click the mapping and select Configure.

Warehouse Builder displays the Configuration tab that contains configuration
parameters for the mapping.

This tab contains the Deployable, Language, Generation Comments, and Referred
Calendar parameters. It also contains the Runtime Parameters and Code
Generation Options nodes. Additionally, each operator on the mapping is listed
under the node representing the object or operator type. For example, if your
mapping contains two tables and a Filter operator, the Table Operators node
displays the configuration parameters for the two tables and the Filter Operator
node displays the configuration parameters for the Filter operator.

2. Set the Deployable parameter to True.

3. Set Language to the type of code that you want to generate for the selected
mapping.

The options from which you can choose depend upon the design and use of the
operators in the mapping. Warehouse Builder provides the following options:
PL/SQL, SQL*PLUS, SQL*Loader, and ABAP (for an SAP source mapping).

4. If you want to schedule the mapping to run based on a previously defined
schedule, click the Ellipsis button on the Referred Calendar parameter.

The Referred Calendar dialog box is displayed. Any schedules created are listed
here. Select the schedule that you want to associate with the current mapping.

For instructions on creating and using schedules, see Chapter 11, "Scheduling ETL
Jobs".

Synchronizing Operators and Workspace Objects

5-26 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

5. Expand Code Generation Options to enable performance options that optimize
the code generated for the mapping.

For a description of each option, see "Code Generation Options" on page 24-5.

6. Expand Runtime Parameters to configure your mapping for deployment.

For a description of each runtime parameter, see "Runtime Parameters" on
page 24-1.

7. Go to the node for each operator in the mapping to set their physical properties.
The properties displayed under a particular node depend on the type of object. For
example, for tables listed under the Table Operators node, you can configure the
table parameters listed in "Configuring Tables" on page 2-48.

Synchronizing Operators and Workspace Objects
Many of the operators that you use in a mapping have corresponding definitions in
the Warehouse Builder workspace. This is true of source and target operators such as
table and view operators. This is also true of other operators, such as sequence and
transformation operators, whose definitions you may want to use across multiple
mappings. As you make changes to these operators, you may want to propagate those
changes back to the workspace object.

You have the following choices in deciding the direction in which to propagate
changes:

■ Synchronizing a Mapping Operator with its Associated Workspace Object

This enables you to propagate changes in the definition of a workspace object to
the mapping operator that is bound to the workspace object.

You can also synchronize all the operators in a mapping with their corresponding
definitions in the workspace as described in "Synchronizing All Operators in a
Mapping" on page 5-28.

■ Synchronizing a Workspace Object with a Mapping Operator

This enables you to propagate changes made to a mapping operator to its
corresponding workspace definition. You can select a single operator and
synchronize it with the definition of a specified workspace object.

Note that synchronizing is different from refreshing. The refresh command ensures
that you are up-to-date with changes made by other users in a multiuser environment.
Synchronizing matches operators with their corresponding workspace objects.

Synchronizing a Mapping Operator with its Associated Workspace Object
After you begin using mappings in a production environment, changes may be made
to the sources or targets that affect your ETL designs. Typically, the best way to
manage these changes is through the Metadata Dependency Manager described in
Chapter 14, "Managing Metadata Dependencies". Use the Metadata Dependency
Manager to automatically evaluate the impact of changes and to synchronize all
affected mappings at one time.

See Also:

■ "Sources and Targets Reference" on page 24-7 for information
about configuring sources and targets in a mapping

■ "Configuring Flat File Operators" on page 24-10 for information
about configuring mappings with flat file sources and targets

Synchronizing Operators and Workspace Objects

Creating PL/SQL Mappings 5-27

The Mapping Editor enables you to manually synchronize objects as described in this
section.

When Do You Synchronize from a Workspace Object to an Operator?
In the Mapping Editor, you can synchronize from a workspace object to an operator
for any of the following reasons:

■ To manually propagate changes: Propagate changes you made in a workspace
object to its associated operator. Changes to the workspace object can include
structural changes, attribute name changes, or attribute data type changes.

To automatically propagate changes in a workspace object across multiple
mappings, see Chapter 14, "Managing Metadata Dependencies".

■ To synchronize an operator with a new workspace object: You can synchronize
an operator with a new workspace object if, for example, you migrate mappings
from one version of a data warehouse to a newer version and maintain different
object definitions for each version.

■ To create a prototype mapping using tables: When working in the design
environment, you could choose to design the ETL logic using tables. However, for
production, you may want to the mappings to source other workspace object types
such as views, materialized views, or cubes.

Synchronizing Physical and Business Names
While synchronizing from a workspace object to an operator, you can specify if the
physical and business names of the operator, groups, and attributes should be
synchronized. By default, the bound name of the operator, groups and attributes will
be derived from the physical name of the corresponding workspace object. The
synchronization behavior is controlled by a preference called Synchronize Name
Changes listed under the Naming node of the Preferences dialog box.

If you select the Synchronize Name Changes preference under the Naming node of the
Preferences dialog box, a synchronize operation on any operator synchronizes the
physical and business names of the operator, groups, and attributes. If you deselect the
Synchronize Name Changes preference, the physical and business names of the
operator, groups, and attributes are not synchronized.

Steps to Synchronize from a Workspace Object to an Operator
Use the following steps to synchronize an operator with the workspace object to which
it is bound.

1. On the Mapping Editor canvas, select the operator that you want to synchronize.
When the operator is displayed in maximized form, select the operator by clicking
the operator name.

2. Right-click and select Synchronize.

The Synchronize dialog box is displayed.

3. In the Repository Object with which to Synchronize field, select the workspace
object with which you want to synchronize the mapping operator.

By default, the workspace object to which the mapping operator was originally
bound is displayed in this field.

4. Under Direction of Synchronization, select Inbound.

See Also: Oracle Warehouse Builder Concepts for more information
about Warehouse Builder preferences

Synchronizing Operators and Workspace Objects

5-28 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

5. In the Matching Strategy field, select the matching strategy to be used during
synchronization.

For more information about the matching strategy, see "Matching Strategies" on
page 5-30.

6. In the Synchronize strategy field, select the synchronization strategy.

Select Replace to replace the mapping operator definition with the workspace
object definition. Select Merge to add any new metadata definitions and overwrite
existing metadata definitions if they differ from the ones in the workspace object.

7. Click OK to complete the synchronization.

Synchronizing All Operators in a Mapping
You can synchronize all operators in a mapping with their bound workspace objects
using a single step. To do this, open the mapping containing the operators to be
synchronized. With the Mapping Editor canvas as the active panel, from the Edit
menu, select Synchronize All. The Synchronize All panel is displayed. Use this panel
to define synchronization options.

The Synchronize All panel displays one row for each mapping operator that is bound
to a workspace object. Select the box to the left of all the object names which you want
to synchronize with their bound workspace objects. For each operator, specify values
in the following columns:

■ From Repository: Displays the workspace object to which the mapping operator is
bound.

To modify the workspace object to which an operator is bound, click the Ellipsis
button to the right of the workspace object name. The Source dialog box is
displayed. Click the list on this page to select the new workspace object and click
OK.

■ To Mapping: Displays the name of the mapping operator. This field is not
editable.

■ Matching Strategy: Select the matching strategy used while synchronizing
operators. For more information about matching strategies, see "Matching
Strategies" on page 5-30.

■ Synchronize Strategy: Select the synchronization strategy used while
synchronizing operators. You can select Replace or Merge as the synchronize
strategy.

Synchronizing a Workspace Object with a Mapping Operator
As you make changes to operators in a mapping, you may want to propagate those
changes to a workspace object. By synchronizing, you can propagate changes from the
following operators: Table, View, Materialized View, Transformation, and Flat File.

Synchronize from the operator to a workspace object for any of the following reasons:

■ To propagate changes: Propagate changes that you made in an operator to its
associated workspace object. When you rename the business name for an operator
or attribute, Warehouse Builder propagates the first 30 characters of the business
name as the bound name.

■ To replace workspace objects: Synchronize to replace an existing workspace
object.

Synchronizing Operators and Workspace Objects

Creating PL/SQL Mappings 5-29

Synchronizing from an operator has no impact on the dependent relationship between
other operators and the workspace object. Table 5–2 lists the operators from which you
can synchronize.

Steps to Synchronize a Workspace Object with a Mapping Operator
Use the following steps to synchronize from a mapping operator to a workspace
object. Synchronization causes the workspace object to be updated with changes made
to the mapping operator after the mapping was created.

1. On the Mapping Editor canvas, select the operator whose changes you want to
propagate to the bound workspace object.

2. From the Edit menu, select Synchronize. Or, right-click the header of the operator
and select Synchronize.

The Synchronize Operator dialog box is displayed.

3. In the Repository Object with which to Synchronize field, select the workspace
object that should be updated with the mapping operator definition changes.

By default, Warehouse Builder displays the workspace object to which the
mapping operator was initially bound.

4. In the Direction of Synchronization field, select Outbound.

5. (Optional) In the Matching strategy field, select the matching strategy used during
synchronization. See "Matching Strategies" on page 5-30.

6. (Optional) In the Synchronize Strategy field select the synchronization strategy.

Select Replace to replace the workspace object definition with the mapping
operator definition. Select Merge to add any new metadata definitions and

Table 5–2 Outbound Synchronize Operators

Mapping Object

Create
Workspace
Objects

Propagate
Changes

Replace
Workspace
Objects Notes

External Table Yes Yes Yes Updates the workspace external
table only and not the flat file
associated with the external table.
See Oracle Warehouse Builder Sources
and Targets Guide for details.

Flat File Yes Yes No Creates a new, comma-delimited
flat file for single record type flat
files only.

Mapping Input
Parameter

Yes Yes Yes Copies input attributes and data
types as input parameters

Mapping Output
Parameter

Yes Yes Yes Copies output attributes and data
types as return specification for the
function

Materialized
View

Yes Yes Yes Copies attributes and data types as
columns

Table Yes Yes Yes Copies attributes and data types as
columns. Constraint properties are
not copied

Transformation Yes Yes Yes

View Yes Yes Yes Copies attributes and data types as
columns

Synchronizing Operators and Workspace Objects

5-30 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

overwrite existing metadata definitions if they differ from the ones in the mapping
operator.

7. Click OK.

Advanced Options for Synchronizing
Use the Synchronization Plan dialog box to view and edit the details of how
Warehouse Builder synchronizes your selected objects. After you select from the
Matching Strategies, click Refresh Plan to view the actions that Warehouse Builder
takes.

In the context of synchronizing, source refers to the object from which to inherit
differences and target refers to the object to be changed.

For example, in Figure 5–6, the flat file PAYROLL_WEST is the source and the Flat File
operator PAYROLL is the target. Therefore, Warehouse Builder creates new attributes
for the PAYROLL operator to correspond to fields in the flat file PAYROLL_WEST.

Figure 5–6 Advanced Synchronizing Options

Matching Strategies
Set the matching strategy that determines how Warehouse Builder compares an
operator to a workspace object. If synchronization introduces changes such as adding
or deleting attributes in an operator, Warehouse Builder refreshes the Mapping Editor.
If synchronization removes an operator attribute, data flow connections to or from the
attribute are also removed. If synchronization adds an operator attribute, the Mapping
Editor displays the new attributes at the end of the operator. Data flow connections
between matched attributes are preserved. If you rename an attribute in the source
object, this is interpreted as if the attribute were deleted and a new attribute added.

You can specify the following strategies for synchronizing an object in a mapping:

■ Match by Object Identifier

■ Match by Bound Name

■ Match by Position

Match by Object Identifier

Example: Using a Mapping to Load Transaction Data

Creating PL/SQL Mappings 5-31

This strategy compares the unique object identifier of an operator attribute with that of
a workspace object. The Match by object identifier is not available for synchronizing an
operator and workspace object of different types, such as a View operator and a
workspace table.

Use this strategy if you want the target object to be consistent with changes to the
source object and if you want to maintain separate business names despite changes to
physical names in the target object.

Warehouse Builder removes attributes from the target object that do not correspond to
attributes in the source object. This can occur when an attribute is added to or
removed from the source object.

Match by Bound Name

This strategy matches the bound names of the operator attributes to the physical
names of the workspace object attributes. Matching is case-sensitive.

Use this strategy if you want bound names to be consistent with physical names in the
workspace object. You can also use this strategy with a different workspace object if
there are changes in the workspace object that would change the structure of the
operator.

Warehouse Builder removes attributes of the operator that cannot be matched with
those of the workspace object. Attributes of the selected workspace object that cannot
be matched with those of the operator are added as new attributes to the operator.
Because bound names are read-only after you have bound an operator to a workspace
object, you cannot manipulate the bound names to achieve a different match result.

Match by Position

This strategy matches operator attributes with columns, fields, or parameters of the
selected workspace object by position. The first attribute of the operator is
synchronized with the first attribute of the workspace object, the second with the
second, and so on.

Use this strategy to synchronize an operator with a different workspace object and to
preserve the names of the attributes in the operator. This strategy is most effective
when the only changes to the workspace object are the addition of extra columns,
fields, or parameters at the end of the object.

If the target object has more attributes than the source object, then Warehouse Builder
removes the excess attributes. If the source object has more attributes than the target
object, Warehouse Builder adds the excess attributes as new attributes.

Example: Using a Mapping to Load Transaction Data

Scenario
Your company records all its transactions as they occur, resulting in inserts, updates,
and deletes, in a flat file called record.csv. These transactions must be processed in
the exact order they were stored. For example, if an order was first placed, then
updated, then canceled and reentered, this transaction must be processed exactly in
the same order.

An example data set of the source file record.csv is defined as:

Action,DateTime,Key,Name,Desc
I,71520031200,ABC,ProdABC,Product ABC
I,71520031201,CDE,ProdCDE,Product CDE

Example: Using a Mapping to Load Transaction Data

5-32 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

I,71520031202,XYZ,ProdXYZ,Product XYZ
U,71620031200,ABC,ProdABC,Product ABC with option
D,71620032300,ABC,ProdABC,Product ABC with option
I,71720031200,ABC,ProdABC,Former ProdABC reintroduced
U,71720031201,XYZ,ProdXYZ,Rename XYZ

You want to load the data into a target table such as the following:

SRC_TIMESTA KEY NAME DESCRIPTION
----------- --- ------- ---------------------------
71520031201 CDE ProdCDE Product CDE
71720031201 XYZ ProdXYZ Rename XYZ
71720031200 ABC ProdABC Former ProdABC reintroduced

You must create ETL logic to load transaction data in a particular order using
Warehouse Builder.

Solution
Warehouse Builder enables you to design ETL logic and load the data in the exact
temporal order in which the transactions were stored at the source. To achieve this
result, you design a mapping that orders and conditionally splits the data before
loading it into the target. Then, you configure the mapping to generate code in
row-based operating mode. In row-based operating mode, Warehouse Builder
generates code to process the data row by row using if-then-else constructions, as
shown in the following example.

CURSOR
 SELECT
 "DATETIME$1"
 FROM
 "JOURNAL_EXT"
 ORDER BY "JOURNAL_EXT"."DATETIME" ASC
LOOP
 IF "ACTION" = 'I’ THEN
 INSERT this row
 ELSE
 IF "ACTION" = 'U’ THEN
 UPDATE this row
 ELSE
 DELETE FROM
 "TARGET_FOR_JOURNAL_EXT"
END LOOP;

This ensures that all consecutive actions are implemented in sequential order and the
data is loaded in the order in which the transaction was recorded.

Step 1: Import and Sample the Source Flat File, record.csv
In this example, the flat file record.csv stores all transaction records and a
timestamp. Import this flat file from your source system using the Metadata Import
Wizard. Define the metadata for the flat file in Warehouse Builder using the Flat File
Sample Wizard.

Note: You can replace this flat file with a regular table if your system
is sourced from a table. In this case, skip to Step 3: Design the
Mapping.

Example: Using a Mapping to Load Transaction Data

Creating PL/SQL Mappings 5-33

Step 2: Create an External Table
To simplify the use of a sampled flat file object in a mapping, create an external table
(JOURNAL_EXT) using the Create External Table Wizard, based on the flat file
imported and sampled in Step 1: Import and Sample the Source Flat File, record.csv.

The advantage of using an external table instead of a flat file is that it provides you
direct SQL access to the data in your flat file. Hence, there is no need to stage the data.

Step 3: Design the Mapping
In this mapping, you move the transaction data from an external source, through an
operator that orders the data, followed by an operator that conditionally splits the data
before loading it into the target table.

Figure 5–7 shows you how the source is ordered and split.

Figure 5–7 ETL Design

The Sorter operator enables you to order the data and process the transactions in the
exact order in which they were recorded at the source. The Splitter operator enables
you to conditionally handle all the inserts, updates, and deletes recorded in the source
data by defining a split condition that acts as the if-then-else constraint in the
generated code. The data is conditionally split and loaded into the target table. In this
mapping, the same target table is used three times to demonstrate this conditional
loading. The mapping tables TARGET1, TARGET2, and TARGET3 are all bound to the
same workspace table TARGET. All the data goes into a single target table.

The following steps show you how to build this mapping.

Step 4: Create the Mapping
Create a mapping called LOAD_JOURNAL_EXT using the Create Mapping dialog box.
Warehouse Builder then opens the Mapping Editor where you can build your
mapping.

Step 5: Add an External Table Operator
Drag and drop a mapping external table operator onto the Mapping Editor canvas and
bind it to the external table JOURNAL_EXT.

Step 6: Order the Data
Add the Sorter operator to define an order-by clause that specifies the order in which
the transaction data must be loaded into the target.

See Also: "Sorter Operator" on page 26-35 for more details about
using the Sorter operator.

Example: Using a Mapping to Load Transaction Data

5-34 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Figure 5–8 shows you how to order the table based on the timestamp of the transaction
data in ascending order.

Figure 5–8 Order By Clause Dialog Box

Step 7: Define a Split Condition
Add the Splitter operator to conditionally split the inserts, updates, and deletes stored
in the transaction data. This split condition acts as the if-then-else constraint in the
generated code.

Figure 5–9 shows how to join the SOURCE operator with the ORDERBY operator that
is linked to the Splitter operator.

Figure 5–9 Adding the Splitter Operator

Define the split condition for each type of transaction. For outgroup INSERT_DATA,
define the split condition as INGRP1.ACTION = 'I'. For UPGRADE_DATA, define
the split condition as INGRP1.ACTION = 'U'. In Warehouse Builder, the Splitter
operator contains a default group called REMAINING_ROWS that automatically
handles all Delete (’D’) records.

Example: Using the Mapping Editor to Create Staging Area Tables

Creating PL/SQL Mappings 5-35

Step 8: Define the Target Tables
Use the same workspace target table three times for each type of transaction: once for
INSERT_DATA, once for UPDGRADE_DATA, and once for REMAINING_ROWS.

Step 9: Configure the Mapping LOAD_JOURNAL_EXT
After you define the mapping, you must configure the mapping to generate code.
Because the objective of this example is to process the data strictly in the order in
which it was stored, you must select row-based as the default operating mode. In this
mode, the data is processed row by row and the insert, update, and delete actions on
the target tables occur in the exact order in which the transaction was recorded at the
source.

Do not select set-based mode as Warehouse Builder then generates code that creates
one statement for all insert transactions, one statement for all update transactions, and
a third one for all delete transactions. The code then calls these procedures one after
the other, completing one action completely before following up with the next action.
For example, it first handles all inserts, then all updates, and then all deletes.

To configure a mapping for loading transaction data:

1. From the Projects Navigator, right-click the LOAD_JOURNAL_EXT mapping and
select Configure.

2. Expand the Runtime parameters node and set the Default Operating Mode
parameter to Row based.

In this example, accept the default value for all other parameters. Validate the
mapping before generating the code.

Step 10: Generate Code
After you generate the mapping, Warehouse Builder displays the results in the Log
window.

When you inspect the code, you will see that Warehouse Builder implements all
consecutive actions in row-based mode. This means that the data is processed row by
row and Warehouse Builder evaluates all conditions in sequential order using
if-then-else constructions. The resulting target table thus maintains the sequential
integrity of the transactions recorded at source.

Example: Using the Mapping Editor to Create Staging Area Tables
You can use the Mapping Editor with an unbound table operator to quickly create
staging area tables.

The following instructions describe how to create a staging table based on an existing
source table. You can also use these instructions to create views, materialized views,
flat files, and transformations.

To map a source table to a staging table:

1. In the Mapping Editor, add a source table.

From the menu bar, select Graph, then Add, then Data Sources/Targets, and then
Table Operator. Alternatively, drag and drop the source table from the Projects
Navigator onto the Mapping Editor canvas.

2. Use the Add Table Operator dialog box to select and bind the source table
operator in the mapping. From the Add Table Operator dialog box, select Create
unbound operator with no attributes.

Using Pluggable Mappings

5-36 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

The mapping should now resemble Figure 5–10, with one source table and one
staging area table without attributes.

Figure 5–10 Unbound Staging Table without Attributes and Source Table

3. With the mouse pointer positioned over the group in the source operator, click and
hold down the mouse button.

4. Drag the mouse to the staging area table group.

Warehouse Builder copies the source attributes to the staging area table and
connects the two operators.

5. In the Mapping Editor, select the unbound table that you added to the mapping.
Right-click and select Create and Bind.

Warehouse Builder displays the Create And Bind dialog box.

6. In the Create in field, specify the target module in which to create the table.

Warehouse Builder creates the new table in the target module that you specify.

Using Pluggable Mappings
You can reuse the data flow of a mapping by creating a pluggable mapping around the
portion of the flow that you want to reuse. A pluggable mapping is a reusable grouping
of mapping operators that works as a single operator. It is similar to the concept of a
function in a programming language and is a graphical way to define a function.

Once defined, a pluggable mapping appears as a single mapping operator, nested
inside a mapping. You can reuse a pluggable mapping more than once in the same
mapping, or in other mappings. You can include pluggable mappings within other
pluggable mappings.

Like any operator, a pluggable mapping has a signature consisting of input and output
attributes that enable you to connect it to other operators in various mappings. The
signature is similar to the input and output requirements of a function in a
programming language.

A pluggable mapping can be either reusable or embedded:

■ Reusable pluggable mapping: A pluggable mapping is reusable if the metadata it
references can exist outside of the mapping in question. You can store reusable
pluggable mappings either as standalone pluggable mappings, which are private
for your use, or in folders (libraries). Users who have access to these folders can
use the pluggable mappings as templates for their work.

■ Embedded pluggable mapping: A pluggable mapping is embedded if the
metadata it references is owned only by the mapping or pluggable mapping in
question. An embedded pluggable mapping is not stored as either a standalone

See Also: Oracle Warehouse Builder Concepts for more information
about pluggable mappings.

Using Pluggable Mappings

Creating PL/SQL Mappings 5-37

mapping or in libraries on the Globals Navigator. It is stored only within the
mapping or the pluggable mapping that owns it, and you can access it only by
editing the object that owns it. To validate or generate the code for an embedded
pluggable mapping, you must validate or generate the code for the object that
owns it.

Creating Pluggable Mappings
Pluggable mappings are usually predefined and used when required. You can create
pluggable mappings either from within a mapping by using the Mapping Editor, or
from the navigation tree by using the wizard. The wizard is the faster way to create a
pluggable mapping because it makes some default choices and guides you through
fewer choices. You can make additional choices later in the Pluggable Mapping Editor.
The editor presents you with all the settings in a series of tabs.

The Pluggable Mappings node in the navigation tree contains the following two
nodes:

■ Standalone: Contains standalone pluggable mappings

■ Pluggable Mapping Libraries: Contains a set of pluggable mappings providing
related functionality that you would like to publish as a library.

You can create pluggable mappings under either of these nodes.

Creating Standalone Pluggable Mappings
1. In the Projects Navigator, expand the project node and then the Pluggable

Mappings node.

2. Right-click Standalone, and select New Pluggable Mapping.

The Create Pluggable Mapping Wizard is displayed.

3. On the Name and Description page, enter a name and an optional description for
the pluggable mapping. Click Next.

4. On the Signature Groups page, one input signature group INGRP1 and one output
signature group OUTGRP1 are displayed. Create any additional input or output
signature groups as described in "Signature Groups" on page 5-38. Click Next.

5. On the Input Signature page, define the input signature attributes for the
pluggable mapping as described in "Input Signature" on page 5-38. Click Next.

6. On the Output Signature page, define the output signature attributes for the
pluggable mapping as described in "Output Signature" on page 5-38. Click Next.

7. On the Summary page, review the options that you entered using the wizard.
Click Back to modify an option. Click Finish to create the pluggable mapping.

Warehouse Builder opens the Pluggable Mapping Editor and displays the name of
the pluggable mapping on the title bar.

8. Use the Pluggable Mapping Editor to add the required operators and create a data
flow between the operators. For more information, see "Adding Operators to
Mappings" on page 5-12.

A pluggable mapping is considered as an operator by Warehouse Builder when it is
used in a mapping. You can insert a pluggable mapping into any mapping. To use a
pluggable mapping within a mapping, drag and drop the Pluggable Mapping
operator from the Component Palette onto the canvas. The Add Pluggable Mapping
dialog box is displayed. Select the required pluggable mapping and add it to the
mapping.

Using Pluggable Mappings

5-38 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Signature Groups
The signature is a combination of input and output attributes flowing to and from the
pluggable mapping. Signature groups are a mechanism for grouping the input and
output attributes.

A pluggable mapping must have at least one input or output signature group. Most
pluggable mappings are used in the middle of a logic flow and have input as well as
output groups.

■ To create an additional signature group, click an empty cell in the Group column,
enter the name of the group, and specify whether the group is an input or output
group using the Direction column. You can enter an optional description for the
column in the Description column.

■ To remove a signature group, right-click the grey cell to the left of the group name
and select Delete.

Click Next to continue with the wizard.

Input Signature
The input signature is the combination of input attributes that flow into the pluggable
mapping. Define the input attributes for each input signature group that you created.

If you defined multiple input signature groups, select the group to which you want to
add attributes from the Group list box. To add an attribute, click an empty cell in the
Attribute column and enter an attribute name. Use the Data Type field to specify the
data type of the attribute. Also specify other details for the attribute such as length,
precision, scale, and seconds precision by clicking the corresponding field and using
the arrows on the field or typing in a value. Note that some of these fields are disabled
depending on the data type you specify.

To remove an attribute, right-click the grey cell to the left of the attribute and select
Delete.

Click Next to continue with the wizard.

Output Signature
The output signature is the combination of output attributes that flow out of the
pluggable mapping. Define the output attributes for each output signature group that
you created.

If you defined multiple output signature groups, select the group to which you want
to add attributes from the Group list box. To add an attribute, click an empty cell in the
Attribute column and enter the attribute name. Use the Data Type field to specify the
data type of the attribute. Provide additional details about the attribute such as length,
precision, and scale by clicking the corresponding field and using the arrows or typing
the values. Note that some of these fields are disabled depending on the data type you
specify.

To remove an attribute, right-click the grey cell to the left of the attribute name and
select Delete.

Click Next to continue with the wizard.

You can also add an Input Signature or an Output Signature from the palette of the
Pluggable Mapping Editor. Note that a pluggable mapping can have only one Input
Signature and one Output Signature. Also, pluggable mapping Input and Output
signatures can only be added within pluggable mappings. They cannot be added to
normal mappings.

Using Pluggable Mappings

Creating PL/SQL Mappings 5-39

Creating Pluggable Mapping Folders
A pluggable mapping folder is a container for a set of related pluggable mappings.
You can keep your pluggable mappings private, or you can place them into folders
and then publish the folders so that others can access them for their design work.

To create a pluggable mapping folder:

1. In the Projects Navigator, expand the project node and then the Pluggable
Mappings node.

2. Right-click the Pluggable Mapping Folders node and select New Pluggable
Mapping Folder.

The Create Pluggable Mapping Folder dialog box is displayed.

3. Enter a name and an optional description for the pluggable mapping folder.

If you want to start the Create Pluggable Mapping wizard to create a pluggable
mapping immediately after you create this pluggable mapping folder, select
Proceed to Pluggable Mapping Wizard.

4. Click OK.

The library is displayed in the Projects Navigator. Create individual pluggable
mappings within this library as described in "Creating Standalone Pluggable
Mappings" on page 5-37.

You can also move a pluggable mapping to any library on the tree.

Creating User Folders Within Pluggable Mapping Libraries
Within a pluggable mapping library, you can create user folders to group pluggable
mappings using criteria such as product line, functional groupings, or
application-specific categories.

User folders can contain user folders and other pluggable mappings. There is no limit
on the level of nesting of user folders. You can also move, delete, edit, or rename user
folders.

You can move or copy a user folder and its contained objects to the same pluggable
mapping library, to any user folder belonging to the same library, or to a user folder
belonging to a different library.

Deleting a user folder removes the user folder and all its contained objects from the
repository.

To create a user folder within a pluggable mapping library:

1. Right-click the pluggable mapping library or the user folder under which you
want to create the user folder and select New.

The New Gallery dialog box is displayed.

2. In the Items section, select User Folder.

The Create User Folder dialog box is displayed.

3. Enter a name for the user folder and click OK.

The user folder is created and added to the tree.

To create a pluggable mapping within a user folder:

1. Right-click the user folder and select New.

The New Gallery dialog box is displayed.

Copying Operators Across Mappings and Pluggable Mappings

5-40 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

2. In the Items section, select Pluggable Mapping.

To create a new user folder within this user folder, select User Folder.

3. Click OK.

If you selected Pluggable Mapping in Step 2, the Create Pluggable Mapping Wizard is
displayed. If you selected User Folder in Step 2, the Create User Folder dialog box is
displayed.

You can move pluggable mappings from within a user folder or a pluggable mapping
library to the Standalone node or to a different user folder or library. To move,
right-click the pluggable mapping, select Cut. Right-click the user folder or pluggable
mapping library to which you want to copy the pluggable mapping and select Paste.

Copying Operators Across Mappings and Pluggable Mappings
Operators enable you to create user-defined transformation logic in a mapping or
pluggable mapping. Sometimes, you may want to reuse an operator that you
previously defined in another mapping or pluggable mapping. Warehouse Builder
supports copy-and-paste reuse of existing transformation logic, defined using
operators or operator attributes, in other mappings or pluggable mappings. In the
remainder of this section, the term mappings includes both mappings and pluggable
mappings.

You can reuse transformation logic by copying the operator or operator attributes from
the source mapping and pasting them into the required mapping. You can also copy
and paste operator groups (input, output, and input/output).

Steps to Copy Operators, Groups, or Attributes
Use the following steps to copy operators, groups, and attributes defined in a mapping
to other mappings within the same project.

1. Open the mapping containing the operator, group, or attributes that you want to
copy. This is your source mapping.

See "Steps to Open a Previously Created Mapping" on page 5-10.

2. Open the mapping into which you want to copy the operator, group, or attributes.
This is your target mapping.

3. In the source mapping, select the operator, group, or attribute. From the Edit
menu, select Copy. To select multiple attributes, hold down the Ctrl key while
selecting attributes.

or

Right-click the operator, group, or attribute and select Copy. If you selected
multiple attributes, ensure that you hold down the Ctrl key while right-clicking.

4. In the target mapping, paste the operator, group, or attributes.

Note: If you do not require the operator, group, or attributes in the
source mapping, you can choose Cut instead of Copy. Cutting
removes the object from the source mapping.

Cut objects can be pasted only once, whereas copied objects can be
pasted multiple times.

Copying Operators Across Mappings and Pluggable Mappings

Creating PL/SQL Mappings 5-41

■ To paste an operator, select Paste from the Edit menu. Or, right-click any blank
space on the canvas and select Paste from the shortcut menu.

■ To paste a group, first select the operator into which you want to paste the
group and then select Paste from the Edit menu. Or, right-click the operator
into which you want to paste the group and select Paste from the shortcut
menu.

■ To paste attributes, select the group into which you want to paste the attribute
and then select Paste from the Edit menu. Or, right-click the group into which
you want to paste the group and select Paste from the shortcut menu.

When you copy and paste an operator, the new operator has a UOID that is different
from the source operator.

If the target mapping already contains an operator with the same name as the one that
is being copied, an _n is appended to the name of the new operator. Here, n represents
a sequence number that begins with 1.

Information Copied Across Mappings
When you copy an operator, group, or attribute to a target mapping, the following
information is copied.

■ Object binding details

■ Display sets details

■ Physical and logical properties of operators and attributes

If there are multiple configurations defined for the object, details of all
configurations are copied.

Limitations of Copying Operators, Groups, and Attributes
Following are the limitations of copying operators, groups, and attributes:

■ You can copy operators, groups, or attributes from a mapping and paste them into
another mapping within the same project only.

■ Any connections that existed between the operator, group, or attributes in the
source mapping are not copied to the target mapping. Only the operator, group, or
attributes are pasted into the target mapping.

■ For pluggable mappings, the connections between child operators within the
source pluggable mapping are copied to the target mapping.

■ Group properties of the source operator are not copied to the group in the target
operator. However, all the attributes contained in the group are copied.

■ Before you copy and paste a group from a source operator to a target operator, you
must create the group in the target operator. The group is not created when you
perform a paste operation.

Note: When you copy an attribute and paste it into an operator that
is of a different type than the source operator, only the name and data
type of the operator are copied. No other details are copied.

Note: Copying and pasting a large number of operators may take a
considerable amount of time.

Grouping Operators in Mappings and Pluggable Mappings

5-42 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Grouping Operators in Mappings and Pluggable Mappings
Complex mappings and pluggable mappings contain many operators that are used to
perform the required ETL task. Typically, each data transformation task may use one
or more operators, which results in mappings that look cluttered and are difficult to
comprehend. Trying to view all the operators at once means that each operator
appears very small and the names are unreadable. Thus, grouping operators that
perform related transformation tasks into separate folders helps reveal the overall
transformation logic performed in the mapping. Warehouse Builder provides a
method to group a set of operators into a folder so that unnecessary operators are
hidden from the mapping canvas. In the remainder of this section, the term mappings
refers to both mappings and pluggable mappings.

Grouping less interesting operators into a collapsible folder allows you to focus on the
components that are important at a given time. It also uses less space on the canvas,
thus enabling you to easily work on the mapping. When required, you can ungroup
the folder to view or edit the operators that it contains.

Mappings can contain more than one grouped folder. You can also create nested
folders in which one folder contains a set of mapping operators and one or more
folders.

Steps to Group Operators in Mappings and Pluggable Mappings
Use the following steps to group operators in mappings and pluggable mappings.

1. Open the mapping in which you want to group operators.

See "Steps to Open a Previously Created Mapping" on page 5-10.

2. Select the operators that you want to group.

To select multiple objects, hold down the Ctrl key while selecting objects. Or, hold
down the left-mouse button and draw a rectangle that includes the objects you
want to select.

3. In the toolbar at the top of the Mapping Editor canvas, click the Group Selected
Objects icon. Or, from the Graph menu, select Group Selected Objects.

The selected operators are grouped into a folder, and the collapsed folder is
displayed in the Mapping Editor. A default name, such as Folder1, is used for the
folder.

4. (Optional) Rename the folder so that the name is more intuitive and reflects the
task that the group of operators performs.

To rename the folder:

a. Right-click the folder and select Open Details.

b. In the Edit Folder dialog box, enter the name of the folder in the Name field
and click OK.

Viewing the Contents of a Folder
When you group operators to create a folder for the selected operators, you can view
the operators contained in the folder using one of the following methods.

■ Use the tooltip for the folder

Position your mouse over the folder. The tooltip displays the operators contained
in the folder.

Grouping Operators in Mappings and Pluggable Mappings

Creating PL/SQL Mappings 5-43

■ Use Spotlighting to view folder contents

Select the folder and click the Spotlight Selected Objects icon from the toolbar. Or,
select the folder and choose Spotlight Selected Objects from the Graph menu.
The folder is expanded, and the operators it contains are displayed. All other
operators in the mapping are hidden. This is called spotlighting. For more
information about spotlighting, see "Spotlighting Selected Operators" on
page 5-43.

■ Double-click the folder

Double-click the folder to expand it. All operators contained in the folder are
displayed and the surrounding operators in the mapping are moved to
accommodate the folder contents.

Steps to Ungroup Operators in Mappings and Pluggable Mappings
Use the following steps to ungroup operators.

1. Open the mapping in which you want to ungroup operators.

See "Steps to Open a Previously Created Mapping" on page 5-10.

2. Select the folder that you want to ungroup.

You can select multiple folders by holding down the Ctrl key and selecting all the
folders.

3. In the toolbar, click the Ungroup Selected Objects icon. Or, from the Graph menu,
select Ungroup Selected Objects.

The operators that were grouped are now displayed individually on the Mapping
Editor.

Spotlighting Selected Operators
Spotlighting enables you to view only selected operators and their connections. All
other operators and their connections are temporarily hidden. You can perform
spotlighting on a single operator, a group of operators, a single folder, a group of
folders, or any combination of folders and operators. When you select objects for
spotlighting, the Mapping Editor layout is redisplayed such that the relationships
between the selected objects are displayed clearly. The edges between spotlighted
components are visible. However, edges between spotlighted components and other
nonselected components are hidden.

To spotlight a folder containing grouped operators, in the Mapping Editor, select the
folder and click the Spotlight Selected Items icon in the toolbar. The folder is expanded
and all the operators it contains are displayed. Click the Spotlight Selected Objects icon
again to toggle the spotlighting mode. The folder will appear collapsed again and the
operators it contains are hidden.

When in Spotlight mode, you can perform all normal mapping operations, such as
moving or resizing operators, modifying operator properties, deleting spotlighted
operators, creating new operators, and creating connections between operators. You
can perform any operation that does not affect temporarily hidden operators.

If you create an operator in Spotlight mode, the operator will remain visible in the
Mapping Editor when you toggle out of Spotlight mode.

Locating Operators, Groups, and Attributes in Mappings and Pluggable Mappings

5-44 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Locating Operators, Groups, and Attributes in Mappings and Pluggable
Mappings

Mappings and pluggable mappings contain numerous operators that are used to
perform the required data transformation. Warehouse Builder provides a quick
method of locating operators, groups, and attributes within mappings and pluggable
mappings. When you search for objects, you can define the scope of the search and the
search criteria. In the remainder of this section, the term mapping refers to both
mappings and pluggable mappings.

Types of Search
You can perform the following types of search:

■ Regular Search

Warehouse Builder searches for the search string in all the operators within the
mapping. The search string is matched with the display name of operators, group
names, and attribute names.

■ Advanced Search

This is a more sophisticated method of locating objects in mappings. You can
locate operators, groups, and attributes by specifying which objects should be
searched, and the search criteria.

Use the Advanced Find dialog box to perform both regular and advanced searches.

Searching for Objects in Mappings and Pluggable Mappings
To locate an operator, group, or attribute in a mapping or pluggable mapping:

1. Open the mapping using the steps described in "Steps to Open a Previously
Created Mapping" on page 5-10.

2. From the Search menu, select Find.

The Advanced Find dialog box is displayed. Depending on the type of search that
you want to perform, use one of the following sets of instructions.

■ Steps to Perform a Regular Search on page 5-44

■ Steps to Perform an Advanced Search on page 5-44

Steps to Perform a Regular Search
Performing regular search involves the following steps:

1. Specifying the Object to Locate

2. Specifying the Method Used to Display Search Results

3. Clicking Find.

Steps to Perform an Advanced Search
Performing an advanced search involves the following steps:

1. Specifying the Object to Locate

2. Specifying the Method Used to Display Search Results

3. Specifying the Search Scope

4. Specifying the Search Criteria

Locating Operators, Groups, and Attributes in Mappings and Pluggable Mappings

Creating PL/SQL Mappings 5-45

5. Clicking Find.

Advanced Find Dialog Box
The Advanced Find dialog box enables you to search for operators, groups, or
attributes within a mapping or pluggable mapping. By default, this dialog box
displays the options required to perform a regular search. In a regular search, you
search for an operator, group, or attribute using its display name. You can also specify
how the search results should be displayed.

An advanced search provides techniques to define the scope of the search and the
search criteria. To perform an advanced search, click Show Advanced. The additional
parameters that you must define for an advanced search are displayed.

Specifying the Object to Locate
Use the Find field to specify the object that you want to locate. A regular search locates
objects containing the same display name as the one specified in the Find field.

While performing an advanced search, in addition to the display name, you can
specify a string that you provided in the Description property, physical name, business
name, or name of the workspace object to which an operator is bound.

You can use wildcards in the search criteria. For example, specifying "C*" in the Find
field searches for an object whose name begins with C or c.

Specifying the Method Used to Display Search Results
Use the Turn On Highlighting button on the Advanced Find dialog box to specify the
method used to display the search results. This is a toggle button, and you can turn
highlighting on or off.

Turn on Highlighting

When you turn highlighting on, all objects located as a result of the search operation
are highlighted in yellow in the Mapping Editor. Highlighting enables you to easily
spot objects that are part of the search results.

Turn off Highlighting

This is the default behavior. When you turn off highlighting, objects located as a result
of the search operation are identified by the control being moved to these objects.
When control is on a particular object, the border around the object is blue. When
highlighting is off, the search results are presented one at a time.

For example, if an operator is found as a result of the search, the borders of the node
representing the operator are blue.

Specifying the Search Scope
You can restrict the objects searched by specifying the scope of the search. The In
Selected field in the Scope section enables you to limit the scope of the search to within
the objects selected on the canvas.

To locate an object within a specific set of operators, you first select all the operators on
the canvas and then choose In Selected. You can select multiple operators by holding
down the Shift key while selecting operators.

Locating Operators, Groups, and Attributes in Mappings and Pluggable Mappings

5-46 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Specifying the Search Criteria
To perform an advanced search, you must specify additional search criteria that will
further refine the search.

Find By

Use the Find By list to specify which name should be used to search for an object. The
options you can select are:

■ Display Name: Search either the physical names or the business names,
depending on the Naming Mode set.

■ Physical Name: Search for an object containing the same physical name as the one
specified in the Find field.

■ Business Name: Search for an object containing the same business name as the
one specified in the Find field.

■ Bound Name: Search for an object containing the same bound name as the one
specified in the Find field, if this property is available for the object.

■ Description: Search for an object containing the same description as the one
specified in the Find field, if this property is defined for the object.

Match Options
Use the Match Options section to specify the matching options used while finding the
object. The options that you can select are:

■ Match Case: Locates objects whose name and case match the search string
specified in the Find field.

When searching by physical name, match case is set to false by default.

Note that in physical name mode, everything a user creates will be uppercase, but
the imported objects may be in mixed case.

When searching by logical name, match case is set to true by default.

■ Whole Word Only: Restricts matches to exclude those objects that do not match
the entire search string, unless specifically overridden by a wildcard.

■ Regular Expression: Supports the specification of a pattern, used for a Java
regular expression as the search string. If Regular Expression is combined with
Whole Word Only, a boundary matcher "$" is appended to the search string
pattern.

For more information about regular expression support, see Oracle Database SQL
Language Reference.

Find Options
Specifies options for managing the search operation. Select one of the following
options:

■ Incremental: Performs a search after any character is typed or if characters are
removed from the search string. Use the Find button to find additional objects that
match the search string

■ Wrap Find: Continues the search operation with the first object when the last
object in the set has been reached.

■ Find from Beginning: Continues the search with the first object in the set.

Debugging Mappings

Creating PL/SQL Mappings 5-47

Scope
Use this section to restrict the scope of the search.

In Selected: Select this option to locate the search string only among the objects
currently selected in the Mapping Editor.

Direction
Use the Direction section to step through the objects in the search result set either
forward or backward. Select Next to step forward through the result set and Previous
to step backward through the result set.

Debugging Mappings
You can use the Mapping Editor to debug complex data flows that you design in
mappings. Once you begin a debug session and connect to a valid target schema, the
debugging functions appear on the Mapping Editor toolbar and under Log window.
You can run a debugging session using a defined set of test data, and follow the flow
of data as it is extracted, transformed, and loaded to ensure that the designed data
flow performs as expected. If you find problems, you can correct them and restart the
debug session to ensure that the problems have been fixed before proceeding to
deployment.

When you modify a mapping that is being debugged, the mapping properties are
changed. Except when display sets in operators are modified, the Mapping Debugger
reinitializes to reflect the changes to the mapping.

Before You Begin

Ensure that you are connected to a Control Center and that the Control Center is
running.

General Restrictions in the Mapping Debugger
The following restrictions and limitations apply to the Mapping Debugger.

■ Mappings run using the debug mode in the Mapping Editor are intended to be
used for debug purposes only. Mappings run from the Mapping Editor do not
perform as well as mappings that are run from the Control Center. This is
attributed to the setup of temporary objects necessary to support the debugging
capabilities. Use the Control Center to run mappings.

■ You cannot pause an active debug run using the Pause button on the toolbar or the
associated item in the debug menu.

■ You cannot use the Repository Browser to view the results of a mapping run in
debug mode.

■ Only mappings that can be implemented as a PL/SQL package can currently be
run in debug mode. ABAP mappings are not supported in the debugger.

■ The Advanced Queue operator is not supported when you run mappings in debug
mode.

Starting a Debug Session
To start a debug session, open the mapping that you want to debug in the Mapping
Editor. From the Debug menu, select Start. Or, click the Start icon on the Mapping
Editor toolbar. The Mapping Editor switches to debug mode with the debug panels

Debugging Mappings

5-48 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

appearing in the Log window, and the debugger connects to the appropriate Control
Center for the project. The debug-generated code is deployed to the target schema
specified by the location of the module that contains the map being debugged.

After the connection has been established, a message appears, indicating that you may
want to define test data. When you have previously defined test data, then you are
asked if you want to continue with initialization.

To debug a mapping, each source or target operator must be bound to a database
object. Defining test data for the source and target operators is optional. By default, the
debugger uses the same source and target data that is currently defined for the
non-debug deployment of the map.

Debug Panels of the Design Center
When the Mapping Editor is opened in Debug mode, the Log window displays two
new panels: Info Panel and Data Panel.

Info Panel
When the Mapping Editor is in Debug mode, the Info panel in the Log window
contains the following tabs:

■ Messages: Displays all debugger operation messages. These messages let you
know the status of the debug session. This includes any error messages that occur
while running the mapping in debug mode.

■ Breakpoints: Displays a list of all breakpoints that you have set in the mapping.
You can use the check boxes to activate and deactivate breakpoints. For more
information, see "Setting Breakpoints" on page 5-50.

■ Test Data: Displays a list of all data objects used in the mapping. The list also
indicates which data objects have test data defined.

Data Panel
When the Mapping Editor is in Debug mode, the Data panel is displayed in the Log
window. The Data panel includes Step Data and watch point tabs, that contain input
and output information for the operators being debugged. The Step Data tab contains
information about the current step in the debug session. Additional tabs can be added
for each watch that you set. These watch tabs allow you to keep track of and view data
that has passed or will pass through an operator regardless of the currently active
operator in the debug session. Operators that have more than one input group or more
than one output group display an additional list that enables you to select a specific
group.

If an operator has more than one input or output group then the debugger will have a
list in the upper-right corner, above the input or output groups. Use this list to select
the group you are interested in. This applies both to the step data and to a watch.

Note: When the connection cannot be made, an error message is
displayed and you have an option to edit the connection
information and retry.

Debugging Mappings

Creating PL/SQL Mappings 5-49

Defining Test Data
Every source or target operator in the mapping is listed on the Test Data tab in the
lower Info tab panel. It also contains the object type, the source, and a check mark that
indicates whether the database object has already been bound to the source or target
operator.

The object type listed on the tab is determined by whether the column names in the
data source that you select (for example, a table) matches the columns in the mapping
operators. There are two possible types:

■ Direct Access. When there is an exact match, the type is listed as Direct Access.

■ Deployed as View. When you choose a data source with columns that do not
match the mapping operator columns, you can choose how you want the columns
mapped. This object is deployed as a view when you run the mapping and the
type is listed as Deployed as View.

Click Edit to add or change the binding of an operator as well as the test data in the
bound database objects. Before you can run the mapping in debug mode, each listed
source or target operator must be bound and have a check mark. The need to have test
data defined and available in the bound database object depends on what aspect of the
data flow you are interested in focusing on when running the debug session. Typically,
you will need test data for all source operators. Test data for target operators is usually
necessary if you want to debug loading scenarios that involve updates or target
constraints.

To define or edit test data:

1. From the Test Data tab in the Mapping Editor, select an operator from the list and
click Edit. The Define Test Data dialog box is displayed.

2. In the Define Test Data dialog box, specify the characteristics of the test data that
you want Warehouse Builder to use when it debugs. There are many
characteristics that you can specify. For example, you can specify that the test data
be from a new or existing database object or that you can or cannot manually edit
the test data. Click Help on the Define Test Data dialog box for more information.

Creating New Tables to Use as Test Data
When you create a new table using the Define Test Data dialog box, Warehouse
Builder creates the table in the target schema that you specified when you started the
debug run. Because the debugger does not automatically drop this table when you end
the debug session, you can reuse it for other sessions. Constraints are not carried over
for the new table. However, all other staging tables created by the debug session are
dropped when the debug session ends.

When you create a new table, Warehouse Builder creates the new table in the
connected runtime schema. The new table has an automatically generated name, and
the value of the Debug Binding name changes to reflect the new table name. The new
table has columns defined for it that exactly match the names and data types of the
mapping source or target attributes. In addition, any data that is displayed in the grid
at the time the table is created is copied into the newly created table.

You can use both scalar and user-defined data types in tables that you create using the
Define Test Data dialog box.

Editing the Test Data
You can edit test data at any time using the Define Test Data dialog box. Editing test
data is applicable for scalar data types only.

Debugging Mappings

5-50 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

If you change the binding of the operator to another database object, you must
reinitialize the debug session to implement the change before running the mapping
again in debug mode.

Cleaning Up Debug Objects in the Runtime Schema
Debug tables, with names prefixed with DBG$, are created in the runtime schema
when you debug mappings. Because multiple users, using multiple instances, can
debug the same mapping, debug objects are created separately for each debug session.
The debug objects for a session are automatically dropped at the end of the session.
However, if the user abruptly exits the Design Center without exiting the mapping
debugger, the debug objects for the debug session in progress are not dropped, and
become stale objects.

However, you can clean up all debug objects in the runtime schema by using the OWB_
ORACLE_HOME/bin/admin/cleanupalldebugobjects.sql script. This script
drops all the stale objects prefixed by DBG$ in the runtime repository user schema.

This script should be run by a Warehouse Builder user with administrator privileges.
Before you run this script, determine if all the objects that are prefixed by DBG$ in the
runtime user schema are stale. Because the same mapping can be debugged using
multiple instances, running this script will cause disruptions for other users
debugging the same mapping.

Setting Breakpoints
If you are interested in how a specific operator is processing data, you can set a
breakpoint on that operator to cause a break in the debug session. This enables you to
proceed quickly to a specific operator in the data flow without having to go through
all the operators step by step. When the debug session gets to the breakpoint, you can
run data through the operator step by step to ensure that it is functioning as expected.

To set or remove a breakpoint:

1. From the Mapping Editor, click an operator, select Debug, and then select Set
Breakpoint. You can also click the Set Breakpoint button on the toolbar to toggle
the breakpoint on and off for the currently highlighted operator.

If you are setting the breakpoint, the name of the operator set as a breakpoint
appears in the list on the Breakpoints tab on the Info panel. If you are removing
the breakpoint, the name is removed. Use the Clear button on the Breakpoint tab
to remove breakpoints.

2. Deselect or select the breakpoints on the Breakpoint tab to disable or enable them.

Setting Watches
The Step Data tab on the Data Panel always shows the data for the current operator. To
keep track of data that has passed through any other operator irrespective of the active
operator, you can set a watch.

Use watches to track data that has passed through an operator or for sources and
targets, the data that currently resides in the bound database objects. You can also set

Note: The data loaded in the target definitions will be implicitly
committed. If you do not want the target objects updated, then you
should create copies of target objects by clicking Create New Table.

Debugging Mappings

Creating PL/SQL Mappings 5-51

watches on operators after the debug run has already passed the operator and look
back to see how the data was processed by an operator in the data flow.

To set a watch:

From the Mapping Editor, select an operator. From the Debug menu, select Set Watch.
You can also select the operator and click the Set Watch button on the Mapping Editor
toolbar to toggle the watch on and off.

A separate Watch panel is displayed to view data for Constant, Mapping Input,
Mapping Output, Pre Mapping, Post Mapping, and Sequence operators. Since these
operators contain lesser information than other operators, information regarding more
than one of these operators is displayed in the Watch panel. Thus, only one instance of
Watch panel is displayed for these operators if you choose to watch values.

To remove a watch:

To remove a watch, select the operator on the Mapping Editor canvas. Then, click the
Set Watch icon on the Mapping Editor toolbar or select Set Watch from the Debug
menu.

If a watch panel consists of non-data based operators such as Constant, Mapping
Input, Mapping Output, Pre Mapping, Post Mapping, and Sequence, you can remove
these operators by right-clicking the operator and selecting Remove. You can remove
all these operators at one time by closing the Watch panel.

Saving Watches
When you set a watch for an operator, Warehouse Builder automatically saves the
watch points for this operator, unless you close the watch panels. When you end the
debug session and start up again, the tabs for operator watches that you created are
displayed.

If you do not want to save watch points, click the Set Watch icon in the Mapping
Debugger toolbar. Or close the tab related to the Watch point.

Running the Mapping
After you have defined the test data connections for each of the data operators, you
can initially generate the debug code by selecting Reinitialize from the Debug menu,
or by clicking Reinitialize on the Mapping Editor toolbar. Warehouse Builder
generates the debug code and deploys the package to the target schema that you
specified.

You can run the debug session in one of the following modes:

■ Continue processing until the next breakpoint or until the debug run finishes by
using the Resume button on the toolbar or the associated menu item.

■ Process row by row using the Step button on the toolbar or the associated menu
item.

■ Process all remaining rows for the current operator by using the Skip button on
the toolbar or the associated menu item.

■ Reset the debug run and go back to the beginning by using the Reset button or the
associated item from the Debug menu.

Selecting the First Source and Path to Debug
A mapping may have more than one source and more than one path to debug:

Debugging Mappings

5-52 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ When a mapping has more than one source, Warehouse Builder prompts you to
designate the source with which to begin. For example, when two tables are
mapped to a joiner, you must select the first source table that you want to use
when debugging.

■ There may be multiple paths that the debugger can walk through after it has
finished one path. For example, this is the case when you use a splitter. Having
finished one path, the debugger asks you whether you would like to complete the
other paths as well.

The mapping finishes if all target operators have been processed or if the maximum
number of errors as configured for the mapping has been reached. The debug
connection and test data definitions are stored when you commit changes to the
Warehouse Builder workspace. Breakpoint and watch settings are stored when you
save the project.

As the debugger runs, it generates debug messages whenever applicable. You can
follow the data flow through the operators. A red dashed box surrounds the active
operator.

Debugging Mappings with Correlated Commit
How a mapping is debugged depends on whether the mapping has the Correlated
Commit parameter set to ON or OFF:

■ When you begin a debug session for a mapping that has the Correlated Commit
parameter set to ON, the mapping is not debugged using paths. Instead, all paths
are executed and all targets are loaded during the initial stepping through the
mapping regardless of what path is chosen. Also, if one of the targets has a
constraint violation for the step, then none of the targets are loaded for that step.

■ When you begin a debug session for a mapping that has the Correlated Commit
parameter set to OFF, the mapping is debugged using one path at a time. All other
paths are left unexecuted and all other targets are not loaded unless you reach the
end of the original path and return to execute another path in the mapping.

For example, you have a mapping that has a source, S1, connected to a splitter that
goes to two targets, T1 and T2:

■ If Correlated Commit is OFF, then the mapping is debugged starting with S1. You
can then choose either the path going to T1 or the path going to T2. If you choose
the path to T1, the data going to T1 is processed and displayed, and the target T1 is
loaded. After T1 is completely loaded, you are given the option to go back, execute
the other path, and load target T2.

■ If Correlated Commit is ON, then the mapping is also debugged starting with S1,
and you are given the option of choosing a path however in this case, the path you
choose only determines the path that gets displayed in the Mapping Editor as you
step through the data. All paths are executed simultaneously. This is also how a
mapping using Correlated Commit is executed when the deployable code is run.

Setting a Starting Point
You can select an operator as a starting point, even if it is not a source. To set an
operator as a starting point, start a debug session, then select the operator and click the
Set as Starting Point icon in the Mapping Editor toolbar. Or, from the Debug menu,
select Set as Starting Point.

When an operator is set as a starting point, Warehouse Builder combines all the
upstream operators and sources into a single query, which is used as a source, and the
operator is automatically used as the first source when stepping through the map. The

Debugging Mappings

Creating PL/SQL Mappings 5-53

operators that are upstream of the starting point operator are not steppable, and do not
have displayable data, even if a watch point is set.

A good use of "set as starting point" would be for a mapping with three source tables
that were all connected to a single Joiner operator. Each source table contains a large
number of rows (more than 50000 rows), too many rows to efficiently step through in
the debugger. In this case, set the Joiner operator as a starting point, and limit the row
count for one of the source tables to a more manageable number of rows (500) by using
the Test Data Editor. It would be best to limit the row count of the source table that is
effectively driving the joiner (that is, the source with which all the other sources are
joined in the join condition).

Debugging Pluggable Submap Operators
You can also debug a map which contains one or more pluggable submap operators.
This could include a user-defined pluggable submap operator from the pluggable
folder, or a system-defined submap operator. When the debug session is started, the
mapping will go through debug initialization and start stepping at the first executable
operator, just as usual.

If during the course of stepping through the operator, the debugger reaches a
pluggable submap operator, then that operator is highlighted as the current step
operator just like any other operator. If you click Step at this point, then the debugger
steps through all of the operators contained by the pluggable submap without
changing the graphical context of the map to show the implementation of the
pluggable map. If you click Step Into, then the graphical context of the map changes
to the pluggable mapping implementation, and the current step operator is set to the
first executable source operator inside the pluggable mapping. The first executable
source operator for the pluggable submap is one of the operators connected from the
input signature operator.

You can now step through the pluggable mapping just as you would any other type of
map. When the pluggable submap operator contains targets, the debugger loads
theses just as it does for a top-level map. When the final executable operator is done
executing, then the next time you click Step, the context changes back to the top-level
map and begins execution at the next executable operator following the pluggable
submap that was just executed. When the pluggable submap has no output
connections, and it is the final executable operator in the top-level map, then stepping
is done.

You can set breakpoints and watch points on operators inside of a pluggable submap.
Additionally, during normal editing, you can change the graphical context as you do
in normal editing, by clicking Visit Child Graph and Return to Parent Graph.

ReInitializing a Debug Session
When you have made changes to the mapping, or have bound source or target
operators to different database objects, then you must reinitialize the debug session to
continue debugging the mapping with the new changes. To reinitialize, click the
reinitialize button on the toolbar or select the reinitialize menu item in the debug
menu. Reinitializing both regenerates and redeploys the debug code. After
reinitialization, the mapping debug session starts from the beginning.

Scalability
Scalability when debugging a mapping applies both to the amount of data that is
passed as well as to the number of columns displayed in the Step Data panel. The
Define Test Data dialog box provides a row limit that you can use to limit the amount

Debugging Mappings

5-54 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

of data that flows through the mapping. Also, you can define your own data set by
creating your own table and manipulating the records manually.

To restrict the number of columns displayed on the Step Data tab, or on a watch tab,
you can use display sets. By default, every operator has a display set ALL and a
display set MAPPED (to display only the mapped attributes). You can manually add
display sets on sources by using the Mapping Editor directly. Select the Use Display
Set option under the right mouse button on an input or output group to select the
display set.

Performing ETL Using Dimensional Objects 6-1

6
Performing ETL Using Dimensional Objects

Oracle Warehouse Builder enables you to design mappings that perform ETL using
dimensional objects. This chapter describes extracting data from, removing data from,
and loading data into dimensional objects.

This chapter contains the following topics:

■ Performing ETL by Using Dimensions

■ Performing ETL by Using Cubes

Performing ETL by Using Dimensions
The Dimension operator enables you to perform ETL on dimensions, slowly changing
dimensions (SCDs) and time dimensions. You can extract data from, load data into, or
remove data from dimensions using the Dimension operator. The dimensions may be
deployed in relational form to an Oracle Database or to an analytic workspace.

Loading Data Into Dimensions
Use a Dimension operator as a target in a mapping to load data into dimensions and
SCDs. Define a data flow from the operators that represent the source objects to the
dimension or SCD.

Warehouse Builder loads data into the dimension starting from the highest level.

Loading Data into Type 1 Dimensions
While loading data into a dimension, Warehouse Builder checks if a similar record
already exists in the dimension by comparing the business identifier of the source
records with the business identifier of the existing dimension records.

To load data into a dimension:

1. Define a mapping as described in "Defining Mappings" on page 5-9.

2. Add a Dimension operator to the mapping. Ensure that this operator is bound to
the dimension into which you want to load data.

For information about adding operators to mappings, see "Adding Operators to
Mappings" on page 5-12.

Note: You cannot map a data flow to the surrogate identifier or the
parent surrogate identifier reference of a level.

Performing ETL by Using Dimensions

6-2 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

3. Add operators corresponding to the source objects and to any transformations that
must be performed before the source data is loaded into the dimension.

4. Map the attributes from the source operators to intermediate transformation
operators (if the source data is to be transformed before loading it into the
dimension) and then to the target dimension. Complete mapping all attributes
according to your requirements.

If a record with the same business identifier as the one being loaded already exists
in the dimension, the record is updated with the attribute values from the source;
otherwise the source record is loaded into the dimension.

5. Set the Loading Type property of the Dimension operator to Load.

6. Validate the mapping by selecting the mapping in the Projects Navigator and
clicking the Validate icon in the toolbar.

Resolve errors, if any, that result from the validation process.

7. Generate the mapping by selecting the mapping in the Projects Navigator and
clicking the Generate icon in the toolbar.

The generation results are displayed in a new Results tab in the Log window.
Resolve generation errors, if any.

Example: Loading Dimensions
Figure 6–1 displays a mapping that loads data into the PRODUCTS dimension,
represented by the operator PRODUCTS_OUT. The source data is stored in two tables,
CATEGORIES and PRODUCTS. The CATEGORIES table stores both the category and
subcategory information. So the data from this table is filtered using two Filter
operators CATS and SUBCATS. The filtered data is then mapped to the CATEGORIES
level and the SUBCATEGORIES dimension levels. The TOTAL level of the dimension is
loaded using a Constant operator. The data from the PRODUCTS table is mapped
directly to the PRODUCTS level in the dimension.

Figure 6–1 Loading the Products Dimension

When you define a data flow to load a dimension, an in-line pluggable mapping that
loads data into the dimension is created. To view this pluggable mapping, select the
Dimension operator on the Mapping Editor canvas and click the Visit Child Graph
icon on the graphical toolbar.

Performing ETL by Using Dimensions

Performing ETL Using Dimensional Objects 6-3

Loading Data into Type 2 Slowly Changing Dimensions (SCDs)
A Type 2 SCD stores both historic and current records. When the value of any
Triggering Attribute in the Type 2 SCD is modified, the current record is marked as
closed and a new record containing the changed values is created. A record is marked
as closed by setting the value specified by the Default Expiration Time of Open Record
property to the expiration date attribute. Regardless of the input connection defined in
a mapping, the expiration date of a historic record is set using the Default Expiration
Time of Open Record property.

Before loading records into the Type 2 SCD, Warehouse Builder checks if a record with
the same business identifier already exists in the Type 2 SCD. If the record does not
exist, Warehouse Builder adds the record to the Type 2 SCD. If the record already
exists, Warehouse Builder performs the following steps.

■ Marks the existing record as closed by setting the value specified in the property
Default Expiration Time of Open Record.

■ Creates a new record using the changed attribute values.

– If the effective date input for the level is not mapped, the effective time and
expiration time are set using the Default Effective Time of Open Record and
the Default Expiration Time of Open Record properties of the operator.

– If the effective date input for the level is mapped, then the effective time of the
new record is set to the value that is obtained from the effective date input
data flow. The effective date input, if connected, represents the actual effective
date of each individual new record.

Steps to Load Data into Type 2 SCDs
1. Define a mapping as described in "Defining Mappings" on page 5-9.

2. Add a Dimension operator to the mapping. Ensure that this operator is bound to
the Type 2 SCD into which you want to load data.

For information about adding operators to mappings, see "Adding Operators to
Mappings" on page 5-12.

3. (Optional) Select the Dimension operator on the canvas by clicking the operator
name, and use the Property Inspector to set the following properties:

■ Default Effective Time of Initial Record

■ Default Effective Time of Open Record

■ Default Expiration Time of Open Record

■ Type 2 Gap

■ Type 2 Gap Units

Note: When you load some Type 2 SCDs, if the target is an Oracle 9i
database, only row-based mode is supported.

A workaround is to switch on hierarchy versioning, by setting the
parent surrogate identifier reference attribute as a trigger for all levels.

Note: To load multiple records for a particular business identifier
during a single load, set the Support Multiple History Loading
property for the Dimension operator that is bound to the Type 2 SCD.

Performing ETL by Using Dimensions

6-4 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

If you do not explicitly set values for these properties, the default values are used.

4. Set the Loading Type property of the Dimension operator to Load.

5. Add operators corresponding to the source objects and to any transformations that
must be performed before the source data is loaded into the dimension.

6. Map the attributes from the source operators through intermediate transformation
operators (if the source data is to be transformed before loading it into the
dimension) and then to the target dimension operator. Complete mapping all
attributes according to your requirements.

7. Validate the mapping by selecting the mapping in the Projects Navigator and
clicking the Validate icon in the toolbar.

Resolve errors, if any, that result from the validation process.

8. Generate the mapping by selecting the mapping in the Projects Navigator and
clicking the Generate icon in the toolbar.

The generation results are displayed in a new Results tab in the Log window.
Resolve generation errors, if any.

Mapping Source Attributes to the Effective Data Attribute
In a mapping that loads a Type 2 SCD, if you map attributes from the source operator
to the effective date attribute of a level, Warehouse Builder does the following:

■ While loading the initial record, if the value of the source attribute is earlier than
the value specified by the Default Effective Time of Initial Record property of the
dimension operator (bound to the Type 2 SCD), Warehouse Builder uses the value
from the source as the effective date of the record; otherwise Warehouse Builder
takes the value specified in the Default Effective Time of Initial Record property as
the effective date of the record.

■ During subsequent loads for the record, if the record is being versioned,
Warehouse Builder takes the effective time of the new record from the source. If
no value is given for the effective time, SYSDATE is used. Warehouse Builder sets
the expiration time of the closed record to the effective time of the new record
minus the gap.

If you do not map attributes from the source to the effective date attribute of a level,
Warehouse Builder does the following:

■ While loading the initial record, Warehouse Builder uses the value specified in the
Default Effective Time of Initial Record property as the effective date of the record.

■ During subsequent loads for the record, if a new version is being created,
Warehouse Builder takes the effective time of the new record from the source. If
no value is given for the effective time, SYSDATE is used. Warehouse Builder takes
the expiration time of the previous version as the effective time of the new version
minus the gap.

For more information about the gap, see "Type 2 Gap" on page 25-17 and "Type 2
Gap Units" on page 25-17.

Note: You cannot map attributes to the expiration date attribute of
the Type 2 SCD.

Performing ETL by Using Dimensions

Performing ETL Using Dimensional Objects 6-5

Example: Values Assigned to Type 2 SCD Versioned Records
You create a mapping that loads the Products Type 2 SCD. The leaf level of this Type
2 SCD, Product, is loaded from a source table.The effective date attribute of the
Product level is mapped from the source attribute EFF_DATE.

The Dimension operator has the following properties:

■ Default Effective Time of Initial Record: 01-jan-2000

■ Default Effective Time of Open Record: SYSDATE

■ Default Expiration Time of Open Record: 01-jan-2099

■ Type 2 Gap: 1

Consider a source Product level record with the value of EFF_DATE as 21-mar-2007
10.25.05.000000 PM.

When the initial Product level record is loaded, the values assigned to the record are:

Effective date: 01-jan-2000

Expiration date: 01-jan-2099

When the Product level record is versioned during a subsequent load on
21-mar-2007, the following occurs:

■ The value of the source attribute overrides the Default Effective Time of Open
Record property. Thus, the effective date stored in the new Product level record
is 21-mar-2007 and the expiration date is set to 01-jan-2099.

■ The initial Product level record is closed with the value of the expiration date set
to 21-mar-200710.25.04.000000 PM.

Loading Data into Type 3 Slowly Changing Dimensions (SCDs)
Use the following steps to load data into Type 3 SCDs.

1. Define a mapping as described in "Defining Mappings" on page 5-9.

2. Add a Dimension operator to the mapping. Ensure that this operator is bound to
the Type 3 SCD into which you want to load data.

For information about adding operators to mappings, see "Adding Operators to
Mappings" on page 5-12.

3. Set the Loading Type property of the Dimension operator to Load.

4. Add operators corresponding to the source objects and to any transformations that
must be performed before the source data is loaded into the Type 3 SCD.

5. Map the attributes from the source operators to intermediate transformation
operators (if the source data is to be transformed before loading it into the
dimension) and then to the target dimension operator. Complete mapping all
attributes according to your requirements.

Note: Mapping to the Expiration Date attribute of a level is not
allowed. While loading a record, the Default Expiration Time of Open
Record property is used as the expiration date. The default value of
this property is NULL.

Performing ETL by Using Dimensions

6-6 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

While loading data, Warehouse Builder checks if a record with the same business
identifier exists in the Type 3 SCD. If the record does not exist, it is added. If the
record already exists, the following steps are performed:

■ The values of the versioned attributes are moved to the attributes that store
the previous values of versioned attributes.

■ The record with the values from the source record is updated.

6. Set the Loading Type property of the Dimension operator to Load.

7. Validate the mapping by selecting the mapping in the Projects Navigator and
clicking the Validate icon in the toolbar.

Resolve errors, if any, that result from the validation process.

8. Generate the mapping by selecting the mapping in the Projects Navigator and
clicking the Generate icon in the toolbar.

The generation results are displayed in a new Results tab in the Log window.
Resolve generation errors, if any.

Example: Loading Data into Type 3 SCDs
Figure 6–2 displays a mapping that loads data into the PRODUCTS level of the Type 3
SCD. In this mapping, the effective time of the current record is loaded from the
source. You can also use the Default Effective Time of Current Record property to set
a default value for the effective time of a level record.

Figure 6–2 Loading a Type 3 SCD

You cannot map a data flow to the attributes that represent the previous values of
versioned attributes.

For example, in the mapping shown in Figure 6–2, you cannot map an attribute to the
PREV_PACK_SIZE and PREV_DESCRIPTION attributes of the PRODUCTS level.

Example: Loading Data Into Type 2 Slowly Changing Dimensions
The Type 2 SCD PRODUCTS_TYPE2 contains the levels Total, Categories, and
Product. Product is the leaf level and its attribute Pack_size is the versioned attribute.
The Effective_date and expiration_date attributes store the effective date and
expiration date, respectively, for the product records.

The source data that is to be loaded into this dimension is stored in two tables:
Categories_tab and Product_information. The name and the description of

Performing ETL by Using Dimensions

Performing ETL Using Dimensional Objects 6-7

the highest level in the Type 2 SCD are loaded using the Total_desc attribute of a
Constant operator.

Use the following steps to load the PRODUCTS_TYPE2 Type 2 SCD.

1. Define a mapping as described in "Defining Mappings" on page 5-9.

2. From the Projects Navigator, drag and drop the PRODUCTS_TYPE2 Type 2 SCD,
the Categories_tab table, and the Product_information table onto the mapping
canvas.

3. Set the Loading Type property of the Dimension operator to Load.

Select the Dimension operator on the canvas. The Property Inspector displays the
dimension properties. Loading Type is listed under the Dimension Properties
node.

4. Drag and drop a Constant operator used to load the Total level onto the mapping
canvas.

Also, add an output attribute called Total_desc to this operator. Set the Expression
property of the Total_desc operator to the value that you want assigned to the
total_name and total_desc attributes.

5. Map the attributes from the source operators to the Type 2 SCD.

Figure 6–3 displays the mapping with the source operator mapped to the target.
Type 2 SCD.

Figure 6–3 Loading Data Into a Type 2 SCD

Note that, in this example, the effective time of a record is loaded from the source.
You can also choose to set this to a default value, such as SYSDATE, using the
Default Effective Time of Current Record property.

Because no values are explicitly assigned to the history logging properties, the
default values are used.

6. Validate the mapping by selecting the mapping in the Projects Navigator and
clicking the Validate icon in the toolbar.

Resolve errors, if any, that result from the validation process.

7. Generate the mapping by selecting the mapping in the Projects Navigator and
clicking the Generate icon in the toolbar.

Performing ETL by Using Dimensions

6-8 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

The generation results are displayed in a new Results tab in the Log window.
Resolve generation errors, if any.

You have now designed a mapping that loads data into a Type 2 SCD. To actually
move the data from the source tables into the Type 2 SCD, you must deploy and
execute this mapping. For more details about deploying and executing mappings, see
"Starting ETL Jobs" on page 12-9.

Extracting Data Stored in Dimensions
You can extract data stored in a workspace dimension, slowly changing dimension
(SCD), or time dimension by using a Dimension operator as a source in a mapping.

Extracting Data from Dimensions
Use the following steps to define a mapping that extracts data stored in dimensions.

1. Define a mapping as described in "Defining Mappings" on page 5-9.

2. Add a Dimension operator to the mapping. Ensure that this operator is bound to
the dimension from which you want to extract data.

For information about adding operators to mappings, see "Adding Operators to
Mappings" on page 5-12.

3. Add operators corresponding to the target object and to any transformations that
must be performed before the dimension data is loaded into the target.

4. Map the attributes from the dimension levels to the target operator or to
intermediate operators that transform the source data. Complete mapping all
attributes according to your requirements.

5. Validate the mapping by selecting the mapping in the Projects Navigator and
clicking the Validate icon in the toolbar.

Resolve errors, if any, that result from the validation process.

6. Generate the mapping by selecting the mapping in the Projects Navigator and
clicking the Generate icon in the toolbar.

The generation results are displayed in a new Results tab in the Log window.
Resolve generation errors, if any.

Extracting Data from Type 2 Slowly Changing Dimensions (SCDs)
Use a mapping containing a Dimension operator to extract data stored in a Type 2
SCD. The Dimension operator should be bound to the Type 2 SCD that contains the
source data.

Because a Type 2 SCD stores multiple versions of a single record, you must specify the
version of the record that should be extracted. To extract the current version of a
record, set the Type 2 Extract/Remove Current Only property of the Dimension
operator to Yes. To extract all records, including historic ones, set the Type 2
Extract/Remove Current Only property to No.

Additionally, you can set the following properties for the Dimension operator: Default
Effective Time of Initial Record, Default Effective Time of Open Record, Default
Expiration Time of Open Record, Type 2 Gap, and Type 2 Gap Units. These properties

Note: You cannot extract data from dimensions that use a MOLAP
implementation.

Performing ETL by Using Dimensions

Performing ETL Using Dimensional Objects 6-9

enable you to assign values to the versioned attributes in the Type 2 SCD. All these
properties have default values as displayed in the Property Inspector for the
Dimension operator. If you do not explicitly assign values to these properties,
Warehouse Builder uses the default values.

To define a mapping that extracts data from a Type 2 SCD:

1. Define a mapping as described in "Defining Mappings" on page 5-9.

2. Add a Dimension operator to the mapping. Ensure that this operator is bound to
the Type 2 SCD from which you want to extract data.

For information about adding operators to mappings, see "Adding Operators to
Mappings" on page 5-12.

3. Add operators corresponding to the target object and to any transformations that
must be performed before the Type 2 SCD data is loaded into the target.

4. Map the attributes from the source Type 2 SCD to the target or to intermediate
operators that transform the source data. Complete mapping all attributes
according to your requirements.

To specify the version of source records from the Type 2 SCD that should be
extracted:

■ Set the Type 2 Extract/Remove Current Only property to Yes to extract the
current record.

■ Set the Type 2 Extract/Remove Current Only property to No to extract historic
records.

5. Validate the mapping by selecting the mapping in the Projects Navigator and
clicking the Validate icon in the toolbar.

Resolve errors, if any, that result from the validation process.

6. Generate the mapping by selecting the mapping in the Projects Navigator and
clicking the Generate icon in the toolbar.

The generation results are displayed in a new Results tab in the Log window.
Resolve generation errors, if any.

Extracting Data from Type 3 Slowly Changing Dimensions (SCDs)
Use a mapping containing a Dimension operator to extract data from a Type 3 SCD.
The operator must be bound to the Type 3 SCD that contains the source data.

A Type 3 SCD uses separate attributes to store historic values of versioned attributes.
Depending on whether you want to extract the current record or historic values, you
map the attributes in the Type 3 SCD to the target operators.

To define a mapping that extracts data from a Type 3 SCD:

1. Define a mapping as described in "Defining Mappings" on page 5-9.

2. Add a Dimension operator to the mapping. Ensure that this operator is bound to
the Type 3 SCD from which you want to extract data.

For information about adding operators to mappings, see "Adding Operators to
Mappings" on page 5-12.

3. Add operators for the target object and for any transformations that are needed
before the dimension data is loaded into the target.

4. Map the attributes from the source Type 3 SCD either to the target operator or to
operators that transform the source data.

Performing ETL by Using Dimensions

6-10 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ To extract historic data, map the attributes that represent the previous values
of versioned attributes to the target or intermediate operator.

■ To extract the current record, map the attributes that store the level attributes
to the target or intermediate operator.

5. Validate the mapping by selecting the mapping in the Projects Navigator and
clicking the Validate icon in the toolbar.

Resolve errors, if any, that result from the validation process.

6. Generate the mapping by selecting the mapping in the Projects Navigator and
clicking the Generate icon in the toolbar.

The generation results are displayed in a new Results tab in the Log window.
Resolve generation errors, if any.

Figure 6–4 displays a mapping that sources the historic data records from the
PRODUCTS Type 3 dimension. In this example, to source historic data, use the PREV_
DESCRIPTION, PREV_PACKAGE_TYPE, or PREV_PACKAGE_SIZE attributes. To source
current data, use DESCRIPTION, PACKAGE_TYPE, or PACKAGE_SIZE.

Figure 6–4 Mapping That Sources Data from a Type 3 SCD

Removing Data from Dimensions
Use the Dimension operator to remove data from dimensions and SCDs. You create a
mapping with the Dimension operator, the source objects containing the data that
must be removed from the dimension, and any required transformation operators.
Map attributes from the source or transformation operators to the Dimension operator.
When the map is executed, the business identifier of the source record is compared to
the business identifiers in the dimension. If the business identifiers match, the
corresponding record in the dimension is removed.

To remove data from dimensions or SCDs, set the Loading Type property of the
Dimension operator to Remove.

Effect of Surrogate Keys on Dimension Data Removal
When you remove data from a dimension that was created with surrogate keys, parent
records of existing children are removed, but child records are left referencing
nonexistent parents.

When you remove data from a dimension that was created with no surrogate keys,
parent records of existing child records as well as the child records are removed. This
is in effect a cascade operation.

Performing ETL by Using Dimensions

Performing ETL Using Dimensional Objects 6-11

Example: Removing Data from Dimensions
The DF1_SINGLEH1_SCD1 is a dimension containing the levels Total, Region,
Territory, and Salesrep. This dimension contains existing data that was loaded earlier
using another mapping. The tables WBSALESREP_ALL, WB_REGIONS, WB_
TERRITORIES, and WBSALESREPTERRITORIES contain the data that must be
removed from the various levels in the dimension.

Use the following steps to remove data from the DF1_SINGLEH1_SCD1 dimension.

1. Define a mapping as described in "Defining Mappings" on page 5-9.

2. From the Projects Navigator, drag and drop the DF1_SINGLEH1_SCD1 dimension
onto the mapping canvas.

3. Set the Loading Type property of the Dimension operator to Remove.

4. From the Projects Navigator, drag and drop the following tables onto the mapping
canvas: WBSALESREP_ALL, WB_REGIONS, WB_TERRITORIES, and
WBSALESREPTERRITORIES.

5. Add a Constant operator to the mapping. Create two output attributes ID and
Name. To the Expression property of both attributes, assign the values that you
want to remove from the Total level.

For example, if you set the Expression attribute of ID to 100 and that of Name to
Asia, then all level records, in the Total level, whose ID and Name match these
values are deleted. Also, because the ID attribute of the Constant operator is
mapped to the Region attribute, all child records of the Total level records that are
removed are also removed.

6. Map the attributes from the source operators to the Dimension operator.

Figure 6–5 displays the mapping with the attributes connected to the Dimension
operator.

Figure 6–5 Mapping that Removes Data From a Dimension

Performing ETL by Using Cubes

6-12 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

The business identifier of the source records is compared to the business identifier
of the dimension level record to which it is mapped. If the business identifier
matches, the corresponding record is removed from the dimension.

7. Validate the mapping by selecting the mapping in the Projects Navigator and
clicking the Validate icon in the toolbar.

Resolve errors, if any, that result from the validation process.

8. Generate the mapping by selecting the mapping in the Projects Navigator and
clicking the Generate icon in the toolbar.

The generation results are displayed in a new Results tab in the Log window.
Resolve generation errors, if any.

You have now designed a mapping that removes data from a dimension. To actually
remove the specified data from the dimension, you must deploy and execute this
mapping. For more details about deploying and executing mappings, see "Starting
ETL Jobs" on page 12-9.

Performing ETL by Using Cubes
The Cube operator enables you to extract data from, load data into, and remove data
from cubes. To extract data from cubes, use the Cube operator as a source in a
mapping.

Use the Loading Type property of the Cube operator to indicate if data is being loaded
into the cube or removed from the cube. For cubes, the Loading Type property can
have the following three values: LOAD, INSERT_LOAD, and REMOVE.

ACTIVE_DATE Attribute in Cubes
Cube operators contain an attribute called ACTIVE_DATE. This attribute represents
the point in time that is used to determine which record in a Type 2 SCD is the active
record. This property is applicable only when the cube that you are loading has one or
more Type 2 SCDs.

If you do not map an attribute from the source to ACTIVE_DATE, SYSDATE is used as
the default.

If you map a source attribute to ACTIVE_DATE, the value of the source attribute is
used to determine which version of the Type 2 SCD record is referenced by the cube
record.

For any cube that references a dimension in which the level is of a Type 2 SCD, the
WHERE clause generated to determine the dimension member is as follows:

...
WHERE
(...
 (<dim_name>.DIMKEY = <lookup_for_dimension_dimkey> AND
 (<level>_EFFECTIVE_DATE <= ACTIVE_DATE AND
 <level>_EXPIRATION_DATE >= ACTIVE_DATE) OR
 (<level>_EFFECTIVE_DATE <= ACTIVE_DATE AND

Note: You cannot extract data from cubes that use a MOLAP
implementation.

See Also: "Loading Type" on page 25-11 for more information about
the Loading Type property of cubes

Performing ETL by Using Cubes

Performing ETL Using Dimensional Objects 6-13

 <level>_EXPIRATION_DATE IS NULL))
...)

Loading Data from Type 2 SCDs into Cubes
If a mapping that loads a cube references at least one Type 2 SCD that has the Default
Expiration Time of Open Record set to a non-NULL value, then the ACTIVE_DATE
attribute of the Cube operator must be mapped from the source that contains the date
value that defines the range for the dimension record.

If the ACTIVE_DATE attribute is not mapped from the source, then the SYSDATE
value will define the date range for the dimension record.

When the ACTIVE_DATE attribute is mapped from the source, the source attribute
value is used to perform a range comparison to determine which dimension record
should be loaded.

The logic used to perform the lookup for the dimension member is described in the
WHERE clause listed previously.

Loading Data Into Cubes
When you load a cube, you map the data flow from the source to the attribute that
represents the business identifier of the referencing level. Warehouse Builder performs
a lookup on the dimensions and then stores the corresponding surrogate identifier in
the cube table. For example, when you map the attributes from the dimension operator
to the cube operator, a Lookup operator is created in cases where it is needed to
lookup the surrogate identifier of the dimension.

Note that if there is a possibility of the lookup condition returning multiple rows, you
must ensure that only one row is selected out of the returned rows. You can do this by
using the Deduplicator operator or Filter operator.

Use the following steps to load data into a cube.

1. Define a mapping as described in "Defining Mappings" on page 5-9.

2. Add a Cube operator to the mapping. Ensure that this operator is bound to the
cube into which you want to load data.

For information about adding operators to mappings, see "Adding Operators to
Mappings" on page 5-12.

3. Add operators corresponding to the source objects and to any transformations that
must be performed before the source data is loaded into the dimension. Ensure
that all source data objects are bound to the repository objects.

4. Map the attributes from the source operators to intermediate transformation
operators (if the source data is to be transformed before loading it into the
dimension) and then to the target cube. Complete mapping all attributes according
to your requirements.

5. Set the Loading Type property of the Cube operator to Load.

6. Validate the mapping by selecting the mapping in the Projects Navigator and
clicking the Validate icon in the toolbar.

Resolve errors, if any, that result from the validation process.

7. Generate the mapping by selecting the mapping in the Projects Navigator and
clicking the Generate icon in the toolbar.

Performing ETL by Using Cubes

6-14 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

The generation results are displayed in a new Results tab in the Log window.
Resolve generation errors, if any.

Figure 6–6 displays a mapping that uses the Cube operator as a target. Data from three
source tables is joined using a Joiner operator. An Aggregator operator is used to
aggregate the joined data with the data from another source table. The output of the
Aggregator operator is mapped to the Cube operator.

Figure 6–6 Mapping that Loads a Cube

Note: If the source data for your cube contains invalid or null values
for the dimension references, it is recommended that you use Orphan
Management or DML Error Logging to avoid possible problems
during subsequent cube loads.

Creating SQL*Loader, SAP, and Code Template Mappings 7-1

7
Creating SQL*Loader, SAP, and Code

Template Mappings

Oracle Warehouse Builder enables you use mappings to extract data from disparate
sources such as flat files and SAP. Code Template (CT) mappings help in open
connectivity and allow customization of how data is moved.

This chapter describes the steps used to create SAP and CT mappings. It also includes
examples of performing ETL on SAP systems and other heterogeneous databases.

This chapter contains the following topics:

■ Creating SQL*Loader Mappings to Extract Data from Flat Files

■ Creating SAP Extraction Mappings

■ Retrieving Data from the SAP System

■ Creating Code Template (CT) Mappings

■ Setting Options for Code Templates in Code Template Mappings

■ Auditing the Execution of Code Template Mappings

■ Using Code Template Mappings to Perform Change Data Capture (CDC)

■ Using Control Code Templates

■ Using Oracle Target CTs in Code Template Mappings

■ Moving Data from Heterogeneous Databases to Oracle Database

Creating SQL*Loader Mappings to Extract Data from Flat Files
Use the Flat File operator in a mapping to extract data from and load data into flat
files. You can use Flat File operators as either sources or targets, but not a combination
of both.

Define mappings to extract data from flat files as described in "Extracting Data from
Flat Files" on page 7-2.

Define mappings to load data into flat files as described in "Loading Data into a Flat
File" on page 7-3.

See Also: "Best Practices for Designing SQL*Loader Mappings" on
page 10-13 for more information about best practices to follow while
using SQL*Loader mappings

Creating SQL*Loader Mappings to Extract Data from Flat Files

7-2 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Subsequent Steps
After you design a mapping and generate its code, you can create a process flow or
proceed directly with deployment followed by execution.

Use process flows to interrelate mappings. For example, you can design a process flow
such that the completion of one mapping triggers an e-mail notification and starts
another mapping. For more information, see Chapter 8, "Designing Process Flows".

Deploy the mapping, and any associated process flows you created, and then execute
the mapping as described in Chapter 12, "Deploying to Target Schemas and Executing
ETL Logic".

Extracting Data from Flat Files
To extract data from a flat file, use a Flat File operator as a source in a mapping.

Alternatively, you can define an external table based on the flat file definition and use
an External Table operator as a source. If you are loading large volumes of data,
loading from a flat file enables you to use the DIRECT PATH SQL*Loader option,
which results in better performance. If you are not loading large volumes of data, you
can benefit from many of the relational transformations available when using external
tables.

As a source, the Flat File operator acts as a row set generator that reads from a flat file
using the SQL*Loader utility. The targets in a flat file mapping can be relational objects
such as tables. Note that an External Table operator cannot be a target, because
external tables are read-only.

When you design a mapping with a Flat File source operator, you can use the
following operators:

■ Filter Operator

■ Constant Operator

■ Data Generator Operator

■ Sequence Operator

■ Expression Operator

■ Transformation Operator

When you use a flat file as a source, ensure that a connector is created from the flat file
source to the relational target. It the connector is not created, the mapping cannot be
deployed successfully.

Defining a Mapping that Extracts Data from Flat Files
1. Import the flat file metadata into the Warehouse Builder workspace.

See Also: Oracle Warehouse Builder Sources and Targets Guide for a
comparison of external tables and flat files.

Note: If you use the Sequence, Expression, or Transformation
operators, you cannot use the SQL*Loader Direct Load setting as a
configuration parameter.

See Also: Oracle Warehouse Builder Sources and Targets Guide for more
information about importing flat file metadata

Creating SQL*Loader Mappings to Extract Data from Flat Files

Creating SQL*Loader, SAP, and Code Template Mappings 7-3

2. In the Projects Navigator, create a mapping as described in "Steps to Define a
Mapping" on page 5-10.

3. From the Projects Navigator, drag and drop the flat file from which data is to be
extracted onto the Mapping Editor canvas.

4. On the Mapping Editor canvas, add the operators that represent the target objects
into which data extracted from the flat file is to be loaded. Also add the
transformation operators needed to transform the source data.

5. On the Mapping Editor canvas, create the data flows between the source,
transformation, and target operators.

6. Validate the mapping by selecting Validate from the File menu. Rectify validation
errors, if any.

Loading Data into a Flat File
To load data into a flat file, use a Flat File operator as a target in a mapping.

A mapping with a flat file target generates a PL/SQL package that loads data into a
flat file instead of loading data into rows in a table.

You can use an existing flat file with either a single record type or multiple record
types. If you use a multiple-record-type flat file as a target, you can only map to one of
the record types. If you want to load all of the record types in the flat file from the
same source, you can drop the same flat file into the mapping as a target again and
map to a different record type. For an example of this usage, see "Using Direct Path
Loading to Ensure Referential Integrity in SQL*Loader Mappings" on page 10-18.
Alternatively, create a separate mapping for each record type that you want to load.

Creating Flat File Targets
Use one of the following methods to create a Flat File target operator:

■ Import an existing flat file definition into the repository and use this flat file as a
target in a mapping.

■ Define a flat file using the Create Flat File Wizard and use this as a target in the
mapping.

■ Create a new flat file as described in "Creating a New Flat File Target" on page 7-4.

Defining a Mapping That Loads Data into a Flat File
Use the following steps to define a mapping that loads data into a flat file.

1. In your target module, define the flat file into which you want to load data using
one of the methods described in "Creating Flat File Targets" on page 7-3.

2. In the Projects Navigator, create a mapping as described in "Steps to Define a
Mapping" on page 5-10.

See Also: "Adding Operators to Mappings" on page 5-12 for
information about adding operators

Note: A mapping can contain a maximum of 50 Flat File target
operators at one time.

Creating SAP Extraction Mappings

7-4 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

3. From the Projects Navigator, drag and drop the flat file into which data is to be
loaded onto the Mapping Editor canvas.

4. On the Mapping Editor canvas, add operators representing the source objects from
which data is to be loaded into the flat file. Also add the transformation operators
used to transform the source data.

5. On the Mapping Editor canvas, create the data flows between the source,
transformation, and target operators.

6. Validate the mapping by selecting Validate from the File menu. Rectify validation
errors, is any.

Creating a New Flat File Target
1. If you have not already done so, create a flat file module.

A flat file module is necessary to enable you to create the physical flat file later in
these instructions.

2. Define a mapping as described in "Defining Mappings" on page 5-9.

3. Drag and drop a Flat File operator onto the canvas.

4. On the Add Flat File Operator dialog box, select Create Unbound Operator with
No Attributes and assign a name to the new target operator.

5. Edit the new operator as described in "Editing Operators" on page 5-20.

Thus far, you have defined an operator that represents a flat file but have not
created the actual flat file target.

6. To create the flat file in the database, right-click the operator and select Create and
Bind.

The dialog box prompts you to select a flat file module and enables you to assign a
unique name to the flat file. When you click OK, Warehouse Builder displays the
new target in the Files node, under the module that you specified.

7. Continue to define your mapping as described in "Steps to Perform Extraction,
Transformation, and Loading (ETL) Using Mappings" on page 5-8.

Creating SAP Extraction Mappings
After importing metadata from SAP tables, you must define the extraction mapping to
retrieve data from the SAP system.

Defining an SAP Extraction Mapping
Use the Mapping Editor to create a mapping containing SAP tables. Creating a
mapping with SAP tables is similar to creating mappings with other database objects.
However, there are restrictions on the operators that can be used in the mapping. You
can only use Table, Filter, Joiner, and Mapping Input Parameter mapping operators in
a mapping containing SAP tables.

A typical SAP extraction mapping consists of one or more SAP source tables
(transparent, cluster, or pooled), one or more Filter or Joiner operators, and a non-SAP
target table (typically an Oracle Database table) to store the retrieved data.

See Also: "Adding Operators to Mappings" on page 5-12 for
information about adding operators

Creating SAP Extraction Mappings

Creating SQL*Loader, SAP, and Code Template Mappings 7-5

Figure 7–1 displays a mapping that extracts data from an SAP source.

Figure 7–1 SAP Extraction Mapping

In this example, the Input Parameter holds a Date value, and the data from table BKPF
is filtered based on this date. The Joiner operator enables you to join data from
multiple tables, and the combined data set is stored in a staging table.

This section contains the following topics:

■ Adding SAP Tables to the Mapping

■ Setting the Loading Type

■ Setting Configuration Properties for the Mapping

■ Setting the Join Rank

Adding SAP Tables to the Mapping
To add an SAP table to a mapping:

On the Mapping Editor, drag and drop the required SAP table onto the Mapping
Editor canvas.

The editor places a Table operator on the mapping canvas to represent the SAP table.

Setting the Loading Type
Use the Property Inspector to set the SQL*Loader properties for the tables in the
mapping.

To set the loading type for an SAP source table:

Note: You cannot have both SAP and non-SAP (Oracle Database)
source tables in a mapping. However, you can use an Oracle Database
table as a staging table.

Creating SAP Extraction Mappings

7-6 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

1. On the Mapping Editor, select the SAP source table. The Property Inspector
displays the properties of the SAP table.

2. Select a loading type from the Loading Type list. With ABAP code as the language
for the mapping, the SQL*Loader code is generated as indicated in Table 7–1.

Setting Configuration Properties for the Mapping
Perform the following steps to configure a mapping containing SAP tables:

■ Use the Configuration tab to define the code generation language as described in
"Setting the Language Parameter" on page 7-6.

■ Set ABAP specific parameters, and the directory and initialization file settings in
the Configuration tab as described in "Setting the Runtime Parameters" on
page 7-6.

Setting the Language Parameter
The Language parameter enables you to choose the type of code you want to generate
for a mapping. For mappings containing SAP source tables, Warehouse Builder
automatically sets the language parameter to ABAP. Verify that this parameter has
been set to ABAP.

Setting the Runtime Parameters
With the Language set to ABAP, expand the Runtime Parameters node in the
Configuration tab to display settings specific to ABAP code generation.

Some of these settings come with preset properties that optimize code generation.
Oracle recommends that you retain these settings, as altering them may slow the code
generation process.

The following Runtime parameters are available for SAP mappings:

■ Background Job: Select this option to run the ABAP report as a background job in
the SAP system. Enable this option for the longer running jobs. Foreground batch
jobs that run for a long duration are considered hanging in SAP after a certain
time. Therefore, it is ideal to run a background job for such extracts.

■ File Delimiter for Staging File: Specifies the column separator in a SQL data file.

■ Data File Name: Specifies the name of the data file that is generated when the
ABAP code for the mapping is run in the SAP system.

■ SQL Join Collapsing: Specifies the following hint, if possible, to generate ABAP
code.

SELECT < > INTO < > FROM (T1 as T1 inner join T2 as T2) ON <condition >

The default setting is TRUE.

Table 7–1 SQL*Loader Code Generated in ABAP

Loading Type Resulting Load Type in SQL*Loader

INSERT APPEND

CHECK/INSERT INSERT

TRUNCATE/INSERT TRUNCATE

DELETE/INSERT REPLACE

All other types APPEND

Retrieving Data from the SAP System

Creating SQL*Loader, SAP, and Code Template Mappings 7-7

■ Primary Foreign Key for Join: Specifies the primary key to be used for a join.

■ ABAP Report Name: Specifies the name of the ABAP code file generated by the
mapping. This is required only when you are running a custom function module
to execute the ABAP code.

■ SAP System Version: Specifies the SAP system version number to which you
want to deploy the ABAP code. For MySAP ERP and all other versions, select SAP
R/3 4.7. Note that different ABAP code is required for versions prior to 4.7.

■ Staging File Directory: Specifies the location of the directory in the SAP system
where the data file generated by ABAP code resides.

■ SAP Location: Specifies the location of the SAP instance from where the data can
be extracted.

■ Use Select Single: Indicates whether Select Single is generated, if possible.

■ Nested Loop: Specifies a hint to generate nested loop code for a join, if possible.

Setting the Join Rank
You must set the Join Rank parameter only if the mapping contains the Joiner operator,
and you want to explicitly specify the driving table. Unlike SQL, ABAP code
generation is rule-based. Therefore, you must design the mapping so that the tables
are loaded in the right order. Or you can explicitly specify the order in which the tables
must be joined. To do this, from the Configuration tab, expand Table Operators, and
then for each table, specify the Join Rank. The driving table must have the Join Rank
value set to 1, with increasing values for the subsequent tables.

You can also let Warehouse Builder decide the driving table and the order of joining
the other tables. In such cases, do not enter values for Join Rank.

Retrieving Data from the SAP System
After designing the extraction mapping, you must validate, generate, and deploy the
mapping, as you do with all mappings in Warehouse Builder.

To generate the script for the SAP mapping:

1. Right-click the SAP mapping and select Generate.

The generation results are displayed in the Log window, under the Scripts node.

2. Expand the Scripts node, select the script name, and click the View Script icon in
the Log window toolbar.

The generated code is displayed in the Code Viewer.

You can edit, print, or save the file using the code editor. Close the Code Viewer to
return to the Design Center.

3. To save the script, right-click the script and click the Save Script As icon in the Log
window toolbar.

After you generate the SAP mapping, you must deploy the mapping to create the
logical objects in the target location. To deploy an SAP mapping, right-click the
mapping and select Deploy. You can also deploy the mapping from the Control Center
Manager.

For detailed information about deployment, see Chapter 12, "Deploying to Target
Schemas and Executing ETL Logic".

Retrieving Data from the SAP System

7-8 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

When an SAP mapping is deployed, an ABAP mapping is created and stored in the
Warehouse Builder runtime schema. Warehouse Builder also saves the ABAP file
under OWB_ORACLE_HOME\owb\deployed_files directory, where OWB_ORACLE_
HOME is the location of the Oracle Database home directory of your Warehouse Builder
installation. Note that if you are using the Warehouse Builder installation that comes
with Oracle Database, then this is the same as the database home.

Depending on whether data retrieval from the SAP system is fully automated,
semiautomated, or manual, you must perform the subsequent tasks. This section
consists of the following topics:

■ "Automated System" on page 7-8

■ "Semiautomated System" on page 7-9

■ "Manual System" on page 7-11

Automated System
In a completely automated system, as a Warehouse Builder user you have access to the
predefined function module in the SAP system. This allows you to execute any ABAP
code and retrieve data directly from the SAP system without being dependent on the
SAP administrator.

Figure 7–2. displays a diagrammatic representation of the automated data retrieval
mechanism.

Figure 7–2 Automated Data Retrieval

Because there is no dependence, you can automate the process of sending the ABAP
code to the SAP system and retrieving the data file from the SAP system. Warehouse
Builder will then use FTP to transfer the data file to the Warehouse Builder system,
and load the target file with the retrieved data using SQL*Loader.

An automated system works as follows:

1. You design the extraction mapping and generate the ABAP code for this mapping.

2. Before deploying the mapping, ensure that you have set the following
configuration parameters for the mapping:

Retrieving Data from the SAP System

Creating SQL*Loader, SAP, and Code Template Mappings 7-9

■ ABAP Report Name: The file that stores the ABAP code generated for the
mapping.

■ SAP Location: The location on the SAP system from where data is retrieved.

■ Data File Name: Name of the data file to store the data generated by the
execution of ABAP code.

Also ensure that you have provided the following additional connection details for
the SAP location:

■ Execution Function Module: Provide the name of the predefined SAP
function module. Upon execution, this function module will take the ABAP
report name as the parameter, and execute the ABAP code.

■ FTP Directory: The directory on the Warehouse Builder system. The data file
generated upon the execution of the function module will be sent using FTP to
this directory.

■ Also provide a user name that has write permissions on the FTP directory.

3. You then start the mapping. The following which the following tasks are
automatically performed:

■ Warehouse Builder deploys the ABAP and uses RFC_ABAP_INSTALL_AND_
RUN to both load the ABAP and execute it in SAP.

The ABAP code is sent to the SAP system using a Remote Function Call (RFC).

4. In the SAP system, the code retrieves data from the source tables and creates a
data file.

This data file is stored in the location specified by Runtime parameter Staging File
Directory.

5. Warehouse Builder uses FTP to transfer this data file back to the Warehouse
Builder system.

The file is stored in the location specified in the FTP Directory field.

6. Using SQL*Loader, Warehouse Builder loads the target table in the mapping with
the data from the data file.

The advantage of this system is that you can create a fully automated end-to-end
solution to retrieve SAP data. As a user, you just create the extraction mapping and
run it from Warehouse Builder, which then creates the ABAP code, sends it to the SAP
system, retrieves the resultant data file, and loads the target table with the retrieved
data.

Semiautomated System
In a semiautomated system, as a Warehouse Builder user, you do not have access to
the predefined function module, and therefore cannot use this function module to
execute ABAP code. You create an extraction mapping, deploy it, and then send the
ABAP code to the SAP administrator who verifies the code before allowing you to run
it in the SAP system.

Figure 7–3 displays a diagrammatic representation of a semi automated system.

Retrieving Data from the SAP System

7-10 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Figure 7–3 Semiautomated Implementation

A semiautomated system works as follows:

1. You design the extraction mapping and generate the ABAP code for this mapping.

2. You then transport the ABAP code to the test system to test the code.

3. You then send the ABAP code to the SAP administrator, who loads it to the SAP
repository.

4. The SAP administrator creates a new ABAP report name.

5. You can then call this ABAP report name to execute the ABAP code in the
production environment.

6. Before you run the mapping in the SAP system, ensure that you have set the
following configuration parameters for the mapping:

■ ABAP Report Name: The SAP administrator will provide the report name
after verifying the ABAP code. You will then execute this ABAP file.

■ SAP Location: The location on the SAP system from where data is retrieved.

■ Data File Name: Name of the data file to store the data generated during
execution of ABAP code.

Also ensure that you have provided the following additional connection details for
the SAP location:

■ Execution Function Module: Provide the name of the custom function
module created by the SAP administrator. On execution, this function module
takes the ABAP report name as the parameter, and executes the ABAP code.
You must obtain the function module name from the SAP administrator.

■ FTP Directory: A directory on the Warehouse Builder system. The data file
generated by the execution of the ABAP code is sent using FTP to this
directory.

■ Also provide a user name that has Write permissions on the FTP directory.

7. In the production environment, when you run the mapping, Warehouse Builder
generates the ABAP code and sends it to the SAP system using a Remote Function
Call (RFC).

Retrieving Data from the SAP System

Creating SQL*Loader, SAP, and Code Template Mappings 7-11

8. In the SAP system, the ABAP code is executed using the customized function
module and a data file is generated.

This data file is stored in the location specified by the Runtime parameter Staging
File Directory.

9. Warehouse Builder uses FTP to transfer this data file back to the Warehouse
Builder system.

The file is stored in the location specified in the FTP Directory field.

10. Warehouse Builder uses SQL*Loader to load the target table with data from the
data file.

Manual System
In a manual system, your role as a Warehouse Builder user is restricted to generating
the ABAP code for the mapping, and sending the ABAP code to the SAP
administrator. The tasks involved in this system are:

1. You create an extraction mapping, and generate the ABAP code for the mapping.

2. While designing the mapping, ensure that you specify the Data File Name to store
the data file.

3. You send the ABAP code to the SAP administrator.

4. The SAP administrator executes the ABAP code in the SAP system.

5. On execution of the code, a data file is generated.

On the Warehouse Builder end, you can create a Process Flow to retrieve the data file.
The process flow must contain the following activities.

1. A File Exists activity to check for the presence of the data file.

2. If the file exists, then an FTP activity transfers the file to the Warehouse Builder
system.

3. If the file does not exist, then it must wait till the file is made available, and then
perform an FTP.

4. Using SQL*Loader, the target table is loaded with data from the data file.

Figure 7–4 displays the process flow that retrieves the data file.

Figure 7–4 Process Flow to Retrieve SAP Data

In certain environments, the SAP administrator may not allow any other user to access
the SAP system. In such cases, implementing the manual system may be the only
viable option.

Creating Code Template (CT) Mappings

7-12 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Creating Code Template (CT) Mappings
Once you create or import a code template and deploy it, the template to perform a
certain task on a certain platform is available in the workspace. To use this template to
load or transform your data, you must create a mapping that uses this code template.

Some of the tasks that you can perform using code templates are:

■ Integrate with heterogeneous databases such as DB2 or SQL Server by extracting
data from these databases

■ Leverage functionality beyond that of the current Code Template library. For
example, you can construct new code templates to use Oracle Database
functionality such as Data Pump to move data between Oracle systems at high
speed.

You can also use code templates in situations where the code generated for PL/SQL
mappings does not meet the requirements of your application.

What are Code Template (CT) Mappings?
Mappings that contain an association with code templates are called Code Template (CT)
mappings. Typically, they are used to extract or load data (both with and without
transformations) from non-Oracle databases such as IBM DB2 and Microsoft SQL
Server. You can also use Oracle Gateways to extract from and write to non-Oracle
systems.

To extract data from an Oracle Database and transform and load it into another Oracle
Database, you can either use Code Template mappings or create mappings under the
Mappings node of the Oracle target module.

When Can I Use Code Template (CT) Mappings?
Use Code Template mappings to extract data from, transform, or load data into Oracle
and non-Oracle databases using code templates.

When moving data between Oracle databases, the main reason to use CT mappings is
moving data using technologies other than database links. Code templates can be used
to implement bulk data movement based on functionality such as Data Pump.

Where Are Code Template Mappings Defined?
To create a Code Template mapping, use the Template Mappings node under a project
in the Projects Navigator. This node is used to include non-Oracle mappings (not
PL/SQL, SQL*Loader, or ABAP).

When you create a CT mapping, the Mapping Editor contains two tabs: Logical View
and Execution View. Use the Logical View to define the mapping by adding mapping
operators and creating data flows between operators. Use the Execution View to define
execution units that specify how the mapping should be executed. For more
information about execution units, see "Defining Execution Units" on page 7-19.

What Operators Can Be Used in Code Template Mappings?
You can use any mapping operator, except the ones listed in "Mapping Operators that
are Only Supported Directly in Oracle Target CT Mappings" on page 7-16, in CT
mappings.

You can also use pluggable mappings in CT mappings. However, ensure that the
pluggable mappings do not contain any of the operators listed in "Mapping Operators
that are Only Supported Directly in Oracle Target CT Mappings" on page 7-16.

Creating Code Template (CT) Mappings

Creating SQL*Loader, SAP, and Code Template Mappings 7-13

What are the Types of Code Template Mappings?
Code templates in Warehouse Builder are classified into the following categories:

■ Load Code Template (Load CT)

■ Integration Code Template (Integration CT)

■ Control Code Template (Control CT)

■ Change Data Capture Code Template (CDC CT)

■ Oracle Target Code Template (Oracle Target CT)

■ Function Code Template (Function CT)

For more details about the types of code templates, see Oracle Warehouse Builder
Sources and Targets Guide.

About Prebuilt Code Templates Shipped with Warehouse Builder
Warehouse Builder includes some prebuilt code templates that you can use in CT
mappings to perform data transformations. These code templates, defined to perform
certain ETL tasks on the specified source or target, are available under the BUILT_IN_
CT node under the Public Code Templates node of the Globals Navigator.

Table 7–2 provides a brief description of the code templates supplied by Warehouse
Builder and details any restrictions in their usage. Use specific Load CTs for your
target staging area whenever possible as they are more optimized for performance. For
example, if you are loading to an Oracle database, use LCT_FILE_TO_ORACLE_
SQLLDR or LCT_FILE_TO_ORACLE_EXTER_TABLE instead.

For more details about these code templates, see the Oracle Data Integrator (ODI)
documentation set. In ODI, code templates are called knowledge modules.

Table 7–2 Prebuilt Code Templates Supplied by Warehouse Builder

Code Template Name

Code
Template
Type Description

LCT_FILE_TO_ORACLE_EXTER_TABLE Load CT Loads data from a file to an Oracle Database staging area using the
EXTERNAL TABLE SQL command.

This CT is more efficient than the LCT_FILE_TO_SQL when dealing
with large volumes of data. However, the loaded file must be
accessible from the Oracle Database machine.

LCT_FILE_TO_ORACLE_SQLLDR Load CT Loads data from a file to an Oracle Database staging area using the
native SQL*LOADER command line utility. Because it uses
SQL*LOADER, this CT is more efficient than LCT_FILE_TO_SQL
when dealing with large volumes of data.

LCT_FILE_TO_SQL Load CT Loads data from an ASCII or EBCDIC file to any SQL-compliant
database used as a staging area.

Consider using this Load CT if one of your source data stores is an
ASCII or EBCDIC file.

LCT_ORACLE_TO_ORACLE_DBLINK Load CT Loads data from an Oracle database to an Oracle staging area
database using the native database links feature.

LCT_SQL_TO_ORACLE Load CT Loads data from any Generic SQL source database to an Oracle
staging area. This Load CT is similar to the standard LCT_SQL_TO_
SQL, except that you can specify some additional specific Oracle
Database parameters.

LCT_SQL_TO_SQL Load CT Loads data from a SQL-compliant database to a SQL-compliant
staging area.

Creating Code Template (CT) Mappings

7-14 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

LCT_SQL_TO_SQL_ROW_BY_ROW Load CT Loads data from a SQL-compliant database to a SQL-compliant
staging area. This CT uses Jython scripting to read selected data from
the source database and write the result into the staging temporary
table created dynamically.

ICT_ORACLE_INCR_UPD Integration
CT

Loads your Oracle target table, in incremental update mode, to insert
missing records and to update existing ones.

Inserts and updates are done in bulk set-based processing to
maximize performance. You can also perform data integrity checks
by invoking the Control CT.

Note: When you use this Integration CT, the following restrictions
apply:

■ The Loading Type property of the target Table operator should
be set to either INSERT_UPDATE or UPDATE_INSERT.

■ A unique key or primary key must be defined for the target
Table operator.

ICT_ORACLE_INCR_UPD_MERGE Integration
CT

Loads your Oracle target table, in incremental update mode, to insert
missing records and to update existing ones.

Inserts and updates are performed by the bulk set-based MERGE
statement to maximize performance. It also enables performing data
integrity checks by invoking the Control CT.

Note: When you use this Integration CT, the following restrictions
apply:

■ The Loading Type property of the target Table operator should
be set to either INSERT_UPDATE or UPDATE_INSERT.

■ A unique key or primary key must be defined for the target
Table operator.

ICT_ORACLE_INCR_UPD_PL_SQL Integration
CT

Loads your Oracle target table to insert missing records and to
update existing ones.

Use this CT if your records contain long or binary long object (BLOB)
data types. Avoid using this CT to load large volumes of data
because inserts and updates are performed in row-by-row PL/SQL
processing.

Note: When you use this Integration CT, the following restrictions
apply:

■ The Loading Type property of the target Table operator should
be set to either INSERT_UPDATE or UPDATE_INSERT.

■ A unique key or primary key must be defined for the target
Table operator.

ICT_ORACLE_SCD Integration
CT

Loads a Type 2 Slowly Changing Dimension.

This CT relies on the Slowly Changing Dimension metadata set on
the target table to determine which records should be inserted as new
versions or updated as existing versions.

ICT_SQL_CONTROL_APPEND Integration
CT

Loads your SQL-compliant target table in replace/append mode,
with or without data integrity check.

When flow data must be checked using a Control CT, this CT creates
a temporary staging table before invoking the Control CT.

Table 7–2 (Cont.) Prebuilt Code Templates Supplied by Warehouse Builder

Code Template Name

Code
Template
Type Description

Creating Code Template (CT) Mappings

Creating SQL*Loader, SAP, and Code Template Mappings 7-15

ICT_SQL_INCR_UPD Integration
CT

Loads your SQL-compliant target table, in incremental update mode,
to insert missing records and to update existing ones.

You can also perform data integrity checks by invoking the Control
CT. Because not all databases support the same bulk update syntax,
updates are done row by row.

Note: When you use this Integration CT, the following restrictions
apply:

■ The Loading Type property of the target Table operator should
be set to either INSERT_UPDATE or UPDATE_INSERT.

■ A unique key or primary key must be defined for the target
Table operator.

ICT_SQL_TO_FILE_APPEND Integration
CT

Integrates data in a target file from any SQL-compliant staging area
in replace mode.

ICT_SQL_TO_SQL_APPEND Integration
CT

Enables you to use a staging area different from the target. It
integrates data in a target SQL-compliant table from any
SQL-compliant staging area in replace mode.

CCT_Oracle Control CT Checks for data integrity against constraints defined on an Oracle
table. Rejects invalid records in the error table created dynamically.
Can be used for static controls as well as flow controls.

CCT_SQL Control CT Checks for data integrity against constraints defined on a
SQL-compliant database.

Rejects invalid records in the error table created dynamically. Can be
used for static controls as well as flow controls.

JCT_DB2_UDB_CONSISTENT CDC CT Creates the infrastructure required for consistent Change Data
Capture on IBM DB2 UDB tables using triggers.

JCT_DB2_UDB_SIMPLE CDC CT Creates the infrastructure required for simple Change Data Capture
on IBM DB2 UDB tables using triggers.

JCT_MSSQL_CONSISTENT CDC CT Creates the journalizing infrastructure for consistent journalizing on
Microsoft SQL Server tables using triggers.

Enables consistent Change Data Capture on Microsoft SQL Server.

JCT_MSSQL_SIMPLE CDC CT Creates the journalizing infrastructure for simple journalizing on
Microsoft SQL Server tables using triggers.

Enables simple Change Data Capture on Microsoft SQL Server.

JCT_ORACLE_10G_CONSISTEN_MINER CDC CT Enables consistent Change Data Capture on Oracle tables. Creates the
journalizing infrastructure for consistent journalizing on Oracle 10g
tables. Changed data is captured by the Oracle 10g LogMiner-specific
utility.

JCT_ORACLE_11G_CONSISTEN_MINER CDC CT Enables consistent Change Data Capture on Oracle tables. Creates the
journalizing infrastructure for consistent journalizing on Oracle 11g
tables. Changed data is captured by the Oracle 11g LogMiner-specific
utility.

JCT_ORACLE_9I_CONSISTENT_MINER CDC CT Enables consistent Change Data Capture on Oracle tables. Creates the
journalizing infrastructure for consistent journalizing on Oracle 9i
tables. Changed data is captured by the Oracle 9i LogMiner-specific
utility.

JCT_ORACLE_CONSISTENT CDC CT Enables consistent Change Data Capture on Oracle tables. Creates the
journalizing infrastructure for consistent Change Data Capture on
Oracle tables using triggers.

JCT_ORACLE_CONSISTENT_UPD_DATE CDC CT Enables consistent Change Data Capture on Oracle tables. Creates the
infrastructure for consistent Change Data Capture on Oracle tables
using a source tables column that indicates the last update date.

JCT_ORACLE_SIMPLE CDC CT Enables simple Change Data Capture on Oracle tables. Creates the
journalizing infrastructure for simple Change Data Capture on
Oracle tables using triggers.

Table 7–2 (Cont.) Prebuilt Code Templates Supplied by Warehouse Builder

Code Template Name

Code
Template
Type Description

Creating Code Template (CT) Mappings

7-16 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Limitations of Using Certain Prebuilt Code Templates
■ When you use ICT_ORACLE_INCR_UPD_MERGE, sequences are not supported.

■ When you use ICT_SQL_CONTROL_APPEND in a mapping, an ORDER BY
clause associated with this CT does not work. No error message is displayed
during the execution of a CT mapping containing this CT. However, the rows are
not ordered as specified in the ORDER BY property.

■ When you use Incremental Update Integration CTs, the Loading Type property of
the target Table operator should be set to either INSERT_UPDATE or UPDATE_
INSERT. Also, the target Table operator must have Unique key or Primary key
defined on it.

■ ICT_SQL_TO_SQL_APPEND uses two different credentials (one credential to the
source schema and another credential to the target schema as defined in the
location) to perform the loading. As a result, the map can be executed successfully
without a permission problem.

■ ICT_SQL_CONTROL_APPEND uses a single credential (the credential to connect
to the target schema) to perform the loading. In other words, the security behavior
is similar to existing Warehouse Builder PL/SQL mapping. As a result, if the
target schema has not been granted the permission to access the source schema, an
"Insufficient privileges" error will be reported.

In general, Oracle Data Integrator Knowledge Modules (KMs) with "multiple
connections" property set to true in its KM falls into the first category described
above. Please refer to Oracle Data Integrator documentation for details.

Mapping Operators that are Only Supported Directly in Oracle Target CT Mappings
Certain transformation operators are designed to leverage functionality provided by
the Oracle Database. This functionality is not available in other heterogeneous
databases. Thus, you cannot assign execution units that contain these operators
directly to Load CTs or Integration CTs. These operators are only supported if you add
them to an execution unit that has an Oracle Target CT assigned to it.

The list of operators that you cannot use directly in CT mappings, if the execution unit
containing these operators is associated with an Integration CT or Load CT, is as
follows:

■ Anydata Cast

■ Construct Object

■ Cube

■ Dimension

■ Expand Object

■ LCR Cast

■ LCR Splitter

■ Lookup

■ Mapping Input Parameter

■ Mapping Output Parameter

■ Match Merge

■ Name and Address

Creating Code Template (CT) Mappings

Creating SQL*Loader, SAP, and Code Template Mappings 7-17

■ Pivot

■ Post-Mapping Process

■ Pre-Mapping Process

■ Queue

■ Set Operation

■ Sorter

■ Splitter

■ Table Function

■ Unpivot

■ Varray Iterator

Using Restricted Mapping Operators in Code Template Mappings
Execution units that are associated with Oracle Target CTs enable you to use restricted
mapping operators in CT mappings. You can use the operators listed in "Mapping
Operators that are Only Supported Directly in Oracle Target CT Mappings" on
page 7-16 in execution units, if the execution unit containing these operators is
associated with an Oracle Target CT. Hybrid mappings can be constructed which
leverage flexible integration capabilities using the loading code templates in addition
with the powerful transformation capabilities supported through the use of the Oracle
Target CTs.

Certain operations that cannot be performed using CT mappings can be performed
using traditional Warehouse Builder mappings that are deployed as PL/SQL
packages. You can perform such mappings as separate execution units.

Steps to Perform ETL Using Code Template Mappings
Performing ETL using CT mappings involves the following steps:

1. (Optional) Creating Template Mapping Modules

If you have not already done so, create a Mappings module that will contain the
mapping.

2. Creating Mappings Using Code Templates

3. Defining Execution Units

4. Starting the Control Center Agent (CCA)

5. Validating Code Template Mappings

6. Generating Code Template Mappings

7. Deploying Code Template Mappings

8. Executing Code Template Mappings

After you execute the CT mapping, you can view the execution results as described in
"Viewing Execution Results for Code Template Mappings" on page 7-27.

You can also audit errors caused during the execution of the CT mapping as described
in "Auditing the Execution of Code Template Mappings" on page 7-31.

Creating Code Template (CT) Mappings

7-18 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Creating Template Mapping Modules
A template mapping module is a container for the mappings that use code templates.
You can create a mapping that contains a code template only from the Template
Mappings node of the Design Center. Similar to other modules in Warehouse Builder,
each template mapping module is associated with a location that specifies where the
mappings in this module should be deployed. Mappings containing code templates
are deployed to the Warehouse Builder Control Center Agent.

To create a template mapping module:

1. In the Projects Navigator, expand the project node under which you want to create
a template mapping module.

2. Right-click the Template Mappings node and select New Mapping Module.

The Create Module Wizard is displayed.

3. On the Welcome page, click Next.

4. On the Name and Description page, enter values for the following fields and click
Next.

Name: Enter the name of the template mapping module. The name should
conform to the Warehouse Builder naming conventions.

Description: Enter an optional description for the template mapping module.

Select the Module Status: Select the status as Development, Quality Assurance, or
Production.

5. On the Connection Information page, specify the details of the location pointing to
the Control Center Agent (CCA) to which the CT mappings are deployed. Click
Next.

If you previously created a location corresponding to the Control Center Agent,
select this location using the Location list. You can also use the default location
corresponding to the CCA, DEFAULT_AGENT, that is created by Warehouse
Builder.

To create a location, enter the following details for the Control Center Agent.

Username: User name for the OC4J user that you use to deploy to the CCA. To
deploy to the Control Center Agent that is installed with Oracle Warehouse
Builder, use oc4jadmin as the user name.

Password: Password for the OC4J user that you use to deploy to the CCA.

Host: The hostname of the computer on which the Control Center Agent is
installed.

Port: The value of the RMI port used by the OC4J server.

Port Type: To deploy to the agent location associated with the CCA that is
installed along with Oracle Warehouse Builder, use RMI as the port type.

The other options you can choose for port type are OPMN and RMIS.

Instance: Name of the OC4J instance corresponding to the CCA. To deploy to the
default CCA installed with Oracle Warehouse Builder, leave this field blank.

Application Name: Name of the application to which CT mappings should be
deployed. To deploy to the default CCA installed with Oracle Warehouse Builder,
use jrt as the application name.

Creating Code Template (CT) Mappings

Creating SQL*Loader, SAP, and Code Template Mappings 7-19

6. On the Summary page, review the information that you entered in the wizard.
Click Finish to create the template mapping module. Click Back to modify any
entered values.

The Template mapping module is created and added to the navigator tree under the
project.

Creating Mappings Using Code Templates
To use the functionality defined by code templates in your environment, you create a
Code Template (CT) mapping. The process to create a CT mapping is similar to a
regular PL/SQL mapping, except for the additional step of defining execution units
and associating them with code templates.

Every CT mapping must belong to a mapping module.

To create a CT mapping:

1. In the Projects Navigator, expand the project node and then the Template
Mappings node under which you want to create a CT mapping.

2. Right-click the mapping module in which you want to create the CT mapping and
select New Mapping.

The Create Mapping dialog box is displayed.

3. Enter the name and an optional description for the CT mapping and click OK.

The Mapping Editor for the CT mapping is displayed.

4. On the Logical View tab, add the required operators and establish data flows that
perform the required data transformation.

For more information about how to add operators and establish data flows
between them, see Chapter 5, "Creating PL/SQL Mappings".

Defining Execution Units
The Execution View tab of the Mapping Editor enables you to define execution units.
Use execution units to break up your mapping execution into smaller, related units
and to associate a part of your mapping with a code template. Warehouse Builder
generates code separately for each execution unit that you define.

The Execution View tab of the Mapping Editor displays the operators and data flows
from the Logical View in an iconized form. You cannot edit operators or create data
flows in the Execution View. You must perform these operations using the Logical
View. Create execution units as defined in "Creating Execution Units" on page 7-20.

Execution View Menu and Toolbars
When you select the Execution View tab, the Design Center displays an additional
menu called Execution and an Execution toolbar. Use these to:

■ Create and delete execution units

■ Define default execution units

Note: If you do not explicitly assign a code template to an execution
unit, Warehouse Builder assigns a default code template to the
execution unit. For more details about default code templates, see
"Default Code Template for An Execution Unit" on page 7-22.

Creating Code Template (CT) Mappings

7-20 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ Associate code templates with execution units

Creating Execution Units
Create an execution unit for a group of operators for which code generation and
execution will be controlled by a specific code template.

To create an execution unit:

1. In the Execution View of the mapping, select the operators that you want to group
into an execution unit.

You can do this by drawing a rectangle around the operators. Hold down the
mouse button at the top of the first operator, drag the mouse so that you cover the
required operators and then release the mouse button. Alternatively, hold down
the Ctrl key and click the headers of all the operators that you want to include in
an execution unit.

2. From the Execution menu, select Create Execution Unit. Or click the Create
Execution Unit icon.

Warehouse Builder creates an execution unit for the selected operators and assigns
a default name to it. To rename the execution unit, right-click the name and select
Open Details. In the Edit Execution Unit dialog box, enter the new name for the
execution unit.

To associate a code template with an execution unit:

1. If the Code Template panel is not displayed, from the View menu, select Code
Template.

The Code Templates tab is displayed in the Log window panel.

2. In the Execution View tab of the Mapping Editor, select the execution unit with
which you want to associate a code template.

3. In the Code Templates tab, use the list to select the code template with which the
selected execution unit should be associated.

The code templates displayed in the list depend on the source and target platforms
of the operators in the selected execution unit. They also depend on the nature of
the execution unit. For example, you can associate a Load CT with an execution
unit that does not contain any operators bound to data objects. You can associate
an Integration CT with an execution unit that contains one target operator bound
to a repository data object.

Adding Operators to an Execution Unit
To add operators to an execution unit:

1. In the Execution View of the Mapping Editor, select both the execution unit and
the operators that you want to add to the execution unit.

You can select multiple objects by holding down the Ctrl key while selecting
objects.

2. From the Execution menu, select Add Operator to Execution Unit. Or click the
Add Operator to Execution Unit icon in the Execution View toolbar.

See Also: "How Warehouse Builder Displays Code Templates that
Can be Associated with Execution Units" on page 7-22

Creating Code Template (CT) Mappings

Creating SQL*Loader, SAP, and Code Template Mappings 7-21

Adding Operators to Multiple Execution Units
An operator may appear in more than one execution unit, such as when it is a target in
one execution unit and a source in another.

For example, you have a Table operator cust_tab in the execution unit CUST_EXEC_
UNIT. You can copy cust_tab to another execution unit EX_UNIT_2 (which already
exists) by selecting both cust_tab and EX_UNIT_2 and then clicking the Add
Operator to Execution Unit icon. A copy of cust_tab is added to EX_UNIT_2.

Consider the Table operator cust_tab, which is a target in the execution unit CUST_
EXEC_UNIT. Select cust_tab and then click the Create Execution Unit icon to create
an execution unit containing a copy of cust_tab. The label of this copy will be <cust_
tab>, using the angle brackets as a visual cue that the operator appears in multiple
execution units.

Removing Operators from an Execution Unit
To remove operators from an execution unit:

1. In the Execution View of the Mapping Editor, select the operator or operators that
you want to remove from an execution unit.

2. From the Execution menu, select Remove Operator from Execution Unit. Or click
the Remove Operator from Execution Unit icon in the Mapping Editor toolbar.

The selected operators are removed from the execution unit and displayed
separately in the Execution View.

Removing Execution Units
When you remove an existing execution unit, the operators that were part of the
execution unit are not associated with any execution unit. You may need to associate
these operators with other execution units, if required.

Note that if you remove execution units, you must regenerate and deploy updated
code for the mapping before your changes take effect.

To remove an execution unit:

1. In the Execution View of the Mapping Editor, select the execution unit that you
want to remove.

2. From the Execution menu, select Remove Execution Unit. Or click the Remove
Execution Unit icon in the Execution View toolbar.

The execution unit is removed. Any operators that were contained in this
execution unit are displayed individually, instead of grouped under the execution
unit.

Creating Default Execution Units
You can create a default set of execution units by clicking the Default Execution Units
icon or by selecting Default Execution Units from the Execution menu. Warehouse
Builder first removes all existing execution units and then creates a new set of
execution units such that all operators are assigned to some execution unit.

The operators are assigned to execution units based on factors such as their location.
Operators that are at a different location will be assigned to different execution units. If

Note: You cannot remove an operator from an execution unit when it
is the only operator in the execution unit.

Creating Code Template (CT) Mappings

7-22 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

all operators are at the same location, the default may consist of a single execution unit
containing all operators.

The names of the default execution units depend on whether the location associated
with the operators in the execution units is known. When the execution unit location
(location associated with operators in the execution unit) is known, the name of the
default execution unit will be set to the location name followed by "_EU". If the
location associated with the execution unit is not known, the execution unit name
starts with "MAP_EX_UNIT_",

Default Code Template for An Execution Unit
If you do not explicitly associate a code template with an execution unit, during code
generation, Warehouse Builder assigns a default code template. The default code
template depends on the platform of the target operators. You can define default code
templates for each platform.

For example, you can define a default Load CT, Integration CT, and Oracle Target CT
for the Oracle Database platform. When you do not assign a code template to an
execution unit that contains operators referencing Oracle Database objects, the
Warehouse Builder Code Generator performs the following steps:

■ Identifies the type of code template that should be used for that particular
execution unit

■ Retrieves the default code template that should be assigned to the execution unit
using the platform of the location with which the execution unit is associated

■ Assigns the retrieved code template to the execution unit

If no default code templates are defined for a particular platform, Warehouse Builder
picks a code template from the available code templates and assigns it to the execution
unit. It then updates the platform definition and assigns the selected code template as
the default code template definition for that platform.

A default code template can be assigned to an execution unit only if the CT mapping
containing the code template and the default code template belong to the same project.

How Warehouse Builder Displays Code Templates that Can be Associated with
Execution Units
When associating a CT with execution units, the CTs displayed in the UI list are
filtered by the source and the target platforms. For example, if the execution unit
containing your source tables is an Oracle database, the CTs available for selection for
this execution unit are ones that can be used for Oracle sources.

In certain simple mappings, you may create a single execution unit that contains the
source and target operators. In this case, the list of available Integration CTs is limited
by the following:

■ Source Platform

■ Platform

■ The value set for the Multi-Connections property of the CT

Note: You can define default code templates for a platform only
using OMB*Plus. For more information about OMB*Plus, see Oracle
Warehouse Builder API and Scripting Reference.

Creating Code Template (CT) Mappings

Creating SQL*Loader, SAP, and Code Template Mappings 7-23

Starting the Control Center Agent (CCA)
The Control Center Agent is the agent that runs the code templates in the OC4J server.
You must start the Control Center Agent before you deploy code templates or CT
mappings.

Starting the Control Center Agent (CCA)
On Windows, start the Control Center Agent by running the ccastart.bat script
located in the OWB_ORACLE_HOME/owb/bin/win32 directory.

On Unix, start the Control Center Agent by running the ccastart file located in the
OWB_ORACLE_HOME/owb/bin/unix directory.

Stopping the Control Center Agent (CCA)
On Windows, stop the Control Center Agent by running the ccashut.bat script
located in the OWB_ORACLE_HOME/owb/bin/win32 directory. This script takes the
password of the oc4jadmin user as an input parameter.

On Unix, stop the Control Center Agent by running the ccashut file located in the
OWB_ORACLE_HOME/owb/bin/unix directory. This script takes the password of the
oc4jadmin user as an input parameter.

Validating Code Template Mappings
Validating a Code Template (CT) mapping verifies the metadata definitions and
configuration parameters to ensure that they are valid according to the rules defined
by Warehouse Builder. As part of validation, Warehouse Builder verifies the
assignment of operators to execution units. It also ensures that the code generated to
perform the ETL task defined in the CT mapping can be generated correctly.

During validation, Warehouse Builder checks the following rules:

■ An operator cannot be connected to two or more downstream operators in
different execution units.

■ An execution unit cannot contain non-Oracle source or target operators and other
restricted mapping operators.

■ Only Oracle Target CTs can be assigned to an execution unit with restricted
operators.

■ A transformation or data target operator containing more than one incoming
connection cannot exist in more than one execution unit.

■ An execution unit cannot have outgoing connections to more than one execution
unit.

Generating Code Template Mappings
Generating a Code Template (CT) mapping creates the scripts necessary to perform the
ETL task in the Warehouse Builder workspace. For CT mappings, Tcl scripts are
generated.

Note: It is recommended that you not run ccastart.bat or
ccastart multiple times to start multiple CCA instances. If you need
to run multiple CCA instances, install separate CCA instances on the
Application Server using the installation steps required to install a
CCA on the Application Server.

Creating Code Template (CT) Mappings

7-24 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

When you generate a CT mapping, Warehouse Builder first validates it. After the
validation is successful, the CT mapping is generated. Generation produces the
following scripts, which are part of an .ear file:

■ Variable script, var.tcl

This script contains the variables that will be substituted in the substitution
method calls of the code template script. The script collects all the defined
mapping variables into a single Tcl variable that contains a map of name to value.

This script stores all metadata, as described by the mapping, and this metadata
will be used by the code template (via its substitution methods). During execution
of the CT mapping, the substitution methods in the code template are executed in
the Control Center Agent and their return values are computed from the
appropriate metadata in the variable script. The metadata variable names do not
directly match the names or patterns defined in the substitution methods; the
implementation of the substitution methods performs that translation.

■ Driver script, driver.tcl

The driver script first invokes the variable script to load the metadata variable
values into the Jacl interpreter of the Control Center Agent. Next, for each
execution unit, it invokes the main method of the code template associated with
that execution unit.

The order of execution of the code templates is automatically derived from the
topology of the mapping in the Execution View.

If any errors occurred during generation, use the Mapping Editor to correct them and
then regenerate the CT mapping.

Viewing Generation Results
The results of the generation are displayed in a Results tab in the Log window. The
Results tab displays a parent node that indicates whether the generation was
successful. Under this node is one that uses the same name as the CT mapping that
you generated. This node contains the validation results under the Validation node
and the generated scripts under the Scripts node. Expand the node containing the
results you want to view.

Viewing Generated Code
The Scripts node under the generation results contains the var.tcl and driver.tcl
scripts that contain the code generated to create the CT mapping.

To view the generated code, expand the Scripts node. Right-click var.tcl or driver.tcl
and click the View Script icon. Or double-click the .tcl files to display their contents in
a new tab in the Mapping Editor.

Sample Code Generated for CT Mappings
Following are some code examples from a code template and its associated metadata
script, showing the substitution. The following code block displays a single procedural
step of a code template, creating a temporary flow table.

Note: If the Mapping Editor already displays a tab that contains
generated code for a CT mapping, ensure that you close this tab before
you view the generated code for another CT mapping. If you do not
close the tab containing previous generated code, you may see
conflicting results for the generated code.

Creating Code Template (CT) Mappings

Creating SQL*Loader, SAP, and Code Template Mappings 7-25

proc 3_CREATE_FLOW_TABLE_I__main { }
{
Input Flow Parameters
 variable SRC_LOCATION
 variable TGT_LOCATION
 variable KM_PARAMS
 variable LOG_LEVEL
 variable INSERT
 variable UPDATE
 variable COMMIT
 variable SYNC_JRN_DELETE
 variable FLOW_CONTROL
 variable RECYCLE_ERRORS
 variable STATIC_CONTROL
 variable TRUNCATE
 variable DELETE_ALL
 variable CREATE_TARG_TABLE
 variable FLOW_TABLE_OPTIONS
 variable ANALYZE_TARGET
 variable OPTIMIZER_HINT

Output parameters
 variable EXIT_CODE
 variable RETURN_VALUE {}

Global variables
 global errorInfo
 global g_iud

 set g_iud ""
 set tgt_stmt [process "create table <%=snpRef.getTable(\"L\", \"INT_NAME\",
\"W\")%>\n(\n<%=snpRef.getColList(\"\", \"\\t\[COL_NAME\]\\t\[DEST_WRI_DT\] NULL\", \",\\n\", \"\",
\"\")%>,\n\tIND_UPDATE \tchar(1)\n)\n<%=snpRef.getUserExit(\"FLOW_TABLE_OPTIONS\")%>"]
 puts $tgt_stmt
 execjdbc $tgt_stmt "TGT_AC" "$TGT_LOCATION" "" "true" "false" "false"
}

Notice that a target SQL statement, variable tgt_stmt, is assigned an actual SQL
statement which is then executed using the execjdbc procedure call. The execjdbc
tcl procedure makes a Java call to execute the statement through JDBC. The target
statement is a string produced by the process procedure. The <%...%> delimiters
require special processing to substitute required components into the SQL string. The
snpRef tag is the prefix for a substitution method callout. snpRef.getTable is
replaced by the actual table name. snpRef.getColList is another universal method
to retrieve the list of table columns participating in the DML. In addition to snpRef,
odiRef is supported (as in Oracle Data Integrator 10.2).

The substitution method (snpRef) calls are completed by a Warehouse Builder Tcl
module which extracts the associated data from a variable of the metadata script. The
following is an example of a metadata script section showing the table name and
column list:

set M1_params {
 {CKM_CALL ""}
 {COLUMN_GENERIC_DATATYPE "NUMERIC VARCHAR"}
 {COLUMN_LIST "EMPLOYEES.EMPLOYEE_ID EMPLOYEES.LAST_NAME"}
 {COLUMN_LIST_ALIAS "EMPLOYEE_ID LAST_NAME"}
 {COLUMN_LIST_DATATYPE "NUMBER(6) VARCHAR2(25)"}
 {EXECUTION_UNIT_NAME "EX_UNIT_2"}
 {FROM_LIST "EMPLOYEES"}

Creating Code Template (CT) Mappings

7-26 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

 {FROM_LIST_ALIAS "EMPLOYEES"}
 {HAS_JRN "0"}
 {INSERT_COLUMN_LIST "EMPID ENAME"}
 {IS_DISTINCT "FALSE"}
 {JOURNAL_IN_CURRENT_SCHEMA "false"}
 {JOURNAL_IN_SOURCE_SCHEMA "false"}
 {JOURNAL_IN_STAGING_AREA "false"}
 {JRN_FILTER ""}
 {JRN_METHOD "NONE"}
 {JRN_TABLE "."}
 {KM_NAME "KM_IKM_ORACLE_INCREMENTAL_UPD"}
 {MAP_NAME "MAPPING_2"}
 {SELECT_STATEMENT "SELECT EMPLOYEES.EMPLOYEE_ID EMPLOYEE_ID,
 EMPLOYEES.LAST_NAME LAST_NAME
FROM
 EMPLOYEES EMPLOYEES"}
 {SQL_STATEMENT "INSERT INTO TGT(EMPID, ENAME)
 (SELECT EMPLOYEES.EMPLOYEE_ID EMPLOYEE_ID,EMPLOYEES.LAST_NAME LAST_NAME
FROM
 EMPLOYEES EMPLOYEES
)
;"}
 {TARGET_COLUMN_DATATYPE "NUMBER(15) VARCHAR2(100)"}
 {TARGET_COLUMN_LIST "EMPID ENAME"}
 {TARGET_GENERIC_DATATYPE "NUMERIC VARCHAR"}
 {TARGET_NAME "TGT"}
}

Deploying Code Template Mappings
To deploy a Code Template (CT) mapping, use the Control Center Manager. In the
Control Center navigation tree, CT mappings are listed under the agent location that is
associated with the mapping module containing the CT mappings.

Deploying a CT mapping copies the generated scripts to the CCA.

Before you deploy a CT mapping, ensure that you deploy all the code templates
associated with it.

To deploy a code template mapping:

1. From the Design Center, open the Control Center by selecting Control Center
Manager from the Tools menu.

2. In the Control Center navigation tree, expand the project node under which you
created the CT mapping. Then expand the location node associated with the
mapping module that contains the CT mapping.

3. Expand the mapping module node that contains the CT mapping.

4. Select the CT mapping to be deployed and, in the Object Details panel, select
Create as the Deploy Action.

5. Click the Deploy icon.

The Control Center Jobs panel contains a new entry for to the deployment job
corresponding to the deployed CT mapping. If the deployment is successful, the status
displays a success message. If the deployment fails, double-click the error message to
view the details of the error.

Creating Code Template (CT) Mappings

Creating SQL*Loader, SAP, and Code Template Mappings 7-27

Executing Code Template Mappings
When you execute a Code Template (CT) mapping, the code template is used to
perform the data integration task defined in the CT mapping. Before you execute a CT
mapping, ensure that the CT mapping is deployed as described in "Deploying Code
Template Mappings" on page 7-26.

To execute a CT mapping, in the Control Center Manager, select the CT mapping and
click the Start icon.

Or, from the Projects Navigator, right-click the CT mapping and select Start.

The CT mapping is executed and the ETL defined by it is performed.

Execution of CT mappings is controlled by a J2EE Runtime environment referred to as
the CCA (Control Center Agent). The CCA is separate from the Runtime Platform. The
CCA runs a mapping by executing Tcl/Java (Jacl) scripts. Because the execution is
performed entirely by the CCA, it can be invoked separately from Service Oriented
Architecture (SOA) interfaces.

Viewing Execution Results for Code Template Mappings
You can view execution results for a Code Template (CT) mapping by using the
Results tab or Audit Information panel.

Viewing Execution Results by Using the Results Tab
 When you execute a CT mapping using the Design Center, a new Results tab is
created in the Log window to display the CT mapping execution results. The Results
tab contains a node called Execution that contains the execution results. This displays
details about the number of rows inserted, updated, and deleted during the CT
mapping execution.

Viewing Execution Results by Using the Audit Information Panel
The Audit Information panel enables you to view additional details about the CT
mapping execution. You can also view results for previous executions of the CT
mapping. To display the Audit Information panel, from the View menu, select Audit
Information.

Expand the location node to which the CT mapping is deployed to view the jobs for
this CT mapping. Because you can execute a CT mapping multiple times, each
execution is represented by a job. Each job contains a node for execution units, which
in turn contains a node for steps. Details such as number of rows inserted, updated,
deleted, and selected are displayed. Use the Execute Statement tab to view the
statement used to execute a step.

Note: While executing complex CT mappings that could take more
than a day to run, it is recommended that you split the job into smaller
ones. The default transaction timeout for the OC4J is set to one day. If
your job execution takes more than a day, the execution will time out
and unexpected errors may be encountered.

Note: The number of rows selected is not audited during CT
mapping execution. Thus, the execution results do not contain the
number of rows selected.

Setting Options for Code Templates in Code Template Mappings

7-28 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

During the execution of a CT mapping or Change Data Capture process, the Audit
Information panel displays the job and its child nodes, such as Execution Units (for CT
mapping only), Tasks, and Steps, as they are being executed. The status for each job is
also displayed. You can filter tasks for a Job in the Audit Information panel based on
the status (such as Skipped, Warnings, and so on). The default is set to Filter None,
which means that no filtering is performed. You can also sort Jobs by Timestamps.

Use the Message tab to view any message during the execution of the steps, such as an
exception from the JDBC driver during the execution of a JDBC task.

Modes of Operation for the Audit Information Panel
The Audit Information panel can display audit information in the following modes:

■ If a CT mapping is selected in the Projects Navigator, only the execution audit for
that CT mapping is displayed.

■ If you select a Function CT in the Projects Navigator, only execution audit
information for the selected CT is displayed.

■ If you select a module containing CDC tables in the Projects Navigator, the audit
information for CDC is displayed.

■ If you select an agent in the Locations Navigator, the execution audits for all the
jobs executed in that agent (including CT mapping, CDC execution, and CT
function deployment) are displayed.

Setting Options for Code Templates in Code Template Mappings
When you use a code template in a CT mapping, the options that you can set for the
code template depends on the type of code template.

Note that Warehouse Builder is not aware of the options that work with each platform
or database. Thus, validating and generating your CT mappings does not
automatically verify if the option that you set works with the platform or database
associated with the code template. For example, Teradata does not support the
TRUNCATE statement. Thus, if you set the Truncate property to true for a code
template associated with a Teradata source or target, you will encounter errors while
executing the CT mapping.

Table 7–3 describes the options that you can set for each type of code template in a CT
mapping. You can add new options to code templates and use them in CT mappings.

Table 7–3 Options for Code Templates in Code Template Mappings

Option Name Description
Option applicable for
Code Template Types

After ICT Set to True to clean up work tables after the ICT has
completed integration in the target. This property
enables you to decide if you want to keep work tables
after the mapping completes (primarily for debugging
purposes).

Load CT

Commit Set to True to indicate that a commit should be
performed after the integration task is completed.

Integration CT

Create_targ_table Set to True to create the target table. Set to False if the
table already exists.

Integration CT

Delete_all Set to True to delete all rows from the target table. Integration CT

Setting Options for Code Templates in Code Template Mappings

Creating SQL*Loader, SAP, and Code Template Mappings 7-29

Setting Properties for Bound Operators in CT Mappings
For operators in CT mappings that are bound to data objects, you can set properties for
the operator attributes. These attribute values are used in the substitution methods
when the CT mapping is executed.

Operators, in CT mappings, that are bound to data objects have the following
additional properties. These operators are listed under the Code Template Metadata
Tags node in the Property Inspector.

SCD
Use the SCD property to specify the role played by the attribute when using the
Slowly Changing Dimension code template. The values you can set for this property
are:

Delete_temporary_objects Set to True to delete temporary objects created during
the Integration CT execution, if any.

Integration CT

Load CT

Drop_check_table Set to True to drop the check table. The check table
contains statistics about the errors found.

Control CT

Drop_error_table Set to True to delete the error table containing
information about specific errors detected.

Control CT

Flow_Control Set to True to activate flow control. Flow control detects
errors prior to inserting data into the target table.

Integration CT

Control CT

Flow_table_options Specify the options for flow table creation. Integration CT

Insert Set to True to indicate that the code template can insert
new rows into the target table.

Integration CT

Deploy_files Indicates if the CT always deploys the associated
PL/SQL code.

Set to False to only deploy the PL/SQL code if the
mapping does not exist in the database or if the
mapping is not the same version as the deployed
mapping. Set to True if a previous code template is
creating the tables for this mapping. In general this
should be set to false.

Oracle Target CT

Log_level Represents the level of log reporting when the code
template is executed. Valid values are between 0 and 5,
with 5 representing the most detailed logging.

Integration CT

Load CT

CDC CT

Oracle Target CT

Static_control Used for postintegration control. Detects errors on the
target table after integration has been completed.

Integration CT

Target_location Represents the Oracle location to which the PL/SQL
mapping is to be deployed.

Oracle Target CT

Truncate Set to True to truncate the target table before loading
data.

Integration CT

Update Set to True to indicate that the code template can
update rows in the target table.

Integration CT

Table 7–3 (Cont.) Options for Code Templates in Code Template Mappings

Option Name Description
Option applicable for
Code Template Types

Setting Options for Code Templates in Code Template Mappings

7-30 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ Surrogate Key: The attribute is used as a unique record identifier (primary key) in
the target table. You must map a sequence to this attribute.

■ Natural Key: The attribute is mapped from the unique record identifier (business
key of the record) in the source table.

■ Current Record Flag: The attribute is used to identify the current active record.
The current record has the flag set to 1 and old records have the flag set to 0. The
attribute must be numeric and is loaded automatically, you do not need to map it.

■ Update Row on Change: If a new value is loaded for this attribute, the value of its
corresponding column is overwritten, for the record with the same natural key.

■ Add Row on Change: If a new value is loaded for this attribute, a row with a new
surrogate key but with the same natural key is inserted into the target table. The
inserted record is marked as current.

■ Starting Timestamp: The start time of the time period when the record is current.
If the new row is inserted, the Starting Timestamp of new record and Ending
Timestamp of the old record are set to SYSDATE.

■ Ending Timestamp: The end time of the time period when the record is current.
For the current record, the ending timestamp column value is usually 01-01-2400.

UD1
Set this property to True to include this attribute in code template functions using the
UD1 tag.

UD2
Set this property to True to include this attribute in code template functions using the
UD2 tag.

UD3
Set this property to True to include this attribute in code template functions using the
UD3 tag.

UD4
Set this property to True to include this attribute in code template functions using the
UD4 tag.

UD5
Set this property to True to include this attribute in code template functions using the
UD5 tag.

UPD
This property controls which columns are updated when Update Code Templates,
such as ICT_SQL_ INCR_UPD or ICT_ORACLE_INCR_UPD_MERGE are used.

To specify which constraint to use for matching, use the Match by Constraint property
of the target operator. If the UPD property is not set, the operator's match by constraint
key is used.

Auditing the Execution of Code Template Mappings

Creating SQL*Loader, SAP, and Code Template Mappings 7-31

Auditing the Execution of Code Template Mappings
The Audit Information panel in the Design Center provides detailed information
about each task that was executed as part of a CT mapping execution. You can use this
information to audit errors caused during the execution of CT mappings.

However, for the Audit Information panel to display execution details, you must set
certain properties as described in "Prerequisites for Auditing Code Template
Mappings" on page 7-32.

Figure 7–5 displays the Audit Information panel for a CT mapping execution.

Figure 7–5 Audit Information Panel with Details about Executed Tasks

The Audit Information panel displays the individual steps that are executed as part of
the CT mapping execution. The details displayed for each step include the name of the
task, the number of rows inserted, updated, or deleted for the task, and its status.

Detailed information about the steps within the CT mapping is displayed. For each
step, you can see error messages, if any. You can also view the statements executed for
each task. Expand the node representing each task to view details of the task
execution.

Not all tasks are listed in the Audit Information panel. If the settings of a task exclude
it from the audit, the task is not displayed. For more information about including a
code template task in audits, see "Prerequisites for Auditing Code Template
Mappings" on page 7-32.

For example, in the Audit Information panel displayed in Figure 7–5, the CT mapping
contains the following tasks: CREATE_TARGET_TABLE, TRUNCATE_TARGET_
TABLE, DELETE_TARGET_TABLE, INSERT_NEW_ROWS, COMMIT, and POST_
INTEGRATION_CONTROL. The statements executed as part of the INSERT_NEW_

Using Code Template Mappings to Perform Change Data Capture (CDC)

7-32 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

ROWS task are displayed in the panel on the right. Notice that task 4 is not listed in
the Audit Information panel. This is because the settings of this task exclude it from
the audit.

Prerequisites for Auditing Code Template Mappings
For Warehouse Builder to provide detailed information about the execution of a CT
mapping, you must set the following properties:

■ Log Audit Level

Every task in a code template contains a property called Log Audit Level. You can
set a value between 0 and 5 for this property. Setting a value of 0 means that the
details of this task are not included in the audit. Set this property to a value
between 1 and 5 to include the details for this task execution in the audit log.

■ Log Level

Every execution unit in a CT mapping contains a property called Log Level. This
property represents the level of logging performed for the execution unit. You can
set a value between 0 and 5 for this property. Set a value of 0 to exclude this
execution unit from being logged. Set this property to a value between 1 and 5 to
specify the level of detail used to log the execution of this execution unit.

Steps to Audit the Execution of Code Template Mappings
1. In the Projects Navigator, select the CT mapping whose execution must be

audited.

2. From the View menu, select Audit Information.

The Audit Information panel is displayed in the Log window.

3. Expand the node that represents the CT mapping execution job.

Separate nodes are displayed for each task in the CT mapping that is included in
the audit.

4. Expand a task node to view the list of steps performed as part of this task.

5. To view the statements executed as part of a particular step, select the step and
then select Executed Statement.

The statements executed are displayed on the right.

Using Code Template Mappings to Perform Change Data Capture (CDC)
In a typical data warehousing environment, you extract data from source systems,
transform data, and then load it into the data warehouse. However, when the data in
the source system changes, you must update the data warehouse with these changes.
Change Data Capture (CDC) quickly identifies and processes only data that has
changed and then makes this changed data available for further use. Warehouse
Builder enables you to perform CDC by using CDC CTs.

Types of Change Data Capture (CDC)
Warehouse Builder enables you to perform the following types of CDC:

■ Consistent

Consistent Change Data Capture ensures the consistency of the captured data. For
example, you have the ORDER and ORDER_LINE tables (with a referential integrity

Using Code Template Mappings to Perform Change Data Capture (CDC)

Creating SQL*Loader, SAP, and Code Template Mappings 7-33

constraint based on the fact that an ORDER_LINE record should have an associated
ORDER record). When the changes to ORDER_LINE are captured, the associated
ORDER change will also be captured, and vice versa.

The set of available changes for which consistency is guaranteed is called the
Consistency Window. Changes in this window should be processed in the correct
sequence (ORDER followed by ORDER_LINE) by designing and sequencing
integration interfaces into packages.

Although consistent Change Data Capture is more powerful, it is more difficult to
set up. Use this method when referential integrity constraints must be ensured
while capturing the data changes. For performance reasons, consistent Change
Data Capture is also recommended when a large number of subscribers are
required.

Note: You cannot journalize a model (or data stores within a model) using both
consistent set and simple journalizing.

■ Simple

Simple Change Data Capture enables you to journalize one or more data stores.
Each journalized data store is treated separately when capturing the changes.

This approach has a limitation, illustrated in the following example: Suppose you
need to process changes in the ORDER and ORDER_LINE tables (with a referential
integrity constraint based on the fact that an ORDER_LINE record should have an
associated ORDER record). If you have captured insertions into ORDER_LINE, you
have no guarantee that the associated new records in ORDERS have also been
captured. Processing ORDER_LINE records with no associated ORDER records may
cause referential constraint violations in the integration process.

Change Data Capture Commands
Consistent Change Data Capture uses the following module commands: Start, Drop,
Subscribe, Unsubscribe, Extend Window, Lock Subscriber, Unlock Subscriber, and
Purge Data.

Simple Change Data Capture provides the following commands for modules and
tables: Start, Drop, Subscribe, and Unsubscribe. The commands Lock Subscriber and
Unlock Subscriber are available but not used.

Start
The Start command sets up the Change Data Capture infrastructure.

Drop
The Drop command removes the Change Data Capture infrastructure.

Subscribe
The Subscribe command adds a subscriber to this Change Data Capture

Unsubscribe
The Unsubscribe command removes a subscriber from this Change Data Capture

Extend Window
The Consistency Window is a range of available changes in all the tables of the
consistency set for which the insert/update/delete are possible without violating

Using Code Template Mappings to Perform Change Data Capture (CDC)

7-34 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

referential integrity. The Extend Window operation computes this window to take into
account new changes captured since the latest Extend Window operation.

Lock Subscriber
Although the extend window is applied to the entire consistency set, subscribers
consume the changes separately. The Lock Subscriber operation performs a
subscriber-specific snapshot of the changes in the consistency window. This snapshot
includes all the changes within the consistency window that have not yet been
consumed by the subscriber.

Unlock Subscriber
The Unlock Subscriber command commits the use of the changes that where locked
during the Lock Subscribers operations for the subscribers. This operation should be
processed only after all the changes for the subscribers have been processed.

Purge Data
After all subscribers have consumed the changes they have subscribed to, entries still
remain in the capture tables and must be deleted. This deletion is performed by the
Purge Data command.

Example: Performing Change Data Capture Using Code Templates

Scenario for Performing Change Data Capture
The ORDERS table, in the source schema SRC, stores order details. Data from this table
is loaded into the WH_ORDERS table in the data warehouse target schema WH_TGT. The
data in the ORDERS table changes when an order status or dispatch date is updated.
The data in the data warehouse must be updated based on changes made to the source
data.

You can set up Change Data Capture using CDC CTs and load only the changed data
to the target table in the data warehouse.

Steps to Perform Change Data Capture Using CDC CTs
Performing Change Data Capture includes the following steps:

1. Selecting the Objects for Change Data Capture

2. Creating the Mapping that Loads Changes

3. Deploying the Change Data Capture Solution

4. Starting the Change Data Capture Process

5. Adding a Subscriber to the Change Data Capture Process

Selecting the Objects for Change Data Capture
You can perform Change Data Capture on objects stored in an Oracle Database, IBM
DB2, or SQL Server. The first step in performing CDC is to identify and select the
objects for which you want to capture changes.

To specify the objects for which data changes must be captured:

1. If you have not already done so, create a module and import the source objects
whose data changes you want to capture.

Using Code Template Mappings to Perform Change Data Capture (CDC)

Creating SQL*Loader, SAP, and Code Template Mappings 7-35

In this example, the source schema SRC contains the ORDERS table whose changes
you want to capture. Create an Oracle module called SRC_MOD, whose location
points to the SRC schema, and import the ORDERS table into this module.

2. Double-click the SRC_MOD module to display the Edit Module dialog box.

3. In the left panel, click CDC Code Template. On the CDC Code Template page, in
the Code Template list, select the code template that you imported to perform
Change Data Capture.

In this example, select PUBLIC_PROJECT/BUILT_IN_CT/JCT_ORACLE_
SIMPLE.

4. In the left panel, click CDC Tables. On the CDC Tables page, use the buttons to
move tables whose changes must be captured from the Available section to the
Selected section.

In this example, move the ORDERS table from the Available list to the Selected list.

The ORDERS table is now set up for Change Data Capture.

Creating the Mapping that Loads Changes
Use the following steps to create the CT mapping that loads changes.

1. If you have not already done so, create a template mapping module to contain the
CT mapping that performs Change Data Capture.

Ensure that the location of this template mapping module is associated with the
agent to which the CT mapping must be deployed.

In this example, the template mapping module called CDC_MAP_MOD is associated
with the DEFAULT_AGENT location. This location represents the OC4J server
installed with Warehouse Builder.

2. Under the template mapping module created in Step 1, create a CT mapping that
contains the ETL logic for performing CDC.

The mapping created in this example is called CDC_LOAD_ORDERS_MAP.

3. Drag and drop the source object whose changes you want to capture.

In this example, drag and drop the ORDERS table from the SRC_MOD module onto
the Mapping Editor canvas.

4. Select the operator representing the source object. In the Property Inspector, under
the Change Data Capture node, select Enable.

Notice that the ORDERS Table operator contains three additional attributes: JRN_
SUBSCRIBER, JRN_FLAG, and JRN_DATE.

5. In the Property Inspector, under the Change Data Capture node, set the Change
Data Capture Filter property to define the condition that is used to select changed
data for a particular subscriber.

6. Drag and drop the table that will store the changed data onto the canvas.

In this example, the table ORDERS_CHANGE in the SRC_MOD module will store the
changes to the ORDERS table.

7. Map the attributes from the source table, whose changes you want to capture, to
the corresponding attributes in the target table that stores changed data.

In this example, map the order_Id, order_status, order_mode, and JRN_
DATE attributes from the ORDERS table to order_id, order_status, order_
mode, and change_date attributes, respectively, in the ORDERS_CHANGE table.

Using Code Template Mappings to Perform Change Data Capture (CDC)

7-36 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

8. In the Execution View of the CT mapping, create the execution units that you want
to associate with code templates.

In this example, select the ORDERS and ORDERS_CHANGE operators and click the
Create Execution Unit icon in the Execution View toolbar.

Or, select ORDERS and ORDERS_CHANGE and select Create Execution Unit from
the Execution menu.

9. If the Code Templates panel is not displayed in the Log window, from the View
menu, select Code Templates.

10. Select the Integration/Load Code Template tab in the Code Templates panel.

11. In the Code Template for EX_UNIT1 field, select the code template to be used.

In this example, select JCT_ORACLE_SIMPLE as the code template used to
perform the ETL.

12. Validate the mapping and rectify any errors.

Deploying the Change Data Capture Solution
After you set up the tables for Change Data Capture and create the CT mapping that
loads changes from the source table, deploy the Change Data Capture solution using
the following steps:

1. If you have not already done so, start the Control Center Agent as described in
"Starting the Control Center Agent (CCA)" on page 7-23.

2. Deploy the target table that stores the changed data.

In this example, deploy the ORDERS_CHANGE table using either the Design Center
or Control Center Manager.

3. Deploy the CT mapping that loads changed data into the target table using the
Design Center or Control Center Manager.

If you get an error saying application already exists, go to the Control Center
Manager, select Replace as the Deployment Option, and deploy the mapping.

In this example, deploy the CDC_ORDERS_LOAD_MAP mapping using the Design
Center or Control Center Manager.

Starting the Change Data Capture Process
When you start the Change Data Capture process, Warehouse Builder creates triggers
on the source table for which you want to capture changes and on the target table. For
your CT mapping to run successfully, ensure that you grant the required privileges on
the source schema to the user performing CDC.

To start the capture process, in the Projects Navigator, right-click the module
containing the source table for which you want to capture changes, select Change
Data Capture, then Start.

In this example, right-click SRC_MOD, select Change Data Capture, then Start.

A new tab is displayed in the Message Log containing messages about the CDC
operation. During this process, Warehouse Builder generates DDL scripts to create
triggers on the source table and deploys the DDL scripts.

Using Code Template Mappings to Perform Change Data Capture (CDC)

Creating SQL*Loader, SAP, and Code Template Mappings 7-37

Adding a Subscriber to the Change Data Capture Process
After you start the Change Data Capture process, you must add a subscriber to the
capture system. The subscriber consumes the changes generated by the Change Data
Capture process.

To add a subscriber:

1. In the Projects Navigator, right-click the module containing the source table, select
Change Data Capture, then Subscribe.

The Add Subscriber dialog box is displayed containing the list of current
subscribers.

In this example, right-click SRC_MOD, select Change Data Capture, then
Subscribe.

2. In the Subscriber Name column of the Subscriber to add section, enter a subscriber
name.

In this example, enter Ord_subscriber in the Subscriber Name column.

3. Click OK to close the Add Subscriber dialog box.

The Log window displays a new panel for the Subscribe action that lists the
actions being performed for the Subscribe action and the results of the actions. If
this log displays errors, rectify them and then execute the steps to add a subscriber.

Testing the Change Data Capture Process
After you set up your Change Data Capture process, you can optionally test this
system to verify that changes to the source are being captured and made available to
the subscriber.

To test your Change Data Capture system:

1. In SQL*Plus, log in to the schema that contains the source table for which you
want to capture changes.

In this example, log in to the SRC schema.

2. Insert a row into the source table.

In this example, insert a row into the ORDERS table.

3. In the Control Center Manager, select the CT mapping that performs Change Data
Capture and click the Start icon.

In this example, start the CDC_LOAD_ORDERS_MAP mapping.

The row that you just added should be inserted into the target table.

The Job Details panel displays the details about each operation being performed in the
CT mapping.

Performing Change Data Capture Actions in Warehouse Builder
After you set up your Change Data Capture solution, you manage the change capture
process using predefined actions. If you publish the module or table with CDC
tracking as a Web service, the actions defined in these objects are contained in the
generated Web service.

To perform these actions, you right-click the module or table with CDC tracking, select
Change Data Capture, and use the following actions available here: Start, Drop,
Subscribe, Unsubscribe, Extend Window, Purge Data, Lock Subscriber, and Unlock
Subscriber. This section describes the CDC actions that you can perform.

Using Code Template Mappings to Perform Change Data Capture (CDC)

7-38 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Note that actions applicable depend on the type of Change Data Capture you are
performing.

Starting the Change Data Capture

After you set up the source object for Change Data Capture, right-click the object and
select Start to begin capturing changed data. For more details, see "Starting the
Change Data Capture Process" on page 7-36.

Stopping a Change Data Capture System

The Drop action stops the Change Data Capture process and drops the capture objects.

To stop a Change Data Capture process, in the Projects Navigator, right-click the data
object or module, select Change Data Capture, then Drop. Warehouse Builder
displays a prompt asking if you want to stop the capture and drop capture objects.
Click Yes.

Subscribing to a Change Data Capture System

The Subscribe action enables you to add a subscriber to the Change Data Capture
system. For more information about adding subscribers, see "Adding a Subscriber to
the Change Data Capture Process" on page 7-37.

Removing a Subscriber from a Change Data Capture System

The Unsubscribe action enables you to remove a subscriber from the Change Data
Capture system. Once you remove a subscriber, change data that is being captured is
not available to the subscriber.

To remove a subscriber:

1. In the Projects Navigator, right-click the data object or module from which you
want to remove a subscriber and, from the Change Data Capture menu, select
Unsubscribe.

The Remove Subscriber dialog box is displayed. The Current Subscribers section
contains the list of current subscribers of the Change Data Capture system.

2. Select the subscriber you want to remove from the Current Subscriber section and
use the buttons to move the subscriber to the section titled Subscribers to remove.

3. Click OK.

The Log window displays the details of the action being performed. Check this log
to verify that the Unsubscribe action succeeded.

Extending the Change Data Capture Window
Use the Extend Window action to extend the subscription window to receive a new set
of change data. To extend the window and receive the latest changed data, right-click
the module or table in the Projects Navigator, select Change Data Capture, and then
Extend Window. Warehouse Builder displays a prompt asking if you want to extend
the window. Click Yes.

Purging Capture Data

After subscribers consume the change data that they subscribed to, use the Purge Data
action to remove the change data from the capture tables. To purge capture data,

See Also: "Change Data Capture Commands" on page 7-33 for
information about the Change Data Capture commands

Using Control Code Templates

Creating SQL*Loader, SAP, and Code Template Mappings 7-39

right-click the module or table in the Projects Navigator, select Change Data Capture,
and then Purge Data. Warehouse Builder displays a prompt asking if you want to
purge all capture data. Click Yes.

Locking a Subscriber

The Lock Subscriber operation enables you to lock a subscriber so that a
subscriber-specific snapshot of the changes in the consistency window can be taken.
The snapshot includes all the changes within the consistency window that have not
yet been consumed by the subscriber.

To lock a subscriber:

1. In the Projects Navigator, right-click the data object or module from which you
want to lock a subscriber, select Change Data Capture, then Lock Subscriber.

The Lock Subscriber dialog box is displayed. The Current Subscribers section
contains the list of current subscribers of the Change Data Capture system.

2. Select the subscriber you want to lock from the section titled Current Subscriber
and use the buttons to move the subscriber to the section titled Subscribers to lock.

3. Click OK.

The Log window displays the details of the action being performed. Check this log
to verify that the Lock Subscriber action succeeded.

Unlocking a Subscriber

Use the Unlock Subscriber action to commit the changes that where locked during the
Lock Subscriber operation for the subscriber.

To unlock a subscriber:

1. In the Projects Navigator, right-click the data object or module from which you
want to unlock a subscriber, select Change Data Capture, then Lock Subscriber.

The Unlock Subscriber dialog box is displayed. The Current Subscribers section
contains the list of current subscribers of the Change Data Capture system.

2. Select the subscriber you want to unlock from the section titled Current Subscriber
and use the buttons to move the subscriber to the section titled Subscribers to lock.

3. Click OK.

The Log window displays the details of the action being performed. Check this log
to verify that the Unlock Subscriber action succeeded.

Using Control Code Templates
Control Code Templates (Control CTs) enable you to maintain data integrity by
checking if the records in a data object are consistent with defined constraints. Use
Control CTs when you want to ensure that data that violates constraints specified for a
data object is not loaded into the data object.

The constraints checked by a Control CT are Check constraints, Primary Key, Alternate
Key, and Not Null.

Use Control CTs to check the following:

■ Consistency of existing data

Set the STATIC_CONTROL property to True to check the data currently in the data
object.

Using Control Code Templates

7-40 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ Consistency of the incoming data, before loading the records to a target.

Set the FLOW_CONTROL property to True. The Control CT simulates the
constraints of the target data object on the resulting flow prior to writing to the
target.

Control CTs can check either an existing table or the temporary table created by an
Integration CT.

How Does a Control CT Work?
A Control CT accepts a set of constraints and the name of the table to check. It either
creates an error table to which all rejected records are written or removes the
erroneous records from the checked result set.

In both cases, a Control CT usually performs the following tasks:

1. Creates the error table. The error table contains the same columns as the target
table and additional columns to trace error messages, check origin, and check date.

2. Isolates the erroneous records in the error table for each primary key, alternate key,
foreign key, condition, and mandatory column that needs to be checked.

3. If required, remove erroneous records from the table that has been checked.

Control CT Operating Modes
Control CTs can operate in the following modes:

■ STATIC_CONTROL

The Control CT reads the constraints of the table and checks them against the data
of the table. Records that do not match the constraints are written to the error
table.

■ FLOW_CONTROL

The Control CT reads the constraints of the target table and checks these
constraints against the data contained in the "I$" flow table of the staging area.
Records that violate these constraints are written to the error table.

Example: Checking Data Constraints Using Control CTs

Scenario
Employee data is stored in a file called EMP.dat. You must load this data into the
target table EMP_TGT. During the load, any records that violate constraints defined on
the target table are written to the error table associated with the target table.

The target table already exists in an Oracle module called WH_TGT.

Steps to Log Constraint Violations While Loading Data Into a Target Table
Checking data constraints using Control CTs includes the following steps:

1. Creating the Source Module and Importing Source Objects

2. Creating the Code Template Mapping that Extracts Data, Checks Data Integrity,
and Loads Data into an Oracle Target

Creating the Source Module and Importing Source Objects
Because the source is a flat file, you create a flat file module in the Design Center and
import the flat file into this module.

Using Control Code Templates

Creating SQL*Loader, SAP, and Code Template Mappings 7-41

To create a source module and import the source flat file:

1. In the Projects Navigator, right-click the Files node and select New Flat File
Module.

The Create Module Wizard is displayed. Use this wizard to create a flat file
module.

For more information about creating flat file modules, see Oracle Warehouse Builder
Sources and Targets Guide.

2. Right-click the flat file module that you created and select New File.

The Create Flat File Wizard is displayed. Use this wizard to define and sample the
source flat file.

For more information about creating flat files and sampling them, see Oracle
Warehouse Builder Sources and Targets Guide.

Creating the Code Template Mapping that Extracts Data, Checks Data Integrity, and
Loads Data into an Oracle Target
1. If you have not already done so, create a template mapping module to contain the

CT mapping that performs the data integrity check.

Ensure that you set the location details of this mapping module to the Agent to
which the mapping must be deployed.

This example uses a mapping module called CKM_MAP_MOD that is associated with
the DEFAULT_AGENT location. This location points to the OC4J server installed
with Warehouse Builder.

2. Create a CT mapping that will contain the logic for extracting, checking, and
loading data.

In this example, create a CT mapping called EMP_LOAD_CKM_MAP.

3. Drag and drop the source file from the source File source module onto the
Mapping Editor canvas.

In this example, drag and drop the file EMP.dat from the File module onto the
canvas.

4. Drag and drop the target table onto the canvas.

In this example, drag and drop the EMP_TGT operator onto the canvas.

The Table operator properties, in the Property Inspector, contain a node called
Control CT. All existing constraints and data rules are displayed in the properties
under this section. Use the properties in this group to define how data rules and
integrity constraints should be applied.

5. Map the source attributes to the corresponding target attributes.

6. In the Execution View of the mapping, perform the following tasks:

■ Create an execution unit for Flat File operator and associate this execution unit
with the LCT_FILE_TO_ORACLE_EXTER_TABLE code template.

■ Create an execution unit containing the target table. Associate this execution
unit with the CCT_ORACLE code template.

7. Validate and generate the CT mapping. In the Projects Navigator, right-click the
CT mapping and select Generate.

Using Oracle Target CTs in Code Template Mappings

7-42 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

8. Deploy the CT mapping. In the Projects Navigator, right-click the CT mapping and
select Deploy.

9. Execute the CT mapping. In the Projects Navigator, right-click the CT mapping
and select Start.

The records that violate constraints defined on the EMP_TGT table are not loaded
into the target. These records are written to the error table associated with the
target table.

Using Oracle Target CTs in Code Template Mappings
Oracle Target CTs provide a method for using operators that are otherwise only
supported in Warehouse Builder PL/SQL mappings. You can use these operators to
define your data transformation, create an execution unit containing these
transformation operators, and then associate the execution unit with an Oracle Target
CT.

Example: Using Oracle Target Code Templates

Scenario
You want to aggregate source data available in two different sources and then load it
into the target table. The first source is an Oracle module that contains the source
tables CUSTOMERS, TIMES, and SALES. The second source is an XML module that
contains the tables CHANNEL and COUNTRY.

The transformation required on the source data is to join data from all the source
tables, aggregate it, and then load the aggregated data into the target table SUMMARY_
SALES. Use the Joiner operator to join data from the source tables. The aggregation is
performed using the Aggregator operator that leverages the Oracle Database SQL
function CUBE. The summarized data is loaded into the target table.

Steps to Transform Source Data Using Oracle Target CTs
Transforming source data using Oracle Target CTS involves the following tasks:

1. Creating the Source Module and Importing Source Objects

2. Creating the Target Module and Target Table

3. Creating the CT Mapping that Transforms Source Data Using Oracle Target CTs

Creating the Source Module and Importing Source Objects
In the Projects Navigator, create a source module and its associated location. Import
the source objects into this module.

In this example, create an XML module that represents the XML source data and
import the CHANNEL and COUNTRY tables. The location associated with this XML
module should point to the XML source. Create an Oracle module whose location
points to the SH sample schema in the Oracle Database. Import the CUSTOMERS,
TIMES, and SALES tables into this module.

For more information about creating modules, see Oracle Warehouse Builder Sources and
Targets Guide.

Creating the Target Module and Target Table
1. If you have not already done so, create an Oracle module to store the target table.

Using Oracle Target CTs in Code Template Mappings

Creating SQL*Loader, SAP, and Code Template Mappings 7-43

2. Under this Oracle module, create the target table that will store the transformed
data. Right-click the Tables node, select New Table and use the Table Editor to
define the table.

3. Generate the target table by right-clicking the table name and selecting Generate.
Rectify generation errors, if any.

4. Deploy the target table by right-clicking the table name and selecting Deploy.

In this example, the module WH_TGT contains the target table SUMMARY_SALES.

Creating the CT Mapping that Transforms Source Data Using Oracle Target CTs
1. If you have not already done so, create a template mapping module to contain the

CT mapping that performs the required data transformation.

Ensure that you set the location details of this mapping module to the agent to
which the mapping must be deployed.

In this example, a mapping module called ETL_MAP_MOD is associated with the
DEFAULT_AGENT location. This location points to the OC4J server installed with
Warehouse Builder.

2. Create a CT mapping to contain the required ETL logic for extracting,
transforming, and loading data.

In this example, create a mapping called LOAD_SUMMARY_SALES_MAP.

3. Drag and drop the source tables onto the Mapping Editor canvas.

In this example, drag and drop the CHANNEL and COUNTRY tables from the XML
source module and the CUSTOMERS, TIMES, and SALES tables from the Oracle
module.

4. Drag and drop the operators that you must use to perform the required data
transformation. Connect the operator attributes.

In this example, you add the following operators:

■ A Joiner operator to join the data in the source tables. Set the Join Condition
property for the Joiner operator to define how the source tables should be
joined. In this example, you use the columns that are common between a pair
of tables to join data from those tables.

■ An Aggregator operator to aggregate the output of the Joiner operator. Data is
aggregated based on the CHANNEL_DESC and COUNTRY_ISO_CODE attributes
and the SQL function CUBE is leveraged to perform aggregation.

Thus, in the Group by clause of the Aggregator operator, specify the following:

CUBE(INGRP1.CHANNEL_DESC,INGRP1.COUNTRY_ISO_CODE)

5. Drag and drop the target table onto the canvas.

In this example, drag and drop the SUMMARY_SALES table onto the canvas.

6. Create the data flows between the source and transformation operators. Map the
transformed output to the target table.

In this example, the tables CHANNEL, CUSTOMERS, COUNTRY, TIMES, and SALES
are mapped to the Input groups of the Joiner operator. The Output group of the
Joiner operator is mapped to the Aggregator operator. The output of the
Aggregator operator is mapped to the target table SUMMARY_SALES.

7. In the Execution View of the CT mapping, create the execution units required to
perform the data transformation.

Moving Data from Heterogeneous Databases to Oracle Database

7-44 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Your CT mapping should look like the one in Figure 7–6.

In this example, perform the following:

■ Create an execution unit for the CHANNEL table. Associate this execution unit
with the LCT_SQL_TO_SQL code template.

■ Create an execution unit for the COUNTRY table. Associate this execution unit
with the LCT_SQL_TO_SQL code template.

■ Create an execution unit containing the tables CUSTOMERS, SALES, and
TIMES, the Joiner operator, the Aggregator operator, and the SUMMARY_SALES
table. Associate this execution unit with the Oracle Target CT DEFAULT_
ORACLE_TARGET_CT.

8. Validate and generate the CT mapping. In the Projects Navigator, right-click the
CT mapping and select Generate.

9. Deploy the CT mapping. In the Projects Navigator, right-click the CT mapping and
select Deploy.

10. Execute the CT mapping to extract data from the XML and Oracle source,
transform it, and load it into the Oracle target table. In the Projects Navigator,
right-click the CT mapping and select Start.

Figure 7–6 displays the Execution View of the CT mapping that enables you to
perform the required data transformation using Oracle Target CTs.

Figure 7–6 Mapping That Uses Oracle Target CTs to Transform Source Data

Moving Data from Heterogeneous Databases to Oracle Database
You can use code templates to extract data from heterogeneous databases such as SQL
Server, DB2, and Teradata. The code templates used to perform the data transfer
depends on the source and target database.

Warehouse Builder provides a set of code templates that you can use to transfer data
between different databases. These code templates are located in the BUILT_IN_CT
node under the Public Code Templates node of the Globals Navigator. Each code
template performs a certain set of tasks on a certain platform.

Moving Data from Heterogeneous Databases to Oracle Database

Creating SQL*Loader, SAP, and Code Template Mappings 7-45

Example: Moving Data from IBM DB2 to Oracle Database Using Integration CTs and
Load CTs

Scenario for Extracting Data
The tables ORDERS and ORDER_DETAILS are stored in an IBM DB2 database. You
must extract data from these two tables, transform it, and store it in a table called
ORDERS_AGG_CUST in an Oracle database. The transformation consists of joining the
data in these two tables and then aggregating the data for each customer.

Before You Extract Data from IBM DB2
■ Ensure that you have the drivers required to access an IBM DB2 database. The files

that you need are db2jcc.jar and db2jcc_license_cu.jar. Copy these files
to the OWB_ORACLE_HOME/owb/lib/ext directory.

■ In the script that starts the CCA, add the statement that loads the required libraries
for the DB2 driver.

On Unix, add the following statement to OWB_ORACLE_
HOME/owb/bin/unix/ccastart:

-Dapi.ext.dirs=$OWB_HOME/owb/lib/ext

On Windows, add the following statement to OWB_ORACLE_
HOME/owb/bin/win32/ccastart.bat:

-Dapi.ext.dirs=%OWB_HOME%\owb\lib\ext

Steps to Extract Data from IBM DB2, Transform Data, and Load it into an Oracle
Database
To extract data from IBM DB2, transform the data, and then load the data into an
Oracle Database:

1. Create the Source Module

2. Create the Target Module and Target Table

3. Create the CT Mapping that Extracts, Transforms, and Loads Data

Create the Source Module
In the Projects Navigator, create a DB2 module that represents the source data. The
location associated with this module should point to the DB2 database containing the
source objects.

In this example, create a DB2 module whose location points to the DB2 database
containing the ORDERS and ORDER_DETAILS tables.

For more information about creating a DB2 module, see Oracle Warehouse Builder
Sources and Targets Guide.

Create the Target Module and Target Table
Use the following steps to create the target module and the target table.

1. If you have not already done so, create an Oracle module to store the target table.

See Also: Oracle Warehouse Builder Sources and Targets Guide for more
information about modifying the CCA start script.

Moving Data from Heterogeneous Databases to Oracle Database

7-46 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

2. Under this Oracle module, create the target table that will store the transformed
data. Right-click the Tables node, select New Table, and use the Table Editor to
define the table.

3. Generate the target table by right-clicking the table name and selecting Generate.
Rectify generation errors, if any.

4. Deploy the target table by right-clicking the table name and selecting Deploy.

In this example, the module WH_TGT contains the target table ORDERS_AGG_CUST.

Create the CT Mapping that Extracts, Transforms, and Loads Data
Use the following steps to create the CT mapping that extracts data from DB2 tables,
transforms it, and then loads it into and Oracle Database table.

1. If you have not already done so, create a template mapping module to contain the
CT mapping that performs the required ETL.

Ensure that you set the location details of this mapping module to the agent to
which the mapping must be deployed.

In this example, a mapping module called ETL_MAP_MOD is associated with the
DEFAULT_AGENT location. This location points to the OC4J server installed with
Warehouse Builder.

2. Create a mapping to contain the required ETL logic for extracting, transforming,
and loading data.

In this example, create a mapping called LOAD_DB2_TO_ORACLE_MAP.

3. Drag and drop the source tables from the DB2 source module onto the Mapping
Editor canvas.

In this example, drag and drop the ORDERS and ORDER_DETAILS tables from the
DB2 module source module.

4. Drag and drop the operators that you must use to perform the required data
transformation. Connect the operator attributes.

In this example, you add the following operators:

■ A Joiner operator to join the data in the ORDERS and ORDER_DETAILS tables.
Set the Join Condition property for the Joiner operator.

■ An Aggregator operator to aggregate the output of the Joiner operator.
Aggregate the data based on the CUSTOMER_ID attribute.

5. Drag and drop the target table onto the canvas.

In this example, drag and drop the ORDERS_TGT operator onto the canvas.

6. Map the transformed output to the target table.

7. In the Execution View of the mapping, perform the following:

■ Create an execution unit for the ORDERS and ORDER_DETAILS operators.
Associate this execution unit with the LCT_SQL_TO_ORACLE code template.

■ Create an execution unit containing the Joiner, Aggregator, and ORDERS_AGG_
CUST table. Associate this execution unit with the ICT_ORACLE_INCR_UPD
code template.

8. Validate and generate the CT mapping. In the Projects Navigator, right-click the
CT mapping and select Generate.

Moving Data from Heterogeneous Databases to Oracle Database

Creating SQL*Loader, SAP, and Code Template Mappings 7-47

9. Deploy the CT mapping. In the Projects Navigator, right-click the CT mapping and
select Deploy.

10. Execute the CT mapping to extract data from the source DB2 tables, transform it,
and load it into the Oracle target table. In the Projects Navigator, right-click the CT
mapping and select Start.

Figure 7–7 displays the Execution View of the mapping LOAD_DB2_TO_ORACLE_
MAP.

Figure 7–7 Mapping to Extract Data from IBM DB2, Transform Data, and Load it into
Oracle Database

Moving Data from Heterogeneous Databases to Oracle Database

7-48 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Designing Process Flows 8-1

8
Designing Process Flows

After you design mappings that define the operations for moving data from sources to
targets, you can create and define process flows. A process flow allows activities to be
linked together to define flow of control among different activities. Supported flow of
control constructs include conditional branches, loops, parallel flows or serial
dependencies. Activities can be mappings, transformations, or external commands
such as e-mail, FTP commands, and operating system executables.

You can use process flows to manage dependencies between mappings. To schedule
mappings, process flows, and other executable objects, see "Defining Schedules" on
page 11-2.

This chapter contains the following topics:

■ Overview of Process Flows

■ Example: Creating a Basic Process Flow

■ Steps for Defining Process Flows

■ Adding Activities to Process Flows

■ Creating and Using Activity Templates

■ About Transitions

■ About Expressions

■ Defining Transition Conditions

■ Example: Using Process Flows to Access Flat Files with Variable Names

■ Example: Using Process Flows to Transfer Remote Files

Overview of Process Flows
A process flow describes dependencies between Warehouse Builder mappings and
external activities such as e-mail, FTP, and operating system commands. Use process
flows to sequence individual steps in the ETL process. The individual steps often
include mappings, but can also include manual activities or external activities such as
FTP or e-mail.

Each process flow begins with a Start activity and concludes with an End activity for
each stream in the flow. A process flow is considered as a type of activity, so a process
flow can start other process flows.

Figure 8–1 shows an example of a process flow that starts a mapping (MAP1). If the
mapping completes successfully, then Warehouse Builder sends an e-mail notification
(EMAIL_SUCCEED) and starts another process flow (SUBPROC1). If the mapping

Example: Creating a Basic Process Flow

8-2 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

fails, then Warehouse Builder sends an email (EMAIL_FAIL) and ends the process
flow.

Figure 8–1 Sample Process Flow

When you design a process flow in Warehouse Builder, you use an interface known as
the Process Flow Editor. Alternatively, you can create and define process flows using
the Warehouse Builder scripting language, OMB*Plus, as described in Oracle
Warehouse Builder API and Scripting Reference.

About Process Flow Modules and Packages
Process flows must be grouped together into process flow packages, which in turn are
grouped together in process flow modules. Together, the process flow modules and
packages provide two levels to manage and deploy process flows. You can validate,
generate, and deploy process flows at either the module or the package level.

You can design a process flow that starts other process flows as long as they are in the
same module. You can copy process flows from one package to another package in the
same or a different module, and you can copy packages to a different module. To do
so, use the Copy and Paste commands available under Edit on the Design Center main
menu.

For example, Figure 8–1 shows a process flow PROC1 that includes process flow
SUBPROC1. For PROC1 to run successfully, SUBPROC1 and PROC1 can be in the
same or separate process flow modules, but they must be deployed to the same
location.

Deploying Process Flows to Workflow Engines
Warehouse Builder process flows comply with the XML Process Definition Language
(XPDL) standard set forth by the Workflow Management Coalition (WfMC). When
you generate a process flow, Warehouse Builder generates an XML file in the XPDL
format. The generated XPDL can be used to integrate with any workflow engine that
supports the WfMC standard.

Warehouse Builder provides integration with Oracle Workflow. From the Warehouse
Builder Control Center, you can deploy process flow packages or modules to Oracle
Workflow.

Example: Creating a Basic Process Flow
The cube SALES_CUBE is loaded using data in the PRODUCTS, CATEGORIES, and
CUSTOMERS dimensions. These dimensions, in turn, are loaded using one or more
transaction tables. Data must be loaded into the cube only if all the dimensions are
loaded successfully.

You create separate mappings to load the cube and dimensions. However, you want a
sequential flow in which the three dimensions PRODUCTS, CATEGORIES, and

Example: Creating a Basic Process Flow

Designing Process Flows 8-3

CUSTOMERS are loaded first and, if these dimensions are loaded successfully, the cube
SALES_CUBE is loaded. Use a process flow to link these mappings and create a
sequential flow.

Figure 8–2 displays the process flow that loads the SALES_CUBE. This process flow is
created after you complete the steps listed in "Steps to Define the Process Flow" on
page 8-3.

Figure 8–2 Process Flow that Loads a Cube

Before You Begin
Create the following mappings:

■ LOAD_PRODUCTS: This mapping transforms source data stored in transaction
tables and loads transformed data into the PRODUCTS dimension.

■ LOAD_CATEGORIES: This mapping transforms source data stored in transaction
tables and loads transformed data into the CATEGORIES dimension

■ LOAD_CUSTOMERS: This mapping transforms source data stored in transaction
tables and loads transformed data into the CUSTOMERS dimension

■ LOAD_SALES_CUBE: This mapping loads data into the cube SALES_CUBE, using
the dimensions PRODUCTS, CATEGORIES, and CUSTOMERS.

Steps to Define the Process Flow
1. Create a Oracle Workflow location to which the process flow will be deployed.

See "Creating Oracle Workflow Locations" on page 8-5 for information about
creating Oracle Workflow locations.

2. In the Projects Navigator, expand the project node under which you want to create
the process flow and then expand the Process Flows node.

3. Right-click the Process Flow Modules node and select New Process Flow Module.

The Create Process Flow Module wizard is displayed.

4. On the Name and Description page, provide a name and an optional description
for the process flow.

5. On the Connection Information page, in the Location field, select the location
created in step 1. Click Finish to create the process flow module.

The Create Process Flow Package dialog box is displayed.

6. Enter a name and an optional description for the process flow package and click
OK.

Example: Creating a Basic Process Flow

8-4 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

The Create Process Flow dialog box is displayed.

7. Enter the name and an optional description for the process flow and click OK.

The Process Flow Editor is displayed. The editor canvas contains the Start activity
named START1 and a Stop activity called End_success. Use the editor to add other
activities that are part of your process flow and to define relationships between
them.

8. From the Component Palette, drag a Fork activity and drop it on to the editor
canvas.

9. From the Projects Navigator, drag the following mappings and drop them on to
the editor canvas: LOAD_PRODUCTS, LOAD_CATEGORIES, and LOAD_CUSTOMERS.

When you drag a mapping and drop it onto the canvas, the mapping activity is
displayed on the canvas with a default name such as MAPPING_n. The activity
name highlighted in blue so that you can change the name, if required. For each
activity, enter the same name as the mapping. For example, for the LOAD_
PRODUCTS mapping, enter the name of the activity as LOAD_PRODUCTS.

Position these activities in a vertical line, one below the other, to the right of the
Fork activity.

10. Create the following transitions:

■ From the Fork activity to the LOAD_PRODUCTS activity

■ From the Fork activity to the LOAD_CATEGORIES activity

■ From the Fork activity to the LOAD_CUSTOMERS activity

To create a transition, select the source activity. The cursor is displayed as a small
horizontal arrow on the activity. Drag and drop on the target activity.

11. From the Component Palette, drag and drop an AND activity on to the editor.

12. Define a conditional transition, with the condition defined as SUCCESS, from the
LOAD_PRODUCTS activity to the And activity.

A conditional transition is one that is based on a predefined condition. To define a
condition for the transition:

a. On the editor canvas, select the transition.

The Property Inspector displays the properties of the selected transition.

b. Click the Ellipsis button on the Condition property.

The Edit Property dialog box is displayed.

c. Select Enumerated Condition. In the list below this option, select Success and
click OK.

13. Define a conditional transition, with the condition defined as SUCCESS, from the
LOAD_CATEGORIES activity to the And activity.

14. Define a conditional transition, with the condition defined as SUCCESS, from the
LOAD_CUSTOMERS activity to the And activity.

15. From the Projects Navigator, drag and drop the mapping LOAD_SALES_CUBE
onto the editor canvas. Enter the name of the activity as LOAD_SALES_CUBE.

16. Create a transition from the AND activity to the LOAD_SALES_CUBE activity.
Select the AND activity to display a small horizontal arrow. Drag and drop on to
the LOAD_SALES_CUBE activity.

Steps for Defining Process Flows

Designing Process Flows 8-5

17. Create a conditional transition, with the condition defined as SUCCESS, from the
LOAD_SALES_CUBE activity to the End_success activity.

Steps for Defining Process Flows

Before You Begin
To enable deployment of process flows, install Oracle Workflow as described in the
Oracle Warehouse Builder Installation and Administration Guide for Windows and UNIX.

To define a process flow, refer to the following sections:

1. (Optional) Creating Oracle Workflow Locations

2. Creating Process Flow Modules

3. Creating Process Flow Packages

4. Creating Process Flows

5. Creating and Using Activity Templates

6. Adding Activities

7. Connecting Activities

8. Activities in Process Flows

9. Using Parameters and Variables

10. Configuring Process Flows Reference

11. Validating and Generating Process Flows

12. Scheduling Process Flows (optional)

When you are satisfied that the process flow runs as expected, you can schedule
the process flow to run on a single day or multiple days as described in "Defining
Schedules" on page 11-2.

13. Deploying Process Flows, see "Steps in the Deployment and Execution Process" on
page 12-5.

Creating Oracle Workflow Locations
Use an Oracle Workflow location to deploy process flows. This location corresponds to
the Oracle Workflow schema.

To create an Oracle Workflow location:

1. In the Locations Navigator, expand the Locations node and then the Process Flows
and Schedules node.

2. Right-click the Oracle Workflow node and select New Oracle Workflow Location.

The Create Oracle Workflow Location dialog box is displayed.

3. On the Details page, provide information in the following fields:

■ Name: Represents the name of the Oracle Workflow location.

■ Description: Represents the description of the location. Providing a
description is optional.

■ Connection Type: Represents the type of connection to Oracle Workflow.
Select one of the following options:

Steps for Defining Process Flows

8-6 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

– Host:Port:Service: Makes a connection using the Easy Connect Naming
method, which requires no prior setup. Enter the following additional
information.

Host: The name of the system where Oracle Database is installed with
Oracle Workflow Manager.

If the client software is installed on the same system as Oracle Database,
you can enter localhost instead of the computer name.

Port: The SQL port number for the Oracle Database.

Service: The service name of the Oracle database.

– SQL*NET Connection: Makes a connection using a net service name
previously defined using a tool such as Oracle Net Configuration
Assistant. The net service name provides a convenient alias for the
connection information.

In the Net Service Name field, enter the name of the predefined connec-
tion.

■ Schema: Represents the user name for the Workflow schema.

■ Password: Represents the password for the user specified in the Schema field.

■ Version: Represents the version of Oracle Workflow.

Creating Process Flow Modules
Before working with process flows, create a process flow module. The module is a
container using which you can validate, generate, and deploy a group of process
flows. Process flow modules include process flow packages which include process
flows.

To create a process flow module:

1. Right-click the Process Flow Modules node in the Projects Navigator and select
New Process Flow Module.

Warehouse Builder displays the Welcome page for the Create Module Wizard.

2. Click Next.

On the Name and Description page, type a module name that is unique within the
project. Enter an optional text description.

3. Click Next.

The wizard displays the Connection Information page.

You can accept the default location that the wizard creates for you based on the
module name. Alternatively, select an existing location from the list. Click Edit to
enter the connection information and test the connection.

4. Click Next.

The wizard displays the Finish page. Verify the name and deployment location of
the new process flow module.

When you click Finish, Warehouse Builder stores the definition for the module,
inserts its name in the Projects Navigator, and prompts you to create a process
flow package.

Steps for Defining Process Flows

Designing Process Flows 8-7

Creating User Folders Within a Process Flow Module
Within a process flow module, you can create user folders to group process flow
packages based on criteria such as product line, functional groupings, or
application-specific categories.

User folders can contain other user folders and other process flow packages. There is
no limit on the level of nesting of user folders. You can also move, delete, edit, or
rename user folders. To move a user folder, select the user folder in the Projects
Navigator and click the Cut icon in the toolbar. Then, select the process flow module
into which the user folder is to be moved and click the Paste icon.

You can move process flow packages that are contained in a user folder either to the
corresponding parent process flow module or to another process flow module.

Deleting a user folder removes the user folder and all its contained objects from the
repository.

To create a user folder within a process flow module:

1. In the Projects Navigator, expand the Process Flows node. Right-click the Process
Flow module or user folder under which you want to create a user folder and
select New.

The New Gallery dialog box is displayed.

2. In the Items section, select User Folder.

The Create User Folder dialog box is displayed.

3. Specify a name for the user folder and click OK.

The user folder is created and added to the tree under the Process Flow module.

To create a process flow package within a user folder:

1. In the Projects Navigator, expand the Process Flows node. Right-click the user
folder and select New.

The New Gallery dialog box is displayed.

2. In the Items section, select Process Flow Package.

3. Click OK.

The Create Process Flow Package dialog box is displayed. Use this dialog box to create
a process flow. Subsequently, create the required process flows within this process flow
package.

Creating Process Flow Packages
After you create a Process Flow module, you can create a process flow package. The
process flow package is an additional grouping mechanism from which you can
deploy process flows.

To create a process flow package:

1. Right-click a process flow module in the Projects Navigator and click New Process
Flow Package.

Warehouse Builder displays the Create Process Flow Package dialog box.

2. Type a name and optional description for the process flow package.

If you intend to integrate with Oracle Workflow, note that Oracle Workflow
restricts package names to 8 bytes.

Adding Activities to Process Flows

8-8 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

3. Click OK.

Warehouse Builder prompts you to create a process flow.

Creating Process Flows
After you create a module and package for process flows, you can create a process
flow.

To create a process flow:

1. Right-click a process flow package in the Projects Navigator and click New
Process Flow.

Warehouse Builder displays the Create Process Flow dialog box.

2. Type a name and optional description for the process flow.

3. Click OK.

Warehouse Builder runs the Process Flow Editor and displays the process flow
with a Start activity and an End_Success activity.

4. You can now model the process flow with activities and transitions.

5. Continue with the steps listed in "Steps for Defining Process Flows" on page 8-5.

Adding Activities to Process Flows
You can add activities in a process flow by using the Projects Navigator.

About Activities
Activities represent units of work for the process flow, such as starting a mapping or
verifying the existence of a file on a drive or directory. When you design a process flow
in Warehouse Builder, you select activities from the Component Palette, drag them
onto the canvas, and set their parameters. Warehouse Builder includes the following
types of activities:

■ Oracle Warehouse Builder Specific Activities: These activities enable you to start
Warehouse Builder objects such as mappings, transformations, or other process
flows. The process flow runs the object and provides a commit statement.

■ Utility Activities: These activities enable you to perform services such as sending
e-mails and transferring files.

■ Control Activities: These activities enable you to control the progress and
direction of the process flow. For instance, use the Fork activity to run multiple
activities concurrently.

For the utility and control type activities, you can reuse their parameters by defining
activity templates as described in "Creating and Using Activity Templates" on
page 8-11. For e-mail, for example, use an e-mail template to specify the SMTP server

Note: If you intend to schedule a process flow, there is an additional
consideration. For any ETL object that you want to schedule, the limit
is 25 characters for physical names and 1,995 characters for business
names. Follow this additional restriction to enable Warehouse Builder
to append to the process flow name the suffix _job and other internal
characters required for deployment and running the process flow.

Adding Activities to Process Flows

Designing Process Flows 8-9

name and port number, the list of addresses, and the priority. Then you can reuse that
template when you add email activities to a process flow.

For a description of each activity, see "Using Activities in Process Flows" on page 27-1.

Adding Activities
To add an activity to a process flow:

1. Open the process flow by right-clicking the process flow in the Projects Navigator
and selecting Open.

2. View the activities listed in the Component Palette.

By default, the palette lists all activities. To find a particular activity, use the list
box on the palette to narrow the displayed list to one of the following types of
activities: Oracle Warehouse Builder Specific activities, Utility activities, and
Control activities.

3. Select an activity from the palette and drag it onto the canvas.

The editor displays the activity on the canvas with the name highlighted in blue.

4. To accept the default name, press Enter. To change the name, type in the new
name.

The editor lists the activity in the Structure panel. The properties of this activity
are displayed in the Property Inspector.

5. In the Property Inspector, add parameters for the activity by clicking the New
Process Activity Parameter icon at the top of the Structure panel.

The parameters for an activity vary according to the type of activity. For each
activity, Warehouse Builder defines read-only parameters Name, Direction, and
Data Type. And for each parameter, you can specify values for Binding, Literal,
Value, and Description in the Property Inspector.

For example, Figure 8–3 shows the parameters for a Notification activity. The
parameters include DEFAULT_RESPONSE, EXPAND_ROLES, HTML_BODY,
PERFORMER, PRIORITY, RESPONSE_PROCESSOR, RESPONSE_TYPE,
SUBJECT, TEXT_BODY, and TIMEOUT.

Figure 8–3 Parameters for a Notification Activity

Adding Activities to Process Flows

8-10 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Parameters for Activities
Each parameter has the following properties:

Name
This is a name property of the activity parameter. For information about a specific
parameter, look up the activity by name under Example 27, "Activities in Process
Flows".

Direction
The direction property is read-only for parameters that are not created by the user. A
direction of IN indicates that the parameter is an input parameter for the activity.

Data Type
The data type property is read-only for parameters that are not created by the user.
Warehouse Builder assigns the appropriate data type for all default parameters.

Binding
Use the binding property to pass in parameters from outside the process flow for
parameters that are not created by the user. If you assign a parameter in Binding, then
it overrides any text you assign to Value.

Literal
If you enter a value for the parameter in the field Value, then indicate whether the
value is a literal or an expression. The literal data types follow the PL/SQL literal
value specification except for calendar data types. These data types are represented in
a standard format as the process flow interacts with data sources from different
locations.

The values you can select for Literal are True or False. When you set Literal to False,
then the value entered for the Value property must be a valid PL/SQL expression
which is evaluated at the Control Center. When you set Literal to True, then the value
depends on the type of activity. If the activity is a PL/SQL object, such as a mapping or
process flow, the Value is a PL/SQL snippet. If the activity is not a PL/SQL object,
then the Value is language-dependent.

Table 8–1 provides the Literal value type, format, and some examples.

Value
This is the value of the parameter. For some parameters, Warehouse Builder enables
you to select from a list of values. For other parameters, Warehouse Builder assigns

Table 8–1 Example of Literal Value Types

Literal Value Type Format Example

DATE YYYY-MM-DD 2006-03-21

DATE YYYY-MM-DD HH24:MI:SS 2006-03-21 15:45:00

TIMESTAMP YYYY-MM-DD HH24:MI:SS.FF9 2006-03-21 15:45:00.000000000

TIMESTAMP_TZ YYYY-MM-DD HH24:MI:SS.FF9
TZH:TZM

2006-03-21 15:45:00.000000000
+01:00

YMINTERVAL [+-]YYYYYYYYY-MM +000000001-01

DMINVERVAL [+-]DDDDDDDDD
HH24:MI.SS.FF9

+000000001 01:01:01.000000001

Creating and Using Activity Templates

Designing Process Flows 8-11

default values that you can override by entering a new value or using the field
Binding. In the absence of a list of possible values or a default value, you must enter a
value.

Description
You can enter an optional description for each property.

Creating and Using Activity Templates
In designing process flows, you may want to reuse existing activities. For example,
each time a mapping fails in a process flow, you may want to send an e-mail to the
same group of administrators. You create a template for the Email activity once, and
then use and edit the activity in many process flows.

To create an activity template:

1. In the Projects Navigator, navigate to the Activity Templates node under the
Process Flows node.

2. To create a folder for containing templates, right-click the Activity Templates node
and select New Activity Template Folder.

3. Assign a name to the activity template folder and click OK.

Consider creating a folder for each type of template that you plan to create. For
instance, you could create separate folders to contain Email and Ftp templates.

4. The Create Activity Template Wizard is displayed.

Follow the prompts in the Create Activity Template Wizard to complete the Name
and Description Page, the Parameters Page, and the Summary page.

5. See "Using Activity Templates" on page 8-12 for instructions about how to use the
template in a process flow.

Name and Description Page
The rules for naming objects in the activity template depend on the naming mode that
you select in that Naming Preferences section of the Preferences dialog box.
Warehouse Builder maintains a business and a physical name for each object in the
workspace. The business name is its descriptive business name. The physical name is
the name that Warehouse Builder uses when generating code.

When you name objects while working in one naming mode, Warehouse Builder
creates a default name for the other mode. So, when working in the business name
mode, if you assign an activity template name that includes mixed cases, special
characters, and spaces, then Warehouse Builder creates a default physical name for the
objects.

Assign a name and select the type of activity template that you want to create. Also,
write an optional description for the template.

Note: If the wizard does not appear automatically, then right-click a
folder and select New Activity Template.

Creating and Using Activity Templates

8-12 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Naming Activities
In the physical naming mode, an activity name can be from 1 to 30 alphanumeric
characters and blank spaces are not allowed. In the business naming mode, the limit is
200 characters and blank spaces and special characters are allowed. In both naming
modes, the name should be unique across the project.

Describing Activities
The description can be up to 4,000 alphanumeric characters and can contain blank
spaces. Specifying a description for an activity template is optional.

Activity Templates
The following activity templates are available from the list.

■ Assign

■ Email

■ Enterprise Java Bean

■ FTP

■ File Exists

■ Java Class

■ Manual

■ Notification

■ OMBPlus

■ Set Status

■ Sqlplus

■ User Defined

■ Wait

Parameters Page
The wizard displays parameters based on the type of activity that you previously
selected in the Activity Templates list.

Enter default values for the activity. When you use the activity template in a process
flow, you can retain or edit the default values. For example, an Email activity template
contains the parameters FROM_ADDRESS and REPLY_TO_ADDRESS. When you use
an Email activity template in a process flow, you can overwrite the default values of
these parameters with different values.

Using Activity Templates
Complete the following steps to use an activity template:

1. In the Projects Navigator, navigate to the process flow module under the Process
Flows node.

2. To open the Process Flow Editor, right-click the Process Flow and select Open.

3. From the Graph menu, select Add, then Available Objects.

The Add Available Objects dialog box is displayed.

4. Select the activity template you want to use and click OK.

About Transitions

Designing Process Flows 8-13

The activity template is added to the Process Flow Editor canvas. Activity
templates in a process flow acts like regular activities.

Alternatively, instead of Steps 3 and 4, you can drag and drop an activity template
from the Projects Navigator on to the Process Flow Editor canvas.

To edit the activity, select the activity on the canvas and use the Structure tab to modify
the activity details.

About Transitions
Use transitions to indicate the sequence and conditions in which activities occur in the
process flow. You can use transitions to run an activity based on the completion state
of the preceding activity.

When you add a transition to the canvas, by default, the transition has no condition
applied to it. The process flow continues once the preceding activity completes,
regardless of the ending state of the previous activity.

A transition with no condition applied to it has different semantics depending on the
source activity type. If the activity type is FORK, then it may have multiple
unconditional transitions in which each transition begins a new flow in the process
flow. If the source activity type is not FORK, then there may be only one unconditional
transition which is used when no other conditional transition is activated (for example,
the final ELSE condition in an IF...THEN...ELSIF...ELSE...END PL/SQL
statement).

Rules for Valid Transitions
For a transition to be valid, it must conform to the following rules:

■ All activities, apart from START and END, must have at least one incoming
transition.

■ Only the AND and OR activities can have more than one incoming transition.

■ Only a FORK activity can have more than one unconditional outgoing transition.

■ A FORK activity can have only unconditional outgoing transitions.

■ An activity that has an enumerated set of outcomes must have either an outgoing
transition for each possible outcome or an unconditional outgoing transition.

■ An activity can have zero or more outgoing complex expression transitions.

■ An activity, with an outgoing complex expression transition, must have an
unconditional outgoing transition.

■ An END_LOOP transition must have only one unconditional transition to its
associated FOR_LOOP or WHILE_LOOP activity.

■ The transition taken by the exit outcome of a FOR_LOOP or WHILE_LOOP
must not connect to an activity that could be carried on as a result of the "loop."

Connecting Activities
To create dependencies using transitions:

1. When working in the Select mode in the Process Flow Editor, place your mouse
pointer along the right border of the activity icon along its center line.

About Transitions

8-14 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

The editor displays the cursor as a small horizontal arrow, indicating that you can
now use the mouse button to connect activities.

2. Press the left mouse button and scroll toward the next activity. As you begin to
scroll, the cursor appears as an arrow with a plus sign under it. Continue to scroll
towards the next activity until the plus sign under the cursor arrow changes to a
circle. Release the mouse button to connect the two activities.

The editor displays an arrow between the two activities, assigns a default name to
the transition, and displays the transition in the Structure panel. The properties of
the transition are displayed in the Property Inspector.

3. In the Property Inspector, view or edit the following attributes for the transition:

Name: The editor assigns a default name that you can change.

Description: You can enter an optional description for the transition.

Condition: Transitions that you initially draw on the canvas are unconditional by
default. To override the default and apply new conditions, select the transition.
The Property Inspector displays the transition properties. Click the Ellipsis button
to the right of the Condition field and, in the Edit Property dialog box, select the
condition that you want to apply to the transition. When you select a condition,
then the editor displays the associated icon imposed onto the transition line on the
canvas.

Source: This property is read-only and indicates the first activity in the connection.

Target: This property is read-only and indicates the second activity in the
connection.

Configuring Activities
Some activities, such as Sqlplus, require additional configuration. These configuration
details for a given activity are listed in Chapter 27, "Activities in Process Flows".

Using Parameters and Variables
Process flows and activities support the PL/SQL parameter passing concept, allowing
data to be passed and reused through parameterization. This is accomplished through
data stores, which are implemented as either parameters or variables. The process flow
allows the data to be passed between data stores.

■ Parameters allow passing of data between a process flow and its activities or
subprocesses.

■ Variables allow the storage of transient data, which is then maintained for the
lifetime of running the process flow. Variables are used to pass data between
activities.

Figure 8–4 shows the direction in which the data is passed.

About Transitions

Designing Process Flows 8-15

Figure 8–4 Relationship Between the Scope and the Direction in Which the Data is
Passed

Process flows adhere to the following rules for allowing the data to be passed between
data stores:

1. Process flow variables can be initialized from process flow parameters, but the
reverse is not allowed.

2. Activity parameters can pass data bidirectionally between process flow variables
and process flow parameters.

3. Transition expressions can be evaluated against their source activity parameters,
process flow parameters, and process flow variables.

4. A data store cannot be accessed from another data store within the same scope.

Using a Namespace
The namespace allows a data store of an inner scope to hide the data store of an outer
scope, similar to PL/SQL. By qualifying the data store name with the process flow
name or activity, you can reference the hidden data store name. For example:

My_PROC.VAR1

The namespace does not allow referencing of data from another data store within the
same scope.

Using Bindings
A data store may be bound to another data store in an outer scope, which supports the
passing of data in both directions.

Process flow bindings follow the same semantics as PL/SQL with the following rules:

1. All the data is passed within the process flow by value.

2. Variables can be initialized through a binding. They cannot return a value.

3. An INOUT parameter can be bound to an IN parameter in an outer scope. The
output value, which is passed by value, is audited and then discarded.

About Expressions

8-16 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Because a variable cannot pass data out to a process flow parameter, this is
accomplished by the use of an Assign operator, which can be bound to the variable
and the parameter.

About Expressions
Oracle Warehouse Builder supports the use of PL/SQL expressions for the derivation
of parameter values and the use of 'complex expression' transitions.

The expression must produce a correctly typed value for data store. Automatic
conversion from VARCHAR is supported. When the expression is associated with a
transition a Boolean result is expected.

During evaluation, an expression has access to the outer scope that encloses it. So, an
expression for an activity parameter can use process flow variables and process flow
parameters in its evaluation.

The PL/SQL expression is run in the context of the Control Center user who requested
the process of the activity. However, if the Oracle Workflow schema is hosted in a
remote database instance, the effective user of the generated database link will be used
instead. A different Control Center user may be selected by configuring the process
flow and specifying an evaluation location. Thus, the expression may reference any
PL/SQL function that is accessible to the Control Center user.

Global Expression Values
Warehouse Builder makes additional data values available to the expression from the
current activity and the owning process flow.

Table 8–2 lists these global expression values.

Table 8–3 lists the additional constants provided.

Table 8–2 Global Expression Values

Identifier Type Description

NUMBER_OF_ERRORS NUMBER Number of errors reported on
completion of activity execution

NUMBER_OF_WARNINGS NUMBER Number of warnings reported on
completion of activity execution

RETURN_RESULT VARCHAR2(64) Textual representation of result. For
example, 'SUCCESS,' 'WARNING,'
'ERROR'

RETURN_RESULT_NUMBER NUMBER Enumeration of RESULT_RESULT1 =
SUCCESS2 = WARNING3 = ERROR

RETURN_CODE NUMBER An integer, 0 to 255, specific to the
activity, synonymous with an
Operating System return code

PARENT_AUDIT_ID NUMBER The audit ID of the calling Process
Flow

AUDIT_ID NUMBER The audit ID of the activity

Table 8–3 Additional Constants

Identifier Type Description

SUCCESS NUMBER SUCCESS enumerated value

Defining Transition Conditions

Designing Process Flows 8-17

Defining Transition Conditions
Use the Transition Editor to specify one of the enumerated conditions or to write an
expression for a complex condition. The enumerated conditions include success,
warning, and error. These are displayed on the canvas as shown in Table 8–4.

The extended transition condition is valid only for Notification activities, because this
is the only type of activity that returns an extended result. The activity acquires this
icon when it is set to an outcome of #MAIL, #NOMATCH, #TIE, or #TIMEOUT.

Table 8–5 lists the output and the description of the Extended transition.

If the activity has only one outgoing activity, then you can specify any of the
conditions listed in Table 8–4 or leave the transition as unconditional.

The rules for using multiple outgoing transitions depend on the type of activity. The
general rule is that you can use an unlimited number of complex conditions in
addition to one of each of the following: SUCCESS, WARNING, ERROR, and
UNCONDITIONAL. The exception to this rule is when you use control activities such
as AND, FORK, and OR.

WARNING NUMBER WARNING enumerated value

ERROR NUMBER ERROR enumerated value

Table 8–4 Types of Conditions for Transitions

Icon
Transition
Condition Description

Success The process flow continues only if the preceding activity ends in
success.

Warning The process flow continues only if the preceding activity ends
with warnings.

Error The process flow continues only if the preceding activity ends in
error.

Complex The process flow continues only if the preceding activity returns
a value that meets the criteria you specify in an expression.

Extended The process flow continues only if the preceding notification
activity ends with an extended result.

Table 8–5 Output and Description of the Extended Transition

Output Description

#NOMATCH Result of a voting notification where no candidate acquired the
minimum number of votes to win.

#TIE Result of a voting notification where the result was a tie.

#MAIL A mail error occurred for the notification. Some recipients did
not receive an e-mail notification, so it was canceled.

#TIMEOUT The notification did not receive a response within the configured
amount of time.

Table 8–3 (Cont.) Additional Constants

Identifier Type Description

Example: Using Process Flows to Access Flat Files with Variable Names

8-18 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

When you add multiple outgoing transitions from an activity, ensure that the
conditions do not conflict. A conflict occurs when the process flow logic evaluates that
more than one outgoing transition is true.

Figure 8–5 shows a portion of a process flow in which different activities are triggered
based on the three possible completion states of MAP1. Because only one of these
conditions can be satisfied at a time, there is no conflict. If you attempt to add an
unconditional transition or another conditional transition, two transition conditions
would be true and the process flow would be invalid.

Figure 8–5 Outgoing Transition Conditions

Example: Using Process Flows to Access Flat Files with Variable Names

Scenario
Your company relies on a legacy system that writes data to a flat file on a daily basis
and assigns a unique name to the file based on the date and time of its creation. You
would like to create a mapping that uses the generated flat files as a source, and
transforms and loads the data to a relational database. However, mappings require
files to have permanent names and, in this situation, the name of the source file
changes each time the file is created.

Solution
In Warehouse Builder, you can design a process flow that locates the generated file in
a specific directory, renames it to a permanent name that you designate, and starts a
dependent mapping. You can now use the permanent flat file name as the source for
your mapping.

Case Study
This case study describes how to create a process flow and a mapping to extract data
from a legacy system that generates flat files with variable names. The process flow
relies on the use of a User Defined activity. Assume the following information for the
purposes of this case study:

■ Generated Flat File: The legacy system generates a flat file containing sales data
on a daily basis. It saves the file to the c:\staging_files directory and names
the file based on the time and date, such as sales010520041154.dat. Every
generated file is saved to the same directory and begins with the word sales,
followed by the timestamp information.

■ Permanent Flat File Name: You decide to rename the generated file name to s_
data.dat. This is the name that you reference as the flat file source in the
mapping.

Example: Using Process Flows to Access Flat Files with Variable Names

Designing Process Flows 8-19

■ Process Activity: You design a process flow named OWF_EXT to execute batch
commands in DOS to copy the generated file, save it as s_data.dat, and delete
the originally generated file.

Your objective is to create logic that ensures the generated flat file is renamed
appropriately before it triggers the execution of a mapping.

To extract data from a generated flat file with a name that varies with each
generation, refer to the following sections:

1. "Creating the Process Flow" on page 8-19

2. "Setting Parameters for the User Defined Activity" on page 8-19

3. "Configuring the User Defined Activity" on page 8-21

4. "Designing the Mapping" on page 8-21

5. "Deploying and Executing" on page 8-22

Creating the Process Flow
Create a process flow that starts a mapping on the condition that the User Defined
activity completes successfully. For more information about creating the process flow,
see "Steps for Defining Process Flows" on page 8-5.

Figure 8–6 displays the process flow you create to extract data from a generated flat
file.

Figure 8–6 Process Flow with User Defined Activity Transitioning to a Mapping

Setting Parameters for the User Defined Activity
This section describes how to specify the DOS commands for renaming the generated
file. The DOS commands that you issue from the User Defined activity should be
similar to the following:

copy c:\staging_files\sales*.* c:\staging_files\s_data.dat
del c:\staging_files\sales*.*

The first command copies the temporary file into a file with a fixed name s_
data.dat. The second command deletes the originally generated file.

You can either direct Warehouse Builder to a file containing the script of commands or
you can store the commands in the Warehouse Builder user interface. Choose one of
the following methods:

■ Method 1: Write a script Within Warehouse Builder

Example: Using Process Flows to Access Flat Files with Variable Names

8-20 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ Method 2: Call a script maintained outside of Warehouse Builder

Method 1: Write a script Within Warehouse Builder
Choose this method when you want to maintain the script in Warehouse Builder.
Consider using this method when the script is small and need not be very flexible.

For this method, write or copy and paste the script into the Value column of the
SCRIPT parameter. In the COMMAND parameter, enter the path to the DOS shell
command, such as c:\winnt\system32\cmd.exe. Also, type the ${Task.Input}
variable into the Value column of the PARAMETER_LIST parameter.

Although this case study does not illustrate it, you can use substitution variables in the
script when you maintain it in Warehouse Builder. This prevents you from having to
update activities when server files, accounts, and passwords change.

Table 8–6 lists the substitute variables that you can type for the User Defined activity.
Working refers to the computer hosting the Runtime Service, the local computer in this
case study. Remote refers to a server other than the Runtime Service host. You designate
which server is remote and which is local when you configure the activity, as described
in "Configuring the User Defined Activity" on page 8-21. These values are set when
you register the locations at deployment.

Method 2: Call a script maintained outside of Warehouse Builder
If extra maintenance is not an issue, you can point Warehouse Builder to a file
containing a script including the necessary commands. This method is more flexible,
as it enables you to pass in parameters during execution of the process flow.

The following example shows how to call an external process script outside of
Warehouse Builder and illustrates how to pass parameters into the script during
execution of the process flow. This example assumes a Windows operating system. For
other operating systems, issue the appropriate equivalent commands.

To call a script outside the User Defined activity:
1. Write the script and save it to the file directory. For example, you can write the

following script and save it as c:\staging_files\rename_file.bat:

copy c:\staging_files\%1*.dat c:\staging_files\s_data.dat

del c:\staging_files\%1*.dat

Table 8–6 Substitute Variables for the User Defined Activity

Variable Value

${Working.Host} The host value for the location of the Runtime Service host

${Working.User} The user value for the location of the Runtime Service host

${Working.Password} The password value for the location of the Runtime Service host

${Working.RootPath} The root path value for the location of the Runtime Service host

${Remote.Host} The host value for a location other than the Runtime Service host

${Remote.User} The user value for a location other than the Runtime Service host

${Remote.Password} The password value for a location other than the Runtime Service
host

${Remote.RootPath} The root path value for a location other than the Runtime Service
host

${Deployment.Location} The deployment location

Example: Using Process Flows to Access Flat Files with Variable Names

Designing Process Flows 8-21

This sample script passes a parameter %1 to the script during the execution of the
process flow. This parameter represents a string containing the first characters of
the temporary file name, such as sales010520041154.

2. Select the Start activity on the canvas to view and edit activity parameters in the
Structure view.

To add a start parameter, select the Start activity on the canvas, and click the Add
New Activity Parameter icon on the Structure tab. Create a start parameter named
FILE_STRING. During execution, Warehouse Builder will prompt you to type a
value for FILE_STRING to pass on to the %1 parameter in the rename_
file.bat script.

3. Select the User Defined activity on the canvas and edit its parameters.

For the COMMAND parameter, enter the path to the script in the column labeled
Value. If necessary, use the scroll bar to scroll down and reveal the column. For this
example, enter c:\staging_files\rename_file.bat.

For PARAMETER_LIST, click the row labeled Binding and select the parameter
that you defined for the start activity, FILE_STRING.

Accept the defaults for all other parameters for the external process.

Configuring the User Defined Activity
When you apply conditions to the outgoing transitions of a User Defined activity, you
must define the meaning of those conditions when you configure the User Defined
activity.

To configure the User Defined activity:

1. Right-click the process flow on the navigation tree and select Configure.

The configuration properties for the process flow are displayed in a new tab.

2. Expand the User Defined Activities node, then the User Defined activity, and the
Path Settings node. Warehouse Builder displays the configuration settings.

3. Complete this step if you wrote the script in the Warehouse Builder user interface
using the substitution variables related to Remote Location, Working Location,
and Deployment Location. Use the list to select the values.

Because this case study does not use substitution variables, accept the default
values.

4. Set the Deployed Location to the computer where you deploy the process flow.

5. Under the Execution Settings node, set Use Return as Status to true.

This ensures that the process flow uses the external process return codes for
determining which outgoing transition to activate. For the process flow in this case
study, if the external process returns a success value, the process flow continues
down the success transition and executes the downstream mapping.

Designing the Mapping
Now you can design a mapping with s_data.dat as the source. You can create a
PL/SQL mapping or a SQL*Loader mapping. For PL/SQL, map the flat file source to
an external table and design the rest of the mapping with all the operators available for
a PL/SQL mapping. For SQL*Loader, map the flat file source to a staging table and
limit the mapping to those operators permitted in SQL*Loader mappings.

Example: Using Process Flows to Transfer Remote Files

8-22 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Deploying and Executing
Deploy the mapping. Also, deploy the process flow package or module containing the
process flow OWF_EXT.

Execute the process flow manually. When you execute the process flow, Warehouse
Builder prompts you to enter values for the parameter that you created to pass into the
script, FILE_STRING. For this case study, enter ?sales where the question mark is
the separator. The external activity then executes the command rename_file.bat
sales.

Subsequent Steps
After you successfully execute the process flow manually, consider creating a
schedule.You can define a daily schedule to execute the process flow and, therefore,
the mapping. Use schedules to plan when and how often to execute operations such as
mappings and process flows that you deploy through Warehouse Builder.

 Example: Using Process Flows to Transfer Remote Files

Scenario
Developers at your company designed mappings that extract, transform, and load
data. The source data for the mapping resides on a server separate from the server that
performs the ETL processing. You would like to create logic that transfers the files
from the remote computer and triggers the dependent mappings.

Solution
In Warehouse Builder, you can design a process flow that executes file transfer
protocol (FTP) commands and then starts a mapping. For the process flow to be valid,
the FTP commands must involve transferring data either from or to the server with the
Runtime Service installed. To move data between two computers, neither of which
hosts the Runtime Service, first transfer the data to the Runtime Service host computer
and then transfer the data to the second computer.

You can design the process flow to start different activities depending upon the
success or failure of the FTP commands.

Case Study
This case study describes how to transfer files from one computer to another and start
a dependent mapping. The case study provides examples of all the necessary servers,
files, and user accounts.

■ Data host computer: For the computer hosting the source data, you need a user
name and password, host name, and the directory containing the data. In this case
study, the computer hosting the data is a UNIX server named salessrv1. The
source data is a flat file named salesdata.txt located in the /usr/stage
directory.

■ Runtime Service host computer: In this case study, Warehouse Builder and the
Runtime Service are installed on a computer called local with a Windows
operating system. local executes the mapping and the process flow.

■ Mapping: This case study includes a mapping called salesresults that uses a
copy of salesdata.txt stored on local at c:\temp as its source.

See Also: "Defining Schedules" on page 11-2 for information about
defining schedules.

Example: Using Process Flows to Transfer Remote Files

Designing Process Flows 8-23

■ FTP Commands: This case study illustrates the use of a few basic FTP commands
on the Windows operating system.

Your objective is to create logic that ensures the flat file on salessrv1 is copied to the
local computer, and then, trigger the execution of the salesresults mapping.

To transfer files and start a dependent mapping, see the following sections:

1. "Defining Locations" on page 8-23.

2. "Creating the Process Flow" on page 8-23

3. "Setting Parameters for the FTP Activity" on page 8-24

4. "Configuring the FTP Activity" on page 8-26

5. "Registering the Process Flow for Deployment" on page 8-26

After you complete the instructions in the above sections, you can run the process
flow.

Defining Locations
Locations are logical representations of the various data sources and destinations in
the warehouse environment. In this scenario, the locations are the logical
representations of the host and path name information required to access a flat file.
Warehouse Builder requires these definitions for deploying and running the process
flow. When you deploy the process flow, Warehouse Builder prompts you to type the
host and path name information associated with each location. You must define
locations for each computer involved in the data transfer.

To define locations, right-click the appropriate Locations node in the Locations
Navigator and select New. For salessrv1, right-click Files under the Locations node
and create a location named REMOTE_FILES. Repeat the step for local and create the
location LOCAL_FILES.

For the remote location, enter the host name, root path to the file, user name, and
password. Warehouse Builder keeps the password secure. For the local location, only
the host name is necessary.

Creating the Process Flow
Use the Process Flow Editor to create a process flow with an FTP activity that
transitions to the salesresults mapping on the condition of success.

Your process flow should appear similar to Figure 8–7.

Figure 8–7 Process Flow with FTP Transitioning to a Mapping

Example: Using Process Flows to Transfer Remote Files

8-24 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Setting Parameters for the FTP Activity
This section describes how to specify the commands for transferring data from the
remote server salessrv1 to the local computer. You specify the FTP parameters by
entering values for the FTP activity parameters on the Activity View.

Warehouse Builder offers you flexibility on how you specify the FTP commands.
Choose one of the following methods:

■ Method 1: Write a script in Warehouse Builder: Choose this method when you
want to maintain the script in Warehouse Builder or when password security to
servers is a requirement.

For this method, write or copy and paste the script into the Value column of the
SCRIPT parameter. In the COMMAND parameter, enter the path to the FTP
executable, such as c:\winnt\system32\ftp.exe. Also, enter the
Task.Input variable into the Value column of the PARAMETER_LIST
parameter.

■ Method 2: Call a script maintained outside of Warehouse Builder: If password
security is not an issue, you can direct Warehouse Builder to a file containing a
script including the FTP commands and the user name and password.

To call a file on the file system, enter the appropriate command in PARAMETER_
LIST to direct Warehouse Builder to the file. For a Windows operating system,
enter the following:

?"-s:<file path\file name>"?

For example, to call a file named move.ftp located in a temp directory on the C
drive, enter the following:

?"-s:c:\temp\move.ftp"?

Leave the SCRIPT parameter blank for this method.

Example: Writing a Script in Warehouse Builder for the FTP Activity
The following example illustrates Method 1. It relies on a script and the use of
substitution variables. The script navigates to the correct directory on salessrv1 and
the substitution variables are used for security and convenience.

This example assumes a Windows operating system. For other operating systems,
issue the appropriate equivalent commands.

To define a script within the FTP activity:

1. Select the FTP activity on the canvas to view and edit activity parameters in the
Property Inspector.

2. For the COMMAND parameter, enter the path to the FTP executable in the column
labeled Value. If necessary, use the scroll bar to scroll to the right and reveal the
column labeled Value.

For Windows operating systems, the FTP executable is often stored at
c:\winnt\system32\ftp.exe.

3. For the PARAMETER_LIST parameter, enter the Task.Input variable.

When defining a script in Warehouse Builder and using Windows FTP, you must
enter ?"-s:${Task.Input}"? into PARAMETER_LIST.

For UNIX, enter the following: ?"${Task.Input}"?.

4. Navigate to and highlight the SCRIPT parameter in the Structure tab.

Example: Using Process Flows to Transfer Remote Files

Designing Process Flows 8-25

The Property Inspector displays the properties of the SCRIPT parameter.

5. Click the Ellipsis button to the right of the Value field displayed in the Property
Inspector.

Warehouse Builder displays the SCRIPT Value editor. Write or copy and paste
FTP commands into the editor.

Notice that the script in Figure 8–8 includes ${Remote.User} and
${Remote.Password}. These are substitution variables. See "Using Substitution
Variables" on page 8-25 for more details.

Figure 8–8 SCRIPT Value Editor Using Substitution Variables

Using Substitution Variables
Substitution variables are available only when you choose to write and store the FTP
script in Warehouse Builder.

Use substitution variables to prevent having to update FTP activities when server files,
accounts, and passwords change. For example, suppose that you create 10 process
flows that use FTP activities to access a file on salessrv1 under a specific directory.
If the file is moved, without the use of substitution variables you must update each
FTP activity individually. With the use of substitution variables, you need only update
the location information as described in "Defining Locations" on page 8-23.

Substitution variables are also important for maintaining password security. When
Warehouse Builder executes an FTP activity with substitution variables for the server
passwords, it resolves the variable to the secure password that you provided for the
associated location.

Table 8–7 lists the substitute variables that you can provide for the FTP activity.
Working refers to the computer hosting the Runtime Service, the local computer in
this case study. Remote refers to the other server involved in the data transfer. You
designate which server is remote and which is local when you configure the FTP
activity. For more information, see "Configuring the FTP Activity" on page 8-26.

Table 8–7 Substitute Variables for the FTP Activity

Variable Value

${Working.RootPath} The root path value for the location of the Runtime Service host

${Remote.Host} The host value for the location involved in transferring data to or
from the Runtime Service host

${Remote.User} The user value for the location involved in transferring data to or
from the Runtime Service host

Example: Using Process Flows to Transfer Remote Files

8-26 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Configuring the FTP Activity
As part of configuring the complete process flow, configure the FTP activity.

To configure the FTP activity:

1. Right-click the process flow on the navigation tree and select Configure.

2. Expand the FTP activity and the Path Settings. Warehouse Builder displays the
configuration settings.

3. Set Remote Location to REMOTE_LOCATION and Working Location to LOCAL_
LOCATION.

4. Click to select the Use Return as Status. This ensures that the process flow uses
the FTP return codes for determining which outgoing transition to activate. For the
process flow in this case study, if FTP returns a success value of 1, the process flow
continues down the success transition and executes the salesresults mapping.

Registering the Process Flow for Deployment
After you complete these instructions, you can deploy and run the process flow. To
deploy the process flow, start the Deployment Manager by right-clicking and selecting
Deploy from either the process flow module or package on the navigation tree. The
Deployment Manager prompts you to register the REMOTE_LOCATION and the
LOCAL_LOCATION.

Now you can run the process flow.

${Remote.Password} The password value for the location involved in transferring data to
or from the Runtime Service host

${Remote.RootPath} The root path value for the location involved in transferring data to
or from the Runtime Service host

Table 8–7 (Cont.) Substitute Variables for the FTP Activity

Variable Value

9

Defining Custom Transformations 9-1

9

Defining Custom Transformations

One of the main functions of an extract, transformation, and loading (ETL) tool is to
transform data. Oracle Warehouse Builder provides several methods of transforming
data. This chapter discusses transformations and describes how to create custom
transformations using Warehouse Builder. It also describes how to import
transformation definitions.

This chapter contains the following topics:

■ About Transforming Data Using Warehouse Builder

■ Defining Custom Transformations

■ Editing Custom Transformations

■ Importing Transformations

■ Example: Reusing Existing PL/SQL Code

■ Using Functions In Non-Oracle Platforms

■ Configuring Functions

About Transforming Data Using Warehouse Builder
Warehouse Builder provides an intuitive user interface that enables you to define
transformations required for your source data. Use one of the following methods to
transform source data.

■ Transformations: The Design Center includes a set of transformations used to
transform data. You can use the predefined transformations provided by
Warehouse Builder or define custom transformations that suit your requirements.

Custom transformations can be deployed to Oracle Database just like any other
data object that you define in an Oracle module. For more information about
transformations, see "About Transformations" on page 4-6.

■ Operators: The Mapping Editor includes a set of prebuilt transformation operators
that enable you to define common transformations when you define how data will
move from source to target. Transformation operators are prebuilt PL/SQL
functions, procedures, package functions, and package procedures. They take
input data, perform operations on it, and produce output.

In addition to the prebuilt operators, you can use custom transformations that you
define in the Mapping Editor through the Transformation operator. For more
information about these operators, see Chapter 26, "Data Flow Operators."

Defining Custom Transformations

9-2 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Benefits of Using Warehouse Builder for Transforming Data
Warehouse Builder enables you to reuse PL/SQL as well as to write your own custom
PL/SQL transformations. These custom transformations can be used in Warehouse
Builder mappings.

All major relational database management systems support SQL and all programs
written in SQL can be moved from one database to another with very little
modification. This means that all the SQL knowledge in your organization is fully
portable to Warehouse Builder. Warehouse Builder enables you to import and
maintain any existing complex custom code.

Defining Custom Transformations
Custom transformations include procedures, functions, and packages. Warehouse
Builder provides wizards to create each type of custom transformation. Custom
transformations can belong to the public Oracle Custom library or to a module in a
project.

Custom Transformations in the Public Oracle Custom Library
Custom transformations that are part of the public Oracle custom library can be used
across all projects of the workspace in which they are defined. For example, you create
a function called ADD_EMPL in the public Oracle Custom library of the workspace
REP_OWNER. This procedure can be used across all the projects in REP_OWNER.

Use the Custom node of the Public Transformations node in the Globals Navigator to
define custom transformations that can be used across all projects in the workspace.

To create a custom transformation in the Public Oracle Custom Library:

1. From the Globals Navigator, expand the Public Transformations node, and then
the Oracle node.

2. Right-click the Custom node and select New.

The New Gallery dialog box is displayed containing the type of transformations
that you can create. This includes functions, procedures, and packages. Note that
PL/SQL types can be created only as part of a package.

3. Select the type of transformation you want to create a click OK.

4. For table functions, Warehouse Builder displays the Create Table Function wizard.
Use the wizard to define the table function as described in "Defining Table
Functions" on page 9-4.

For functions, procedures, and packages, the Create Function dialog box, Create
Procedure dialog box, or Create Package dialog box respectively, is displayed.
Provide a name and an optional description and click OK. For packages, the
package is added to the Projects Navigator. For functions and procedures, the
editor is displayed. Use the editor to define the function or procedure.

See "Defining Functions and Procedures" on page 9-3 and "Defining PL/SQL
Types" on page 9-7.

Custom Transformations in a Project
Sometimes, you may need to define custom transformations that are required only in
the current module or project. In such cases, you can define custom transformations in
an Oracle module of a project. When you define a custom transformation in an Oracle
module, the transformation is accessible from all the modules of the project in which it
is defined. For example, consider the workspace owner called REP_OWNER, that

Defining Custom Transformations

Defining Custom Transformations 9-3

contains two projects, PROJECT1 and PROJECT2. In the Oracle module called SALES
of PROJECT1, you define a procedure called CALC_SAL. This procedure can be used in
all modules belonging to PROJECT1, but is not accessible in PROJECT2.

To define a custom transformation in an Oracle module:

1. From the Projects Navigator, expand the Oracle warehouse module node under
which you want to define a custom transformation.

2. Right-click the Transformations node and select New.

The New Gallery dialog box is displayed.

3. Select the type of transformation you want to create and click OK.

For functions and procedures, Warehouse Builder displays the Create Function or
Create Procedure dialog box. Provide a name and an optional description and
click OK. The editor for that transformation is displayed. Use the tabs on the
editor to define the transformation. For packages, after you define a name and
description and click OK, the package is added to the Projects Navigator. You can
then define the transformations that are part of the package.

For table functions, Warehouse Builder displays the Welcome page of the Create
Table Function Wizard. Note that you can create PL/SQL types only under a
package.

Defining Functions and Procedures
Complete the following steps using the Function Editor or Procedure Editor to define a
function or procedure.

■ Naming the Custom Transformation

■ Defining the Parameters

■ Specifying the Implementation

Naming the Custom Transformation
Use the Name and Description page or the Name tab to describe the custom
transformation. Specify the following details on this page:

■ Name: Represents the name of the custom transformation. For more information
about naming conventions, see "Naming Conventions for Data Objects" on
page 2-8.

■ Description: Represents the description of the custom transformation. This is an
optional field.

See Also: For more information about defining each type of
transformation, see the following sections:

■ "Defining Functions and Procedures" on page 9-3

■ "Defining PL/SQL Types" on page 9-7

■ "Defining Table Functions" on page 9-4

Note: You cannot copy and paste functions across platforms. For
example, you cannot copy a function from an Oracle module and
paste it into a SQL Server module.

Defining Custom Transformations

9-4 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Defining the Parameters
Use the Parameters tab to define, modify, or delete the parameters, both input and
output, of the transformation. For functions, an additional field called Return Type is
displayed. The Return Type field represents the data type of the value returned by the
function. Select a return type from the available options in the list.

For transformations defined in an Oracle module, specify the following details for
each parameter:

■ Name: Enter the name of the parameter.

■ Data Type: Select the data type of the parameter from the list.

■ I/O: Select the type of parameter. The options available are Input, Output, and
Input/Output.

■ Required: Select Yes to indicate that a parameter is mandatory or No to indicate
that it is not mandatory.

■ Default Value: Enter the default value for the parameter. The default value is used
when you do not specify a value for the parameter when you execute the function
or procedure.

Transformations defined in a DB2 module contain the following details for each
parameter: Name, Data Type, Length, Precision, Scale.

Length is applicable to character data types only and represents the length of the
parameter. Precision represents the total number of digits allowed for the parameter
and is applicable to numeric data types only. Scale represents the total number of
digits to the right of the decimal point and is applicable to numeric data types only.

Transformations defined in a SQL Server module contain the following details for each
parameter: Name, Data Type, Length, Precision, Scale, Required, Default Value.

Specifying the Implementation
Use the Implementation tab to specify or modify the implementation details, such as
the code, of the transformation. Click Generate to validate and generate the
implementation code.

Defining Table Functions
Table functions are functions that take a set of rows as input and produce a set of rows
as output. The input to the table function can be scalar data types, collection data types
(PL/SQL records, Varrays, and nested tables), or Ref Cursors. The output of table
functions is either a nested table or a Varray. Table functions can be queried like a
regular database table.

Parallelization eliminates the need for intermediate staging of table function output by
allowing you to stream rows returned by the table function directly to the next
process.

Table functions enable you to define and use more flexible and powerful
transformations. You can create your own specialized transformations, without using
the transformation operators provided, to perform tasks such as user-defined
aggregations and data mining. Table functions provide support for parallel and
pipelined execution of transformations, resulting in better performance.

See Also: Oracle Database SQL Language Reference for more
information about table functions.

Defining Custom Transformations

Defining Custom Transformations 9-5

Use the following steps to define a table function:

1. Naming the Table Function

2. Specifying the Return Type

3. Specifying Table Function Input and Output Parameters

4. Specifying Parallelism Options (optional)

5. Specifying Data Streaming Options (optional)

6. Specifying the Table Function Implementation

Naming the Table Function
Use the following fields on the Name page to describe the table function.

Name: Represents the name of the table function. The name must follow the naming
conventions for Warehouse Builder objects.

To rename a table function, select the name and enter the new name. Note that when
you rename a table function, you must deploy it again. Also synchronize any
mappings that use the table function.

Description: Represents an optional description, up to 4,000 characters long, for the
table function.

Specifying the Return Type
The return type for table functions can be the following collection types: nested tables
and Varrays. The Return Type page displays the collection types that you can select as
the return type. Select the collection type that you want to use as the return type of the
table function.

For table functions defined under an Oracle module, you can use following as return
type:

■ Nested tables and Varrays defined in an Oracle module that is contained by the
project in which the table function is defined

■ Public nested tables that are defined as part of a package in the Globals Navigator

For public table functions, defined using the Globals Navigator, you can only use
public nested tables or public Varrays as a return type.

Specifying Table Function Input and Output Parameters
Use the Parameters page or Parameters tab to define the input parameters of the table
function. For each parameter, enter the following details:

■ Name: Enter the name of the parameter.

■ Type: Select the data type of the parameter from the list.

Parameters can be Oracle scalar data types or user-defined collection types, except
nested tables. Typically the input parameters of table functions are the collection
types such as Record Type, Table Type, or Ref Cursor Type. Since collection types
are user-defined, you must define these types before you use them as data types
for a table function parameter. Note that you can define collection types only as
part of a public package or a package within an Oracle module.

■ I/O: Select the type of parameter. The only option available for table functions is
Input.

Defining Custom Transformations

9-6 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ Required: Select Yes to indicate that a parameter is mandatory and No to indicate
that it is not mandatory.

■ Default Value: Enter the default value for the parameter. The default value is used
when you do not specify a value for the parameter when you execute the table
function.

To modify a parameter, select the parameter value and enter the new value. Redeploy
the table function after you make this change.

Specifying Parallelism Options
You can parallelize the execution of table functions to eliminate the need for staging
tables. When the execution of a table function is parallelized, the rows returned by the
table function can be streamed directly into the next process without intermediate
staging. This enables multithreaded, concurrent execution of table functions.

Parallel execution of table functions is performed using multiple slave processes. For a
table function to be executed in parallel, you must specify one input parameter, of type
Ref cursor, that is used for data partitioning.

Provide the following details to parallelize the execution of your table function:

■ Parallel: Select this option to indicate that the execution of the table function
should be parallelized.

Note that this option is enabled only when one or more input parameters are of
type Ref Cursor.

■ Partition Method: Select the partition method. You can choose Any, Range, or
Hash as the partition method.

■ Parameters: Select the input parameter on which partitioning should be
performed. Only parameters of type Ref cursor can be selected as partitioning
parameters. Thus this field lists only input parameters of type Ref Cursor.

■ Attributes for Partitioning: Select the attributes in the Ref cursor on which
partitioning should be performed. The Available Attributes section lists the
attributes of the Ref cursor on which the table function input parameter is based.
Select the attributes and use the arrows to move them to the Selected Attributes
section.

Specifying Data Streaming Options
Use the Order page to perform streaming on table functions. When you perform data
streaming, the table function orders or clusters rows that it fetches from cursor
arguments. Ordering or clustering is performed using a particular key or key columns.
Clustering causes rows that have the same input key values to appear together, but
does not perform any ordering of rows.

To perform data streaming, enter the following information on this page.

■ Ordering Method: Specify the method used for data streaming. You can select
Order By to order rows or Cluster By to cluster rows.

■ Attributes for Ordering: Select the attributes on which the ordering or clustering
is performed. The Available Attributes section lists the attributes of the Ref cursor
input parameter. Select one or more attributes and use the arrows to move the
attributes to the Selected Attributes section.

Specifying the Table Function Implementation
On the Implementation page, specify the following details:

Defining Custom Transformations

Defining Custom Transformations 9-7

■ Pipelined: Select the Pipelined option to create a pipelined table function.
Pipelining iteratively returns rows as they are produced, instead of returning them
in a single batch after all the table function processing is complete. Pipelining
enables table functions to return rows faster and reduces the memory required to
cache table function results. Thus query response times are reduced. Pipelining
enables tables functions to be used as a virtual table.

■ Implementation: In the Implementation section, a sample code is provided with
comments for each part of the table function definition. Click Code Editor to
display the Code Editor that enables you to edit the default sample code and enter
the code for your table function.

Defining PL/SQL Types
Use the Create PL/SQL Type Wizard to create PL/SQL types. PL/SQL types must be
defined within a package and they cannot exist independently.

About PL/SQL Types
PL/SQL types enable you to create collection types, record types, and REF cursor
types in Warehouse Builder. You use PL/SQL types as parameters in subprograms or
as return types for functions. Using PL/SQL types as parameters to subprograms
enables you to process arbitrary number of elements. Use collection types to move
data into and out of database tables using bulk SQL. For more information about
PL/SQL types, see Oracle Database PL/SQL Language Reference.

Warehouse Builder enables you to create the following PL/SQL types:

■ PL/SQL Record types

Record types enable you to define records in a package. A record is a composite
data structure that contains multiple fields. Use records to hold related items and
pass them to subprograms using a single parameter.

For example, an EMPLOYEE record can contain details related to an employee such
as ID, first name, last name, address, date of birth, date of joining, and salary. You
can create a record type based on the EMPLOYEE record and use this record type to
pass employee data between subprograms.

■ REF Cursor types

REF cursor types enable you to define REF cursors within a package. REF cursors
are not bound to a single query and can point to different result sets. Use REF
cursors when you want to perform a query in one subprogram and process the
results in another subprogram. REF cursors also enable you to pass query result
sets between PL/SQL stored subprograms and various clients such as an OCI
client or an Oracle Forms application.

REF cursors are available to all PL/SQL clients. For example, you can declare a
REF cursor in a PL/SQL host environment such as an OCI or Pro*C program, then
pass it as an input host variable (bind variable) to PL/SQL. Application
development tools such as Oracle Forms, which have a PL/SQL engine, can use
cursor variables entirely on the client side. Or, you can pass cursor variables back
and forth between a client and the database server through remote procedure calls.

■ Nested Table types

Use nested table types to define nested tables within a package. A nested table is
an unordered set of elements, all of the same data type. They are similar to
one-dimensional arrays with no declared number of elements. Nested tables

Defining Custom Transformations

9-8 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

enable you to model multidimensional arrays by creating a nested table whose
elements are also tables.

For example, you can create a nested table type that can hold an arbitrary number
of employee IDs. This nested table type can then be passed as a parameter to a
subprogram that processes only the employee records contained in the nested
table type.

Usage Scenario for PL/SQL Types
The SALES table stores the daily sales of an organization that has offices across the
world. This table contains the sale ID, sale date, customer ID, product ID, amount sold,
quantity sold, and currency in which the sale was made. Management wants to
analyze global sales for a specified time period using a single currency, for example the
U.S. Dollar. Thus all sales values must be converted to U.S. Dollar. Because the
currency exchange rates can change every day, the sales amounts must be computed
using the exchange rate of the sale currency on the sale date.

Solution Using PL/SQL Record Types

Figure 9–1 displays the mapping that you use to obtain the sales amount in a specified
currency using PL/SQL record types.

Figure 9–1 PL/SQL Record Type in a Mapping

The mapping takes the individual sales data stored in different currencies, obtains the
sales value in the specified currency, and loads this data into a target table. Use the
following steps to create this mapping.

1. In the Globals Navigator, create a package. In this package, create a procedure
called CURR_CONV_PROC.

This procedure obtains the currency conversion values on each date in a specified
time interval from a Web site. The input parameters of this procedure are the sales
currency, the currency to which the sale value needs to be converted, and the time
interval for which the currency conversion is required. This data is stored in a
PL/SQL record type of type CURR_CONV_REC. This record type contains two
attributes: date and conversion value.

You create the PL/SQL record type as part of the package.

2. Create a mapping that contains a Transformation operator. This operator is bound
to the CURR_CONV_PROC procedure.

Defining Custom Transformations

Defining Custom Transformations 9-9

3. Use a Mapping Input Parameter operator to provide values for the input
parameters of the Transformation operator.

The output group of the Transformation operator is a PL/SQL record type of type
CURR_CONV_REC.

4. Use an Expand Object operator to obtain the individual values stored in this
record type and store these values in the table CURRENCY_TAB.

5. Use an Aggregator operator to aggregate sales details for each order.

The SALES table is a transactional table and stores data in normalized form. To
obtain the aggregate sales for each order, use an Aggregator operator to aggregate
sales data.

6. Use a Joiner operator to join the aggregated sales details, which is the output of the
Aggregator operator, with the data in the CURRENCY_TAB table. The sale date is
used as the join condition.

7. Use the Expression operator to multiply the sales amount with the currency
exchange rate to get the total sales in the required currency. Load the converted
sales data into the CONV_SALES_TAB table.

Creating PL/SQL Types
You can create PL/SQL types in the Projects Navigator or Globals Navigator of the
Design Center.

Use the Create PL/SQL Types Wizard to create PL/SQL types. To display the Create
PL/SQL Types Wizard, right-click the PL/SQL Types node under a package, and
select New PL/SQL Type. The Welcome page of the Create PL/SQL Types Wizard is
displayed. Click Next and then the wizard guides you through the following pages:

■ Name and Description Page

■ Attributes Page

■ Return Type Page

■ Summary Page

Name and Description Page
Use the Name and Description page to provide the name and an optional description
for the PL/SQL type. Also use this page to select the type of PL/SQL type that you
want to create.

You can create any of the following PL/SQL types:

■ PL/SQL record type

■ REF cursor type

■ Nested table type

For more information about each PL/SQL type, see "About PL/SQL Types" on
page 9-7.

After specifying the name and selecting the type of PL/SQL type to create, click Next.

Attributes Page
Use the Attributes page to define the attributes of the PL/SQL record type. You specify
attributes only for PL/SQL record types. A PL/SQL record must have at least one
attribute.

Defining Custom Transformations

9-10 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

For each attribute, define the following:

■ Name: The name of the attribute. The name should be unique within the record
type.

■ Data Type: The data type of the attribute. Select the data type from the list.

■ Length: The length of the data type, for character data types.

■ Precision: The total number of digits allowed for the attribute, for numeric data
types.

■ Scale: The total number of digits to the right of the decimal point, for numeric data
types.

■ Seconds Precision: The number of digits in the fractional part of the datetime
field. It can be a number between 0 and 9. Seconds Precision is used only for
TIMESTAMP , TIMESTAMP WITH TIME ZONE, and TIMESTAMP WITH LOCAL
TIME ZONE data types.

Click Next to proceed to the next step.

Return Type Page
Use the Return Type page to select the return type of the PL/SQL type. You must
specify a return type only while creating REF cursors and nested tables.

To define REF cursors:

The return type for a REF cursor can only be a PL/SQL record type. If you know the
name of the PL/SQL record type, you can search for it by entering the name in the
Search For field and clicking Go.

The area below the Search For field displays the available PL/SQL types. These
PL/SQL types are grouped under the two nodes: Public and Private. Expand the
Public node to view the PL/SQL types that are part of the Oracle Shared Library. The
types are grouped by package name. The Private node contains PL/SQL types that are
created as part of a package in an Oracle module. Only PL/SQL types that belong to
the current project are displayed. Each Oracle module is represented by a node. Within
the module, the PL/SQL types are grouped by the package to which they belong.

To define nested tables:

For nested tables, the return type can be a scalar data type or a PL/SQL record type.
Select one of the following options based on what the PL/SQL type returns:

■ Select a scalar type as return type

This option enables you to create a PL/SQL type that returns a scalar type. Use the
list to select the data type.

■ Select a PL/SQL record as return type

This option enables you to create a PL/SQL type that returns a PL/SQL record
type. If you know the name of the PL/SQL record type that is returned, type the
name in the Search For field and click Go. The results of the search are displayed
in the area below the option.

You can also select the return type from the list of available types displayed. The
area below this option contains two nodes: Public and Private. The Public node
contains PL/SQL record types that are part of the Oracle Shared Library. The
PL/SQL record types are grouped by the package to which they belong. The
Private node contains the PL/SQL record types created as transformations in each

Editing Custom Transformations

Defining Custom Transformations 9-11

Oracle module in the current project. These are grouped by module. Select the
PL/SQL record type that the PL/SQL type returns.

Click Next to proceed with the creation of the PL/SQL type.

Summary Page
The Summary page displays the options that you have chosen on the wizard pages.
Review the options. Click Back to modify any options. Click Finish to create the
PL/SQL type.

Editing Custom Transformations
You can edit the definition of a custom transformation using the editors. Make sure
you edit properties consistently. For example, if you change the name of a parameter,
then you must also change its name in the implementation code.

After editing a custom transformation, ensure that you do the following:

■ Synchronize any mapping operators that reference the edited transformation with
the edited transformation

Synchronization updates the definition of the transformation in the mapping with
the changes made while editing.

■ Redeploy the mapping containing the edited transformation

Editing Function or Procedure Definitions
The Edit Function dialog box enables you to edit function definitions. To edit a
procedure definition, use the Edit Procedure dialog box.

Use the following steps to edit functions, procedures, or packages:

1. From the Projects Navigator, expand the Oracle module in which the
transformation is created. Then expand the Transformations node.

To edit a transformation that is part of the public Oracle Custom library, from the
Globals Navigator, expand the Public Transformations node, and then the Custom
node.

2. Right-click the name of the function, procedure, or package that you want to edit
and select Open. Or, double-click the name of the function, procedure, or package.

For functions, the Function Editor is displayed. For procedures, the Procedure
Editor is displayed. Use the following tabs to edit the function or procedure
definition:

■ Name tab, see Naming the Custom Transformation on page 9-3

■ Parameters tab, see Defining the Parameters on page 9-4

■ Implementation tab, see Specifying the Implementation on page 9-4

For packages, Warehouse Builder displays the Edit Transformation Library dialog
box. You can only edit the name and description of the package. You can edit the
functions and procedures contained within the package using the steps used to
edit functions or packages.

Editing Custom Transformations

9-12 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Editing PL/SQL Types
The Edit PL/SQL Type dialog box enables you to edit the definition of a PL/SQL type.
Use the following steps to edit a PL/SQL type:

1. From the Projects Navigator, expand the Oracle module that contains the PL/SQL
type. Then expand the Transformations node.

To edit a PL/SQL type stored in the public Oracle Custom library, expand the
Public Transformations node in the Globals Navigator, and then the Custom node.

2. Expand the package that contains the PL/SQL type and then the PL/SQL Types
node.

3. Right-click the name of the PL/SQL type that you want to edit and select Open.
Or, double-click the name of the PL/SQL type.

The Edit PL/SQL Type dialog box is displayed. Use the following tabs to edit the
PL/SQL type:

■ Name Tab

■ Attributes Tab

■ Return Type Tab

Name Tab
The Name tab displays the name and the description of the PL/SQL type. Use this tab
to edit the name or the description of the PL/SQL type.

To rename a PL/SQL type, select the name and enter the new name.

Attributes Tab
The Attributes tab displays details about the existing attributes of the PL/SQL record
type. This tab is displayed for PL/SQL record types only. You can modify existing
attributes, add new attributes, or delete attributes.

To add a new attribute, click the Name column of a blank row specify the details for
the attribute. To delete an attribute, right-click the gray cell to the left the row that
represents the attribute and select Delete.

Return Type Tab
Use the Return Type tab to modify the details of the return type of the PL/SQL type.
For a REF cursor type, the return type must be a PL/SQL record. For a nested table,
the return type can be a PL/SQL record type or a scalar data type.

Editing Table Functions
You can edit the definition of a table function and modify its specification.

To edit table functions:

1. Expand the Oracle Module that contains the table function, the Transformations
node, and then the Table Functions node.

For a global table function, expand the Public Transformations node and then the
Custom node.

2. If the table function belongs to a package, first expand the package node.
Right-click the name of the table function that you want to edit and select Open.
Or, double-click the name of the table function.

Importing Transformations

Defining Custom Transformations 9-13

The Table Function Editor is displayed.

3. Use the following tabs to edit the table function:

■ Name tab, see "Naming the Table Function" on page 9-5

■ Return Type tab, see "Specifying the Return Type" on page 9-5

■ Parameters tab, see "Specifying Table Function Input and Output Parameters"
on page 9-5

■ Partitions tab, see "Specifying Parallelism Options" on page 9-6

■ Order tab, see "Specifying Data Streaming Options" on page 9-6

■ Implementation tab, see "Specifying the Table Function Implementation" on
page 9-6

Importing Transformations
Use the Import Metadata Wizard to import PL/SQL functions, procedures, and
packages into a Warehouse Builder project. You can also import scalar functions from
IBM DB2 and SQL Server databases.

You can edit, save, and deploy the imported PL/SQL functions and procedures. You
can also view and modify imported packages.

To import transformations in to a project:

1. From the Projects Navigator, expand the project node and then the Databases
node.

2. Expand the node corresponding to the database from which you want to import
transformations.

For example, to import PL/SQL functions from an Oracle database, right-click the
Oracle node. To import scalar functions from an IBM DB2UDB database,
right-click the DB2 node.

3. Right-click the module into which you want to import transformations, select
Import, and then Database Objects.

Warehouse Builder displays the Welcome page of the Import Metadata Wizard.

4. Click Next.

5. In the Object Type field of the Filter Information page, select PL/SQL
Transformation to import PL/SQL transformations into an Oracle module or
select Transformation to import scalar functions into an IBM DB2 UDB or a SQL
Server module.

6. Click Next.

The Import Metadata Wizard displays the Object Selection page.

7. Select a function, procedure, or package from the Available Objects list. Move the
objects to the Selected Objects list by clicking the right arrow to move a single
object or the Move All button to move multiple objects.

8. Click Next.

The Import Metadata Wizard displays the Summary and Import page.

9. Verify the import information. Click Back to revise your selections.

10. Click Finish to import the selected PL/SQL transformations.

Example: Reusing Existing PL/SQL Code

9-14 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Warehouse Builder displays the Import Results page.

11. Click OK proceed with the import. Click Undo to cancel the import process.

The imported PL/SQL information appears under the Transformations node of the
module into which you imported the data.

Restrictions on Using Imported PL/SQL
The following restrictions apply to the use of imported PL/SQL:

■ You cannot edit imported PL/SQL packages.

■ Wrapped PL/SQL objects are not readable.

■ You can edit the imported package body but not the imported package
specification.

Example: Reusing Existing PL/SQL Code

Scenario
A movie rental company periodically updates the customer rental activity in its CUST_
RENTAL_ACTIVITY table, where it stores the rental sales and overdue charges data for
each customer. This table is used for different mailing campaigns. For example, in their
latest mailing campaign, customers with high overdue charges are offered the
company's new pay-per-view service.

Currently, the movie rental company uses a PL/SQL package to consolidate their data.
The existing PL/SQL package needs to be maintained manually by accessing the
database. This code runs on an Oracle 8i database.

CREATE OR REPLACE PACKAGE RENTAL_ACTIVITY AS
 PROCEDURE REFRESH_ACTIVITY(SNAPSHOT_START_DATE IN DATE);
END RENTAL_ACTIVITY;
/
CREATE OR REPLACE PACKAGE BODY RENTAL_ACTIVITY AS
 PROCEDURE REFRESH_ACTIVITY(SNAPSHOT_START_DATE IN DATE) IS
 CURSOR C_ACTIVITY IS
 SELECT
 CUST.CUSTOMER_NUMBER CUSTOMER_NUMBER,
 CUST.CUSTOMER_FIRST_NAME CUSTOMER_FIRST_NAME,
 CUST.CUSTOMER_LAST_NAME CUSTOMER_LAST_NAME,
 CUST.CUSTOMER_ADDRESS CUSTOMER_ADDRESS,
 CUST.CUSTOMER_CITY CUSTOMER_CITY,
 CUST.CUSTOMER_STATE CUSTOMER_STATE,
 CUST.CUSTOMER_ZIP_CODE CUSTOMER_ZIP_CODE,
 SUM(SALE.RENTAL_SALES) RENTAL_SALES,
 SUM(SALE.OVERDUE_FEES) OVERDUE_FEES
 FROM CUSTOMER CUST, MOVIE_RENTAL_RECORD SALE
 WHERE SALE.CUSTOMER_NUMBER = CUST.CUSTOMER_NUMBER AND
 SALE.RENTAL_RECORD_DATE >= SNAPSHOT_START_DATE
 GROUP BY
 CUST.CUSTOMER_NUMBER,
 CUST.CUSTOMER_FIRST_NAME,
 CUST.CUSTOMER_LAST_NAME,
 CUST.CUSTOMER_ADDRESS,
 CUST.CUSTOMER_CITY,
 CUST.CUSTOMER_STATE,
 CUST.CUSTOMER_ZIP_CODE;

Example: Reusing Existing PL/SQL Code

Defining Custom Transformations 9-15

 V_CUSTOMER_NUMBER NUMBER;
 V_CUSTOMER_FIRST_NAME VARCHAR2(20);
 V_CUSTOMER_LAST_NAME VARCHAR2(20);
 V_CUSTOMER_ADDRESS VARCHAR(50);
 V_CUSTOMER_CITY VARCHAR2(20);
 V_CUSTOMER_STATE VARCHAR2(20);
 V_CUSTOMER_ZIP_CODE VARCHAR(10);
 V_RENTAL_SALES NUMBER;
 V_OVERDUE_FEES NUMBER;

BEGIN
 OPEN C_ACTIVITY;
 LOOP
 EXIT WHEN C_ACTIVITY%NOTFOUND;
 FETCH
 C_ACTIVITY
 INTO
 V_CUSTOMER_NUMBER,
 V_CUSTOMER_FIRST_NAME,
 V_CUSTOMER_LAST_NAME,
 V_CUSTOMER_ADDRESS,
 V_CUSTOMER_CITY,
 V_CUSTOMER_STATE,
 V_CUSTOMER_ZIP_CODE,
 V_RENTAL_SALES,
 V_OVERDUE_FEES;

 UPDATE CUST_ACTIVITY_SNAPSHOT
 SET
 CUSTOMER_FIRST_NAME = V_CUSTOMER_FIRST_NAME,
 CUSTOMER_LAST_NAME = V_CUSTOMER_LAST_NAME,
 CUSTOMER_ADDRESS = V_CUSTOMER_ADDRESS,
 CUSTOMER_CITY = V_CUSTOMER_CITY,
 CUSTOMER_STATE = V_CUSTOMER_STATE,
 CUSTOMER_ZIP_CODE = V_CUSTOMER_ZIP_CODE,
 RENTAL_SALES = V_RENTAL_SALES,
 OVERDUE_FEES = V_OVERDUE_FEES,
 STATUS_UPDATE_DATE = SYSDATE
 WHERE
 CUSTOMER_NUMBER = V_CUSTOMER_NUMBER;

 IF SQL%NOTFOUND THEN
 INSERT INTO CUST_ACTIVITY_SNAPSHOT
 (CUSTOMER_NUMBER,
 CUSTOMER_FIRST_NAME,
 CUSTOMER_LAST_NAME,
 CUSTOMER_ADDRESS,
 CUSTOMER_CITY,
 CUSTOMER_STATE,
 CUSTOMER_ZIP_CODE,
 RENTAL_SALES,
 OVERDUE_FEES,
 STATUS_UPDATE_DATE)
 VALUES
 (V_CUSTOMER_NUMBER,
 V_CUSTOMER_FIRST_NAME,
 V_CUSTOMER_LAST_NAME,
 V_CUSTOMER_ADDRESS,
 V_CUSTOMER_CITY,
 V_CUSTOMER_STATE,

Example: Reusing Existing PL/SQL Code

9-16 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

 V_CUSTOMER_ZIP_CODE,
 V_RENTAL_SALES,
 V_OVERDUE_FEES,
 SYSDATE);
 END IF;
 END LOOP;
END REFRESH_ACTIVITY;
END RENTAL_ACTIVITY;
/

Solution
This case study highlights the benefits of importing an existing custom PL/SQL
package into Warehouse Builder and using its functionality to automatically maintain,
update, and regenerate the PL/SQL code. Warehouse Builder enables you to
automatically take advantage of new database features and upgrades by generating
code that is optimized for new database versions. For example, if you have a PL/SQL
package for Oracle 8i, then by importing it into Warehouse Builder you can generate
code for Oracle 8i, Oracle 9i, Oracle 10g, or Oracle 11g.

Also, by importing a custom package and re-creating its operations through a
Warehouse Builder mapping, you can transparently run and monitor the operations.
Otherwise, you must manually access the database to verify and update the code.
Warehouse Builder also enables you to perform lineage and impact analysis on all ETL
operations while the Runtime Audit Browser monitors the running of the code and
logs errors.

Case Study
You can migrate the PL/SQL code into Warehouse Builder using the following steps:

■ Step 1: Import the Custom PL/SQL Package

■ Step 2: Create a "Black Box" Mapping by using a custom transformation in a
Warehouse Builder mapping

■ Step 3: Reimplement Custom Code into a Mapping by reimplementing the legacy
PL/SQL code into a new Warehouse Builder mapping and phasing out the custom
package

■ Step 4: Generate Code for Oracle Database 11g

Follow these steps to handle a custom PL/SQL package in Warehouse Builder.

Step 1: Import the Custom PL/SQL Package
In the Projects Navigator, expand the Transformations node under the Oracle module
into which you want to import the PL/SQL package refresh_activity(DATE).
Use the Import Metadata Wizard to import the package by right-clicking
Transformations, selecting Import, and then Database Objects. On the Filter
Information page of this wizard, indicate that you are importing a PL/SQL
Transformation.

After you finish the import, the package refresh_activity(DATE) appears under
the Packages node of the Transformations folder.

Step 2: Create a "Black Box" Mapping
You can use the refresh_activity(DATE) procedure directly in a mapping
without making any changes to it. In the mapping, you add a Post-Mapping Process
operator to the mapping, with the package refresh_activity(DATE) selected.

Example: Reusing Existing PL/SQL Code

Defining Custom Transformations 9-17

In this example, you can immediately take advantage of the existing custom code. The
learning curve and investment on resources is minimal. You may decide to maintain
all the existing and developed PL/SQL code in this manner, using Warehouse Builder
only to develop new processing units. Warehouse Builder enables you to use
mappings that use the legacy code along with the new mappings you create. In such a
case, although you can generate code for these mappings in Warehouse Builder, they
cannot use Warehouse Builder features to maintain, update, or audit the code.

Because the legacy code is used as a "black box" that is not transparent to Warehouse
Builder, you still need to maintain the legacy code manually. Thus, you cannot take
advantage of the Warehouse Builder features, such as runtime audit browser, lineage
and impact analysis, and optimized code generation, that rely on infrastructure code
and metadata available for Warehouse Builder generated mappings.

Follow the next steps to take advantage of these features in Warehouse Builder and to
automatically maintain, monitor, and generate your PL/SQL code.

Step 3: Reimplement Custom Code into a Mapping
To take advantage of the code generation, maintenance, and auditing features, you can
reimplement the legacy PL/SQL code functionality using a mapping and phase out
the custom "black box" package. The mapping created to provide the PL/SQL code
functionality is called Rental_Activity.

The recommended method is to test out this new mapping by running it side by side
with the "black box" mapping. If the testing is successful and the new mapping can
perform all the operations included in the custom code, the "black box" mappings can
be phased out. Warehouse Builder enables you to maintain, update, and generate code
from a mapping without performing manual updates in the database.

Figure 9–2 shows a sample of code generated from the Rental_Activity mapping
that replicates the operations of the custom PL/SQL package for the movie rental
company.

Figure 9–2 Sample Code

Using Functions In Non-Oracle Platforms

9-18 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Step 4: Generate Code for Oracle Database 11g
If you upgrade to Oracle 9i version of the database, you only need to redeploy the
Rental_Activity mapping created in Step 3. Warehouse Builder generates code
optimized for the new database version.

Figure 9–3 shows the MERGE statement from a sample of code generated for the same
mapping for Oracle 9i.

Figure 9–3 Sample Code for Oracle9i

No manual steps are required to maintain and generate the new code. Also, you can
transparently monitor and maintain their ETL operations. Warehouse Builder enables
them to perform lineage and impact analysis on their mappings and the Runtime
Audit Browser enables them to track and log errors when running the mappings.

Using Functions In Non-Oracle Platforms
Starting with Oracle Warehouse Builder 11g Release 2 (11.2), you can create, import,
and use predefined functions within non-Oracle platforms as well. This release
extends the usage of functions to the following platforms:

■ DB2

■ SQL Server

Like with Oracle modules, you can create a new function in DB2 and SQL Server
modules. Similarly, you can also import existing functions from a DB2 or SQL Server
database. Warehouse Builder also provides predefined functions in the Globals
Navigator.

Creating IBM DB2 and SQL Server Functions
When you define functions using the Custom node under the Public Transformations
node of the Globals Navigator, they can be used only when you deploy objects to an

Note: You cannot copy and paste functions across platforms. For
example, you cannot copy a function from an Oracle module and
paste it into a SQL Server module.

Using Functions In Non-Oracle Platforms

Defining Custom Transformations 9-19

Oracle Database location. However, you can use Warehouse Builder to load data into
SQL Server and DB2 data objects also. In these cases, you may need to create
user-defined functions to transform data for these platforms. Use the Databases node
in the Projects Navigator to define functions for these databases.

Once you define functions for a DB2 or SQL Server database, you can use these
functions in mappings and process flows with the help of the Transformation operator
and Transformation activity, respectively. You can also publish these functions as Web
Services.

Defining IBM DB2 and SQL Server Functions
To define an IBM DB2 or a SQL Server function:

1. In the Projects Navigator, expand the Databases node.

2. Depending on whether you are creating a function in DB2 or SQL Server, expand
the DB2 or SQL Server node.

3. Expand the Transformations node and right-click the Functions node and select
New Function.

The Create Function dialog box is displayed.

4. Enter a name and optional description for the function and click OK.

The Function Editor is displayed.

5. On the Parameters tab, provide the following information:

■ Return Type: Select the data type for the return type of the global function.

■ Parameters: Each function parameter is represented by a row in the table
below the Return Type field. To create a parameter, enter a name on a blank
cell and provide details, such as the data type and default value, for the
parameter. The list in the Data Type column is populated depending on the
platform you choose in the Platform field.

6. On the Implementation tab, enter the code that will be used to implement the
function on the platform that you selected in the Parameters tab.

7. From the View menu, select Code Templates.

The Code Templates tab is displayed in the Log window.

8. In the Code Templates tab, select the Function CT that will be used to generate
code for the function.

Warehouse Builder provides prebuilt Function CTs to generate code for DB2 and
SQL Server databases. These Function CTs are located in the Globals Navigator
under the BUILT_IN_CT node of the Public Code Templates folder. For DB2, you
can use DB2_FCT and for SQL Server, you can use SQLSERVER_FCT.

Importing a Function
You can import existing functions from DB2 and SQL Server databases. This is similar
to importing Oracle functions.

To import DB2 or SQL Server functions:

Note: For SQL Server functions, @ is automatically prefixed to each
parameter name.

Configuring Functions

9-20 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

1. Right-click an existing DB2 or SQL Server module, and select Import, Database
Object.

The Import Metadata Wizard is displayed.

2. In the Filter Information page, select Transformations from Object Type.

3. In the Object Selection page, select the required functions and move them from the
Available field to the Selected field.

4. Verify the information in the Summary page and click Finish to begin the import.

The imported functions are now visible under the module in the Projects Navigator.

Predefined Generic Heterogeneous Functions
The Heterogeneous node under the Public Transformations node of the Globals
Navigator contains predefined functions that you can use for Oracle, SQL Server, and
DB2 platforms.

Generic heterogeneous functions are categorized as follows:

■ Character

■ Conversion

■ Date

■ Numeric

■ Other

To view the function definition and the platform for which it is defined, double-click a
function in any of the above categories. The Function Editor containing the Name,
Parameter, and Expression tabs is displayed. Click the Parameter tab to view the
platform for which the function is defined, the function parameters, and the function
return type. Click the Expression tab to view the expression used for the SQL function
and the platform for which the function is defined.

For details about the semantics of the expression provided, the parameters, and
parameter data types, refer to the documentation for the particular platform.

Using the Functions in Mappings
At the time of creating DB2 or SQL Server functions, you associate a code template
with the function. Therefore, you can only use these functions in mappings that are
created under the Template Mappings node in Projects Navigator. These mappings are
different from the normal mappings as they are used in conjunction with code
templates.

Configuring Functions
After you define a function, you can configure it by setting configuration parameters
using the Configuration panel.

The following sections list the configuration parameters supported by Warehouse
Builder for the Oracle platform.

Note: Warehouse Builder allows you to import overloaded DB2
functions. However you cannot import overloaded SQL Server
functions.

Configuring Functions

Defining Custom Transformations 9-21

Configuring Oracle Functions
You can set the following configuration parameters for functions defined on the Oracle
platform.

AUTHID
Use this parameter to specify the privileges with which the function is executed. Select
one of the following options:

■ CURRENT_USER: Indicates that the function will be executed with the privileges
of the current user, in the current user's schema. This limits the scope for name
resolution. Oracle Database will look for the function by name in the current user's
schema.

■ DEFINER: Indicates that the function will be executed with the privileges assigned
to the owner of the schema that the function resides in. All external names are to
be resolved within the same schema.

Deterministic
Select this option to indicate that the function is deterministic. Deterministic functions
return the same results for a given set of arguments every time that the function is
executed.

Setting this option helps to avoid redundant function calls. If a stored function was
called previously with the same arguments, the previous result can be used. The
function result should not depend on the state of session variables or schema objects.
Otherwise, results might vary across calls. Only DETERMINISTIC functions can be
called from a function-based index or a materialized view that has query-rewrite
enabled.

Parallel Enable
This parameter is an optimization hint. Select this parameter to indicate to the Oracle
Database that the function should be executed in parallel whenever called from within
a SQL query. The processing will be split between parallel processes (UNIX), or
threads (Windows). Setting this option results in a speed improvement on
multiprocessor systems.

Pragma Autonomous Transaction
Selecting this option causes the PL/SQL compiler to mark the function as
independent. This allows the function to suspend the main transaction (the one from
which the function was invoked), and roll back or commit its own SQL operations.

Configuring Functions

9-22 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Understanding Performance and Advanced ETL Concepts 10-1

10
Understanding Performance and Advanced

ETL Concepts

Use this chapter as a guide for creating ETL logic that meets your performance
expectations.

This chapter contains the following topics:

■ Best Practices for Designing PL/SQL Mappings

■ Best Practices for Designing SQL*Loader Mappings

■ Improved Performance through Partition Exchange Loading

■ High Performance Data Extraction from Remote Sources

Best Practices for Designing PL/SQL Mappings
This section addresses PL/SQL mapping design and includes:

■ Set-Based Versus Row-Based Operating Modes

■ About Committing Data in Warehouse Builder

■ Committing Data Based on Mapping Design

■ Committing Data Independently of Mapping Design

■ Running Multiple Mappings Before Committing Data

■ Ensuring Referential Integrity in PL/SQL Mappings

Oracle Warehouse Builder generates code for PL/SQL mappings that meet the
following criteria:

■ The output code of each operator satisfies the input code requirement of its next
downstream operator.

■ If the mapping contains an operator that generates only PL/SQL output, all
downstream data flow operators must also be implemented by PL/SQL. You can
use SQL operators in such a mapping only after loading the PL/SQL output to a
target.

As you design a mapping, you can evaluate its validity by examining the input and
output code types for each operator in the mapping.

For example, you can see that the mapping in Figure 10–1 is invalid because the Match
Merge operator MM generates PL/SQL output, but the subsequent Joiner operator
accepts SQL input only.

Best Practices for Designing PL/SQL Mappings

10-2 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Figure 10–1 Mapping Violates Input Requirement for Joiner Operator

To achieve the desired results for the mapping, consider joining the source tables
before performing the Match Merge or loading the results from the Match Merge to a
staging table before performing the join.

Figure 10–2 displays a mapping in which source tables are joined before the
match-merge operation. Figure 10–3 displays a mapping in which the results from the
Match Merge operator are loaded into a staging table before performing the join.

Figure 10–2 Valid Mapping Design with Sources Joined Before Match Merge

Figure 10–3 Valid Mapping Design with Staging Table

Table 10–1 and Table 10–2 list the implementation types for each Oracle Warehouse
Builder operator. These tables also indicate whether or not PL/SQL code includes the
operation associated with the operator in the cursor. This information is relevant in
determining which operating modes are valid for a given mapping design. It also
determines what auditing details are available during error handling.

Best Practices for Designing PL/SQL Mappings

Understanding Performance and Advanced ETL Concepts 10-3

Table 10–1 Source-Target Operators Implementation in PL/SQL Mappings

Operator
Implementation
Types Valid in Set-Based Mode

Valid in
Row-Based
Mode

Valid in
Row-Based
(Target Only)

Source Operators:
Tables, Dimensions,
Cubes, Views,
External Tables

SQL Yes Yes Yes. Part of cursor.

Target Operators:
Tables, Dimensions,
Cubes, Views

SQL

PL/SQL

Yes, except when loading=
UPDATE and database is not 10g
or higher.

Yes Yes. Not part of
cursor.

Flat File as source For PL/SQL,
create an
external table.

Yes Yes Yes. Part of the
cursor.

Flat File as target SQL Yes, except when loading =
DELETE or loading= UPDATE and
database is not 10g or higher.

Yes Yes. Not part of
cursor.

Sequence as source SQL Yes Yes Yes, part of cursor.

Table 10–2 Data Flow Operator Implementation in PL/SQL Mappings

Operator
Name

Implementation
Types

Valid in
Set-Based Mode

Valid in Row-Based
Mode

Valid in Row-Based
(Target Only) Mode

Aggregator SQL Yes Yes, only if part of the
cursor.

Yes, only if part of the
cursor.

Constant
Operator

PL/SQL

SQL

Yes Yes Yes

Data Generator SQL*Loader Only N/A N/A N/A

Deduplicator SQL Yes Yes, only if part of the
cursor

Yes, only if part of the
cursor.

Expression SQL

PL/SQL

Yes Yes Yes

Filter SQL

PL/SQL

Yes Yes Yes

Joiner SQL Yes Yes, only if part of the
cursor.

Yes, only if part of the
cursor.

Lookup SQL

PL/SQL

Yes Yes, except when the All
Rows option is selected
on the Multiple Match
Rows page of the
Lookup operator.

Yes, except when the All
Rows option is selected
on the Multiple Match
Rows page of the Lookup
operator.

Mapping Input
Parameter

SQL

PL/SQL

Yes Yes Yes

Mapping
Output
Parameter

SQL

PL/SQL

Yes Yes Yes

Best Practices for Designing PL/SQL Mappings

10-4 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Set-Based Versus Row-Based Operating Modes
For mappings with a PL/SQL implementation, select one of the following operating
modes:

■ Set-Based Mode

■ Row-Based Mode

■ Row-Based (Target Only) Mode

■ Set-based fail over to row-based

■ Set-based fail over to row-based (target only)

The default operating mode that you select depends upon the performance that you
expect, the amount of auditing data that you require, and how you design the
mapping. Mappings have at least one and as many as three valid operating modes,
excluding the options for failing over to row-based modes. During code generation,
Warehouse Builder generates code for the specified default operating mode as well as
for the deselected modes. Therefore, at runtime, you can select to run in the default
operating mode or any one of the other valid operating modes.

Match Merge SQL input

PL/SQL output

(PL/SQL input
from XREF group
only)

No Yes Yes. Not part of cursor.

Name and
Address

PL/SQL No Yes Yes. Not part of cursor.

Pivot SQL

PL/SQL

Yes Yes Yes

Post-Mapping
Process

Irrelevant Yes, independent
of data flow

Yes Yes

Pre-Mapping
Process

Irrelevant Yes, independent
of data flow

Yes Yes

Set SQL Yes Yes, only if part of the
cursor.

Yes, only if part of the
cursor.

Sorter SQL Yes Yes, only if part of the
cursor.

Yes, as part of the cursor.

Splitter SQL

PL/SQL

Yes Yes Yes

Table Function SQL or PL/SQL
input

SQL output only

Yes Yes Yes

Transformation
as a procedure

PL/SQL No Yes Yes. Not part of cursor.

Transformation
as a function
that does not
perform DML

SQL

PL/SQL

Yes Yes Yes, included in the
cursor.

Table 10–2 (Cont.) Data Flow Operator Implementation in PL/SQL Mappings

Operator
Name

Implementation
Types

Valid in
Set-Based Mode

Valid in Row-Based
Mode

Valid in Row-Based
(Target Only) Mode

Best Practices for Designing PL/SQL Mappings

Understanding Performance and Advanced ETL Concepts 10-5

The types of operators in the mapping may limit the operating modes that you can
select. As a general rule, mappings run in set-based mode can include any of the
operators except for Match Merge, Name and Address, and Transformations used as
procedures. Although you can include any of the operators in row-based and
row-based (target only) modes, there are important restrictions on how you use SQL
based operators such as Aggregators and Joins. To use SQL-based operators in either
of the row-based modes, ensure that the operation associated with the operator can be
included in the cursor.

These general rules are explained in the following sections.

Set-Based Mode
In set-based mode, Warehouse Builder generates a single SQL statement that processes
all data and performs all operations. Although processing data as a set improves
performance, the auditing information available is limited. Runtime auditing is limited
to reporting of the execution error only. With set-based mode, you cannot identify the
rows that contain errors.

Figure 10–4 shows a simple mapping and the associated logic that Warehouse Builder
uses to generate code for the mapping when run in set-based operating mode. TAB1,
FLTR, and TAB2 are processed as a set using SQL.

Figure 10–4 Simple Mapping Run in Set-Based Mode

To correctly design a mapping for the set-based mode, avoid operators that require
row- by-row processing such as Match Merge and Name and Address operators. If
you include an operator in the data flow that cannot be performed in SQL, Warehouse
Builder does not generate set-based code and displays an error when you execute the
package in set-based mode.

For target operators in a mapping, the loading types INSERT/UPDATE and
UPDATE/INSERT are always valid for set-based mode. Warehouse Builder supports
UPDATE loading in set-based mode only with Oracle Database is 10g or later.
Warehouse Builder also supports the loading type DELETE in set-based mode. For a
complete listing of how Warehouse Builder handles operators in set-based mappings,
see Table 10–2 on page 10-3.

Row-Based Mode
In row-based mode, Warehouse Builder generates statements that process data row by
row. The select statement is in a SQL cursor. All subsequent statements are PL/SQL.
You can access full runtime auditing information for all operators performed in
PL/SQL and only limited information for operations performed in the cursor.

Figure 10–5 shows a simple mapping and the associated logic that Warehouse Builder
uses to generate code for the mapping when run in row-based operating mode. TAB1
is included in the cursor and processed as a set using SQL. FLTR and TAB2 are
processed row by row using PL/SQL.

Best Practices for Designing PL/SQL Mappings

10-6 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Figure 10–5 Simple Mapping Run in Row-Based Mode

If the mapping includes any SQL-based operators that cannot be performed in
PL/SQL, Warehouse Builder attempts to generate code with those operations in the
cursor. To generate valid row-based code, design your mapping such that if you
include any of the following SQL-based operators, Warehouse Builder can include the
operations in the cursor:

■ Aggregation

■ Deduplicator

■ Joiner

■ Lookup

■ Sequence

■ Set

■ Sorter

For the preceding operators to be included in the cursor, do not directly precede it by
an operator that generates PL/SQL code. In other words, you cannot run the mapping
in row-based mode if it contains a Transformation implemented as a procedure, a Flat
File used as a source, a Match Merge, or Name and Address operator directly followed
by any of the seven SQL-based operators. For the design to be valid, include a staging
table between the PL/SQL generating operator and the SQL-based operator.

Row-Based (Target Only) Mode
In row-based (target only) mode, Warehouse Builder generates a cursor select
statement and attempts to include as many operations as possible in the cursor. For
each target, Warehouse Builder inserts each row into the target separately. You can
access full runtime auditing information for all operators performed in PL/SQL and
only limited information for operations performed in the cursor. Use this mode when
you expect fast set-based operations to extract and transform the data but need
extended auditing for loading the data, which is where errors are likely to occur.

Figure 10–6 shows a simple mapping and the associated logic that Warehouse Builder
uses to generate code for the mapping when run in row-based (target only) operating
mode. TAB1 and FLTR are included in the cursor and processed as a set using SQL.
TAB2 is processed row by row.

Figure 10–6 Simple Mapping Run in Row-Based (Target Only) Mode

Best Practices for Designing PL/SQL Mappings

Understanding Performance and Advanced ETL Concepts 10-7

Row-based (target only) mode places the same restrictions on SQL-based operators as
the row-based operating mode. Additionally, for mappings with multiple targets,
Warehouse Builder generates code with a cursor for each target.

About Committing Data in Warehouse Builder
There are two major approaches to committing data in Warehouse Builder. You can
commit or rollback data based on the mapping design. To do this, use one of the
commit control methods described in "Committing Data Based on Mapping Design"
on page 10-7.

Alternatively, for PL/SQL mappings, you can commit or rollback data independently
of the mapping design. Use a process flow to commit the data or establish your own
method as described in "Committing Data Independently of Mapping Design" on
page 10-10.

Committing Data Based on Mapping Design
By default, Warehouse Builder loads and then automatically commits data based on
the mapping design. For PL/SQL mappings you can override the default setting and
control when and how Warehouse Builder commits data. You have the following
options for committing data in mappings:

Automatic: This is the default setting and is valid for all mapping types. Warehouse
Builder loads and then automatically commits data based on the mapping design. If
the mapping has multiple targets, Warehouse Builder commits and rolls back each
target separately and independently of other targets. Use the automatic commit when
the consequences of multiple targets being loaded unequally are not great or are
irrelevant.

Automatic correlated: Automatic correlated commit is a specialized type of automatic
commit that applies to PL/SQL mappings with multiple targets only. Warehouse
Builder considers all targets collectively and commits or rolls back data uniformly
across all targets. Use the correlated commit when it is important to ensure that every
row in the source affects all affected targets uniformly. For more information about
automatic correlated commit, see "Committing Data from a Single Source to Multiple
Targets" on page 10-7.

Manual: Select manual commit control for PL/SQL mappings when you want to
interject complex business logic, perform validations, or run other mappings before
committing data. For examples, see "Embedding Commit Logic into the Mapping" on
page 10-9 and "Committing Data Independently of Mapping Design" on page 10-10.

Committing Data from a Single Source to Multiple Targets
If you want to populate multiple targets based on a common source, you may also
want to ensure that every row from the source affects all targets uniformly.

Figure 10–7 shows a PL/SQL mapping that illustrates this case. The target tables all
depend upon the source table. If a row from SOURCE causes changes in multiple
targets (for instance TARGET_1 and TARGET_2), then Warehouse Builder should
commit the appropriate data to both affected targets at the same time. If this
relationship is not maintained when you run the mapping again, then the data can
become inaccurate and possibly unusable.

Best Practices for Designing PL/SQL Mappings

10-8 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Figure 10–7 Mapping with Multiple Targets Dependent on One Source

If the number of rows from the source table is relatively small, maintaining the three
targets may not be difficult. Manually maintaining targets dependent on a common
source, however, becomes more tedious as you increase the number of rows from the
source, or as you design more complex mappings with more targets and
transformations.

To ensure that every row in the source properly affects every target, configure the
mapping to use the correlated commit strategy.

Using the Automatic Correlated Commit Strategy
In set-based mode, correlated commit may impact the size of your rollback segments.
Space for rollback segments may be a concern when you merge data (insert/update or
update/insert).

Correlated commit operates transparently with PL/SQL bulk processing code.

The correlated commit strategy is not available for mappings run in any mode that are
configured for Partition Exchange Loading or that include a Queue, Match Merge, or
Table Function operator.

Automatic Commit versus Automatic Correlated Commit
The combination of the commit strategy and operating mode determines mapping
behavior. Table 10–3 shows the valid combinations that you can select.

Correlated commit is not applicable for row-based (target only). By definition, this
operating mode places the cursor as close to the target as possible. In most cases, this
results in only one target for each select statement and negates the purpose of
committing data to multiple targets. If you design a mapping with the row-based
(target only) and correlated commit combination, Warehouse Builder runs the
mapping but does not perform the correlated commit.

To understand the effects each operating mode and commit strategy combination has
on a mapping, consider the mapping from Figure 10–7 on page 10-8. Assume the data
from source table equates to 1,000 new rows. When the mapping runs successfully,
Warehouse Builder loads 1,000 rows to each of the targets. If the mapping fails to load

Table 10–3 Valid Commit Strategies for Operating Modes

Operating Mode
Automatic Correlated
Commit Automatic Commit

Set-based Valid Valid

Row-based Valid Valid

Row-based (target only) Not Applicable Valid

Best Practices for Designing PL/SQL Mappings

Understanding Performance and Advanced ETL Concepts 10-9

the 100th new row to Target_2, you can expect the following results, ignoring the
influence from other configuration settings such as Commit Frequency and Number of
Maximum Errors:

■ Set-based/ Correlated Commit: A single error anywhere in the mapping triggers
the rollback of all data. When Warehouse Builder encounters the error inserting
into Target_2, it reports an error for the table and does not load the row.
Warehouse Builder rolls back all the rows inserted into Target_1 and does not
attempt to load rows to Target_3. No rows are added to any of the target tables.
For error details, Warehouse Builder reports only that it encountered an error
loading to Target_2.

■ Row-based/ Correlated Commit: Beginning with the first row, Warehouse Builder
evaluates each row separately and loads it to all three targets. Loading continues
in this way until Warehouse Builder encounters an error loading row 100 to
Target_2. Warehouse Builder reports the error and does not load the row. It rolls
back the row 100 previously inserted into Target_1 and does not attempt to load
row 100 to Target_3. Next, Warehouse Builder continues loading the remaining
rows, resuming with loading row 101 to Target_1. Assuming Warehouse Builder
encounters no other errors, the mapping completes with 999 new rows inserted
into each target. The source rows are accurately represented in the targets.

■ Set-based/ Automatic Commit: When Warehouse Builder encounters the error
inserting into Target_2, it does not load any rows and reports an error for the
table. It does, however, continue to insert rows into Target_3 and does not roll
back the rows from Target_1. Assuming Warehouse Builder encounters no other
errors, the mapping completes with one error message for Target_2, no rows
inserted into Target_2, and 1,000 rows inserted into Target_1 and Target_3. The
source rows are not accurately represented in the targets.

■ Row-based/Automatic Commit: Beginning with the first row, Warehouse Builder
evaluates each row separately for loading into the targets. Loading continues in
this way until Warehouse Builder encounters an error loading row 100 to Target_2
and reports the error. Warehouse Builder does not roll back row 100 from Target_
1, does insert it into Target_3, and continues to load the remaining rows.
Assuming Warehouse Builder encounters no other errors, the mapping completes
with 999 rows inserted into Target_2 and 1,000 rows inserted into each of the other
targets. The source rows are not accurately represented in the targets.

Embedding Commit Logic into the Mapping
For PL/SQL mappings only, you can embed commit logic into the mapping design by
adding a Pre-Mapping Process or Post-Mapping Process operator with SQL statements
to commit and rollback data. When you run the mapping, Warehouse Builder commits
or rollback data based solely on the SQL statements you provide in the Pre-Mapping
Process or Post-Mapping Process operator.

Use these instructions to implement a business rule that is tedious or impossible to
design given existing Warehouse Builder mapping operators. For example, you may
want to verify the existence of a single row in a target. Write the required logic in SQL
and introduce that logic to the mapping through a pre or post mapping operator.

To include commit logic in the mapping design:

1. Design the mapping to include a Pre-Mapping Process or Post-Mapping Process
operator. Use one of these operators to introduce commit and rollback SQL
statements.

2. Configure the mapping with Commit Control set to Manual.

Best Practices for Designing PL/SQL Mappings

10-10 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

In the Projects Navigator, right-click the mapping and select Configure. Under
Code Generation Options, select Commit Control to Manual.

To understand the implications of selecting to commit data manually, see "About
Manual Commit Control" on page 10-10.

3. Deploy the mapping.

4. Run the mapping.

Warehouse Builder executes the mapping but does not commit data until
processing the commit logic you wrote in the Pre-Mapping Process or
Post-Mapping Process operator.

Committing Data Independently of Mapping Design
You may want to commit data independently of the mapping design for any of the
following reasons:

■ Running Multiple Mappings Before Committing Data: You may want to run
multiple mappings without committing data until successfully running and
validating all mappings. This can be the case when you have separate mappings
for loading dimensions and cubes.

■ Maintaining targets more efficiently: If incorrect data is loaded and committed to
a very large target, it can be difficult and time consuming to repair the damage. To
avoid this, first check the data and then decide whether to issue a commit or
rollback command.

The first step to achieve these goals is to configure the mapping with commit control
set to Manual.

About Manual Commit Control
Manual commit control enables you to specify when Warehouse Builder commits data
regardless of the mapping design. Manual commit control does not affect auditing
statistics. This means that you can view the number of rows inserted and other
auditing information before issuing the commit or rollback command.

When using manual commit, be aware that this option may have performance
implications. Mappings that you intend to run in parallel maybe be executed serially if
the design requires a target to be read after being loaded. This occurs when moving
data from a remote source or loading to two targets bound to the same table.

When you enable manual commit control, Warehouse Builder runs the mapping with
PEL switched off.

Running Multiple Mappings Before Committing Data
This section provides two sets of instructions for committing data independent of the
mapping design. The first set describes how to run mappings and then commit data in
a SQL*Plus session. Use these instructions to test and debug your strategy of running
multiple mappings and then committing the data. Then, use the second set of
instructions to automate the strategy.

Both sets of instructions rely upon the use of the main procedure generated for each
PL/SQL mapping.

Best Practices for Designing PL/SQL Mappings

Understanding Performance and Advanced ETL Concepts 10-11

Main Procedure
The main procedure is a procedure that exposes the logic for starting mappings in
Warehouse Builder. You can employ this procedure in PL/SQL scripts or use it in
interactive SQL*Plus sessions.

When you use the main procedure, you must specify one required parameter, p_status.
And you can optionally specify other parameters relevant to the execution of the
mapping as described in Table 10–4. Warehouse Builder uses the default setting for
any optional parameters that you do not specify.

Committing Data at Runtime
For PL/SQL mappings alone, you can run mappings and issue commit and rollback
commands from the SQL*Plus session. Based on your knowledge of SQL*Plus and the
Main Procedure, you can manually run and validate multiple mappings before
committing data.

To commit data manually at runtime:

1. Design the PL/SQL mappings. For instance, create one mapping to load
dimensions and a separate mapping to load cubes.

These instructions are not valid for SQL*Loader and ABAP mappings.

2. Configure both mappings with the Commit Control parameter set to Manual.

In the Projects Navigator, right-click the mapping and select Configure. Under the
Code Generation Options, set the Commit Control parameter to Manual.

3. Generate each mapping.

4. From a SQL*Plus session, issue the following command to execute the first
mapping called map1 in this example:

var status VARCHAR2(30);
execute map1.main(:status);

The first line declares the predefined status variable described in Table 10–4. In the
second line, p_status is set to the status variable. When map1 completes, SQL*Plus
displays the mapping status such as OK.

Table 10–4 Parameter for the Main Procedure

Parameter Name Description

p_status Use this required parameter to write the status of the mapping
upon completion. It operates in conjunction with the predefined
variable called status.

The status variable is defined such that OK indicates the
mapping completed without errors. OK_WITH_WARNINGS
indicates the mapping completed with user errors. FAILURE
indicates the mapping encountered a fatal error.

p_operating_mode Use this optional parameter to pass in the default operating
mode such as SET_BASED.

p_bulk_size Use this optional parameter to pass in the bulk size.

p_audit_level Use this optional parameter to pass in the default audit level
such as COMPLETE.

p_max_no_of_errors Use this optional parameter to pass in the permitted maximum
number of errors.

p_commit_frequency Use this optional parameter to pass in the commit frequency.

Best Practices for Designing PL/SQL Mappings

10-12 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

5. Execute the second mapping, in this example, the cubes mapping called map2.

You can run the second in the same way you ran the previous map. Or, you can
supply additional parameters listed in Table 10–4 to dictate how to run the map2 in
this example:

map2.main (p_status => :status, \
 p_operating_mode => ’SET_BASED’, \
 p_audit_level => ’COMPLETE’);

6. Verify the results from the execution of the two mappings and send either the
commit or rollback command.

7. Automate your commit strategy as described in "Committing Mappings through
the Process Flow Editor" on page 10-12.

Committing Mappings through the Process Flow Editor
For PL/SQL mappings alone, you can commit or rollback mappings together. Based
on your knowledge of the SQL*PLUS activity, the Main Procedure, and writing
PL/SQL scripts, you can use process flows to automate logic that commits data after
all mappings complete successfully or rollback the data if any mapping fails.

To commit multiple mappings through a process flow:

1. Design the PL/SQL mappings.

These instructions are not valid for SQL*Loader and ABAP mappings.

2. Ensure each mapping is deployed to the same schema.

All mappings must have their locations pointing to the same schema. You can
achieve this by designing the mappings under the same target module. Or, for
multiple target modules, ensure that the locations point to the same schema.

3. Configure each mapping with the Commit Control parameter set to Manual.

In the Projects Navigator, right-click the mapping and select Configure. Under
Code Generation Options, set the Commit Control parameter to Manual.

4. Design a process flow using a SQL*PLUS activity instead of multiple mapping
activities.

In typical process flows, you add a Mapping activity for each mapping and the
process flow executes an implicit commit after each Mapping activity. However, in
this design, do not add mapping activities. Instead, add a single SQL*PLUS
activity.

5. Write a PL/SQL script that uses the main procedure to execute each mapping. The
following script demonstrates how to run the next mapping only if the initial
mapping succeeds.

declare
 status VARCHAR2(30);
begin
 map1.main(status);
 if status != ’OK’ then
 rollback;
 else
 map2.main(status);
 if status != ’OK’ then
 rollback;
 else
 commit;

Best Practices for Designing SQL*Loader Mappings

Understanding Performance and Advanced ETL Concepts 10-13

 end if;
 end if;
end;

6. Paste your PL/SQL script into the SQL*PLUS activity.

In the editor explorer, select SCRIPT under the SQL*PLUS activity and then
double-click Value in the object inspector.

7. Optionally apply a schedule to the process flow as described in "Defining
Schedules" on page 11-2.

8. Deploy the mappings, process flow, and schedule if you defined one.

Ensuring Referential Integrity in PL/SQL Mappings
When you design mappings with multiple targets, you may want to ensure that
Warehouse Builder loads the targets in a specific order. This is the case when a column
in one target derives its data from another target.

To ensure referential integrity in PL/SQL mappings:

1. Design a PL/SQL mapping with multiple targets.

2. (Optional) Define a parent/child relationship between two of the targets by
specifying a foreign key.

A foreign key in the child table must refer to a primary key in the parent table. If
the parent does not have a column defined as a primary key, you must add a
column and define it as the primary key. For an example of how to do this, see
"Using Conventional Loading to Ensure Referential Integrity in SQL*Loader
Mappings" on page 10-13.

3. In the mapping properties, view the Target Load Order property by clicking the
Ellipsis button to the right of this property.

If you defined a foreign key relationship in the previous step, Warehouse Builder
calculates a default loading order that loads parent targets before children. If you
did not define a foreign key, use the Target Load Order dialog box to define the
loading order.

For more information, see "Specifying the Order in Which Target Objects in a
Mapping Are Loaded" on page 5-24.

4. Ensure that the Use Target Load Ordering configuration parameter is set to its
default value of true.

Best Practices for Designing SQL*Loader Mappings
This section includes the following topics:

■ Using Conventional Loading to Ensure Referential Integrity in SQL*Loader
Mappings

■ Using Direct Path Loading to Ensure Referential Integrity in SQL*Loader
Mappings

Using Conventional Loading to Ensure Referential Integrity in SQL*Loader Mappings
If you are extracting data from a multiple-record-type file with a master-detail
structure and mapping to tables, add a Sequence operator to the mapping to retain the
relationship between the master and detail records through a surrogate primary key or

Best Practices for Designing SQL*Loader Mappings

10-14 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

foreign key relationship. A master-detail file structure is one where a master record is
followed by its detail records. In Example 10–1, records beginning with "E" are master
records with Employee information and records beginning with "P" are detail records
with Payroll information for the corresponding employee.

Example 10–1 A Multiple-Record-Type Flat File with a Master-Detail Structure

E 003715 4 153 09061987 014000000 "IRENE HIRSH" 1 08500
P 01152000 01162000 00101 000500000 000700000
P 02152000 02162000 00102 000300000 000800000
E 003941 2 165 03111959 016700000 "ANNE FAHEY" 1 09900
P 03152000 03162000 00107 000300000 001000000
E 001939 2 265 09281988 021300000 "EMILY WELLMET" 1 07700
P 01152000 01162000 00108 000300000 001000000
P 02152000 02162000 00109 000300000 001000000

In Example 10–1, the relationship between the master and detail records is inherent
only in the physical record order: payroll records correspond to the employee record
they follow. However, if this is the only means of relating detail records to their
masters, this relationship is lost when Warehouse Builder loads each record into its
target table.

Maintaining Relationships Between Master and Detail Records
You can maintain the relationship between master and detail records if both types of
records share a common field. If Example 10–1 contains a field Employee ID in both
Employee and Payroll records, you can use it as the primary key for the Employee
table and as the foreign key in the Payroll table, thus associating Payroll records to the
correct Employee record.

However, if your file does not have a common field that can be used to join master and
detail records, you must add a sequence column to both the master and detail targets
(see Table 10–5 and Table 10–6) to maintain the relationship between the master and
detail records. Use the Sequence operator to generate this additional value.

Table 10–5 represents the target table containing the master records from the file in
Example 10–1 on page 10-14. The target table for the master records in this case
contains employee information. Columns E1-E10 contain data extracted from the flat
file. Column E11 is the additional column added to store the master sequence number.
Notice that the number increments by one for each employee.

Table 10–6 represents the target table containing the detail records from the file in
Example 10–1 on page 10-14. The target table for the detail records in this case contains
payroll information, with one or more payroll records for each employee. Columns
P1-P6 contain data extracted from the flat file. Column P7 is the additional column
added to store the detail sequence number. Notice that the number for each payroll
record matches the corresponding employee record in Table 10–5.

Table 10–5 Target Table Containing Master Records

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11

E 003715 4 153 09061987 014000000 "IRENE HIRSH" 1 08500 1

E 003941 2 165 03111959 016700000 "ANNE FAHEY" 1 09900 2

E 001939 2 265 09281988 021300000 "EMILY WELSH" 1 07700 3

Best Practices for Designing SQL*Loader Mappings

Understanding Performance and Advanced ETL Concepts 10-15

Extracting and Loading Master-Detail Records
This section contains instructions on creating a mapping that extracts records from a
master-detail flat file and loads those records into two different tables. One target table
stores master records and the other target table stores detail records from the flat file.
The Mapping Sequence is used to maintain the master-detail relationship between the
two tables.

This procedure outlines general steps for building such a mapping. Additional
detailed instructions are available at:

■ "Flat File Operator" on page 25-32

■ "Using the Add Operator Dialog Box to Add Operators" on page 5-13

■ "Sequence Operator" on page 25-25

■ "Configuring Mappings Reference" on page 24-1

■ Oracle Warehouse Builder Sources and Targets Guide

To extract from a master-detail flat file and maintain master-detail relationships, use
the following steps:

1. Import and sample the flat file source that consists of master and detail records.

When naming the record types as you sample the file, assign descriptive names to
the master and detail records. This makes it easier to identify those records in the
future.

In this example, for multi-record-type flat files, the Flat File Sample Wizard
contains department and employee information. The master record type (for
employee records) is called EmployeeMaster, while the detail record type (for
payroll information) is called PayrollDetail.

2. Drop a Flat File operator onto the Mapping Editor canvas and specify the
master-detail file from which you want to extract data.

3. Drop a Sequence operator onto the mapping canvas.

4. Drop a Table operator for the master records onto the mapping canvas.

You can either select an existing workspace table that you created earlier or create
a new unbound Table operator with no attributes. You can then map or copy all
required fields from the master record of the Flat File operator to the master Table

Table 10–6 Target Table Containing Detail Records

P1 P2 P3 P4 P5 P6 P7

P 01152000 01162000 00101 000500000 000700000 1

P 02152000 02162000 00102 000300000 000800000 1

P 03152000 03162000 00107 000300000 001000000 2

P 01152000 01162000 00108 000300000 001000000 3

P 02152000 02162000 00109 000300000 001000000 3

Note: These instructions are for conventional path loading. For
instructions on using direct path loading for master-detail records, see
"Using Direct Path Loading to Ensure Referential Integrity in
SQL*Loader Mappings" on page 10-18.

Best Practices for Designing SQL*Loader Mappings

10-16 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

operator (creating columns) and perform an outbound reconciliation to define the
table later.

The table must contain all the columns required for the master fields you want to
load plus an additional numeric column for loading sequence values.

5. Drop a Table operator for the detail records onto the mapping canvas.

You can either select an existing workspace table that you created earlier or create
a new unbound Table operator with no attributes. You can then map or copy all
required fields from the master record of the Flat File operator to the master Table
operator (creating columns) and perform an outbound synchronize to define the
table later.

The table must contain all the columns required for the detail fields you want to
load plus an additional numeric column for loading sequence values.

6. Map all of the necessary flat file master fields to the master table and detail fields
to the detail table.

Figure 10–8 displays the mapping of the fields.

7. Map the Sequence NEXTVAL attribute to the additional sequence column in the
master table.

Figure 10–8 displays the mapping from the NEXTVAL attribute of the Sequence
operator to the master table.

8. Map the Sequence CURRVAL attribute to the additional sequence column in the
detail table.

Figure 10–8 shows a completed mapping with the flat file master fields mapped to
the master target table, the detail fields mapped to the detail target table, and the
NEXTVAL and CURRVAL attributes from the Mapping Sequence mapped to the
master and detail target tables, respectively.

Figure 10–8 Completed Mapping from Master-Detail Flat File to Two Target Tables

Best Practices for Designing SQL*Loader Mappings

Understanding Performance and Advanced ETL Concepts 10-17

9. Configure the mapping that loads the source data into the target tables with the
following parameters:

Direct Mode: Not selected

Errors Allowed: 0

Row: 1

Trailing Nullcols: True (for all tables)

Error Handling Suggestions
This section contains error handling recommendations for files with varying numbers
of errors.

If your data file almost never contains errors:

1. Create a mapping with a Sequence Operator.

2. Configure a mapping with the following parameters:

Direct Mode= Not selected

ROW=1

ERROR ALLOWED = 0

3. Generate the code and run an SQL*Loader script.

If the data file has errors, then the loading stops when the first error occurs.

4. Fix the data file and run the control file again with the following configuration
values:

CONTINUE_LOAD=TRUE

SKIP=number of records already loaded

If your data file is likely to contain a moderate number of errors:

1. Create a primary key (PK) for the master record based on the seq_nextval
column.

2. Create a foreign key (FK) for the detail record based on the seq_currval column
which references the master table PK.

In this case, master records with errors will be rejected with all their detail records.
You can recover these records by following these steps.

3. Delete all failed detail records that have no master records.

4. Fix the errors in the bad file and reload only those records.

5. If there are very few errors, you may choose to load the remaining records and
manually update the table with correct sequence numbers.

6. In the log file, you can identify records that failed with errors because those errors
violate the integrity constraint. The following is an example of a log file record
with errors:

Record 9: Rejected - Error on table "MASTER_T", column "C3".
ORA-01722: invalid number
Record 10: Rejected - Error on table "DETAIL1_T".
ORA-02291: integrity constraint (SCOTT.FK_SEQ) violated - parent key not found
Record 11: Rejected - Error on table "DETAIL1_T".
ORA-02291: integrity constraint (SCOTT.FK_SEQ) violated - parent key not found
Record 21: Rejected - Error on table "DETAIL2_T".

Best Practices for Designing SQL*Loader Mappings

10-18 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

ORA-02291: invalid number

If your data file always contains many errors:

1. Load all records without using the Sequence operator.

Load the records into independent tables. You can load the data in Direct Mode,
with the following parameters that increase loading speed:

ROW>1

ERRORS ALLOWED=MAX

2. Correct all rejected records.

3. Reload the file again with a Sequence Operator.

Subsequent Operations
After the initial loading of the master and detail tables, you can use the loaded
sequence values to further transform, update, or merge master table data with detail
table data. For example, if your master records have a column that acts as a unique
identifier, such as an Employee ID, and you want to use it as the key to join master and
detail rows (instead of the sequence field you added for that purpose), you can update
the detail tables to use this unique column. You can then drop the sequence column
you created for the initial load. Operators such as the Aggregator, Filter, or Match
Merge operator can help you with these subsequent transformations.

Using Direct Path Loading to Ensure Referential Integrity in SQL*Loader Mappings
If you are using a master-detail flat file where the master record has a unique field (or
if the concatenation of several fields can result in a unique identifier), you can use
Direct Path Load as an option for faster loading.

For direct path loading, the record number (RECNUM) of each record is stored in the
master and detail tables. A post-load procedure uses the RECNUM to update each detail
row with the unique identifier of the corresponding master row.

This procedure outlines general steps for building such a mapping. Additional
detailed instructions are available:

■ For additional information about importing flat file sources, see Oracle Warehouse
Builder Sources and Targets Guide.

■ For additional information about using flat files as a source, "Flat File Operator" on
page 25-32.

■ For additional information about using Table operators, see "Using the Add
Operator Dialog Box to Add Operators" on page 5-13.

■ For additional information about using the Data Generator operator, see "Data
Generator Operator" on page 25-12.

■ For additional information about using the Constant operator, see "Constant
Operator" on page 25-9.

■ For additional information about configuring mappings, see "Configuring
Mappings Reference" on page 24-1.

To extract from a master-detail flat file using direct path load to maintain
master-detail relationships:

1. Import and sample a flat file source that consists of master and detail records.

Best Practices for Designing SQL*Loader Mappings

Understanding Performance and Advanced ETL Concepts 10-19

When naming the record types as you sample the file, assign descriptive names to
the master and detail records. This will help identify those records in the future.

2. Create a mapping that you will use to load data from the flat file source.

3. Drop a Flat File operator onto the mapping canvas and specify the master-detail
file from which you want to extract data.

4. Drop a Data Generator and a Constant operator onto the mapping canvas.

5. Drop a Table operator for the master records onto the mapping canvas.

You can either select an existing workspace table that you created earlier, or create
a new unbound Table operator with no attributes and perform an outbound
synchronize to define the table later.

The table must contain all the columns required for the master fields you plan to
load plus an additional numeric column for loading the RECNUM value.

6. Drop a Table operator for the detail records onto the mapping canvas.

You can either select an existing workspace table that you created earlier, or create
a new unbound Table operator with no attributes and perform an outbound
synchronize to define the table later.

The table must contain all the columns required for the detail fields you plan to
load plus an additional numeric column for loading a RECNUM value, and a
column that will be updated with the unique identifier of the corresponding
master table row.

7. Map all of the necessary flat file master fields to the master table and detail fields
to the detail table.

Figure 10–9 displays this mapping of master and detail fields.

8. Map the Data Generator operator's RECNUM attribute to the RECNUM columns in
the master and detail tables.

Figure 10–9 displays the mapping in which the RECNUM attribute of the Data
Generator operator is mapped to the RECORDNUMBER table attribute.

9. Add a constant attribute in the Constant operator.

If the master row unique identifier column is of CHAR data type, in the Property
Inspector of the constant attribute, set the Data type property to CHAR and the
Expression property to asterisk (*).

If the master row unique identifier column is a number, in the Property Inspector
of the constant attribute, set the Data type property to NUMBER and the Expression
property to zero. This marks all data rows as "just loaded".

10. Map the constant attribute from the Constant operator to the detail table column
that will later store the unique identifier for the corresponding master table record.

Figure 10–9 shows a completed mapping with the flat file's master fields mapped
to the master target table, the detail fields mapped to the detail target table, the
RECNUM attributes from the Data Generator operator mapped to the master and
detail target tables, respectively, and the constant attribute mapped to the detail
target table.

Best Practices for Designing SQL*Loader Mappings

10-20 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Figure 10–9 Completed Mapping from Master-Detail Flat File with a Direct Path Load

11. Configure the mapping with the following parameters:

Direct Mode: True

Errors Allowed: 0

Trailing Nullcols: True (for each table)

12. After you validate the mapping and generate the SQL*Loader script, create a
post-update PL/SQL procedure and add it to the Warehouse Builder library.

13. Run the SQL*Loader script.

14. Execute an UPDATE SQL statement by running a PL/SQL post-update procedure
or manually executing a script.

The following is an example of the generated SQL*Loader control file script:

OPTIONS (DIRECT=TRUE,PARALLEL=FALSE, ERRORS=0, BINDSIZE=50000, ROWS=200,
READSIZE=65536)
LOAD DATA
CHARACTERSET WE8MSWIN1252
 INFILE 'g:\FFAS\DMR2.dat'
 READBUFFERS 4
 INTO TABLE "MATER_TABLE"
 APPEND
 REENABLE DISABLED_CONSTRAINTS
 WHEN
 "REC_TYPE"='P'
 FIELDS
 TERMINATED BY ','
 OPTIONALLY ENCLOSED BY '"'
 TRAILING NULLCOLS

 (

Improved Performance through Partition Exchange Loading

Understanding Performance and Advanced ETL Concepts 10-21

 "REC_TYPE" POSITION (1) CHAR ,
 "EMP_ID" CHAR ,
 "ENAME" CHAR ,
 "REC_NUM" RECNUM
)

INTO TABLE "DETAIL_TABLE"
 APPEND
 REENABLE DISABLED_CONSTRAINTS
 WHEN
 "REC_TYPE"='E'
 FIELDS
 TERMINATED BY ','
 OPTIONALLY ENCLOSED BY '"'
 TRAILING NULLCOLS
 (
 "REC_TYPE" POSITION (1) CHAR ,
 "C1" CHAR ,
 "C2" CHAR ,
 "C3" CHAR ,
 "EMP_ID" CONSTANT '*',
 "REC_NUM" RECNUM

The following is an example of the post-update PL/SQL procedure:

 create or replace procedure wb_md_post_update(
 master_table varchar2
 ,master_recnum_column varchar2
 ,master_unique_column varchar2
 ,detail_table varchar2
 ,detail_recnum_column varchar2
 ,detail_masterunique_column varchar2
 ,detail_just_load_condition varchar2)
 IS
 v_SqlStmt VARCHAR2(1000);
 BEGIN
 v_SqlStmt := 'UPDATE '||detail_table||' l '||
 ' SET l.'||detail_masterunique_column||' = (select i.'||master_
unique_column||
 ' from '||master_table||' i '||
 ' WHERE i.'||master_recnum_column||' IN '||
 ' (select max(ii.'||master_recnum_column||') '||
 ' from '||master_table||' ii '||
 ' WHERE ii.'||master_recnum_column||' < l.'||detail_recnum_
column||') '||
 ') '||
 ' WHERE l.'||detail_masterunique_column||' = '||''''||detail_
just_load_condition||'''';
 dbms_output.put_line(v_sqlStmt);
 EXECUTE IMMEDIATE v_SqlStmt;
 END;
 /

Improved Performance through Partition Exchange Loading
Data partitioning can improve performance when loading or purging data in a target
system. This practice is known as Partition Exchange Loading (PEL).

Improved Performance through Partition Exchange Loading

10-22 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

PEL is recommended when loading a relatively small amount of data into a target
containing a much larger volume of historical data. The target can be a table, a
dimension, or a cube in a data warehouse.

This section includes the following topics:

■ About Partition Exchange Loading

■ Configuring a Mapping for PEL

■ Direct and Indirect PEL

■ Using PEL Effectively

■ Configuring Targets in a Mapping

■ Restrictions for Using PEL in Warehouse Builder

About Partition Exchange Loading
By manipulating partitions in your target system, you can use Partition Exchange
Loading (PEL) to instantly add or delete data. When a table is exchanged with an
empty partition, new data is added.

You can use PEL to load new data by exchanging it into a target table as a partition.
For example, a table that holds the new data assumes the identity of a partition from
the target table and this partition assumes the identity of the source table. This
exchange process is a DDL operation with no actual data movement.

Figure 10–10 illustrates an example of PEL. Data from a source table Source is
inserted into a target table consisting of four partitions (Target_P1, Target_P2,
Target_P3, and Target_P4). If the new data needs to be loaded into Target_P3,
the partition exchange operation only exchanges the names on the data objects without
moving the actual data. After the exchange, the formerly labeled Source is renamed
to Target_P3, and the former Target_P3 is now labeled as Source. The target table
still contains four partitions: Target_P1, Target_P2, Target_P3, and Target_P4.
The partition exchange operation available in Oracle 9i completes the loading process
without data movement.

Figure 10–10 Overview of Partition Exchange Loading

Configuring a Mapping for PEL
To configure a mapping for partition exchange loading, complete the following
steps:

1. In the Projects Navigator, right-click a mapping and select Configure.

Warehouse Builder displays the Configuration tab for the mapping.

2. By default, PEL is disabled for all mappings. Select PEL Enabled to use Partition
Exchange Loading.

Improved Performance through Partition Exchange Loading

Understanding Performance and Advanced ETL Concepts 10-23

3. Use Data Collection Frequency to specify the amount of new data to be collected
for each run of the mapping. Set this parameter to specify if you want the data
collected by Year, Quarter, Month, Day, Hour, or Minute. This determines the
number of partitions.

4. Select Direct if you want to create a temporary table to stage the collected data
before performing the partition exchange. If you do not select this parameter,
Warehouse Builder directly swaps the source table into the target table as a
partition without creating a temporary table. For more information, see "Direct
and Indirect PEL" on page 10-23.

5. If you select Replace Data, Warehouse Builder replaces the existing data in the
target partition with the newly collected data. If you do not select it, Warehouse
Builder preserves the existing data in the target partition. The new data is inserted
into a non-empty partition. This parameter affects the local partition and can be
used to remove or swap a partition out of a target table. At the table level, you can
set Truncate/Insert properties.

Direct and Indirect PEL
When you use Warehouse Builder to load a target by exchanging partitions, you can
load the target indirectly or directly.

■ Indirect PEL: By default, Warehouse Builder creates and maintains a temporary
table that stages the source data before initiating the partition exchange process.
For example, use Indirect PEL when the mapping includes a remote source or a
join of multiple sources.

■ Direct PEL: You design the source for the mapping to match the target structure.
For example, use Direct PEL in a mapping to instantaneously publish fact tables
that you loaded in a previously executed mapping.

Using Indirect PEL
If you design a mapping using PEL and it includes remote sources or a join of multiple
sources, Warehouse Builder must perform source processing and stage the data before
partition exchange can proceed. Therefore, configure such mappings with Direct PEL
set to False. Warehouse Builder transparently creates and maintains a temporary table
that stores the results from source processing. After performing the PEL, Warehouse
Builder drops the table.

Figure 10–11 shows a mapping that joins two sources and performs an aggregation. If
all new data loaded into the ORDER_SUMMARY table is always loaded into same
partition, then you can use Indirect PEL on this mapping to improve load
performance. In this case, Warehouse Builder transparently creates a temporary table
after the Aggregator and before ORDER_SUMMARY.

Figure 10–11 Mapping with Multiple Sources

Improved Performance through Partition Exchange Loading

10-24 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Warehouse Builder creates the temporary table using the same structure as the target
table with the same columns, indexes, and constraints. For the fastest performance,
Warehouse Builder loads the temporary table using parallel direct-path loading
INSERT. After the INSERT, Warehouse Builder indexes and constrains the temporary
table in parallel.

Example: Using Direct PEL to Publish Fact Tables
Use Direct PEL when the source table is local and the data is of good quality. You must
design the mapping such that the source and target are in the same database and have
exactly the same structure. The source and target must have the same indexes and
constraints, the same number of columns, and the same column types and lengths.

For example, assume that you have the same mapping from Figure 10–11 but would
like greater control on when data is loaded into the target. Depending on the amount
of data, it could take hours to load and you would not know precisely when the target
table would be updated.

To instantly load data to a target using Direct PEL:

1. Design one mapping to join source data, if necessary, transform data, ensure data
validity, and load it to a staging table. Do not configure this mapping to use PEL.

Design the staging table to exactly match the structure of the final target that you
will load in a separate mapping.

For example, the staging table in Figure 10–11 is ORDER_SUMMARY and should be
of the same structure as the final target, ORDER_CUBE in Figure 10–12.

2. Create a second mapping that loads data from the staging table to the final target.
Configure this mapping to use Direct PEL.

Figure 10–12 displays the mapping that loads data from the staging table to the
final target.

Figure 10–12 Publish_Sales_Summary Mapping

3. Use either the Warehouse Builder Process Flow Editor or Oracle Workflow to start
the second mapping after the completion of the first.

Using PEL Effectively
You can use PEL effectively for scalable loading performance if the following
conditions are true:

■ Table partitioning and tablespace: The target table must be Range partitioned by
one DATE column. All partitions must be created in the same tablespace. All tables
are created in the same tablespace.

■ Existing historical data: The target table must contain a huge amount of historical
data. An example use for PEL is for a click stream application where the target
collects data every day from an OLTP database or Web log files. New data is
transformed and loaded into the target that already contains historical data.

Improved Performance through Partition Exchange Loading

Understanding Performance and Advanced ETL Concepts 10-25

■ New data: All new data must to be loaded into the same partition in a target table.
For example, if the target table is partitioned by day, then the daily data should be
loaded into one partition.

■ Loading Frequency: The loading frequency should be equal to or less than the
data collection frequency.

■ No global indexes: There must be no global indexes on the target table.

Configuring Targets in a Mapping
To configure targets in a mapping for PEL:

■ Step 1: Create All Partitions

■ Step 2: Create All Indexes Using the LOCAL Option

■ Step 3: Primary/Unique Keys Use "USING INDEX" Option

Step 1: Create All Partitions
Warehouse Builder does not automatically create partitions during runtime. Before
you can use PEL, you must create all partitions as described in "Defining Partitions" on
page 2-25.

For example, if you select Month as the frequency of new data collection, you must
create all the required partitions for each month of new data. Use the object editors to
create partitions for a table, dimension, or cube.

To use PEL, all partition names must follow a naming convention. For example, for a
partition that will hold data for May 2002, the partition name must be in the format
Y2002_Q2_M05.

For PEL to recognize a partition, its name must fit one of the following formats:

Ydddd

Ydddd_Qd

Ydddd_Qd_Mdd

Ydddd_Qd_Mdd_Ddd

Ydddd_Qd_Mdd_Ddd_Hdd

Ydddd_Qd_Mdd_Ddd_Hdd_Mdd

Where d represents a decimal digit. All the letters must be in upper case. Lower case is
not recognized.

If you correctly name each partition, Warehouse Builder automatically computes the
Value Less Than property for each partition. Otherwise, you must manually configure
Value Less Than for each partition for Warehouse Builder to generate a DDL
statement. The following is an example of a DDL statement generated by Warehouse
Builder:

. . .
PARTITION A_PARTITION_NAME
 VALUES LESS THAN (TO_DATE('01-06-2002','DD-MM-YYYY')),
. . .

High Performance Data Extraction from Remote Sources

10-26 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Step 2: Create All Indexes Using the LOCAL Option
Add an index (ORDER_SUMMARY_PK_IDX) to the ORDER_SUMMARY table. This index
has two columns, ORDER_DATE and ITEM_ID. Set the following on the Indexes tab of
the Table Editor:

■ Select UNIQUE in the Type column.

■ Select LOCAL in the Scope column.

Now Warehouse Builder can generate a DDL statement for a unique local index on
table ORDER_SUMMARY.

Using local indexes provides the most important PEL performance benefit. Local
indexes require all indexes to be partitioned in the same way as the table. When the
temporary table is swapped into the target table using PEL, so are the identities of the
index segments.

If an index is created as a local index, the Oracle server requires that the partition key
column must be the leading column of the index. In the preceding example, the
partition key is ORDER_DATE and it is the leading column in the index ORDER_
SUMMARY_PK_IDX.

Step 3: Primary/Unique Keys Use "USING INDEX" Option
In this step you must specify that all primary key and unique key constraints are
created with the USING INDEX option. In the Projects Navigator, right-click the table
and select Configure. The Configuration tab for the table is displayed. Select the
primary or unique key in the left panel and select Using Index in the right panel.

With the USING INDEX option, a constraint will not trigger automatic index creation
when it is added to the table. The server will search existing indexes for an index with
same column list as that of the constraint. Thus, each primary or unique key constraint
must be backed by a user-defined unique local index. The index required by the
constraint ORDER_SUMMARY_PK is ORDER_SUMMARY_PK_IDX which was created in
"Step 2: Create All Indexes Using the LOCAL Option" on page 10-26.

Restrictions for Using PEL in Warehouse Builder
These are the restrictions for using PEL in Warehouse Builder:

■ Only One Date Partition Key: Only one partition key column of DATE data type is
allowed. Numeric partition keys are not supported in Warehouse Builder.

■ Only Natural Calendar System: The current PEL method supports only the
natural calendar system adopted worldwide. Specific business calendar systems
with user-defined fiscal and quarter endings are currently not supported.

■ All Data Partitions Must Be In the Same Tablespace: All partitions of a target
(table, dimension, or cube) must be created in the same tablespace.

■ All Index Partitions Must Be In the Same Tablespace: All indexes of a target
(table, dimension, or cube) must be created in the same tablespace. However, the
index tablespace can be different from the data tablespace.

High Performance Data Extraction from Remote Sources
Although you can design mappings to access remote sources through database links,
performance is likely to be slow when you move large volumes of data. For mappings
that move large volumes of data between sources and targets of the same Oracle

High Performance Data Extraction from Remote Sources

Understanding Performance and Advanced ETL Concepts 10-27

Database version, you have an option for dramatically improving performance
through the use of transportable modules.

You can also efficiently extract data from remote Oracle or other heterogeneous
database sources using Code Template (CT) mappings. Warehouse Builder provides a
set of predefined Code Templates that you can use in CT mappings for different data
movement options.

See Also: "Moving Large Volumes of Data Using Transportable
Modules" on page 10-1 for instructions on using transportable
modules

See Also: ■

■ "Creating Code Template (CT) Mappings" on page 7-12 for
information about defining and using CT mappings

■ "About Prebuilt Code Templates Shipped with Warehouse
Builder" on page 7-13 for a description of the Code Templates
shipped with Warehouse Builder

High Performance Data Extraction from Remote Sources

10-28 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Scheduling ETL Jobs 11-1

11
Scheduling ETL Jobs

This chapter contains the following topics:

■ Overview of Schedules

■ Defining Schedules

■ Applying Schedules to ETL Objects

■ Scheduling ETL Jobs in Oracle Enterprise Manager

Overview of Schedules
Use schedules to plan when and how often to execute operations that you designed
within Oracle Warehouse Builder. You can apply schedules to mappings and process
flows that you want to execute in Oracle Database 10g or later.

You can define schedules to execute once or to execute repeatedly based on an interval
you define in the user interface. For each schedule you define, Warehouse Builder
generates codes that follows the iCal calendaring standards, which can be deployed to
a scheduler such as Oracle Scheduler or Oracle Concurrent Manager.

When you are in the development phase of using Warehouse Builder, you may not
want to schedule mappings and process flows but rather start and stop them
immediately from a Control Center as described in "Deploying Objects" on page 12-6.

Overview of Defining Schedules
Schedules are defined in the context of projects and contained in Calendar modules
under the Schedules node on the Projects Navigator. Calendar modules are used to
group a set of related schedules that are deployed to the same location.

A schedule definition contains details about when and how often operations you
define using Warehouse Builder are executed. When you define a schedule, specify the
following details:

■ Start date and time

The date and time when the schedule begins to execute

■ Schedule frequency

The frequency at which the schedule is run (for example, daily, weekly, and so on)

■ Repeat interval

The time intervals at which the schedule is repeated when it is active. The repeat
interval determines how often the schedule repeats. For example, you define a

Defining Schedules

11-2 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

schedule whose frequency is weekly. For the repeat interval of this schedule, you
specify that this schedule should repeat every two weeks, on Tuesday.

■ End date and time

The date and time at which the schedule stops execution

Overview of Using Schedules
Once you define a schedule, you can associate it with ETL objects so that the objects
are executed according to the details defined in the schedule. You can associate
schedules with mappings, Code Template (CT) mappings, process flows, and data
auditors.

For example, you create a schedule that starts on 12-mar-08 and that ends on
11-mar-09. You define the schedule frequency as weekly and the repeat interval as
every week on Friday. You then associate this schedule with a mapping. Your mapping
will be executed according to the details specified in the schedule. The mapping will
execute every Friday between 12-mar-08 and 11-mar-09.

Overview of Deploying Schedules
The location to which you deploy schedules depends on the ETL objects with which
the schedule is associated. Scheduled jobs must be deployed to an Oracle Database
location. Process flow packages must be deployed either to an Oracle Workflow
location or to a Concurrent Manager location.

Scheduled jobs may reference an executable object, such as a process flow or a
mapping. If a job references a process flow, then you must deploy the process flow to
Oracle Workflow and deploy the scheduled job to either a database location or a
Concurrent Manager location.

Defining Schedules
Use the following steps to define a schedule.

1. Expand the project node under which you want to create your schedule.

2. If you have not already done so, create a Calendar module to contain your
schedule.

To create a Calendar module, right-click the Schedules node and select New
Calendar module. The Create Module Wizard is displayed. Use this wizard to
create the Calendar module. Ensure that the location associated with this module
is the location to which you want your schedules to be deployed.

3. Right-click the Calendar module in which you want to create your schedule, and
select New Calendar.

The Create Schedule Wizard is displayed.

4. On the Welcome page, click Next.

5. On the Name and Description page, provide a name and an optional description
for the schedule and click Next.

Ensure that the schedule name is unique within the Calendar module in which it is
displayed. See "Naming Conventions for Data Objects" on page 2-8 for more
information.

6. On the Choose Start and End Time page, select the time zone, start time, and end
time for the schedule. Click Next.

Defining Schedules

Scheduling ETL Jobs 11-3

For more information about setting these values, see "Start and End Dates and
Times" on page 11-4.

7. On the Choose the Frequency and Repeat Interval page, specify the frequency and
repeat interval for the schedule. Click Next.

For more information about setting the frequency and repeat interval, see
"Defining Schedules To Repeat" on page 11-4.

8. On the Summary page, review the options that you selected for the schedule. Click
Finish to define the schedule.

The schedule is created and added to the Projects Navigator under the Calendar
module.

Defining a schedule creates the metadata for the schedule in the workspace. Before
you can use this schedule to execute ETL jobs at the times defined in the schedule, you
must deploy the schedule. When you deploy a schedule to an Oracle Database
location, the schedule is created in the database scheduler.

Editing Schedules
Use the Schedule Editor to edit schedules.

Figure 11–1 shows the Schedule Editor with the Start and End Dates and Times at the
top of the editor.

The repeat expression appears in the lower-left panel of the editor. Use the repeat
expression to specify the Frequency Unit, Repeat Every, and one or more By Clauses.

The schedule preview appears in the lower-right panel. The preview refreshes each
time you press the Enter key or navigate to a new cell on the Schedule Editor. If you
specify an invalid schedule, the preview displays an error message.

For examples of schedules that you can define, see Example Schedules on page 11-8.

Note: The Create Schedule Wizard does not contain all the available
scheduling capabilities. To access the full range of scheduling
capabilities, after you define a schedule using the wizard, use the
Schedule Editor to specify additional scheduling capabilities.

See Also: "Example Schedules" on page 11-8 for examples of
schedules

See Also:

■ About Deploying Schedules on page 12-3

■ Deploying Objects on page 12-6

Defining Schedules

11-4 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Figure 11–1 The Schedule Editor

Start and End Dates and Times
The start and end dates and times define the duration for which the schedule is valid.

Begin by specifying the time zone. You can accept the default start date or specify a
time in the future. Be sure to change the default end date, which is the same as the
default start date.

When working in the wizard, click Next to view the next page.

When working in the Schedule Editor, the start date and time become the defaults for
the By Clauses in the Repeat Expression. The execution time in Schedule Preview
corresponds to the Start Time.

Defining Schedules To Repeat
The repeat expression determines how often the schedule is executed. Define the
repeat expression by specifying the Frequency Unit, the Repeat Every value, and one
or more By Clauses values.

When you are working in the wizard, By Clauses are not available. After you complete
the wizard, you can open the schedule and set the By Clauses using the Schedule
Editor.

Frequency Unit
The Frequency Unit determines the type of recurrence. The possible values are
YEARLY, MONTHLY, WEEKLY, DAILY, HOURLY, MINUTELY, and SECONDLY.

Defining Schedules

Scheduling ETL Jobs 11-5

Also, you can define schedules to run One Time.

Repeat Every
The Repeat Every value specifies how often the recurrence repeats. The default value
is 1 and the maximum value is 999. If you select YEARLY for the Frequency Unit and
leave the Repeat Every value at 1, the schedule is evaluated for every year included in
the date range that you specify in Start and End Dates and Times. For the same
schedule, if you change Repeat Every to 2, the schedule is evaluated only every other
year within the specified date range.

By Clauses
By Clauses enable you to define repeat expressions for complex schedules, such as a
schedule to run the first Friday of any month that contains 5 weeks. For each clause,
you can either enter values or click the Ellipsis button to view a selector dialog box. If
your goal is to know how to quickly type in values, first use the selector dialog box to
learn what values are valid, and then see "Example Schedules" on page 11-8.

Figure 11–2 displays the selector dialog box to pick months in a year.

Figure 11–2 Selector dialog box for Picking Months in a Year

When you use the selector dialog box and click OK, the results are displayed in the
Schedule Editor. In this way, you can use the selector dialog box to learn what values
are valid.

Figure 11–3 displays the Schedule Editor with the results.

Figure 11–3 Month Clause for January and June

You can define the following by clauses:

■ By Month

■ By Week Number

Defining Schedules

11-6 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ By Year Day

■ By Month Day

■ By Day

■ By Hour

■ By Minute

■ By Second

■ By Set Position

By Month

This specifies in which month or months the schedule is valid. If you type in values,
use numbers such as 1 for January and 3 for March, or use three-letter abbreviations
such as FEB for February and JUL for July.

By Week Number

Only when you select Yearly for the Frequency Unit can you schedule by the week
number in the year.

You can either type in values or click the Ellipsis button to view the selector dialog
box. If you type in values, valid values include positive and negative integers from 1 to
52 or 53, depending on the year. For example, to set a schedule to run on the second to
last week of the year, you can either type -2 or fill in the selector dialog box.

Figure 11–4 displays the Selector dialog box with the schedule that runs on the second
to last week of every year.

Figure 11–4 By Week Number Clause Set to Second To Last Week of the Year

The By Week Number clause follows the ISO-8601 standard, which defines the week as
starting with Monday and ending with Sunday. Also, the first week of a year is
defined as the week containing the first Thursday of the Gregorian year and
containing January 4th.

Using this standard, a calendar year can have 52 or 53 weeks. Part of week 1 may be in
the previous calendar year. Part of week 52 may be in the following calendar year. If a
year has a week 53, part of it must be in the following calendar year.

As an example, in the year 1998, week 1 began on Monday, December 29th, 1997. The
last week, week 53, ended on Sunday, January 3rd, 1999. Therefore, December 29th,
1997, is in the first week of 1998 and January 1st, 1999, is in the 53rd week of 1998.

By Year Day

Defining Schedules

Scheduling ETL Jobs 11-7

Use this clause to specify the day of the year as a number. A value of 1 equates to
January 1st and 35 is February 4th. Valid values are 1 to 366 and -366 to -1.

The negative values are useful for identifying the same dates year after year despite
the occurrence of leap years. For example, the 60th day of the year is March 1st except
for leap years when it is February 29th. To calculate the appropriate negative value,
count backward from the last day of the year. Therefore, the By Year Day for December
31st is -1. December 30th is -2. To define a schedule for every March 1st, despite leap
years, set By Year Day to -306.

By Month Day

This clause specifies the day of the month as a number. Valid values are 1 to 31 and -1
to -31. An example is 10, which means the 10th day of the selected month. Use the
minus sign (-) to count backward from the last day. For example, if you set the By
Month Day clause to -1, the schedule runs on the last day of every month. A value of
-2 runs the schedule on the next to last day of every month.

By Day

This clause specifies the day of the week from Monday to Sunday in the form MON,
TUE, and so on.

You can prefix the By Day values with positive and negative numbers. The numeric
prefix that you can use depends on the value that you select for the Frequency Unit.

If you select Yearly as the frequency, you can prefix By Day with values that represent
the weeks in a year, 1 to 53 and -53 to -1. Therefore, By Day set to 26Fri equates to the
26th Friday of the year. An entry of -1Mon when the frequency equals Yearly, equates
to the last Monday of the year.

If you select Monthly as the frequency, you can prefix By Day with values that
represent the weeks in a month, 1 to 5 and -5 to -1. In this case, an entry of -1Mon with
frequency set to Monthly results in the last Monday of every month.

By Hour

This clause enables you to schedule by the hour. Valid values are 0 to 23 where 0 is
midnight, 5 is 5 a.m., 13 is 1 p.m., and 23 is 11 p.m.

By Minute

Use this clause to schedule by the minute. Valid values are 0 to 59. As an example, 45
means 45 minutes past the hour.

By Second

Use this clause to schedule by the second. Valid values are 0 to 59. As an example, 30
means 30 seconds past the minute.

By Set Position

If your Oracle Database version is 10g Release 2 or later, you can use this clause to
schedule based on the position of items in a previously evaluated list of timestamps.
Use other By clauses to return a list of timestamps. Then add the By Set Position clause
to select one or more items from that list. This clause is useful for requirements such as
running a job on the last workday of the month.

Valid values are 1 through 9999. A negative number selects an item from the end of the
list (-1 is the last item, -2 is the next to last item, and so on) and a positive number

Applying Schedules to ETL Objects

11-8 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

selects from the front of the list. This clause is always evaluated last and only once per
frequency. The supported frequencies are MONTHLY and YEARLY.

Example Schedules
Use Table 11–1 as a guide for defining schedules.

Applying Schedules to ETL Objects
After you define a schedule, you associate the schedule with an ETL object. This
enables you to execute the ETL object at the times specified in the schedule. You can
associate schedules with mappings, Code Template (CT) mappings, process flows, and
data auditors.

Steps to Apply Schedules to ETL Objects
1. In the Projects Navigator, right-click the ETL object to which you want to apply a

schedule, and select Configure.

A Configuration tab containing the configuration parameters for the selected
object is displayed in the Document window.

2. Click the Ellipsis button on the Referred Calendar field.

The Referred Calendar dialog box containing the list of available schedules is
displayed.

Table 11–1 Example Repeat Expressions for Schedules

Schedule
Description Frequency Units Repeat Every By Clause

Every Friday weekly 1 week By Day = FRI

Every other Friday weekly 2 weeks By Day = FRI

Last day of every
month.

monthly 1 month By Month Day = -1

Second-to-last day of
every month

monthly 1 month By Month Day = -2

First Friday of any
month containing 5
weeks

monthly 1 month By Day = -5FRI

Last workday of every
month

monthly 1 month By Day =
MON,TUE,WED,THU,FRI;

By Set Pos = -1

On March 10th yearly 1 year By Month = MAR

By Month Day = 10

Every 12 days daily 12 days Not applicable

Every day at 8 a.m.
and 5 p.m.

daily 1 day By Hour = 8,17

On the second
Wednesday of every
month

monthly 1 month By Day = 2 WED

Every hour for the first
3 days of every month

hourly 1 hour By Month Day = 1,2,3

Scheduling ETL Jobs in Oracle Enterprise Manager

Scheduling ETL Jobs 11-9

For any mapping or process flow that you want to schedule, the physical name
must be 25 characters or fewer and the business name must be 1995 characters or
fewer. This restriction enables Warehouse Builder to append to the mapping name
the suffix _job and other internal characters required for deployment and
execution.

3. Select the schedule that you want to apply to the selected object and click OK.

4. Deploy the schedule and any associated schedules.

When properly deployed with its associated objects, the target schema executes
the ETL object based on the schedule that you created.

Scheduling ETL Jobs in Oracle Enterprise Manager
After you successfully deployed a mapping or a process flow, you can schedule it to
run in Oracle Enterprise Manager.

To schedule a mapping or process flow in Oracle Enterprise Manager:

1. Successfully deploy the mapping or process flow in Warehouse Builder.

2. Connect to Enterprise Manager as a Warehouse Builder repository owner or
repository user.

3. Create a scheduler job that uses the WB_RT_API_EXEC.RUN_TASK function in a
PL/SQL block.

For more information about this function, see "The WB_RT_API_EXEC.RUN_
TASK Function" on page 11-10.

4. Create a schedule for running the job.

The SQLPLUS_EXEC_TEMPLATE SQL Script
This script enables you to start the ETL process from SQL*Plus, and to use scheduling
tools such as cron, AT, Autosys, and Tivoli.

The sqlplus_exec_template.sql script is located in the following directory:
OWB_HOME/owb/rtp/sql.

Return Values
1 = Success
2 = Warning
3 = Error

Syntax
SQLPLUS_EXEC_TEMPLATE rt_owner location task_type task_name
 system_params custom_params

Arguments
Provide a value for each of the following arguments.

■ rt_owner: The repository owner.

Note: For more information about creating jobs and schedules, refer
to the Oracle Enterprise Manager Concepts and the Oracle Enterprise
Manager Help system.

Scheduling ETL Jobs in Oracle Enterprise Manager

11-10 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ location: For PL/SQL mappings and process flows, specify the location you used
for deployment.

For SQL*Loader and SAP mappings, set this parameter to PlatformSchema. This
is a case-sensitive variable.

■ task_type: Enter the appropriate task type for the mapping or the process flow.

■ PLSQLMAP: PL/SQL mapping

■ SQLLOADERCONTROLFILE: SQL*Loader mapping

■ PROCESSFLOW: Process flow

■ ABAPFILE: SAP mapping

■ DATAAUDITOR: Data Auditor mapping

■ SCHEDULEDJOB: Warehouse Builder scheduled job

■ task_name: The physical name of the mapping or the process flow

■ system_params: Values of system parameters for this task type. These values
override the default values. Enter the parameters in the form name=value.
Separate multiple parameters with commas, and enclose the entire string in
double quotes. A backslash (\) is the escape character, when you must include
commas or double quotes as literal text.

The following examples are correct:

","
"this_param=true"
"this_param=true, that_param=2"

■ custom_params: Values of a custom parameter defined for this task. Refer to
system_params for the syntax.

Examples
In each of the following examples, you may need to provide the path to sqlplus.exe
and to sqplus_exec_template.sql.

sqlplus user/password@tns_name @sqlplus_exec_template MY_RUNTIME MY_WAREHOUSE
PLSQL MY_MAPPING "," ","

sqlplus user/password@tns_name @sqlplus_exec_template MY_RUNTIME PlatformSchema
SQL_LOADER MY_LOAD "," ","

sqlplus user/password@tns_name @sqlplus_exec_template MY_RUNTIME MY_WORKFLOW
PROCESS MY_PROCESS "," ","

sqlplus user/password@tns_name @sqlplus_exec_template MY_RUNTIME PlatformSchema
ABAP MY_SAP "," ","

The WB_RT_API_EXEC.RUN_TASK Function
The RUN_TASK function of the WB_RT_API_EXEC PL/SQL package enables you to
schedule and run the ETL process from Warehouse Builder.

Return Value
The return value is affected by the parameters of the function.

Scheduling ETL Jobs in Oracle Enterprise Manager

Scheduling ETL Jobs 11-11

When background=0 and oem_friendly=0:

1 = Success
2 = Warning
3 = Error

When background=0 and oem_friendly=1:

0 = Success or Warning
3 = Error

When background=1:

0 = Task successfully submitted for execution
1 = Task not successfully submitted

Syntax
RUN_TASK
 (location IN VARCHAR2,
 task_type IN VARCHAR2,
 task_name IN VARCHAR2,
 custom_params IN VARCHAR2 DEFAULT NULL,
 system_params IN VARCHAR2 DEFAULT NULL,
 oem_friendly IN NUMBER DEFAULT 0,
 background IN NUMBER DEFAULT 0
)
 RETURN NUMBER;

Provide a value for each of the following parameters:

■ location: For PL/SQL mappings and process flows, specify the location you used
for deployment.

For SQL*Loader and SAP mappings, set this parameter to PlatformSchema. This is
a case-sensitive variable.

■ task_type: Enter the appropriate task type for the mapping or the process flow.

■ PLSQLMAP or PLSQL: PL/SQL mapping

■ SQLLoader or SQLLoaderControlFile or SQLLoaderMap: SQL*Loader
mapping

■ Process or ProcessFlow: Process flow

■ ABAPFile or SAPMap or SAP: SAP mapping

■ DataAuditor: Data auditor mapping

■ ScheduledJob: Warehouse Builder schedule object

■ AppsCMScheduler: Concurrent Manager schedule job

■ DBMSScheduler: Database schedule job

Scheduling ETL Jobs in Oracle Enterprise Manager

11-12 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ task_name: The name of the mapping or the process flow.

■ custom_params: Values of a custom parameter defined for this task. Refer to
system_params for the syntax.

■ system_params: Values of system parameters for this task type. These values
override the default values. Enter the parameters in the form name=value.

Separate multiple parameters with commas, and enclose the entire string in
double quotes. A backslash (\) is the escape character, when you must include
commas or double quotes as literal text

The following examples are correct:

","
"this_param=true"
"this_param=true, that_param=2"

■ oem_friendly: Controls the return values. Set to 1 for execution in Enterprise
Manager, or set to 0 for other environments

■ background: Controls execution of the task. Set to 1 for background, or set to 0 for
foreground.

Example
The following example displays the return value of the function, which runs a
mapping named CUSTOMER_MAP in SALES_TARGET_LOCATION.

BEGIN
DBMS_OUTPUT.PUT_LINE('Result: ' || TO_CHAR(gccrep.wb_rt_api_exec.run_task(
'SALES_TARGET_LOCATION','PLSQLMAP','CUSTOMER_MAP', null, null, 1)));
END;

Note: Previously, you could specify task_type using both, a
numeric value as well as a literal value. For example, you could use 3
to specify ProcessFlow, or 4 to specify SAP and so on. But starting
with 11g Release 2 (11.2), numeric values are no longer valid. It is
mandatory to use the literal value. The value can be in uppercase,
lowercase, or in mixed case. For example, PROCESSFLOW,
ProcessFlow, and processflow are all valid

Deploying to Target Schemas and Executing ETL Logic 12-1

12
Deploying to Target Schemas and Executing

ETL Logic

Oracle Warehouse Builder provides functionality that supports a single logical model
and multiple physical models. This enables you to design your data warehouse once
and implement this design on multiple target systems. In addition, Warehouse Builder
supports multiple physically different implementations of the same object definitions.

This chapter describes the implementation environment in Warehouse Builder. It also
describes how to deploy objects and execute ETL logic.

This chapter contains the following topics:

■ Overview of Deployment and Execution in Warehouse Builder

■ Steps in the Deployment and Execution Process

■ Deploying Objects

■ Starting ETL Jobs

■ Starting ETL Jobs in SQL*Plus

■ Managing Jobs Using SQL Scripts

■ Example: Updating a Target Schema

Overview of Deployment and Execution in Warehouse Builder
After you design your data warehouse, you must implement this design in the target
schema by deploying and executing design objects. The Control Center Manager offers
a comprehensive deployment console that enables you to view and manage all aspects
of deployment and execution. It provides access to the information stored in the active
Control Center.

About Deployment
Deployment is the process of creating physical objects in a target location according to
the logical objects defined in a Warehouse Builder workspace. The data objects created
when you designed the target schema and defined ETL objects are logical definitions.
Warehouse Builder stores the metadata for these data objects in the workspace. To
create these objects physically in the target schema, you must deploy these objects. For
example, when you create a table using the Design Center, the metadata for this table
is stored in the workspace. To physically create this table in the target schema, you
must deploy this table to the target schema.

Overview of Deployment and Execution in Warehouse Builder

12-2 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

As part of the deployment process, Warehouse Builder validates and generates the
scripts for the object, transfers the scripts to the Control Center, and then invokes the
scripts against the deployment action associated with the object. You can deploy an
object from the Projects Navigator or using the Control Center Manager.

You can deploy only those objects for which you have the COMPILE privilege. By
default, you have this privilege on all objects in the workspace. However, the
workspace owner may have instituted a different security policy.

About Deployment Actions
As soon as you define a new object in the Design Center, the object is listed in the
Control Center Manager under its deployment location. Each object has a default
deployment action, which you can display. The default deployment action for an
object is based on a comparison of its current design status to its current deployment
status. For example, a table that has not been previously deployed will have a default
deployment action of Create. A table that was previously deployed will have a default
action of Upgrade. You can override the default by choosing a different deployment
action in the Control Center Manager.

The default is set by the previous action and varies depending on the type of object.

These are the deployment actions:

■ Create: Creates the object in the target location. If an object with that name already
exists, then an error may result. For example, this may happen if the object has not
been previously deployed from Warehouse Builder.

■ Upgrade: Modifies the object without losing data, if possible. You cannot undo or
redo an upgrade action. This action is not available for some object types, such as
schedules.

■ Drop: Deletes the object from the target location.

■ Replace: Deletes and re-creates the object. This action is quicker than Upgrade, but
it deletes all data.

Note: Whenever you deploy an object, Warehouse Builder
automatically saves all changes to all design objects to the workspace.
You can display a warning message by selecting Prompt for commit
on the Preferences dialog box.

Note: Always maintain objects using Warehouse Builder. Do not
modify the deployed, physical objects manually in SQL. Otherwise,
the logical objects and the physical objects will not be synchronized,
which may cause unpredictable results.

Note: When you use the Control Center to upgrade a table that
contains a ROW MOVEMENT clause in its DDL script, the upgrade fails.

To solve this problem, before you deploy the table using an Upgrade
action, set the Row Movement configuration parameter of the table to
NULL and then deploy the table.

Overview of Deployment and Execution in Warehouse Builder

Deploying to Target Schemas and Executing ETL Logic 12-3

About Deployment Status
After you deploy an object, Warehouse Builder assigns a deployment status to it. The
status represents the result of the deployment. You can view the deployment status in
the Control Center Manager.

The deployment status can be one of the following:

■ Not Deployed: Indicates that the object has not yet been deployed to the target
schema.

■ Success: Indicates that the object has been successfully deployed to the target
schema.

■ Warning: Indicates that some warnings were generated during the deployment of
the object.

■ Failed: Indicates that deployment of the object failed.

About Deploying Dimensional Objects
To deploy MOLAP dimensional objects, ensure that the version of the location and the
the PL/SQL Generation Mode configuration parameter of the Oracle module are set.
The location version must be at least 11gR1, and the configuration parameter PL/SQL
Generation Mode must be either default, 11gR1 or higher to generate 11g AWs that
support cube organized MVs.

About Deploying Mappings and Process Flows
ETL objects include mappings and process flows. Deploying a mapping or process
flow includes these steps:

■ Generate the PL/SQL, SQL*Loader, or ABAP script, if necessary.

■ Register the required locations and deploy any required connectors. This ensures
that the details of the physical locations and their connectors are available at
runtime.

■ Transfer the PL/SQL, XPDL, SQL*Loader, or ABAP scripts from the Design Center
to the Control Center.

To successfully deploy Warehouse Builder process flows to Oracle Workflow, ensure
access to the correct version of Oracle Workflow as described in the Oracle Warehouse
Builder Installation and Administration Guide for Windows and UNIX.

About Deploying Code Template (CT) Mappings and Web Services
Before you deploy CT mappings or Web services, you must start the Control Center
Agent as described in "Starting the Control Center Agent (CCA)" on page 7-23.

Deploying Code Template mappings or Web services includes the following steps:

1. Generate the .ear files.

2. Transfer the .ear files to the OC4J server associated with the Control Center Agent.

About Deploying Schedules
Depending on the ETL objects that are associated with the schedule, you can deploy
schedules to Oracle Database or Concurrent Manager.

See Also: "Overview of Deploying Schedules" on page 11-2 for more
information about deploying schedules

Overview of Deployment and Execution in Warehouse Builder

12-4 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

For remote Oracle Workflow locations and remote Oracle Warehouse Builder 10g
locations to which schedules are deployed, ensure that the target location has the
CREATE SYNONYM system privilege. If the evaluation location is specified or the
deployment location references a different database instance from the Control Center
schema, then the deployment location must have the CREATE DATABASE LINK
system privilege.

About Execution
For objects that contain ETL logic (such as mappings, process flows, transformations,
Code Template mappings, and Web services) there is an additional step of execution.
Execution is the process of executing the ETL logic defined in the deployed objects.

Typically, objects are deployed once and they can be executed multiple times. When
there are changes in the object definition, you must redeploy the objects. For example,
you deploy a mapping after it is defined. The mapping can be executed once or
scheduled to be executed at specific intervals (daily or weekly). If the mapping
definition changes, you must redeploy the mapping.

For example, you define a mapping that sources data from a table, performs
transformations on the source data, and loads it into the target table. When you deploy
this mapping, the PL/SQL code generated for this mapping is stored in the target
schema. When you execute this mapping, the ETL logic is executed and the data is
picked up from the source table, transformed, and loaded into the target table.

Another example is of defining a Web service that checks if the data in a table
conforms with the data rules defined for the table. When you deploy a Web service,
the .ear file generated for the Web service is transferred to the Control Center Agent.
When you execute the Web service, the ETL logic defined in the Web service is
executed and a check is performed to verify that the data in the table does not violate
any data rules defined on the table.

About Configurations
Warehouse Builder separates the logical design of the objects from the physical details
of the deployment. It creates this separation by storing the physical details in
configuration parameters. An object called a named configuration stores all of the
configuration settings. Use named configurations to implement different physical
parameters for the same design on different systems (for example, development,
production, testing). This enables you to easily move Warehouse Builder applications
from the development to the test environment and then into production. For example,
on the development system, you can specify the parallel settings as NOPARALLEL.
On the production system, you can specify the parallel setting as PARALLEL with a
degree of 16.

You can create a different named configuration for each deployment location, with
different settings for the object parameters in each one. Each named configuration is
associated with only one control center.

About Viewing and Setting Configuration Properties for Different Configurations
When you create multiple configurations in a project, you can set different
configuration parameters for an object in each configuration. At any time, only one of
this configurations is activated, and is called the active configuration. For example,

See Also: Oracle Warehouse Builder Installation and Administration
Guide for Windows and UNIX for more information about creating
multiple configurations.

Steps in the Deployment and Execution Process

Deploying to Target Schemas and Executing ETL Logic 12-5

you have three configurations, PROD_CONFIG, DEV_CONFIG, and QA_CONFIG. For a
table, SALES_TAB, you can set different configuration parameters in each of the three
configurations.

When you right-click and object and select Configure, the configuration parameters
for the object in the active configuration, are displayed in a new Configure tab. If you
change the active configuration, by selecting a different configuration using the
Configuration list in the toolbar, the configuration parameters for the newly-activated
configuration are listed to the right of the existing configuration parameters.

You can display the configuration parameters for other configurations defined in your
project by clicking the Manage Configuration Columns icon in the toolbar displayed
at the top of the Configure tab. The Select Configurations dialog box is displayed. This
dialog box lists all the configurations defined in the project. Select the configurations
for which you want to display configuration parameters in the Configure tab and click
OK. The parameters for the selected configurations are displayed, adjacent to the
current configuration parameters.

You can compare the configuration property settings for different configurations by
clicking the Highlight Differences icon in the toolbar displayed at the top of the
Configure tab. Warehouse Builder highlights the configuration parameters that have
different settings in the various selected configurations. This enables you to compare
the configuration settings an object in each configuration.

To delete the configuration parameters for a particular configuration from the
Configure tab, click the Manage Configuration Columns icon. In the Select
Configurations dialog box that is displayed, deselect the configuration whose settings
you want to remove from the Configure tab, and click OK.

The set of configuration parameters for the active configuration are always displayed
in the Configure tab and you cannot delete this set.

Steps in the Deployment and Execution Process
During the lifecycle of a data system, you typically will take these steps in the
deployment process to create your system and the execution process to move data into
your system:

1. Select a named configuration, from the list of configurations in the toolbar, with
the object settings and the Control Center that you want to use.

2. Deploy data objects and ETL objects to the target location. You can deploy them
individually, in stages, or all at once.

For information about deploying objects, see "Deploying Objects" on page 12-6.

3. Review the results of the deployment. If an object fails to deploy, then fix the
problem and try again.

For more information about deployment results, see "Reviewing Deployment
Results" on page 12-8.

4. For executable objects such as mappings or process flows, you can either start the
ETL process immediately or schedule its execution for a later date.

See Also: Oracle Warehouse Builder Installation and Administration
Guide for Windows and UNIX for more information about multiple
configurations

Deploying Objects

12-6 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

For information about starting the ETL process, see "Starting ETL Jobs" on
page 12-9.

For information about scheduling ETL objects, see "Scheduling ETL Jobs" on
page 11-1.

5. Revise the design of target objects to accommodate user requests, changes to the
source data, and so forth.

6. Set the deployment action on the modified objects to Upgrade or Replace.

For more information about deployment actions, see "About Deployment Actions"
on page 12-2.

7. Repeat steps 1 to 4.

Deploying Objects
You can deploy objects using the Projects Navigator or Control Center Manager.
Deployment from the Projects Navigator is restricted to the default action, which may
be set to Create, Replace, Drop, or Update. The default action is determined by
changes to the object design since it was last deployed. To override the default action,
use the Control Center Manager, which provides full control over the deployment
process.

After deploying an ETL object, you must explicitly start the scripts that perform the
ETL operations defined in the ETL object, as described in "Starting ETL Jobs" on
page 12-9.

Deploying Objects Using the Control Center Manager
When you use the Control Center Manager to deploy objects, Warehouse Builder
automatically deploys all dependent objects of the objects being deployed.

Steps to Deploy Objects Using the Control Center Manager
1. In the Projects Navigator, open the project containing the object that is to be

deployed.

2. Select Control Center Manager from the Tools menu.

The Control Center Manager that provides access to the control center for the
active configuration of the project is displayed. If this menu choice is not available,
then check that the appropriate named configuration and Control Center are
active.

Note: Warehouse Builder automatically saves all changes to the
workspace before deployment.

Note: Numerous settings on the Preferences dialog box control the
behavior of Control Center Manager. Additional settings control the
actual deployment process.

From the Tools menu, click Preferences. The settings are listed under
Control Center Monitor and Deployment. Click Help for descriptions
of the settings.

Deploying Objects

Deploying to Target Schemas and Executing ETL Logic 12-7

3. If you are deploying relational or ROLAP dimensional objects, ensure that the
implementation details of these objects are specified. You can do this by
performing binding.

For more information, see "Relational Implementation of Dimensional Objects" on
page 3-9 and "ROLAP Implementation of Dimensional Objects" on page 3-12.

4. (Optional) If you are deploying Code Template mappings or Web services, start
the Control Center Agent as described in "Starting the Control Center Agent
(CCA)" on page 7-23.

5. In the Control Center Manager navigation tree, expand the location node
containing the object to be deployed.

6. Select the objects to be deployed.

Select multiple objects by holding down the Ctrl key while selecting the objects.

You can deploy all the objects contained under a particular node by selecting the
node. For example, to deploy all tables in a particular module, select the Tables
node under that module. To deploy all objects in a module, select the module.

7. In the Details tab of the Object Details panel, set the deployment action for the
selected objects.

To deploy the selected objects using the default deployment action, click Default
Actions on the Object Details tab.

8. Deploy the selected objects.

To deploy objects to the Control Center Manager, click the Deploy icon.

To deploy objects to a local file, from the File menu, select Deploy and then To
File. Choose the directory in which you want to save the file and provide a name
for the file.

Deploying Objects Using the Projects Navigator
When you deploy objects using the Projects Navigator, the deployment action used is
the default action set by Warehouse Builder. For more information about the default
deployment actions, see "About Deployment Actions" on page 12-2.

Before you deploy an object, ensure that the object is generated successfully.
Generation creates the code required to create the object in the target schema.

Steps to Deploy Objects Using the Projects Navigator
1. In the Projects Navigator, expand the project and then module that contain the

object you want to deploy.

See Also: Oracle Warehouse Builder Installation and Administration
Guide for Windows and UNIX for information about configurations.

See Also: "About Deployment Actions" on page 12-2 for more
information about deployment actions

Note: Deploying to a local file option creates a file in the specified
directory. The file permissions on this file are set to the Oracle owner.
You may need to change the permissions on the file in order to read it.

Deploying Objects

12-8 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

2. Ensure that you successfully deploy all dependent objects of the object being
deployed.

For example, before deploying a relational dimension, ensure that all the tables
that store the implementation details of the dimension and the sequence used to
generate the surrogate identifier are deployed. While deploying a process flow,
ensure that all mappings or transformations used in the process flow are
successfully deployed.

3. If you are deploying relational or ROLAP dimensional objects, ensure that the
implementation details of these objects are specified. You can do this by
performing binding.

For more information, see "Relational Implementation of Dimensional Objects" on
page 3-9 and "ROLAP Implementation of Dimensional Objects" on page 3-12.

4. If you are deploying Code Template mappings or Web services, start the Control
Center Agent as described in "Starting the Control Center Agent (CCA)" on
page 7-23.

5. Select the objects to be deployed and click the Deploy icon on the toolbar.

or

Select the objects to be deployed and then choose Deploy from the menu.

To select multiple objects, hold down the Ctrl key while selecting objects.

After the deployment is complete, a new tab is opened in the Log window to display
the details of each deployment.

Deploying Target Systems to a Remote System
You must perform the following additional steps to deploy design objects to a target
schema that is different from the one in which you define the design objects.

1. Install Oracle Warehouse Builder on the target system.

2. Use the Repository Assistant to create a workspace and a repository user on the
target system.

3. In the Globals Navigator, create a new configuration and new Control Center that
uses the configuration. The Control Center should correspond to the workspace
you created on the target system.

4. Set the newly created configuration as the default configuration.

5. Create a location corresponding to the remote target schema.

6. Deploy the design and ETL objects.

Reviewing Deployment Results
After you deploy objects, you can review deployment results and check the
deployment status. If the objects were not deployed successfully, you can view the
error messages generated for the deployment.

Viewing Deployment Results for Objects Deployed Using the Control Center
Manager
When you use the Control Center Manager to deploy objects, you can monitor the
progress of a job using the Status column in the Control Center Jobs panel. When the

Starting ETL Jobs

Deploying to Target Schemas and Executing ETL Logic 12-9

job is complete, the new deployment status of the object appears in the Details tab. You
can review the results and view the scripts.

To view deployed scripts:

1. In the Control Center Jobs panel of the Control Center Manager, double-click the
job related to the deployment for which you want to view deployed scripts.

The Jobs Details window is displayed for the selected job. This window displays
details of any errors that occurred during the deployment.

2. In the Job Details window, select the object in the navigation tree.

3. On the Script tab, select a script and click View Code, or just double-click the
script name.

Viewing Deployment Results for Objects Deployed Using the Projects Navigator
When you use the Projects Navigator to deploy objects, a new tab is displayed in the
Log window for each deployment. This tab contains a node tree with the object name
and deployment status. Expand the node to view the following nodes:

■ Validation: Expand this node to display the validation messages for the object.

■ Scripts: Expand this node to view the scripts that are generated for the object.

■ Deployment: Expand this node to view the deployment status. Details of errors
that occurred during deployment are listed here. While deploying PL/SQL
mappings, information about whether the error occurred in the package body or
the package specification is also included.

To view deployed scripts:

1. In the Log window, select the tab related to the deployment for which you want to
view deployed scripts.

2. Expand the node displaying the object name, and then the Scripts node.

The scripts used for the deployment are listed under the Scripts node.

3. Double-click the script that you want to view.

A new tab is opened in the Document window containing the generated code.
This tab contains the Source, Spec, and Body subtabs. The Spec subtab contains the
package specification, and the Body subtab contains the package body.

If the object deployment fails, you can use the Spec and Body subtabs to view the
code in which the error occurred.

Starting ETL Jobs
ETL is the process of extracting data from its source location, transforming it as
defined in a mapping, and loading it into target objects. When you start execution of a
mapping, process flow, or data auditor, you submit it as a job to the Warehouse
Builder job queue. The job can start immediately or at a scheduled time, if you create
and use schedules. For more information about schedules, see "Defining Schedules" on
page 11-2.

Like deployment, you can execute a mapping, process flow, or data auditor from the
Projects Navigator or the Control Center Manager. You can also start these jobs by
using tools outside of Warehouse Builder that execute SQL scripts.

Starting a mapping, process flow, or data auditor involves the following steps:

1. Deploying the objects, as needed.

Starting ETL Jobs

12-10 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

For more information about deploying objects, see "Deploying Objects" on
page 12-6.

2. Executing the object by using the Projects Navigator or Control Center Manager as
described in the following sections.

To start ETL from the Projects Navigator:

Select the mapping or process flow, then select Start from the File menu.

For every ETL object that you execute (start), a new tab containing an execution log is
displayed in the Log window. The tab title is the object name followed by the job ID.
Use this tab to monitor the status of the execution and to view execution results.

When you execute objects that use the Control Center Agent, such as Code Template
mappings or Web services, the job log files are located in the OWB_ORACLE_
HOME/owb/jrt/log/jrt/jobjob_id/log.xml directory path. In this directory
path, job_id is the ID of the executed job. Use this log file to troubleshoot any errors
that may occur during the deployment and execution of Code Template mappings or
Web services.

To start ETL from the Control Center Manager:

Select the mapping or process flow, then click the Start icon in the toolbar.

Alternatively, you can select the mapping or process flow, then select Start from the
File menu.

For information about executing Web services, see "Executing Web Services" on
page 16-11.

Viewing Execution Results for ETL Jobs
After executing ETL objects, Warehouse Builder displays the execution results in a tab
in the Log window. A separate tab is used to display the execution results of each ETL
job.

The execution results provides detailed information about the ETL job. The
information is displayed using the following columns in the execution results tab:

■ Rows Selected: Represents the number of rows selected from the source objects
during the ETL job.

■ Rows Inserted: Represents the number of rows inserted into the target objects
during the ETL job.

■ Rows Updated: Represents the number of rows in the target objects that were
updated as part of the ETL job.

■ Rows Deleted: Represents the number of rows deleted from the target objects
during the ETL job.

■ Errors: Represents the number of errors encountered during the ETL job execution.

■ Warnings: Represents the number of warnings encountered during the ETL job
execution.

■ Start time: Represents the time at which the ETL job was started.

■ Elapsed time: Represents the time taken to complete the ETL job.

See Also: Oracle Warehouse Builder API and Scripting Reference for
information about using SQL*Plus to start ETL jobs.

Starting ETL Jobs

Deploying to Target Schemas and Executing ETL Logic 12-11

Execution Results Tab Icons
Icons at the top of the execution results tab enable you to select the information that
should be displayed on the tab. Table 12–1 displays the icons and their uses.

Return Status of ETL Jobs
Every ETL job that is completed should have one of the following values as its return
status.

■ SUCCESS - Mapping completes successfully with no errors.

■ WARNING - Mapping completes with errors but does not exceed the Maximum
Number of Errors parameter.

■ ERROR - Mapping does not complete, or mapping has more errors than the
Maximum Number of Errors parameter.

Viewing the Data
After ETL is completed, you can easily check any data object in Warehouse Builder to
verify that the results are as you expected.

To view the data stored in a data object:

In the Projects Navigator, right-click the object and select Data. The Data Viewer will
open with the contents of the object.

Scheduling ETL Jobs
You can use any of the following methods to schedule ETL:

■ Use the scheduler.

See "Defining Schedules" on page 11-2.

■ Use the Oracle Database Scheduler by means of the PL/SQL package DBMS_
SCHEDULER PL/SQL.

See Oracle Database PL/SQL Packages and Types Reference for details about the
DBMS_SCHEDULER package

Table 12–1 Execution Results Tab Icons

Icon Name Description

Show Warnings Lists any warnings that occur during the ETL job
execution in the Execution Results tab. This is a toggle
switch.

Show Errors Lists any errors that occur during the ETL job execution
in the Execution Results tab. This is a toggle switch.

Show Parameters Lists the values of parameters that are used during the
ETL job execution. The parameters are listed under the
Parameters node.

Stop Job Stops the execution of the ETL job currently being
executed. This icon is disabled when the execution is
complete or has not started.

Go To Source Displays the editor for the ETL object that is currently
being executed.

Show Details Displays the Execution Details dialog box.

Starting ETL Jobs in SQL*Plus

12-12 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ Use a third-party scheduling tool.

Starting ETL Jobs in SQL*Plus
In addition to executing objects using the Control Center Manager, you can use
SQL*Plus. To do this, use a script provided with Warehouse Builder named
sqlplus_exec_template. Alternatively, you can use sqlplus_exec_
background_template to run a job in the background.

Take these steps to run the SQLPLUS_EXEC_TEMPLATE script in SQL*Plus:

1. From the Tools menu of the Design Center, select SQL*Plus.

The SQL*Plus panel is displayed.

2. Connect as a Warehouse Builder user, not as a repository owner.

3. Start the script, using syntax such as the following:

@%ORACLE_HOME%\owb\rtp\sql\sqlplus_exec_template MY_RUNTIME MY_WAREHOUSE PLSQL
MY_MAPPING "," ","

Managing Jobs Using SQL Scripts
Numerous SQL scripts are installed with Warehouse Builder so that you can manage
deployment jobs, execution jobs, and the Control Center using SQL scripts. The scripts
are located in ORACLE_HOME/owb/rtp/sql directory. Comments in these scripts
explain how to use them.

 Example: Updating a Target Schema

Scenario
You are in charge of managing a data warehouse that has been in production for a few
months. The data warehouse was originally created by using two source schemas,
Human Resources (HR) and Order Entry (OE) and was loaded into the Warehouse (WH)
target schema. Recently you learned of two changes to tables in the HR and OE
schemas. The WH schema must be updated to reflect these changes.

■ Change #1: The first change was made to the HR schema. The length of the
REGION_NAME column in the REGIONS table was changed from 25 to 100
characters.

Figure 12–1 displays a representation of the changes to the REGIONS table.

See Also: "The SQLPLUS_EXEC_TEMPLATE SQL Script" on
page 11-9 for a complete description of the syntax.

See Also: Oracle Warehouse Builder Installation and Administration
Guide for Windows and UNIX for information about using these scripts.

Example: Updating a Target Schema

Deploying to Target Schemas and Executing ETL Logic 12-13

Figure 12–1 Changed REGIONS Table

■ Change #2: The second change was made to the OE schema. A row called LOT_
SIZE_NUMBER was added to the ORDER_ITEMS table with a data type of
NUMBER, precision of 8, and scale of 0.

Figure 12–2 displays a representation of the changed ORDER_ITEMS table.

Figure 12–2 Changed ORDER_ITEMS Table

Solution
To update the WH schema, you must first determine the impact of these changes, and
then create and execute a plan for updating the target schema. The following steps
provide an outline for what you must do:

Step 1: Identify Changed Source Objects

Step 2: Determine the Impact of the Changes

Step 3: Reimport Changed Objects

Step 4: Update Objects in the Data Flow

Step 5: Redesign your Target Schema

Step 6: Redeploy Scripts

Step 7: Test the New ETL Logic

Step 8: Update Your Discoverer EUL

Example: Updating a Target Schema

12-14 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Step 9: Execute the ETL Logic

Case Study

Step 1: Identify Changed Source Objects
The first step in rolling out changes to your data warehouse is to identify the changes
in source objects. To do this, you must have a procedure or system in place that can
notify you when changes are made to source objects.

In this scenario, the group managing the HR and OE schemas informed you that some
objects had been changed. The first change was made to the HR schema. The REGION_
NAME column was extended from 25 to 100 characters to accommodate longer names.
The second change was made to the OE schema. The LOT_SIZE_NUMBER column was
added and must be integrated into the WH schema.

Step 2: Determine the Impact of the Changes
After you have identified the changes, you must determine their impact on your target
schema.

For Change #1, made to the HR schema, you must update any dependent objects. This
entails reimporting the REGIONS table and then updating any objects that use the
REGION_NAME column. To identify dependent objects, you can use the Impact
Analysis diagram. You also must update any mappings that use this table.

For Change #2, made to the OE schema, in addition to reimporting the table and
updating mappings, you must find a way to integrate the new column into the WH
schema. Because the column was added to keep track of the number of parts or items
in one unit of sales, add a measure called NUMBER_OF_IND_UNITS to the SALES cube
in the WH schema and have this measure for each order. Then you must connect this
new column to the SALES cube.

Step 3: Reimport Changed Objects
Because two source objects have changed, you must reimport their metadata
definitions into your workspace. Select both the REGIONS table in the HR schema and
the ORDER_ITEMS table in the OE schema from the navigation tree and use the
Metadata Import Wizard to reimport their definitions.

Warehouse Builder automatically detects that this is an update and proceeds by only
updating changed definitions. The Import Results dialog box that appears at the end
of the import process shows the details of the synchronization. Click OK to continue
the import and commit your changes to the workspace. If you do not want to continue
with the import, click Undo.

Step 4: Update Objects in the Data Flow
If the change in the source object altered only existing objects and attributes, such as
Change #1 in the HR schema, use Impact Analysis diagrams to identify objects that
must be reconciled.

In this scenario, you must reconcile the column length in all objects that depend on the
REGIONS table to ensure that the data continues to load properly.

To update objects in the data flow:

1. Select the REGIONS table in the HR schema from the navigation tree. Select View
and then click Impact.

Example: Updating a Target Schema

Deploying to Target Schemas and Executing ETL Logic 12-15

A new tab is displayed in the Document Editor containing the Impact Analysis
diagram. This reveals that the CUSTOMER dimension in the WH schema is the only
object affected by the REGIONS table.

This step requires that you have already set up the Repository Browser. For more
information about setting this up, see Oracle Warehouse Builder Installation and
Administration Guide for Windows and UNIX.

2. Open the CUSTOMER dimension in the Dimension Editor and update the Region
Name level attribute to the 100-character length.

3. Open the MAP_CUSTOMER mapping that connects the source to the target. For both
the REGIONS Table operator and the CUSTOMER Dimension operator, perform an
inbound synchronization from data object to mapping operator.

The mapping operators must be synchronized with the mapping objects that they
represent to generate code based on the updated objects.

You have now completed updating the metadata associated with Change #1.

Because Change #2 introduced a new column, you need not update the data flow as
you did for Change #1. Ensure that you perform an inbound synchronization on all the
mappings that use an ORDER_ITEMS Table operator. From the Impact Analysis
diagram for the ORDER_ITEMS table, you can see that only the mapping MAP_SALES
is affected.

Step 5: Redesign your Target Schema
Because Change #2 introduced the new LOT_SIZE_NUMBER column to the ORDER_
ITEMS table, you must redesign your WH target schema to incorporate this new data
into your cube. You can do this by adding a new measure called NUMBER_OF_IND_
UNITS to your SALES cube.

To redesign the target schema:

1. Add the measure NUMBER_OF_IND_UNITS with the NUMBER data type, precision
of 8, and scale of 0 to the SALES cube.

2. View the lineage diagram for the SALES cube to determine which mappings
contain the SALES cube. Perform an inbound synchronization on all SALES cube
mapping operators.

3. Open the mapping MAP_SALES and ensure that the table ORDER_ITEMS is
synchronized inbound.

4. Connect the LOT_SIZE_NUMBER column in the ORDER_ITEMS table to the Joiner,
and then to the Set Operation, and then add it to the Aggregator operator. Ensure
that you are doing a Sum operation in the Aggregator operator.

5. Finally, connect the LOT_SIZE_NUMBER output attribute of the Aggregator
operator to the NUMBER_OF_IND_UNITS input attribute of the SALES cube.

Step 6: Redeploy Scripts
After the mappings have been debugged, use the Design Center to regenerate and
redeploy scripts. Use the Control Center Manager to discover the default deployment
action. Warehouse Builder detects the type of deployment to run.

Step 7: Test the New ETL Logic
After you have reconciled all objects and ensured that the WH target schema has been
updated to reflect all changes, test the ETL logic that is be generated from the

Example: Updating a Target Schema

12-16 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

mappings. Use the Mapping Debugger to complete this task. If you find any errors,
resolve them and redeploy the scripts.

Step 8: Update Your Discoverer EUL
If you are using Oracle Discoverer as your reporting tool, proceed by updating your
EUL.

To update your Oracle Discoverer EUL:

1. Identify the objects that must be updated in the End User Layer (EUL) because of
changes made to their structure or data. In this case, the changed objects are the
REGIONS and SALES_ITEMS tables and the SALES cube.

2. In the Projects Navigator, select all the objects identified in Step 1, right-click and
select Derive.

The Perform Derivation Wizard displays and updates these object definitions in
the Business Definition Module that contains these objects.

3. Expand the Item Folders node in the Business Definition Module that contains
these changed objects.

4. Select the objects identified in Step 1, right-click and select Deploy.

The changes to the objects are updated in the Oracle Discover EUL.

Step 9: Execute the ETL Logic
After the mappings have been deployed, execute and load data into the target.

Auditing Deployments and Executions 13-1

13
Auditing Deployments and Executions

Auditing deployment and execution information can provide valuable insights into
how your target is being loaded and how you can further optimize mapping and
process flow settings and parameters. It also provides immediate feedback on
deployment information that enables you to retrieve the deployment history of an
object. The Repository Browser in Oracle Warehouse Builder provides the auditing
and deployment information.

This chapter contains the following topics:

■ About Auditing Deployment and Executions

■ Opening the Repository Browser

■ Design Reports

■ Control Center Reports

■ Common Repository Browser Tasks

About Auditing Deployment and Executions
When you deploy and execute objects, Warehouse Builder generates and stores audit
information related to the deployments and executions. You can use one of the
following methods to view and manage audit information:

■ Control Center Manager

When you perform deployment or execution using the Control Center Manager,
the Control Center Jobs panel displays the results of the deployment or execution.
Double-click the row representing a deployment or execution job to display the
Job Details window. For execution, the Job Details window displays the number of
rows selected, inserted, updated, and deleted.

■ Repository Browser or Heterogeneous Repository Browser

The sections in this chapter describe how to use the Repository Browser and
Heterogeneous Repository Browser to access audit information

■ Public views that expose Warehouse Builder repository audit metadata

For more information about the public view, see Oracle Warehouse Builder API and
Scripting Reference.

About Auditing Deployment and Executions

13-2 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

About the Repository Browser
The Repository Browser is a browser-based tool that generates reports from data
stored in Oracle Warehouse Builder repositories. Using the Repository Browser, you
can view:

■ Detailed information about the design of a workspace. Reports are generated from
data stored in the workspaces.

■ Reports that provide access to both high-level and detailed ETL runtime
information. This information includes the following:

■ Timings for each mapping and process flow

■ Details of activities for each process flow

■ Error details

■ Deployment information to manage separate target environments

As an alternative to using the Repository Browser, you can access the same
information through the public views. Start a SQL*Plus session and query the public
views. See Oracle Warehouse Builder API and Scripting Reference for a list of public views.

You can use Warehouse Builder to deploy data to non-Oracle databases such as
Microsoft SQL Server and IBM DB2 UDB. However, in these cases, you will not be able
to view design-time object data and deployment audit data. You can only view reports
that contain execution audit data.

For more information about reports that will be generated for the Repository Browser
in a heterogeneous environment, see "List of Heterogeneous Repository Browser
Reports" on page 13-4.

About the Heterogeneous Repository Browser (HRAB)
The Heterogeneous Repository Browser (HRAB) is a browser-based tool that generates
reports about objects deployed to OC4J servers or heterogeneous databases such as
DB2 and SQL Server. Heterogeneous Repository Browser enables you to access
auditing information from systems that do not have Oracle Warehouse Builder
installed.

Using the Heterogeneous Repository Browser, you can view reports that provide:

■ Execution information about ETL objects deployed to heterogeneous databases
such as SQL Server and DB2.

■ Execution information for objects deployed to an OC4J server, such as Web
services

Before you access auditing information from heterogeneous databases or OC4J servers,
you must create data stores that represent the database or OC4J server. Your
administrator will create the data store and assign it to the Repository Browser or
OC4J server.

Differences Between Repository Browser and Heterogeneous Repository Browser
■ The Heterogeneous Repository Browser reports provide information about object

execution only, not design and deployment.

■ Heterogeneous Repository Browser reports contain only a subset of the
information provided by Repository Browser reports.

About Auditing Deployment and Executions

Auditing Deployments and Executions 13-3

For example, Repository Browser reports contain trace information generated
while debugging mappings. Heterogeneous Repository Browser reports do not
contain this information.

Installing the Heterogeneous Repository Browser on Heterogeneous Databases
and OC4J Servers
To enable access auditing information for deployments to heterogeneous databases
and OC4J servers (that are not part of an Oracle Warehouse Builder installation), you
must install the audit tables and views in the target database.

The scripts to install audit tables are stored in the
OWB_ORACLE_HOME/owb/rtasst/jrtaudit directory. This directory contains
subdirectories called db2, sqlserver, and oracle. Depending on your target
database, select the subdirectory from which to execute the installation scripts.

For example, to install audit tables and views on DB2, execute the install.sql file
located in the OWB_ORACLE_HOME/owb/rtasst/jrtaudit/db2 directory.

Creating Data Stores
Data stores enable you to access auditing information about deployments to
heterogeneous databases such as DB2 or SQL Server, and to OC4J servers that are not
part of the Warehouse Builder installation.

Your administrator will create the data store in the Heterogeneous Repository Browser
of the database (SQL Server or DB2) or the OC4J server. The data store should be
named AuditDS.

Data stores can be created using the admin_client.jar command-line utility. The
following is an example of creating a data store testDataStore.

java -jar admin_client.jar deployer:oc4j:localhost oc4jadmin
 -addManagedDataSource -applicationName default -dataSourceName testDataSource
 -jndiLocation jdbc/testDataSource -connectionPoolName scottConnectionPool

You are prompted to enter the password for the oc4jadmin user. Enter the password
and press the Enter key.

Data stores are also created implicitly. If a Code Template (CT) mapping references an
object stored in a database location, then, when the CT mapping is deployed, a suitable
data source is created.

Types of Auditing
Auditing information displayed by the Repository Browser can be classified as
follows:

■ PL/SQL Runtime Auditing

This refers to the auditing information for the traditional Warehouse Builder
runtime auditing of objects deployed using PL/SQL scripts.

Data objects, mappings, and process flows use PL/SQL deployments.

■ Heterogeneous Runtime Auditing

This refers to auditing information about objects that are deployed to an OC4J
server or to a heterogeneous database such as DB2 or SQL Server. Includes
auditing from more than ne Control Center Agents (CCA).

About Auditing Deployment and Executions

13-4 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

This includes information about code templates, Web services, and Code Template
mappings.

Table 13–1 describes the types of auditing available when you deploy Warehouse
Builder objects to different target locations.

List of Heterogeneous Repository Browser Reports
The content of the reports generated by Heterogeneous Repository Browser is based
on the corresponding reports produced by the Repository Browser. The reports are a
subset of the reports produced for an Oracle Database environment. The terms used in
the Heterogeneous Repository Browser reports are related to heterogeneous databases.
For example, the term Process is replaced by Task and Map by Step.

However, Heterogeneous Repository Browser reports contain lesser information than
the Repository Browser reports for an Oracle Database. The following Repository
Browser reports are available for the Heterogeneous Repository Browser:

■ Execution Schedule Report

■ Execution Summary Report

■ Map Execution Report

■ Map Start Report

■ Map Run Execution Report

■ Map Run Trace Report

■ Map Run File Report

■ Run Error Diagnostic Report

■ Management Reports

The following functionality is available through Heterogeneous Repository Browser
reports:

■ Purge execution audit data for a job

■ Purge error and trace data for a job

Viewing Audit Reports
Audit reports provide information about deployment and ETL jobs. Each time you
deploy an object or start a job, the details of these activities are stored in the
workspace. You can access this information from the following environments:

■ Control Center Manager

■ Repository Browser

Table 13–1 Types of Auditing for Different Deployment Location

Deployment Location
PL/SQL Runtime
Auditing

Heterogeneous
Runtime Auditing

Oracle Database, with a Warehouse
Builder installation

Yes Yes

Oracle Database, without Warehouse
Builder installation

No Yes

Heterogeneous database No Yes

OC4J server No Yes

Opening the Repository Browser

Auditing Deployments and Executions 13-5

The Repository Browser provides the information in the form of predefined reports.
The reports are displayed in your default Web browser. Note that the Repository
Browser Listener must be running.

Opening the Repository Browser
To access auditing data for objects deployed to heterogeneous databases or OC4J
servers, ensure that you install the required audit tables on the heterogeneous
database or OC4J server.

See "Installing the Heterogeneous Repository Browser on Heterogeneous Databases
and OC4J Servers" on page 13-3 for details about creating the audit tables.

Opening the Repository Browser is a multistep process:

1. Before you can open the Repository Browser, the Repository Browser Listener
must be started as described in "Managing the Repository Browser Listener" on
page 13-5.

2. When the Repository Browser Listener is running, you can start the Repository
Browser in a number of ways as described in "Accessing the Repository Browser"
on page 13-6.

3. The Repository Browser opens to the Login page where you log in to a workspace
as described in "Logging in to a Workspace" on page 13-6.

Managing the Repository Browser Listener
Before you can open the Repository Browser, you must start the Repository Browser
Listener.

Starting the Repository Browser Listener in Windows
Open a command prompt window and run startOwbbInst.bat located in the
OWB_ORACLE_HOME\owb\bin\win32 directory. You are prompted to set the
password for the OC4J administrator. Enter a password and press the Enter key. When
you are prompted to confirm the password, enter the same password again.

Stopping the Repository Browser Listener in Windows
Open a command prompt window and run stopOwbbInst.bat located in the
OWB_ORACLE_HOME\owb\bin\win32 directory. You are prompted to provide the
OC4J administrator password that you set while starting the Repository Browser
listener. Type the password and press the Enter key.

Starting the Repository Browser Listener in UNIX
Run ./startOwbbInst.sh located in the OWB_ORACLE_HOME/owb/bin/unix
directory. You are prompted to set the password for the OC4J administrator. Enter a
password and press the Enter key. When you are prompted to confirm the password,
enter the same password again.

Note: To open the Repository Browser, you must have the
ACCESS_PUBLICVIEW_BROWSER system privilege. You
automatically have this privilege if you are the owner of the
workspace that you want to browse. If you are not the owner of the
workspace, contact your database administrator to obtain this
privilege.

Opening the Repository Browser

13-6 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Stopping the Repository Browser Listener in UNIX
Run ./stopOWBBInst.sh located in the OWB_ORACLE_HOME/owb/bin/unix
directory. You are prompted to provide the OC4J administrator password that you set
while starting the Repository Browser listener. Type the password and press the Enter
key.

Accessing the Repository Browser
Once the Listener is running, you can start the Repository Browser in any one of the
following ways:

■ From the Start menu, select Programs, then the Warehouse Builder folder, and
then Warehouse Builder, Repository Browser.

■ From the Tools menu of the Design Center, select Repository Browser.

■ From within any web browser, type the location of the Repository Connection
page. For example, if the Repository Browser Listener is running on a computer
named owb_server, then typing the following address will start the Repository
Browser:

https://owb_server:8999/owbb/RABLogin.uix?mode=design

or

https://owb_server:8999/owbb/RABLogin.uix?mode=runtime

Regardless of which approach you take, once you start the Repository Browser, the
browser opens the Repository Connection page from which you log in to the
Repository Browser.

Logging in to a Workspace
To log in to a workspace, specify the connection information for the workspace that
you would like to access. If you do not know the connection information, contact your
database administrator.

You can connect to the Control Center either as the workspace owner or as a
workspace user. When you connect as the workspace owner, you can purge audit
details, validate locations, unregister locations, change service node settings, view user
data values, and start or stop execution jobs. When you connect as a workspace user
with administrative privileges, you can purge audit details, unregister locations,
change service node settings, view user data values related to your execution jobs, and
start or stop your execution jobs.

Once you log in to the Repository Browser, you can view any of the following reports:

■ Deployment

■ Execution

■ Management

Depending on the location of the auditing information, see the following sections:

■ Connecting to an Oracle Database

■ Connecting to a Heterogeneous Database or OC4J Server

Note: If you log in to a heterogeneous database or an OC4J server
using a data store, you can only view Execution reports.

Design Reports

Auditing Deployments and Executions 13-7

If you have access to more than one workspace, the Repository Browser displays a list
containing these workspaces. Select the workspace to which you want to connect.

Select Design Center to display the Repository Navigator that provides access to
reports about object design. Select Control Center to display the Control Center
Reports page that lists all the types of reports available through the Repository
Browser.

Connecting to an Oracle Database
User Name: Provide the name of the workspace owner or workspace user used to
connect to the workspace.

Password: Provide the password of the user specified in the User Name field.

Select the host address, port number, and service name: Choose this option to
connect to the workspace by providing the host name, port number, and service name
of the Oracle Database that contains the workspace.

Select the net service name: Choose this option to connect to the workspace by
providing the net service name associated with the Oracle Database that contains the
Warehouse Builder repository.

Connecting to a Heterogeneous Database or OC4J Server
Warehouse Builder enables you to access auditing information about deployments to
heterogeneous databases (such as SQL Server and DB2) and to external OC4J servers.
You use a data store to connect to the heterogeneous database or OC4J server. Contact
your database administrator for the user credentials to be used for the data store and
provide these in the User Name and Password fields.

Design Reports
The Repository Browser provides reports about the design of Oracle Warehouse
Builder workspaces. These reports include object summary reports, lineage reports,
and impact analysis.

Following are the list of design reports provided by the Repository Browser:

■ Object Properties

■ Object Reports

■ Object Lineage

■ Object Impact

Repository Navigator
Use the Repository Navigator page to search the metadata of a workspace and to
access metadata main properties, lineage, impact analysis, and a list of related reports
and Control Center reports for the workspace. The Repository Navigator contains the
following sections: Search, All, and Related Links.

Search
Search by the object type, or name, or both.

■ To search by object type, select the type of object that you want to search from the
Search By Type list. The search result is a list of all objects of this type.

Design Reports

13-8 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ To search by name, enter the name of the object in the Search field. You can search
for just the first character of the name, in which case the search result is a list of
objects whose names begin with that character.

Click Go to start your search.

The Repository Browser displays the results of the search in a new page called the
Workspace Objects Search page. You can also search for new objects from this page.

All
Contains a navigator tree for the workspace.

The use of the columns is described in Table 13–2.

Related Links
Click Control Center: Reports to open the Control Center Reports page from which
you can select a deployment, execution, or management report.

Refresh
Click Refresh to refresh your view of the workspace.

The tree collapses when you refresh the data. If you had navigated to or focused to a
specific area before refreshing, you can navigate to or focus on the desired node in the
tree.

Object Properties
The Object Properties page displays the properties of the object that you selected in the
Repository Navigator. The properties include the object name, business name,
validation status, creation timestamp, update timestamp, and the name of the user
who created and updated the object.

From this page you can go to the Object Reports, Object Lineage, or Object Impact
pages by clicking on the corresponding link on the left side of the page.

Table 13–2 Column Description for the Table in the All Section

Column Head Description:

Focus Click an icon in this column to change the focus of the tree.

Name The name of an item in the tree.

Click the plus (+) or minus (-) sign next to an item in the tree to expand
or collapse the tree.

Click the Name of the object to open the Object Properties page for that
object.

Reports Click an icon in this column to open the Object Reports page for the
related item.

The reports listed in the Objects Report page depend on the object for
which the reports are displayed. For example, clicking the Reports link
for a workspace displays summary reports regarding the workspace,
connectors, the Control Center, and locations. Clicking the Reports link
for a project displays the Detailed Project Report and Summary
Reports.

Lineage Click an icon in this column to open the Object Lineage page for the
related item.

Impact Click an icon in this column to open the Object Impact page for the
related item.

Design Reports

Auditing Deployments and Executions 13-9

Object Reports
The Object Reports page provides access to the predefined Design Center reports for
the object that you selected in the Repository Navigator. Use these reports to examine
your metadata.

Click a Report name to display a report.

The following types of reports are available:

■ Summary Reports

■ Detailed Reports

■ Implementation Reports

■ Impact Analysis Reports

Summary Reports
The type of information displayed in a summary report is determined by the object
selected. For example, a Table Summary Report lists all tables in the module. A
Materialized View Summary Report lists all materialized views in the module. Header
information that identifies the module is also displayed. Selecting the name of an item
displays the detailed report for that item.

Summary reports are available for the following objects:

Advanced queue
Collection
Connector
Control Center
Cube
Data Profile
Dimension
External Table
Flat File
Function
Location
Mapping
Materialized view
Nested table
Object Type
Package
Pluggable mapping
Procedure
Process flow
Sequence
Table function
Table
Varray
View

See Also:

■ Summary Reports on page 13-9

■ Detailed Reports on page 13-10

Design Reports

13-10 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Detailed Reports
The type of information displayed in a detailed report is determined by the object
selected. Detailed reports provide comprehensive information about an item. For
example, a Detailed Table Report lists information about the table columns, keys,
foreign keys, and physical configuration parameters.

Detailed reports are available for the following objects:

Advanced Queue
Alternative Sort Order
Application Server
Business Area
Collection
Configuration Template
Cube
Customer Application
DB2
DRDA
Data Profile
Data Rule
Dimension Drill Path
Dimension
Drill Path
Drill to Detail
Expert Module
Expert
Expert Task
External Table
File Module
File
Function
Gateway
Informix
Installation
Item Folder
Control Code Template
Function Code Template
Code Template Folder
Integration Code Template
Journal Code Template
Load Code Template
Oracle Target Code Template
Code Template Task
List of Values
MIV
Mapping Module
Mapping
Materialized View
Module
Nested Table
ODBC
Object Type
Oracle Business Intelligence Module
Oracle Discoverer Module
Package
Peoplesoft Application

Design Reports

Auditing Deployments and Executions 13-11

Pluggable Mapping
Procedure
Process Flow Module
Process Flow
Project
RDB Module
Record
Registered Function
SQL Server
Sequence
Siebel Application
Source Module
Sybase Module
Table Function
Table
Target Module
Teradata Module
Varray
View
Web Service Package

Implementation Reports
Implementation Reports can be run on dimensions and cubes. They provide
information about how physical objects are used to implement logical objects.

Impact Analysis Reports
Impact Analysis Reports list all items belonging to the subject of the report. The name
of the mapping and the name of the item that it is mapped to are also displayed. The
report provides a one-step impact analysis for all items related to the selected item.

For example, if you want a list of all the columns in a table that are used as sources in
any mappings, use this report.

For more information about Impact Analysis Reports, see "Object Impact" on
page 13-12.

Lineage Reports
Lineage Reports list items that are used as targets in a mapping. For more information
about lineage reports, see "Object Lineage" on page 13-11.

Object Lineage
The Object Lineage page displays the lineage diagram for the object that you selected
in Repository Navigator. A Lineage Diagram graphically displays all the objects and
transformations that are used to form the subject of the Diagram.

Lineage can be performed at either the object level or the item level. At the object level,
the diagram can contain tables, views, materialized views, dimensions, cubes, records,
and operators. At the item level the diagram can contain columns, measures, fields,
operator parameters, and level attributes. The Lineage Diagram is displayed with the
subject on the right side of the screen.

From the Object Lineage page you can go to the Object Properties, Object Reports, or
Object Impact pages by clicking on the corresponding link on the left side of the page.

Control Center Reports

13-12 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Object Impact
The Object Impact page displays the Impact Analysis diagram for the object that you
selected in the Repository Navigator. The Impact Analysis diagram is a graphical
representation of the objects on which the definition of the selected object depends. It
represents the potential impact of a change in the definition of the selected object. The
subject is displayed on the left side of the screen.

From this page you can go to the Object Reports, Object Properties, or Object Lineage
pages by clicking on the corresponding link on the left side of the page.

Lineage and Impact Analysis diagrams are created based on a Dependency Index. For
the data displayed in the diagram to be current, the index must be refreshed.

When you click the Impact Analysis icon for an object, the impact_objectID.jpeg file,
where objectID represents the object ID of the selected object, is generated and
displayed on the Browser page. Similarly, when you click the Lineage icon for an
object, the lineage_objectID.jpeg file is generated. For both lineage and impact
analysis, in addition to the .jpeg file, an .svg file with the same name is generated. If
you need to use these files, they are available in the following locations:

On Unix, these files are stored in the folder
OWB_ORACLE_HOME/owb/j2ee/applications/owbb/generated_images/.

On Windows, these files are stored in the folder
OWB_ORACLE_HOME\owb\j2ee\applications\owbb\generated_images\

Control Center Reports
The Control Center section of the Repository Browser provides the following types of
reports: Deployment Reports, Execution Reports, and Management Reports.

Deployment Reports
Top-level deployment reports are:

■ Deployment Schedule Reports that show basic attributes and display a node tree
giving details of all deployments in time order

■ Object Summary Reports that show basic attributes, and list deployed objects
(processes, maps and data objects) in type, name order with details of their latest
deployment

■ Locations Reports that show all the locations into which objects have been
deployed

From these top-level deployment reports, you can access Deployment Error Detail
Reports and Deployment Reports that supply details about the deployment of a
specific process flow, mapping, or data object.

Execution Reports
Top-level execution reports are:

■ Execution Schedule Reports that show basic attributes and display a node tree
giving details of all Process Runs (and top-level Map Runs) in time order

Note: You can access the Design Object Reports from any Control
Center reports by clicking the Design Repository: Navigator link on
the report page.

Control Center Reports

Auditing Deployments and Executions 13-13

■ Execution Summary Reports that show basic attributes and lists executed
processes (and top-level maps) in type, name order

From these top-level execution reports, you can access other reports that allow you to:

■ Monitor jobs using Execution Reports (sometimes called Execution Detail Reports)
that show the execution job details of a given Process Run or Map Run; Execution
Job Reports that show details of logical errors for a given target detected during
the execution of Map Runs; and Job Error Diagnostic Reports that show basic
details of runtime errors and target details, and, when possible, list source and
target column details.

■ Display diagnostics using Error Table Execution Reports that show details of
logical errors for a given target detected during the execution of Map Run; Trace
Reports that show details of source and target values plus data errors detected
during the execution of Map Runs; and Job File Reports that show basic Process or
Map attributes, list log and data files associated with the Process or Map Run, and
display the contents of the selected file.

■ Rerun jobs using Job Start Reports that show Process or Map identification
properties (including that latest deployment and latest execution dates), list all
execution parameters for the Process as specified by the latest deployment, and
assign parameter default values from the latest deployment specification.

Management Reports
The main Repository Browser management report is the Service Node Report that
enables you to manage service node information for the Oracle Real Application
Clusters (RAC) system.

Also, from a Locations Report (a top-level deployment report) you can access the
Location Validation Report that shows basic Location attributes, current Control
Center connection details, and current Location connection details.

Deployment Reports
Top-level deployment reports are Deployment Schedule Report, Object Summary
Report, and Locations Report. From these top-level deployment reports, you can
access Deployment Error Detail Reports and Deployment Reports that supply details
about the deployment of a specific process, map, or data object.

Deployment Schedule Report
The Deployment Schedule report is a top-level Control Center report that shows basic
attributes and displays a node tree giving details of all deployments in time order.

Use Deployment Schedule reports to view run details, and access Data Object, Map,
and Process Deployment reports.

The Deployment Schedule Report contains a node tree with the columns displayed in
Table 13–3.

Table 13–3 Deployment Schedule Report Contents

Column Name Description

Select Click to select this node in the deployment tree. This
functionality is used in conjunction with the purge facility on the
Deployment Schedule Report.

Focus Click the icon in this column to change the focus of the tree to
this node.

Control Center Reports

13-14 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

With a Deployment Schedule Report, you can also:

■ Expand deployments to show run details.

■ Filter deployments based on date range.

■ Set a date range for which you want to view deployments.

■ Refresh reports to show up-to-date deployment details.

■ If you have sufficient privileges, you can purge selected deployment audit details.

Location Deployment Schedule Report
A Location Deployment Schedule Report is similar in appearance to a Deployment
Schedule Report except that it only shows the deployments for a specific location and
does not offer you the opportunity to purge audit details.

Expand the node tree for the location to view the objects deployed to the location.
Click an object name to display the Deployment Report for the object. For objects
whose deployment failed, use the link in the Related Information column to access the
Deployment Error Detail Report.

Locations Report
This deployment report shows all Locations into which objects have been deployed.

Within this report, you can:

■ Sort Locations on name and latest deployment time.

■ If you have sufficient privileges, you can unregister selected Locations.

Name A tree that represents all of the items in this deployment report.
To expand a node, click its plus icon (+). To collapse a node, click
its minus icon (-).

Click a location name to display the Location Deployment
Schedule Report. Click an object name to display the
Deployment Report for the object.

Dep A number that identifies a deployment run

Type The type of item

Obj Status The status of the object

Date The date of deployment

Dep Status The status of the deployment. These include the following:

■ Complete: Indicates that the deployment is complete.

■ Busy: Indicates that the deployment is in progress.

■ Ready: Indicates that the job has just started or is about to
end.

Note: If the deployment status shows a Ready status for a very
long time, use the script deactivate_deployment.sql
located in the OWB_ORACLE_HOME/owb/rtp/sql folder to
deactivate the status of the deployment.

Related Information Other related information including a link to a related
Deployment Error Detail Report, if appropriate

Table 13–3 (Cont.) Deployment Schedule Report Contents

Column Name Description

Control Center Reports

Auditing Deployments and Executions 13-15

■ If you have sufficient privileges and a link appears in the Validation column, you
can open a related Location Validation Report to test and update connection
details for a Location.

The Locations Report contains the following three sections: Control Center
Connection, Logical Details, and Physical Details.

Control Center Connection This section displays the service description for the
Control Center.

Logical Details This section displays details for all locations such as name, type,
service description, date of the last deployment to this location, and the user name
used for deployment. Click a location name to display the Object Summary Report for
that location.

To unregister locations, select the locations by clicking the Select column to the right of
the locations and then click Unregister Selected Locations.

Physical Details This section contains a node tree that displays the host name, port,
and service name associated with the Control Center, and the list of locations
belonging to the Control Center.

Object Summary Report
An Object Summary Report shows basic attributes and lists deployed objects (process
flows, mappings, and data objects) in type/name order with details of their latest
deployment.

Click an object name to display the Deployment Report for the selected object. Click a
location name to display the Location Object Summary Report for the location.

Within this report, you can:

■ Sort execution runs on name, type, location, latest deployment time, object status

■ Filter objects on type and status

Location Object Summary Report
A Location Object Summary Report lists all the objects (process flows, mappings, and
data objects) deployed to the selected location. The details provided include the object
name, object type, latest deployment date, and object status.

This report is similar to an Object Summary Report except that it also includes a
Location parameters section. The Location Parameters section displays location details
such as host name, port number, service name, schema name, FTP user name, and
database link name. When you have sufficient privileges, you can update the Web
Server Base setting, if applicable.

Click an object name to display the Deployment Report for the selected object.

Deployment Report
This deployment report supplies details about the deployment of a specific process
flow, mapping, or data object.

When the item is a Process Flow, this report shows basic process flow attributes and
lists all deployments of the process flows and its subprocesses in time order. When the
item is a Mapping, this report shows basic mapping attributes and lists all
deployments in time order. When the item is a Data Object, this report shows basic

Control Center Reports

13-16 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

data object attributes and lists all deployments of the data object and its second-class
objects in time order.

Click the link in the Deployment Message section to view details of errors that
occurred during deployment.

Within this report you can:

■ Sort deployments on deployment time

■ Filter deployments on deployment status

Deployment Error Detail Report
A Deployment Error Detail Report shows details of a specific deployment error and
lists all the messages for the deployment error.

Within this report, you can:

■ Sort the error messages by message number

■ Filter the error messages by severity

Execution Reports
The top-level execution reports are Execution Schedule Reports and Execution
Summary Reports.

From these top-level execution reports, you can access Error Table Execution Reports,
Job Error Diagnostic Reports, Trace Reports, Execution Job Reports, Job File Reports,
Job Start Reports, and Execution Reports.

Execution Schedule Report
This execution report shows basic attributes and displays a node tree giving details of
all Process Flow executions and top-level Mapping executions in time order. The
details for each execution include the name, job ID, type, location name, execution
date, and execution status.

Click an object name to display the Execution Report for the object. The Related
Information column provides a link to the Execution Job Report. If you have sufficient
privileges, you can purge execution audit details for objects, by selecting the objects
and clicking Purge Selected Audit Details.

Within this report, you can:

■ Focus on details for one Process Run.

■ Expand the Process Run to show activity run details.

■ Filter Process Runs on execution name, execution status and date range (for
example, to display only runs with "busy" status).

■ Use the Calendar icon for date picker available to set the start and end of date
range.

■ Refresh the report to show up-to-date execution run details.

■ If you have sufficient privileges, you can purge selected Process Run execution
audit details.

Control Center Reports

Auditing Deployments and Executions 13-17

Execution Summary Report
This execution report lists all the Process Flow and Mapping executions in type, name
order. You can access the Execution Job Report by clicking the link in the Related
Information column.

Within the Execution Summary Report, you can:

■ Sort execution runs on name, type, latest execution time, and execution status

■ Filter Processes (and Maps) on type and execution status

Execution Report
An execution report (sometimes called an Execution Detail Report) shows all of the
execution run details of a given Process, a given Map, or all of the Map Runs for which
a given Data Object is a source or target.

When the Execution Report is for a Process or Map, the report shows basic Process or
Map attributes and lists the Process or Map Runs in time order.

Click the Start link at the top of this page to display the Job Start Report.

Within an Execution Report, you can:

■ Sort the Process or Map Runs on execution start time

■ Hide or show a Process or Map Run to show activity run details

■ Filter Process or Map Runs on execution status and execution severity

Error Table Execution Report
This execution report shows details of logical errors for a given target detected during
the execution of Map Runs.

Within this report, you can:

■ Sort logical errors on map type, map name, execution start time, rule type, and
rule usage.

■ Filter logical errors on map name, rule type and rule usage.

■ If you have sufficient privileges, you can use the Purge Error Table to remove
selected logical errors.

Execution Job Report
An Execution Job Report shows detailed information about the execution of either a
Process Run or a Map Run.

Execution Job reports contain the following sections: Execution Details, Execution
Parameters, Step Details, Error Messages, Logical Errors, and Audit Details.

Execution Job Report for a Process Run
When the Execution Job Report is for a Process Run, it shows basic Process Run
execution details, lists execution parameters, lists activity (Map and Subprocess)
details in time order, and lists error messages.

Within an Execution Job Report for a Process Run, you can:

■ Hide or show activity details to show Map Run details

■ Refresh the report to show up-to-date execution run details

■ Terminate the Process Run

Control Center Reports

13-18 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Execution Job Report for a Map Run
When the Execution Job Report is for a Map Run, it shows basic Map Run execution
details, including source and target Data Objects, lists execution parameters, lists map
step details in time order, lists error messages, lists logical error details, and displays
the contents of the SQL Loader log file (if applicable).

Within an Execution Job Report for a Map Run, you can:

■ Hide or show map step details, including source and target Data Objects

■ Refresh the report to show up-to-date execution run details

■ Sort logical errors on error table, map step, rule type, rule usage

■ Terminate the Map Run

■ If your role has sufficient privileges, you can purge Error and Trace audit details
for the Map Run and purge the Error Table to remove selected logical errors

Trace Report
This execution report, also called the Map Run Trace Report, shows details of source
and target values plus data errors detected during the execution of Map Runs.

Within this report, you can:

■ Sort files on rowkey, table name.

■ Filter diagnostic trace on execution severity and source or target.

Job File Report
This execution report shows basic Process Flow or Mapping attributes, lists log and
data files created by external processes during the Process Flow or Map execution, and
displays the contents of the selected file.

Within a Job File Report, you can:

■ Sort files on file type, creation time.

■ View the contents of any selected file.

Job Start Report
This execution report shows Process Flow or executable Map identification properties,
(including latest deployment and latest execution dates), lists all execution parameters
for the Process or executable Map as specified by the latest deployment, and assigns
parameter default values from the latest deployment specification.

Within a Job Start Report, you can:

■ Sort execution parameters on name, category

■ Change values of any input parameter where permitted

■ Change the default Execution Name as necessary

■ Reset all parameter settings to their default values

Note: Trace diagnostics are available when the Map Run is executed
with a particular setting of the Audit Level runtime parameter. Use
this trace facility only if required, because it can generate a large
volume of audit data.

Control Center Reports

Auditing Deployments and Executions 13-19

■ Apply basic validation to parameter values

■ Start the Process or Map Run, so that it is scheduled for execution immediately

■ Navigate to the Deployment Report for latest deployment details of Process or
Map

■ Navigate to the Execution Run Report for the latest execution of current Process or
Map

Job Error Diagnostic Report
This execution report (also called the Run Error Diagnostic Report) displays diagnostic
information gathered for a given runtime error during a process flow or mapping
execution. It also shows runtime error details, target details, and lists source and target
column details, where possible. Note that some column values are displayed only if
your role has the appropriate privilege.

Within this report, you can sort column details on source or target category, source or
target name, rowkey, and column name.

Management Reports
The top-level management report is the Service Node Report. From this report you can
open a Location Validation Report.

Service Node Report
This management report displays and enables you to manage service node
information for the Oracle Real Application Clusters (RAC) system. Specifically, it
performs the following functions:

■ Shows the basic attributes

■ Lists details and status of all service nodes currently used in the RAC system,
generated from the underlying system tables

■ Lists service nodes available to the RAC system that are currently not in use

■ Shows the net service name to be used to access the runtime repository

Within a Service Node Report, you can:

■ Sort service nodes on instance number, instance name, or runtime version

■ Update an instance number when the node is not enabled or active

■ Set or unset an enabled setting. (Note that you can never change an active setting
as it is maintained by the RAC system.

■ Remove selected service nodes that are not enabled or active from being used by
the RAC system

■ Add a node to the service, from the list of available nodes

■ Set the runtime repository net service name

■ Refresh report to show up-to-date service node details

(Note that you can add, remove or update node details only if you have sufficient
privileges.)

Common Repository Browser Tasks

13-20 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Location Validation Report
This management report shows basic Location attributes such as name and type,
current Control Center connection details, and current Location connection details.

Within a Location Validation Report, you can:

■ Test the Location connection by clicking Test Connection

■ Update Location connection details by clicking Update Details

Common Repository Browser Tasks
The following scenarios are examples of some typical actions performed using the
Repository Browser:

■ Identifying Recently-Run Processes

■ Identifying Why a Process Run Failed

■ Comparing Process Runs

■ Discovering Why a Map Run Gave Unexpected Results

■ Identifying Recently-Made Deployments

■ Identifying the Data Objects That Are Deployed to a Specific Location

■ Identifying the Data Objects That Are Deployed to a Specific Location

■ Identifying the Map Runs that Use a Specific Deployed Data Object

■ Discovering the Default DeploymentTime Settings of a Deployed Process

■ Rerunning a Process

■ Monitoring a Process Run

■ Terminating a Process Run

■ Removing the Execution Audit Details for a Process

■ Removing Old Deployment Audit details

■ Viewing Error Tables Created as a Result of Data Auditor Execution

■ Unregistering a Location

■ Updating Location Connection Details for a Changed Database Environment

■ Updating Service Node Details in a Changing RAC Environment

Identifying Recently-Run Processes
1. Open the Execution Schedule Report to see the latest Process runs.

2. Filter the displayed information by using the execution name, execution status,
and date range, as required.

3. Note any Process runs that are reported as having errors or not having completed.

4. Expand the tree structure for any Process run identified in Step 3 to see details of
its activities (that is, any of its subprocesses and maps).

Identifying Why a Process Run Failed
1. Open the Execution Schedule Report and note the Process run that is marked as

having errors.

Common Repository Browser Tasks

Auditing Deployments and Executions 13-21

2. Click the Run Execution Report link, which opens a Execution Report that
provides details of the Process run.

3. Note any Map runs that are reported as having errors or not having completed.

4. Click the Run Execution Report link, which opens an Execution Report that
provides details of any Map run identified in Step 3.

5. For any process-level or map-level error messages, click the Run Error Diagnostic
Report link, which opens a Job Error Diagnostic Report that displays more details
of the error, including source data values.

Comparing Process Runs
1. Open the Execution Summary Report to see a list of all Processes.

2. Click the Process name to see its Execution Report.

3. Compare the results of previous runs, using the hide/show feature to reveal
further details as required.

Discovering Why a Map Run Gave Unexpected Results
1. Open the Execution Schedule Report and note the Process Run that contains the

required Map Run.

2. Click the Run Execution Report link that opens an Execution Report that provides
details of the Process Run.

3. Click the Run Execution Report link that opens an Execution Report that provides
details of the Map Run.

4. If the Map Run had the Audit Level runtime parameter set to Complete, select
the Trace tab link to see its Trace Report.

5. Filter trace lines by error and source or target as required, and note any
unexpected source or target actions.

6. For error messages, click the Run Error Diagnostic Report link that opens a Job
Error Diagnostic Report that displays more details of the error, including source
data values.

7. Click Purge Error and Trace Lines to remove all details or errors and trace for this
Map Run, if they are no longer required.

If purging, a confirmation screen will be shown, requesting that the action be
confirmed.

Identifying Recently-Made Deployments
1. Open the Deployment Schedule Report to see the latest deployments.

2. Filter the displayed information by using the date range, as required.

Note any deployments that are reported as having errors or not having completed.

3. Expand the tree structure for any deployment to see details of its components (that
is, units and deployed objects).

4. For error messages, click the Deployment Error Detail Report link to display the
related Deployment Error Detail Report.

Common Repository Browser Tasks

13-22 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Identifying the Data Objects That Are Deployed to a Specific Location
1. Open the Locations Report to see the registered Locations.

2. Click the Location name link to see its Object Summary Report.

3. Filter the displayed information by using object type and object status, as required.

4. Click the Name link for a Data Object to see its Deployment Report.

Details are shown for all deployments of this Data Object and its second-class Data
Objects.

Identifying the Map Runs that Use a Specific Deployed Data Object
1. Open the Object Summary Report to see a list of all deployed objects.

2. Filter the information shown by using object type and object status as required.

3. In the Name column, click the link representing an object to view the Deployment
Report for this object.

4. In the Available Reports section at the top right, click Execution to display the
Execution Report for the object. This report contains a summary of how and when
the object was used in a Map Run.

5. In the Execution Details section of the Execution report, select Execution Job
Report to display the Execution Job Report that contains details of the mapping or
process flow execution.

Discovering the Default DeploymentTime Settings of a Deployed Process
1. Open the Object Summary Report to see all deployed Processes.

2. In the Name column, click a process flow to display its Deployment Report.

3. In the Available Reports section, click Start to display the Job Start Report for the
process.

The execution parameters have the default deployment time settings.

4. In the Execution Parameters section, change any of the input parameter values, as
required.

5. Click Start Execution to execute the new process run.

Rerunning a Process
1. Open the Execution Schedule Report to see list of all Process Runs.

2. In the Execution Details section, click the mapping or process flow name in the
Name column to display the Execution Report for the selected object.

3. In the Available Reports section, click Start to display the Job Start Report for the
selected object.

The execution parameters have the default deployment-time settings.

4. Change any of the input parameter values, as required.

5. Click Start Execution to execute a new Process Run.

Monitoring a Process Run
1. Open the Execution Schedule Report to see the executing Process Runs.

Common Repository Browser Tasks

Auditing Deployments and Executions 13-23

2. If necessary, use the Execution Status filter to display only currently executing
Process Runs.

3. Click Refresh as required, to follow the progress of the Process Runs.

4. In the Name column, click a process flow name to the display the Execution
Report containing the details of a given Process Run.

5. Click Refresh as required, to follow the progress of the Process Run.

6. For Process Runs known to the Workflow system, click the Related information
link to switch across to the Oracle Workflow Monitor and follow its progress in a
graphical display. Use the browser's Back button to return to the current report
page.

Terminating a Process Run
1. Open the Execution Schedule Report to see the executing Process Runs.

2. In the Name column, click a process flow name to display the Execution Report for
the process run.

3. Click Stop to terminate the given Process Run.

4. Click Refresh as required, to follow the progress of the Process Run as its
execution is terminated.

Removing the Execution Audit Details for a Process
1. Open the Execution Schedule Report to see the latest Process Runs.

2. Filter the displayed information by using an execution name.

3. Select all the executions that are to be removed, and click Purge Selected Audit
Details.

A confirmation screen is shown, requesting you to confirm the action.

Removing Old Deployment Audit details
1. Open the Deployment Schedule Report to see the latest deployments.

2. Filter the displayed information by using the date range.

3. Select all the deployments that are to be removed, and click Purge Selected Audit
Details.

A confirmation screen is shown, requesting you to confirm the action.

Viewing Error Tables Created as a Result of Data Auditor Execution
1. Grant privileges to the Repository Browser on the error table.

See "Granting Privileges on Error Tables" on page 20-9.

2. Open the Execution Summary Report or Execution Schedule Report to see a list of
all the Processes.

3. Click the link in the Related Information column corresponding to the process
flow that contained the data auditor to display the Execution Job Report for the
process flow.

4. Click the link in the Related Information column corresponding to the data auditor
activity to display the Execution Job Report for the activity.

Common Repository Browser Tasks

13-24 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

5. Data that violated the data auditor constraints is listed in the Logical Errors table.
Click the link in the Error Table column to display the Execution Report for the
error table.

If you have sufficient privileges, you can use the Execution Report for an error table to
purge data from that error table.

Unregistering a Location
1. Open the Locations Report to see the registered Locations.

2. Select the Location that is to be unregistered, and click Unregister Selected
Locations.

A confirmation screen is shown, requesting you to confirm the action.

Updating Location Connection Details for a Changed Database Environment
1. Open the Locations Report to see the Locations.

2. Select the location that is to be validated by clicking the Select column to the right
of that location. Click the link in the Validation column corresponding to the
selected location.

The Location Validation Report is displayed, showing the connection details of the
Location and the Control Center

3. Change the service description values, as necessary, and click Update Details.

4. In the Location Status section, click Get Status to validate the current connection
settings for the Location.

Note that the results of Location connection tests are not maintained beyond the
current session.

Updating Service Node Details in a Changing RAC Environment
1. Open the Service Node Report to see the settings that currently describe the RAC

system.

2. Update details and usage of the Service Nodes, then click Update Node Details
for the requested changes to be made.

3. Add or remove Service Nodes, as required.

4. Click Refresh to see the current settings of the RAC system.

5. Set the Net Service Name by which the Control Center may be accessed, as
necessary.

Managing Metadata Dependencies 14-1

14
Managing Metadata Dependencies

The Metadata Dependency Manager enables you to detect and resolve the impact of
the changes made to the object definitions or the metadata in the workspace.

This chapter contains the following topics:

■ About the Metadata Dependency Manager

■ Opening an LIA Diagram

■ Managing and Exploring Objects in an LIA Diagram

■ Making Changes to Design Metadata Using Automatic Change Propagation

About the Metadata Dependency Manager
The Metadata Dependency Manager provides the interface through which you can
explore dependencies among data objects, as represented by the metadata in your
Oracle Warehouse Builder repository. The Metadata Dependency Manager presents
dependencies in the form of interactive lineage and impact diagrams. A lineage
diagram traces the data flows for an object back to the sources and displays all objects
along those paths. An impact diagram identifies all the objects that are derived from
the selected object.

This type of information can help you in many circumstances such as the following:

■ Starting from a target object, such as a dimension, cube, or business intelligence
tool report, identify the columns in each data source that are used in computing
the results in the target.

■ Assess the impact of design changes in an object such as a source table or a
pluggable mapping that is used throughout a project.

■ Propagate a design change, such as a change to the data type of a source table
column, to downstream objects in the design.

Using end-to-end data lineage and impact analysis reduces project risk by allowing
better planning for design changes, faster identification of unanticipated impacts when
source systems change, and enabling more effective auditing of your business
intelligence results, master data or other data integration processes.

Example: Lineage and Impact Analysis (LIA)
The metadata from sources such as files, databases, and applications can change even
after the design and implementation of a data integration system. A change in the
source metadata implies a corresponding impact in your Warehouse Builder
implementation. Warehouse Builder enables you to reimport the modified source

About the Metadata Dependency Manager

14-2 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

definitions into the workspace. However, your original warehouse design may no
longer remain valid with the reimported definitions, and you may need to make
changes to the design and fix the inconsistencies.

You need to first find out how the warehouse design is affected by the changes in the
source and then determine all the design objects that are dependent upon the sources.
Next, you must synchronize the metadata so that all the affected design objects are
updated to reflect the changes in the source. After this process is complete, you can
redeploy the updated design to rebuild your data warehouse and synchronize the
data.

For example, a company retrieves source data for a data warehouse from a flat file
named CUSTOMERS. The CUSTOMERS flat file and a downstream staging table are
referenced from multiple mappings in the ETL design, and ultimately loaded into a
cube and an instance of Oracle Discoverer used for reporting. Records in CUSTOMERS
include a numeric CUSTOMER_ID column, a REGION column which can take values
US, EMEA, APAC or OTHER, Records from CUSTOMERS are also fed to a customer master
database.

Over time, the following issues arise:

■ The owners of the customer master data discover that a required column GROUP_
ID sometimes contains a NULL value.

■ The marketing department questions the breakdown of customers and sales by
region as shown in reports generated by Oracle Discoverer.

■ The CUSTOMER_ID column which previously only contained numeric values now
may include letters and numbers.

■ The existing CUSTOMER_NAME column, which was previously 50 characters, is
expanded to 100 characters.

■ A pluggable mapping referenced in several other mappings in the design is
updated to reject rows with NULL values for the GROUP_ID column.

Changes to the definition of CUSTOMERS can potentially affect all of the objects
downstream of that flat file. Errors in the customer master data could be originating in
source data or could be caused by a bug in a ETL mapping. The questions about the
Oracle Discoverer reports can be resolved if the origin of the region information for
customers can be documented.

Without data lineage and impact analysis based on Warehouse Builder repository
metadata, developers responsible for the changes must manually review the entire
data integration design, including staging tables, ODS tables, dimensions, cubes,
Discoverer objects and the master data. Design changes in the source data require
manual update of any ETL mappings used to load those objects. Marketing’s
confidence in the BI reports depends upon the developers’ thorough manual review of
the design.

The metadata dependency management, data lineage and impact analysis features of
Warehouse Builder simplifies these tasks:

■ The Metadata Dependency Manager automates tracing the lineage of the bad
columns in the customer master data.

■ The Discoverer design can be validated because the origin of the region data used
in the reports is documented and can be proven.

■ ETL mappings and targets that may be affected by the addition of non-numeric
values to the CUSTOMER_ID column can be identified automatically.

About the Metadata Dependency Manager

Managing Metadata Dependencies 14-3

■ Target objects and ETL mappings throughout the design that are affected by the
change to the CUSTOMER_NAME column definition can be automatically identified
and even updated.

About Lineage and Impact Analysis and Metadata Dependency Diagrams
Metadata dependency diagrams show the relationships among objects managed by
Warehouse Builder. The diagrams show both relationships of structure (for example, a
primary key and foreign key relationship between columns in two tables) and data
relationships (for example, the flow of data from the CUSTOMERS flat file to the
CUSTOMERS_STAGE staging table).

Diagrams can be read to discover data lineage and impact analysis information. A
diagram can be read from left to right to discover impact analysis information (that is,
which objects are affected by a given object or column) or from right to left to discover
data lineage information (that is, to identify the source of data in an output object).

For example, you might have a mapping that extracts data from a file and loads it into
a table by way of an external table. This is the relationship:

flat_file > external_table > table

Figure 14–1 shows a lineage diagram of an external table named ADDRESS_EXT_TAB.
ADDRESS_CSV is a flat file, and it is part of the lineage of ADDRESS_EXT_TAB. Thus,
any change to ADDRESS_CSV will impact ADDRESS_EXT_TAB.

Figure 14–1 Lineage Analysis Diagram for ADDRESS_EXT_TABLE

Figure 14–2 shows an impact diagram of ADDRESS_EXT_TAB, which includes the
ADDRESS_TABLE. Any change to ADDRESS_EXT_TAB will impact ADDRESS_TABLE.
ADDRESS_EXT_TAB is part of the lineage of ADDRESS_TABLE.

Figure 14–2 Impact Analysis Diagram for ADDRESS_EXT_TABLE

You can expand the diagram to include the lineage and the impact of an object by
clicking the plus signs (+) on either side of the object icon in the diagram, as shown in
Figure 14–3.

Note: The diagrams include the DEFAULT_CONFIGURATION object
as well as the source and target data objects, because the selected
configuration can affect how data is moved from sources to targets.

Opening an LIA Diagram

14-4 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Figure 14–3 Lineage and Impact Analysis Diagram

Opening an LIA Diagram
You can generate an LIA diagram from the Projects Navigator in the Design Center.

To generate an LIA diagram from the Design Center:
1. Expand the Projects Navigator until you see the object that you want to analyze.

2. Right-click the object and select Lineage or Impact.

The Lineage or Impact tab is displayed, showing either the lineage of the object
(one level of objects to the left of the selected object) or its impacts (one level of
objects to the right of the selected object).

The Lineage and Impact commands are also available from the View menu.

Managing and Exploring Objects in an LIA Diagram
Your initial selection of an object and a diagram type simply determine the initial
starting point and the direction that the diagram branches from that object. You can
modify an LIA diagram in the following ways:

■ Drag-and-drop another object onto the diagram to view its dependencies along
with the other objects.

■ Click the plus (+) and minus (-) signs next to an object icon to expand or collapse a
branch of the diagram.

■ Remove the selected objects from the canvas. From the Graph menu, select Hide
Selected Object to remove objects from the canvas. To restore the hidden objects,
select Refresh from the Graph menu.

■ Use the grouping tool to collapse a section of the diagram into a single icon, as
described in "Using Groups in an LIA Diagram" on page 14-5.

■ Double-click an object to display its attributes, as described in "Displaying an
Object's Attributes" on page 14-6.

■ Right-click an object to display the following menu options: Open Editor, Show
Full Lineage, and Show Full Impact.

The Open Editor option is described in "Making Changes to Design Metadata
Using Automatic Change Propagation" on page 14-7.

The Show Full Lineage and Show Full Impact options are described "Exploring
Object Lineage and Impact in an LIA Diagram" on page 14-4.

Exploring Object Lineage and Impact in an LIA Diagram
Use the following options in the Graph menu to explore the lineage and impact
analysis information in LIA diagrams:

Managing and Exploring Objects in an LIA Diagram

Managing Metadata Dependencies 14-5

■ Show Full Impact: Expands nodes to show all impacts in the diagram of the
selected object.

■ Show Full Lineage: Generates the full lineage diagram of the selected object.

■ Show Lineage: Displays the next level of objects in the lineage diagram of the
selected object.

■ Hide Lineage: Hides the lineage of the selected object.

■ Show Impact: Displays the next level of objects in the impact diagram of the
selected object.

■ Hide Impact: Hides all impacts of the selected object.

Using Find to Search for Objects in an LIA Diagram
You can search for objects in the lineage and impact analysis diagram, as with other
editors within Warehouse Builder. Searching forward follows the impact analysis from
left to right, and searching backwards follows the data lineage from right to left. The
diagram moves so that the current matching node is at the center of the diagram. You
can also highlight all matches for a search in the diagram.

To search within a Lineage and Impact Analysis (LIA) diagram:
1. From the Search menu, select Find.

The Find dialog box is displayed.

2. In the Find field, enter the name of the object you want to find.

3. To use additional options while searching for objects, click Show Advanced.

The advanced search options are displayed in the Find dialog box.

4. (Optional) Specify advanced search options as described in the following sections:

■ "Specifying the Search Criteria" on page 5-46

■ "Match Options" on page 5-46

■ "Find Options" on page 5-46

■ "Scope" on page 5-47

■ "Direction" on page 5-47

These sections discuss performing advanced search for mappings and pluggable
mappings. However, the functionality and the processes are the same when you
perform advanced search in an LIA diagram.

5. Click OK.

Using Groups in an LIA Diagram
Groups enable you to organize the objects in a complex diagram so that they are easier
to locate and edit. By reducing the number of objects in a diagram, you can more easily
focus on the objects currently of interest.

To create a group:
1. Select a group of objects by dragging and dropping a box around them.

2. Click the Group Selected Objects icon in the toolbar.

The Group Selected Data Objects dialog box is displayed.

Managing and Exploring Objects in an LIA Diagram

14-6 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

3. Enter a name for the group.

The selected objects are collapsed into a single folder icon.

To display the individual objects in a group, double-click the folder icon. You can work
on these objects in the same way as ungrouped objects.

To ungroup the objects, select the group and click the Ungroup Selected Object icon in
the toolbar.

Managing Groups in an LIA Diagram
The following operations are available for working with groups in an LIA diagram.

■ Group Selected Objects: Creates a group containing the selected objects on the
canvas. A folder icon represents all objects in the group. Grouping enables you to
reduce clutter on the canvas when there are many objects. Double-click the icon to
display the individual objects in the group.

■ Ungroup Selected Objects: Eliminates the selected group so that all objects are
represented individually. Select the folder icon you want to ungroup and click
Ungroup Selected Folders.

■ Group By Module: Automatically groups all objects by module. A folder icon
represents the module and all objects in the module. To group by module, select
Group By Module from the Graph menu.

Double-click the icon to display the individual objects in the group.

■ Ungroup Modules: Eliminates the module groups so that all objects are
represented individually. To ungroup modules, select Ungroup Modules from the
Graph menu.

Displaying an Object's Attributes
You can expand an object icon in a diagram so that you can examine its attributes. To
expand an icon, double-click it. To reduce it to an icon, click the down arrow in the
upper-right corner.

To generate an LIA diagram for an attribute:
1. Generate an LIA diagram for an object.

2. Double-click the icons to display their attributes.

3. Right-click an attribute and select Show Lineage or Show Impact.

The attributes along the lineage or impact path for the selected attribute are
highlighted in a different color.

You can use this detailed information for auditing or when planning to propagate
changes.

Figure 14–4 shows two expanded icons whose column attributes are connected by a
mapping.

Making Changes to Design Metadata Using Automatic Change Propagation

Managing Metadata Dependencies 14-7

Figure 14–4 Expanded Icons in an LIA Diagram

Exporting and Printing LIA Diagrams
LIA diagrams can be exported to SVG or JPEG formats, or printed using commands
under the File menu.

■ Export Diagram: Exports the active diagram to the local file system as an SVG or
JPEG file. To export an LIA diagram, select Export, then Diagram from the File
menu.

■ Print Options: Provides Print Setup, Preview, and Print options for printing the
diagram.

Making Changes to Design Metadata Using Automatic Change
Propagation

The LIA diagrams identify all of the objects that may be invalidated by a change to one
or more objects. With this knowledge, you can examine the affected objects and
modify them as necessary. Many changes can automatically be propagated to
downstream objects in the Metadata Dependency Manager.

To manually modify objects:
1. In the Dependency Manager, navigate to the first object to be changed. For

example, navigate to a source table.

2. Right-click the object icon in a diagram and select Open Editor.

Warehouse Builder opens the editing tool for the object. For example, if you
selected a table, then Warehouse Builder opens the Data Object Editor.

3. Make the necessary changes in the editing tool and then save your changes.

4. Repeat these steps for all objects identified in the LIA diagram as needing change.

In the case that only a few objects are affected by a change, then you may prefer to
modify the object manually. However, if many objects are affected, you can use
automated change propagation to save time.

To propagate metadata changes using Dependency Manager:
1. Double-click the object icon in a diagram.

For example, double-click on the icon for a source table.

2. Right-click the metadata that you want to change, and select Propagate Change.

Making Changes to Design Metadata Using Automatic Change Propagation

14-8 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

For example, right-click a column in the table.

3. Change the attributes as described in "Automated Change Propagation in the
Dependency Manager" on page 14-8.

Automated Change Propagation in the Dependency Manager
In the Propagate Change dialog box, you specify metadata changes which Warehouse
Builder propagates to all dependent objects, as indicated in the Lineage Impact
Analysis diagram. This dialog box displays metadata details under the following
columns: Propagate, Attribute, Existing Value, and New Value.

Figure 14–5 displays the Propagate change dialog box.

Figure 14–5 Propagate Change Dialog Box

The Attribute column lists the metadata attribute, such as name, business name, and
data type. The Existing Value column lists the current value of the attribute and the
New Value lists the changed value discovered by the Metadata Dependency Manager.

Select Propagate for each attribute that you want to change. For example, if you want
to change the data type and length for a column, ensure that you select Propagate to
the left of these attributes.

In the New Value field, you can enter the desired values for each attribute. Click OK
after selecting the changes to propagate.

Troubleshooting and Error Handling for ETL Designs 15-1

15
Troubleshooting and Error Handling for ETL

Designs

This chapter discusses troubleshooting ETL and describes the error logs in Oracle
Warehouse Builder. It also discusses error handling techniques for ETL such as DML
error logging.

This chapter contains the following topics:

■ Inspecting Error Logs in Oracle Warehouse Builder

■ Determining the Operators that Caused Errors in Mappings

■ Using DML Error Logging

■ Troubleshooting the ETL Process

 Inspecting Error Logs in Oracle Warehouse Builder
While working with Oracle Warehouse Builder, the designers need to access log files
and check on different types of errors. This section outlines all the different types of
error messages that are logged by Warehouse Builder and how to access them.

Warehouse Builder logs the following types of errors when you perform different
operations:

■ Troubleshooting Validation Errors on page 15-1

■ Troubleshooting Generation Errors on page 15-2

■ Troubleshooting Deployment and Execution Errors on page 15-3

■ Troubleshooting Name and Address Server Errors on page 15-4

This section shows you how to retrieve error logs after performing different operations
in Warehouse Builder.

Troubleshooting Validation Errors
In Warehouse Builder, you can validate all objects by selecting the objects from the
Projects Navigator and then selecting Validate from the File menu. After the
validation is complete, the validation messages are displayed in the Log window.

Figure 15–1 displays the validation messages in a new tab of the Message Log window.

Inspecting Error Logs in Oracle Warehouse Builder

15-2 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Figure 15–1 Validation Error Messages

You can also validate mappings from the Mapping Editor by selecting Mapping, then
Validate. The validation messages and errors are displayed in the Validation Results
window.

In the validation results, expand the node displaying the object name and then the
Validation node. The validation errors, if any are displayed. Double-click a validation
message to display the detailed error message in a message editor window.

Warehouse Builder saves the last validation messages for each previously validated
object. You can access these messages at any time by selecting the object from the
console tree in the Projects Navigator, selecting View from the menu bar, and then
clicking Validation Messages. The messages are displayed in the Validation Results
window.

Troubleshooting Generation Errors
After you generate scripts for Warehouse Builder objects, the Log window displays the
generation results and errors. Double-click an error message in the Log window to
display a message editor that enables you to save the errors to your local system.

Figure 15–2 displays the Generation Results window.

Inspecting Error Logs in Oracle Warehouse Builder

Troubleshooting and Error Handling for ETL Designs 15-3

Figure 15–2 Generation Results Window

Troubleshooting Deployment and Execution Errors
You can store execution or deployment error and warning message logs on your local
system by specifying a location for them. In the Projects Navigator, select the project.
Then from the Tools menu, select Preferences. In the object tree on the left of the
Preferences dialog box, expand the OWB node, and click the Logging option. Use the
properties listed on the right to set the log file path, file name, and maximum file size.
You can also select the types of logs that you want to store.

You can view this log of deployment and error messages from the Warehouse Builder
console by selecting View from the menu bar, and then Log. This Message Log panel
is read-only.

Runtime Audit Browser
If an error occurs while transforming or loading data, the audit routines report the
errors into the runtime tables. You can easily access these error reports using the
Runtime Audit Browser. The Runtime Audit Browser provides detailed information
about past deployments and executions. These reports are generated from data stored
in the runtime repositories. Click the Execution tab in the Execution reports to view
error messages and audit details.

Determining the Operators that Caused Errors in Mappings
When you encounter errors while deploying mappings, use the line number provided
in the error message to determine where the error occurred. The generated code
contains comments for each operator in the mapping. This enables you to determine
which operator in the mapping caused the error.

Using DML Error Logging

15-4 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

The following example displays the code generated, in set-based mode, for a Filter
operator. Notice that the comments enclosed between /* and */ list the operator for
which a particular part of the statement is executed.

INSERT INTO "FLTR_TGT"
 ("CHANNEL_ID", "CHANNEL_DESC")
 (SELECT
/*+ NO_MERGE */
/* CHANNELS.INOUTGRP1, FILTER.INOUTGRP1 */
 "CHANNELS"."CHANNEL_ID" "CHANNEL_ID",
 "CHANNELS"."CHANNEL_DESC" "CHANNEL_DESC"
FROM
 "SH"."CHANNELS"@"ORA11@SH_SRC_LOCATION" "CHANNELS"
 WHERE
 ("CHANNELS"."CHANNEL_ID" < 5/* OPERATOR FILTER: FILTER CONDITION */)
)
 ;

Troubleshooting Name and Address Server Errors
If you are using the Name and Address cleansing service provided by Warehouse
Builder, you may encounter related errors.

Name and Address server start up and execution errors can be located at:

OWB_ORACLE_HOME/owb/bin/admin/NASvr.log

If your Name and Address server is enabled in:

OWB_ORACLE_HOME/owb/bin/admin/NameAddr.properties:TraceLevel=1,

 then it produces the log file NASvrTrace.log in the same directory.

Using DML Error Logging
Error logging enables the processing of DML statements to continue despite errors
during the statement execution. The details of the error such as the error code, and the
associated error message, are stored in an error table. After the DML operation
completes, you can check the error table to correct rows with errors. DML error
logging is supported for SQL statements such as INSERT, UPDATE, MERGE, and
multitable insert. It is useful in long-running, bulk DML statements.

Warehouse Builder provides error logging for the following data objects used in
set-based PL/SQL mappings: tables, views, materialized views, dimensions, and
cubes. DML error logging is supported only for target schemas created on Oracle
Database 10g Release 2 or later versions.

About DML Error Tables
DML error tables store details of errors encountered while performing DML
operations using a mapping. You can define error tables for tables, views, and
materialized views only.

Use the DML Error Table Name property to log DML errors for a particular data
object. In the mapping that uses the data object as a target, set the DML Error Table
Name property of the operator that is bound to the target object to the name of the
DML error table that will store DML errors.

You can create your own tables to store DML errors or allow Warehouse Builder to
generate the DML error table. While deploying a mapping in which the DML Error

Using DML Error Logging

Troubleshooting and Error Handling for ETL Designs 15-5

Table Name property is set for target operators, if a table with the name specified by
the DML Error Table property does not already exist in the target schema, it is created.

When DML error tables are created along with the mapping, dropping the mapping
causes the DML error tables to be dropped, too.

In addition to the source target object columns, DML error tables contain the columns
listed in Table 15–1. If you use your own tables to log DML errors, ensure that your
table contains these columns.

Enabling DML Error Logging
DML error logging is generated for set-based PL/SQL mappings if the following
conditions are satisfied:

■ In the mapping that loads the table, view, materialized view, dimension, or cube,
the DML Error Table Name property is set for the operator representing the target
object.

■ The PL/SQL Generation Mode configuration parameter of the module that
contains the mapping is set to Oracle 10gR2, Oracle 11gR1, Oracle 11gR2, or
Default.

If the value is set to Default, ensure that location associated with this module has
the Version property set to 10.2, 11.1, or 11.2.

DML Error Logging and ETL
The execution of mappings that contain data objects for which DML error logging is
enabled fails if any of the following conditions occur:

■ The number of errors generated exceeds the specified maximum number of errors
for the mapping.

The default set for this value is 50. You can modify this value by setting the
Maximum number of errors configuration parameter of the mapping. In the
Projects Navigator, right-click the mapping and select Configure. In the Maximum
number of errors configuration parameter, specify the number of errors that can
generated before the mapping execution is terminated.

■ Errors occur due to functionality that is not supported.

See "DML Error Logging Limitations" on page 15-6.

You can truncate the DML error table and delete error details generated during a
previous load. This helps in housekeeping of the error tables. To truncate an error table
before the map is executed, select the Truncate Error Table property of the operator
bound to the data object that has DML error logging enabled.

Table 15–1 DML Error Columns in Error Tables

Column Name Description

ORA_ERR_NUMBER$ Oracle error number

ORA_ERR_MESG$ Oracle error message text

ORA_ERR_ROWID$ ROWID of the row in the error (for update and delete)

ORA_ERR_OPTYPE$ Type of operation: insert (I), update (U), delete (D)

ORA_ERR_TAG$ Step or detail audit ID from the runtime audit data. This is the
STEP_ID column in the runtime view ALL_RT_AUDIT_STEP_
RUNS.

Troubleshooting the ETL Process

15-6 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

The properties Roll up Errors and Select only errors from this property are not used for
DML error logging.

DML Error Logging Limitations
■ DML error logging is not supported for nonscalar data types.

■ Each DML statement has specific limitations, which are listed in the
documentation related to that statement.

■ If you have a DML error table defined for a data object, you cannot upgrade the
data object using the Upgrade option in the Control Center Manager.

■ Depending on your error logging needs, you can configure the Table operator in a
mapping to use the APPEND or NOAPPEND hint. For example, direct-path insert
does not support error logging for unique key violations. To log unique key
violations, use the NOAPPEND hint.

Troubleshooting the ETL Process
This section contains troubleshooting tips for errors that you may encounter while
performing ETL.

ORA-04063 While Running Hybrid Maps
While executing a hybrid mapping that contains a "black box" PL/SQL Oracle Target
CT, you may encounter the following error:

ORA-04063: package body "DEMO.ORACLE_SQL_POWER_MTI" has errors

This indicates that there are compilation errors in ORACLE_SQL_POWER_MTI, the
PL/SQL package generated to implement the mapping.

To determine the cause of this error, start SQL*Plus, connect as the target user, and
execute the following commands:

ALTER PACKAGE ORACLE_SQL_POWER_MTI COMPILE BODY;
SHOW ERRORS;

For example, a table not found error may occur if permissions on source tables or
views are not granted to the target user. Resolve any errors, recompile the package,
and then execute the hybrid mapping.

Agent Log Files
The agent log files enable you to debug deployment and execution errors in Code
Template mappings. On Windows, the agent logs are displayed in the Design Center
console.

The following are the agent logs on UNIX:

■ The jrt.log file located in OWB_ORACLE_HOME/owb/bin/admin contains
output from the Agent process and audit setup errors.

See Also: Oracle Database SQL Language Reference for limitations on
DML error logging for each DML statement.

Troubleshooting the ETL Process

Troubleshooting and Error Handling for ETL Designs 15-7

■ The Code Template mapping execution logs are stored in the OWB_ORACLE_
HOME/owb/jrt/log/owb folder. Each job execution is represented by a separate
directory that contains XML log files with the audit trail of the job execution.

Error Starting the Control Center Agent (CCA)
While starting the Control Center Agent, you may encounter the following error:

Error initializing server: Application: system is in failed state as
initialization failed.

To resolve this error, delete all the subdirectories in the folder OWB_ORACLE_
HOME/owb/jrt/applications and then start the Control Center Agent.

Error Executing Web Services from the Secure Web Site
Sometimes you may encounter the following error when you execute a Web service
from a secure Web site:

SSL Error: unable to find valid certification path to requested target.

Use the following steps to overcome this error.

1. Export the certificate used for the SSL channel from the OC4J server side. This is in
the $J2EE_HOME/config directory.

$JAVA_HOME/bin/keytool -export -storepass welcome -file server.cer -keystore
OWB_ORACLE_HOME.owb/jrt/config/serverkeystore.jks

server.cer is the file to which the certificate is exported, serverkeystore.jks is the
key store used in the OC4J server embedded in Warehouse Builder. If you use an
OC4J instance other than the one embedded in Warehouse Builder,
serverkeystore.jks is the key store file you created when you setup the SSL with
OC4J.

2. Copy the exported server.cer from step 1 to the OC4J server side $JAVA_
HOME/jre/lib/security directory.

3. Import the certificate to the java trusted certification store at the OC4J server side.

$JAVA_HOME/bin/keytool -import -v -trustcacerts -file

$JAVA_HOME/jre/lib/security/server.cer -keystore

$JAVA_HOME/jre/lib/security/cacerts

where cacerts is the file used to store the trusted certificates, server.cer is the file
copied from step 2.

You will be prompted for the cacerts password.

REP-01012 While Deploying Mappings to a Target Schema
When you deploy mappings to a target schema, you may encounter the following
error:

REP-01012: Cannot deploy PL/SQL maps to the target schema because it is not owned
by the Control Center

Cause

Troubleshooting the ETL Process

15-8 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

This error occurs when you attempt to deploy mappings to a target schema into which
objects were previously deployed using a different Control Center.

A target schema can be associated with only one Control Center. Audit data regarding
deployments to this target schema is written to audit tables in the Control Center
repository. The Control Center creates various objects (primarily synonyms) in the
target schema that provide information about the Control Center to which audit data
should be written. When you attempt to use a different Control Center to deploy a
mapping to the same target schema, you encounter the REP-01012 error.

However, Warehouse Builder allows you to deploy mappings to a target schema.

Typically, when you use a Control Center for deployments, you deploy mappings to a
target schema by using the Control Center installed on the database containing the
target schema. You can deploy mappings to a target schema by using a Control Center
installed on a different database than the one that contains the target schema. In the
Locations Navigator, create a Control Center that points to the Control Center installed
on the remote host containing the target schema. Thus you can deploy mappings to
the remote control center.

Solution

1. Drop the mappings that have been deployed to the target schema using the
original Control Center.

2. Unregister the location from the original Control Center.

3. Delete the synonyms that provide the association between the target schema and
its control center from the target schema.

4. Register the location using the new Control Center.

5. Deploy mappings using the new Control Center.

Unable to Delete a Location
Before you delete a location, do the following:

■ Reconfigure any modules that use the location to use a different location

Edit the modules and remove the location from the set of possible data locations
for the module.

■ Unregister the location

Log in as the OWBSYS user and execute the following query to determine if the location
is still associated with a Control Center.

SELECT s.name owner, r.name referenced, c.name connector,
 c.REGISTERED, c.STRONGTYPENAME
FROM cmplogicalconnector_v c, cmplocation_v s, cmplocation_v r
WHERE c.owninglocation = s.elementid AND c.referencedlocation = r.elementid;

Note: You can use a local Control Center to deploy data objects such
as tables, view, dimensions, and so on to a remote target. This is
because Warehouse Builder does not maintain auditing information
for these objects.

16

Creating and Consuming Web Services in Warehouse Builder 16-1

16

Creating and Consuming Web Services in
Warehouse Builder

Web services are the basis of the widely used Service-Oriented Architecture (SOA)
approach to integrating enterprise applications. They enable easy access to remote
content and application functionality using industry-standard mechanisms, without
any dependency on the provider's platform, the location, or the service
implementation.

Oracle Warehouse Builder-based solutions can participate fully in SOA-based
architectures. You can publish certain Warehouse Builder objects as Web services, thus
allowing other developers to use industry standards to leverage functionalities
defined in these objects.

This chapter contains the following topics:

■ Introduction to Web Services

■ Publishing Warehouse Builder Objects as Web Services

■ Creating Web Services Based on a URL

■ Executing Web Services

■ Using Web Services as Activities in Process Flows

■ Using Web Services in Mappings

■ Using Secure Sockets Layer (SSL) to Access Web Services Securely

■ Case Study: Using Web Services for Data Integration

Introduction to Web Services
A Web service is a software system designed to provide a standard, vendor-neutral
method of accessing computing resources or services over a network. It uses open,
XML-based standards and transport protocols to exchange data with calling clients.

A Web service generally consists of:

■ a published interface definition for the Web service, that describes messages that
clients can send to the service and responses the Web service will return to the
caller.

■ an implementation that provides the functionality exposed through the interface.

The caller of a Web service does not depend upon underlying implementation details
such as the choice of programming language, application server technology or

Introduction to Web Services

16-2 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

database. The published interface describes all information required for the caller to
consume the Web service.

Because implementation differences are not exposed to the caller, Web services enable
easy integration of software components from different technology vendors. The
approach of building solutions based on Web services is commonly called
Service-Oriented Architecture (SOA).

While there are several common approaches to building Web services, in enterprise
computing, Web services generally interact using the XML-based standards Simple
Object Access Protocol (SOAP) and Web Services Description Language (WSDL).

Simple Object Access Protocol (SOAP)
Simple Object Access Protocol (SOAP) is a protocol for exchanging XML-based
messages over a computer network, normally using HTTP. SOAP forms the
foundation layer of the Web services stack, providing a basic messaging framework
that more abstract layers can build on. It is used to send Web service requests and to
receive Web service responses.

Web Services Description Language (WSDL)
The Web Services Description Language (WSDL) is an XML-based service
description of how to communicate using the Web service. It includes the following
information:

■ Purpose and location (on a remote computer) of the Web service

■ Operations that you can perform on the Web service

■ Input parameters and return values for each operation

■ Protocol bindings and message formats required to interact with the Web services

The supported operations and messages are described abstractly, and then bound to a
concrete network protocol and message format.

Advantages of Web Services
Web services provide the following advantages:

■ Support Service Oriented Architecture (SOA)

■ Enable sharing of application functionality between application developers

■ Enable you to build services that invoke data integration processes

■ Enable you to build applications faster because you can reuse application logic
created by others

About Web Services in Oracle Warehouse Builder
Warehouse Builder supports Web services integration using the SOAP and WSDL
standards, and thus can be fully integrated into SOA-based enterprise architectures.
Developers experienced with Warehouse Builder can create and leverage Web
services-based solutions in their data integration designs using their existing tools,
code, and skillset. For example, you can integrate your ETL design into larger
solutions based on products such as Oracle BPEL Process Manager.

See Also: For more information about Web services concepts, see
Oracle Warehouse Builder Sources and Targets Guide.

Introduction to Web Services

Creating and Consuming Web Services in Warehouse Builder 16-3

Warehouse Builder supports the following Web service-related functionality:

■ Publishing Warehouse Builder ETL jobs as SOAP-based Web services, which can
then be invoked or consumed by other systems.

See "About Publishing Web Services" on page 16-3.

■ Calling Web services that expose functionality created outside of your Warehouse
Builder ETL design.

See "About Consuming Web Services" on page 16-3.

These two areas of functionality enable Warehouse Builder-based designs to
participate fully in SOA-based solutions.

About Defining Web Services
Web services are defined within an application server module in the Design Center. An
Application Server module is associated with the location to which the Web services
are deployed. It contains Web services and Web service packages. Web service
packages are primarily used to group related Web services and contain a set of Web
services.

Use the Application Servers node in the Projects Navigator to define Web services
based on existing Warehouse Builder objects. Use the Public Application Servers node
in the Globals Navigator to define public Web services.

About Publishing Web Services
The process of making ETL processes designed using Warehouse Builder available to
other application developers in the form of Web services is referred to as publishing
Web services. To publish a Web service, you must create a WSDL file that contains
information about your Web service and make this WSDL file available for remote
access.

When you use Warehouse Builder to publish Web services, you only need to select the
object whose functionality you want to publish as a Web service. The code generator
generates the required WSDL file.

About Consuming Web Services
The process of using Web services that are made available remotely by other
application developers in your ETL designs is called consuming Web services. To
consume a Web service, you must know the location of the WSDL file of the Web
service. You can then make a request to the Web service to perform the required task.

Before you consume remote Web services in your ETL designs, you must import the
Web service into Warehouse Builder.

See Also: "Publishing Warehouse Builder Objects as Web Services"
on page 16-4

See Also:

■ "Using Web Services in Mappings" on page 16-17

■ "Using Web Services as Activities in Process Flows" on page 16-16

Publishing Warehouse Builder Objects as Web Services

16-4 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

About Public Web Services
Public Web services are accessible across the workspace in which they are defined and
are not limited to a particular project. Public Web services are created under the Public
Application Servers node of the Globals Navigator.

Public Web services can only be based on URLs, not on Warehouse Builder objects.
Creating public Web services enables you to create Web services based on existing
WSDL files.

Publishing Warehouse Builder Objects as Web Services
You can make ETL processes defined using certain Warehouse Builder objects
available to other application developers by publishing these objects as Web services.
After you publish a Warehouse Builder object as a Web service, other developers can
remotely access the Web service and use the functionality defined in this object.
Because Web services use open, industry-standard mechanisms, the developers need
not install Oracle Warehouse Builder or be familiar with how it works.

You can create Web services based on the following Warehouse Builder objects:

■ Mappings, including Code Template (CT) mappings

■ Process flows

■ Transformations

■ Data auditors

■ Table or module for Change Data Capture

Methods of Creating Web Services Based on Warehouse Builder Objects
Use one of the following methods to create Web services based on Warehouse Builder
objects.

■ Publish Warehouse Builder objects as Web services.

See "Steps to Publish Warehouse Builder Objects as Web Services" on page 16-5.

■ Define a Web service using the Create Web Service Wizard. Then generate and
deploy the Web service.

See "Steps to Create Web Services Based on Warehouse Builder Objects" on
page 16-5 for information about creating Web services.

You can also publish Web services that are based on URLs as described in "Steps to
Publish Web Services Based on a URL" on page 16-5.

See Also: "Creating Web Services Based on a URL" on page 16-10 for
more information about creating public Web services

Note: During the lifetime of the data warehouse, the definitions of
the object on which a Web service is based can change. To propagate
these changes to the Web service, redeploy the Web service using the
steps described in "Deploying Web Services" on page 16-9.

When a Web service that is used in a process flow is modified and
redeployed, ensure that you synchronize the Web service as described
in "Synchronizing Web Service Activities with Their Referenced Web
Services" on page 16-17.

Publishing Warehouse Builder Objects as Web Services

Creating and Consuming Web Services in Warehouse Builder 16-5

Supported Versions for Web Services
Table 16–1 lists the versions of standards and products supported by Warehouse
Builder.

Steps to Publish Warehouse Builder Objects as Web Services
You can quickly publish a Warehouse Builder object as a Web service from the Projects
Navigator. Right-click the object (such as mapping, process flow, data auditor, or
transformation) that you want to publish as a Web service and select Publish as Web
Service. The Select Application Server or Web Service Package dialog box is displayed
containing the existing application server modules and Web service packages. Select
the application server module or Web service package to which the object should be
published as a Web service. Warehouse Builder creates the Web service based on the
selected object under the application server module or Web service package, and then
publishes the Web service (deploys the Web service to the application server).

Steps to Create Web Services Based on Warehouse Builder Objects
Use the following steps to publish Web services that are based on Warehouse Builder
objects.

1. If you have not already done so, in the Projects Navigator, create an Application
Server module and its associated location. An Application Server module is a
container for a set of Web services and Web service packages.

2. Create a Web service as described in "Creating Web Services Based on Warehouse
Builder Objects" on page 16-6.

3. Validate the Web service as described in "Validating Web Services" on page 16-8.

4. Generate the Web service as described in "Generating Web Services" on page 16-8.

5. Deploy the Web service as described in "Deploying Web Services" on page 16-9.

You can use the functionality defined in the Web service by executing the Web service
as described in "Executing Web Services" on page 16-11.

Steps to Publish Web Services Based on a URL
Use the following steps to publish Web services that are based on a URL.

1. If you have not already done so, in the Globals Navigator, create a public
application server module, under the Public Application Servers node, and its

Table 16–1 Supported Versions of Standards and Products for Web Services

Standard or Product Version

WSDL 1.1

SOAP 1.1, 1.2

OC4J standalone 10g and later

Oracle Application Server 10g and later

See Also: "Example: Publishing Mappings as Web Services" on
page 16-21 for an example of publishing Warehouse Builder objects as
Web services

See Also: Oracle Warehouse Builder Sources and Targets Guide for more
information about creating Application Server modules.

Publishing Warehouse Builder Objects as Web Services

16-6 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

associated location. A public application server module is a container for a set of
Web services.

2. Create a Web service as described in "Creating Web Services Based on a URL" on
page 16-10.

3. Validate the Web service as described in "Validating Web Services" on page 16-8.

4. Generate the Web service as described in "Generating Web Services" on page 16-8.

5. Deploy the Web service as described in "Deploying Web Services" on page 16-9.

Creating Web Service Packages
A Web service package is a container for a set of Web services. Use Web service
packages to group a set of related Web services. A Web service package does not have
any location associated with it and uses the same location details of the Application
Server module that contains it.

You can create Web service packages only in the Projects Navigator and not in the
Globals Navigator.

To create a Web service package:

1. Expand the project node under which you want to create a Web service package.

2. If you have not already done so, create an application server module to contain the
Web service package.

3. Expand the application server node under which you want to create the Web
service package, right-click Web Service Packages, and then select New Web
Service Package.

The Create Web Service Package dialog box is displayed.

4. Enter the following details in the Create Web Service Package dialog box.

■ Name: The name of the Web service package

■ Description: An optional description for the Web service package

Creating Web Services Based on Warehouse Builder Objects
Use the Projects Navigator to create Web services based on Warehouse Builder objects.

To create a Web service based on a Warehouse Builder object:

1. In the Projects Navigator, expand the project node and then the application server
node under which you want to create a Web service.

2. Right-click the Web Services node and select New Web Service.

To create a Web service under a Web service package, in the Projects Navigator,
right-click the Web service package and select New Web Service.

The Create Web Service Wizard is displayed.

3. On the Welcome page of the wizard, click Next.

See Also: Oracle Warehouse Builder Sources and Targets Guide for more
information about creating public application server modules.

See Also: Oracle Warehouse Builder Sources and Targets Guide for more
information about creating application server modules

Publishing Warehouse Builder Objects as Web Services

Creating and Consuming Web Services in Warehouse Builder 16-7

4. On the Name and Description page, provide details as described in "Naming the
Web Service" on page 16-7 and click Next.

5. On the Implementation page, provide details as described in "Defining the Web
Service Implementation" on page 16-7 and click Next.

6. On the Review Specification page, review the details that you entered in the
wizard. To modify any values, click Back. To complete the definition of the Web
service, click Finish.

Click View Source to view the WSDL code that will be generated by Warehouse
Builder to implement this Web service.

The Web service is created and added to the navigator tree.

Alternatively, you can quickly create a Web service by right-clicking the object based
on which you want to create a Web service and selecting Create Web Service. The
Select Application Server or Web Service Package dialog box is displayed. Select the
and click OK. The Web service is created and added under the application server node
you selected.

Example: WSDL File for a Web Service
The following is an example of a WSDL file created for a Web service.

<definitions
 name="HttpSoap11"
 targetNamespace="http://dbWebService.packaging.sdk.jrt.wh.oracle/"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://dbWebService.packaging.sdk.jrt.wh.oracle/"
 xmlns:mime="http://http://schemas.xmlsoap.org/wsdl/mime/"
 xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 >
 <types>
 </types>
 <message name="FUNCTION_TARGETInput">
 <part name="P1" type="xsd:string"/>
 <part name="P2" type="xsd:string"/>
 </message>
...
...
...

Naming the Web Service
Use the Name and Description page to describe the Web service. Provide the following
information on this page:

Name: The name of the Web service. The name should conform to the Warehouse
Builder naming standards.

Description: An optional description for the Web service.

Defining the Web Service Implementation
Use the Implementation page to select the Warehouse Builder object on which the Web
service should be based.

Select one of the following options to create a Web service:

Publishing Warehouse Builder Objects as Web Services

16-8 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ Create from a mapping

■ Create from a process flow

■ Create from a transformation

■ Create from a data auditor

■ Create from a table or module used for Change Data Capture

Based on the option that you select, the text area below the options displays the
available objects on which you can base the Web service. Select the Warehouse Builder
object from this text area.

When you create a Web service based on a CT mapping, if the agent associated with
the Web service is different from the agent associated with the Code Template
mapping, a warning is displayed during validation. You can still generate, deploy, and
execute such a Web service. However, in some cases, the execution may fail.

While creating a Web service based on a CT mapping, it is recommended that the Web
service use the same agent as the Code Template mapping.

Validating Web Services
When you validate a Web service, Warehouse Builder verifies the metadata definitions
and configuration parameters to ensure that they are valid according to the rules
defined by Warehouse Builder. When you validate a Web service, the WSDL file
associated with the Web service is validated against the W3C WSDL schema.
Successful validation ensures that code can be generated to deploy the Web service.

To validate a Web service, select the Web service in the Design Center and click the
Validate icon on the toolbar. Or, right-click the Web service in the Design Center, and
select Validate.

You can also validate an application server module or a Web service package. This
validates all the Web services contained in the application server module or Web
service package.

Generating Web Services
Generating Web services creates the code required to deploy the Web service to the
associated OC4J or Oracle Application Server location. When you generate a Web
service, Warehouse Builder creates a corresponding WSDL file for each Web service.
For Web services based on Warehouse Builder objects, an .ear file is also generated.
For Web service packages, one .ear file is generated for each Web service.

The generated files are stored in a default location on the file system on which the
Design client is installed. You cannot view or edit these generated files.

To generate a Web service, select the Web service and click the Generate icon. Or
right-click the Web service and select Generate. You can also generate an application
server module or a Web service package, to generate code concurrently for all the Web
services contained in the application server module or Web service package at once.

Note: You cannot generate a public Web service. However, you can
validate a public Web service.

Publishing Warehouse Builder Objects as Web Services

Creating and Consuming Web Services in Warehouse Builder 16-9

Deploying Web Services
Deploying Web services uses the scripts created during generation to create the Web
service in the agent location associated with the application server module containing
the Web service.

When you deploy a Web service, the .ear file corresponding to this Web service is
located in the OWB_ORACLE_HOME/owb/jrt/applications directory. This
directory also contains a separate folder for each Web service deployed to the OC4J
instance that is embedded in Warehouse Builder.

To deploy Web services, you need a Control Center Agent (CCA) and an OC4J
instance.

You can deploy Web services to:

■ OC4J standalone instance

When you install Warehouse Builder, an OC4J instance is installed with it. You
can deploy Web services to this OC4J instance or to an OC4J instance that is part of
an Oracle Application Server instance.

■ Oracle Application Server

You can deploy Web services to any Oracle Application Server. Before you do so,
create a URI location that points to this Oracle Application Server instance. For
more information about creating a location related to an Oracle Application Server
instance, see Oracle Warehouse Builder Sources and Targets Guide.

You can deploy Web services either from the Design Center or from the Control Center
Manager.

Prerequisites for Deploying Web Services
Before you deploy a Web service based on a Warehouse Builder object, ensure that
you:

■ Deploy the Warehouse Builder objects on which the Web service is based

■ Start the Control Center Agent

Deploying Web Services Using the Control Center Manager
From the Design Center, open the Control Center by selecting Control Center
Manager from the Tools menu. In the Control Center Manager, expand the node that
represents the location that contains the Web service. Select the Web service, set the
Default Actions to Create, and click the Deploy icon.

Deploying Web Services Using the Design Center
From the Projects Navigator, right-click the Web service and select Deploy. Or select
the Web service and click the Deploy icon from the toolbar.

Note: You cannot deploy a public Web service.

See Also: "Starting the Control Center Agent (CCA)" on page 7-23
for information about starting the Control Center Agent

Creating Web Services Based on a URL

16-10 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Creating Web Services Based on a URL
Warehouse Builder allows you to create public Web services from a URL. Public Web
services are ones that you define under the Public Application Servers node of the
Globals Navigator. You use public Web services primarily to leverage existing
functionality, available as Web services, in ETL objects. Before you use existing Web
services (local or remote) in your ETL designs, you must create a public Web service in
Warehouse Builder that represents the functionality in the Web service.

To create a Web service from a URL, you need a URL pointing to the valid WSDL file.
The URL can point to a WSDL file on the local file system or in a remote location. If the
WSDL file is on a remote computer, you must specify the proxy settings used to access
the remote location.

Proxy Settings for Creating Web Services Based on External URLs
When you create a Web service based on an external URL, you must specify the proxy
settings that should be used to access the external URL. Use the following steps to set
the proxy:

1. In the Design Center, select Preferences from the Tools menu.

The Preferences dialog box is displayed.

2. In the navigator tree on the left, select Web Browser and Proxy.

The Web Browser and Proxy preferences are displayed on the right of the
Preferences dialog box.

3. Select Use HTTP Proxy Server and specify values for the following fields:

■ Host Name: Represents the name of the proxy server

■ Port Number: Represents the port number of the proxy server

■ Exceptions: Represents the addresses for which the proxy server is bypassed.
Use an asterisk (*) as a wildcard and separate multiple entries using a vertical
bar (|).

4. If your proxy server requires authentication, select Proxy Server Requires
Authentication. Enter the credentials using the User Name and Password fields.

5. Click Test Proxy to test your proxy settings.

Steps to Create a Web Services Based on a URL
Use the following steps to create a Web Service based on a URL.

1. In the Globals Navigator of the Design Center, expand the application server node
under which you want to create a Web service.

2. Right-click the application server node and select New Web Service.

The Create Web Service Wizard is displayed.

3. On the Welcome page of the wizard, click Next.

4. On the Name and Description page, provide details as described in "Naming and
Describing a Public Web Service" on page 16-11 and click Next.

5. On the Review Specification page, review the details that you entered in the
wizard. To modify any values, click Back. To complete the definition of the Web
service, click Finish.

Click View Source to view the WSDL code used to implement this Web service.

Executing Web Services

Creating and Consuming Web Services in Warehouse Builder 16-11

The Web service is created and added to the navigator tree.

Naming and Describing a Public Web Service
Use the Name and Description page to specify the location of the WSDL file that will
act as a basis for the Web service. This page contains the following fields:

■ Name: Represents the name of the Web service. The name is derived automatically
from the WSDL file and you can edit it, if required.

■ WSDL File Location: Click Browse to specify the path of the WSDL file. The URL
address can be the path of a local file or the URL address of a remote accessible
across a network. The WSDL file contains the definitions of the existing Web
service.

This property is displayed only when you use the Globals Navigator to create a
Web service based on a URL.

■ Description: An optional description for the Web service.

Executing Web Services
Executing a Web service enables you to run the functionality defined in the Web
service. You can execute a Web service either from the Control Center Manager or from
a Web browser.

Prerequisites for Executing Web Services
To execute Web services, you must use a J2EE user who is granted the OWB_J2EE_
EXECUTOR role. When you use the OC4J server embedded within Warehouse Builder,
this role is already created for you.

Use one of the following methods to assign this role to a J2EE user:

■ Manage J2EE User Accounts option in the Repository Assistant

■ J2EE User Management option under the Tools menu of the Design Center

Using the Control Center Manager to Execute Web Services
To execute a Web service using the Control Center Manager:

Note: For Web services that contain CT mappings, if the Web service
execution is likely to take more than a day, it is recommended that you
split the job into smaller ones. The default transaction timeout for the
OC4J is set to one day. If your job execution takes more than a day, the
execution will time out and unexpected errors may be encountered.

See Also:

■ "Using Secure Sockets Layer (SSL) to Access Web Services
Securely" on page 16-19 for more information about J2EE roles

■ Oracle Warehouse Builder Installation and Administration Guide for
Windows and UNIX for more information about managing J2EE
users

Executing Web Services

16-12 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

1. In the Control Center Manager, expand the location node that contains the Web
service, select the Web service and click the Start icon. Or right-click the Web
service and select Start.

The Select Operations dialog box is displayed. The Operations list contains the list
of operations that you can perform using the Web service.

Note that if your Web service contains only one operation, the Select Operations
dialog box is not displayed.

2. In the Operations list, select the operation that you want to perform and click OK.

The Input Parameters dialog box that is used to provide the execution parameters
for the Web service is displayed.

3. In the Input Parameters dialog box, enter values for the displayed parameters.

The parameters listed depend on the type of object on which the Web service is
based. For example, Web services based on PL/SQL mappings, process flows, and
data auditors have the CUSTOM_PARAMS and SYSTEM_PARAMS parameters.
Web services based on Code CT mappings contain the parameters OWB_
PARAMS.

■ CUSTOM_PARAMS: Represents the values for the mapping input
parameters used in the Web service.

For example, when you create a Web service based on a mapping and the
mapping requires input parameters, use the CUSTOM_PARAMS field to enter
values for these input parameters. Use commas to separate multiple values.

■ SYSTEM_PARAMS: Represents the values for mapping execution
parameters, if any, such as Bulk Size, Audit Level, Operating Mode, Maximum
Number of Errors, and Commit Frequency. When you have multiple system
parameters, use a comma to separate each parameter.

For example, OPERATING_MODE=SET_BASED,AUDIT_LEVEL=NONE.

■ OWB_PARAMS: Represents the parameters of the CT mapping on which the
Web service is based.

4. Click OK.

The Web service is executed and the results of the execution are displayed in a new log
window in the Design Center. The details displayed include the number of rows
selected, inserted, updated, or deleted and any errors or warnings that occurred.

Using a Browser to Execute Web Services
Use any browser to execute Web services that were deployed to either the OC4J server
embedded in Warehouse Builderor to other OC4J servers.

When you use the OC4J server embedded in Warehouse Builder to access Web
services, all the prerequisites for Web service security are provided. You must provide
basic authentication before you can execute the Web service.

To execute Web services using a browser:

1. Ensure that the prerequisites, as described in "Prerequisites for Executing Web
Services" on page 16-11, are satisfied.

2. (Optional) While executing Web services that were deployed to an OC4J server
other than the one installed with Warehouse Builder, perform the steps listed in
"Setting Up Secure Access on External OC4J Servers" on page 16-19.

Executing Web Services

Creating and Consuming Web Services in Warehouse Builder 16-13

3. Open a Web browser, specify the following URL in the address bar, and press the
Enter key.

http://host_name:8888/jndi_name/webservice

To execute the Web service securely, use the following URL:

https://host_name:4443/jndi_name/webservice

The endpoint page for the Web service is displayed. If you use the
AGENTWEBSERVICE Web service provided by Warehouse Builder, the
AgentWebService Endpoint page is displayed.

Here, host_name represents the host name of the computer on which the Web
service is stored, and jndi_name is the name of the .ear file generated for the
Web service. To execute Web services using the AGENTWEBSERVICE installed
with Warehouse Builder, use jrt as the jndi_name.

The default port numbers used for the Web service are 8888 and 4443. You can use
different port numbers.

4. Follow the steps listed in "Performing Operations on Web Services Using a
Browser" on page 16-13 to execute the Web service.

Performing Operations on Web Services Using a Browser
The Web service AGENTWEBSERVICE, under the AGENT_SERVER node of the
Globals Navigator, is an embedded Web service that exposes the Agent server installed
with Warehouse Builder as a Web service. The steps listed in this section are
performed using the AgentWebService Endpoint page, which is the interface
corresponding to the AGENTWEBSERVICE. This Web service is started automatically
when the Control Center Agent (CCA) is started. However, you can use other Web
service endpoints to perform operations defined by Web services.

1. Select the operation that you want to perform on the Web service and provide the
information required to perform the operation.

Following are some of the operations that you can select when you use
AGENTWEBSERVICE.

■ isDeployed

See "Determining If a Web Service or Application Was Deployed to an OC4J
Server" on page 16-14

■ runCCJob

See "Executing a Control Center Job" on page 16-14

■ abortJob

See "Terminating an Execution Job" on page 16-15

■ invokeEAR

See "Running Deployed Applications" on page 16-15

Note: You may encounter errors while executing Web services that
were not deployed to the OC4J server embedded in Warehouse
Builder. See "Error Executing Web Services from the Secure Web Site"
on page 15-7 for information about resolving these errors.

Executing Web Services

16-14 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

2. Expand the Show Transport Info node and select Enable to the right of the label
HTTP Authentication.

3. In the Transport Info section, enter details in the following fields:

■ Username: Name of a J2EE user, with the OWB_J2EE_OPERATOR role, that is
used to execute the Web service

■ Password: Password for the J2EE user that you specified in the Username field

4. Click Invoke.

The Test Result page containing the results of the operation is displayed.

Determining If a Web Service or Application Was Deployed to an OC4J Server
The isDeployed operation enables you to determine if a Web service or application is
deployed to an OC4J server.

Use the following steps to determine if a Web service was deployed to an OC4J Server.

1. On the AgentWebService Endpoint page, select isDeployed in the Operation field.

2. In the jndiName field, enter the name of the application.

Use the jndi_name or the fully qualified application name. To determine this
name, check the OWB_ORACLE_HOME/owb/jrt/applications directory.

If the Web service was deployed to the OC4J instance, the XML code on the Test Result
page displays True.

Executing a Control Center Job
The runCCJob operation enables you to execute a Control Center job. Jobs include Web
services defined using Warehouse Builder, mappings, and process flows.

Use the following steps to execute a Control Center job.

1. On the AgentWebService Endpoint page, select runCCJob in the Operation field.

2. Provide information in the following fields:

■ username: Represents the name of the workspace user executing the Web
service.

■ password: Represents the password of the user specified in the username
field.

■ workspace: Represents the name of the workspace in which the Web service
execution job should be run. If the user executing the Web service is not the
workspace owner, then prefix the workspace name with the username (for
example, test_user.my_workspace.)

■ location: Represents the physical name of the location to which the task is
deployed.

■ task_type: Represents the type of task. Use the following values:

PLSQL - for PL/SQL mappings

SQL_LOADER - for SQL*Loader mappings

Note: Sometimes, after you enter the credentials and click Invoke,
you may be prompted for credentials. Reenter the credentials of the
J2EE that you specified in the Transport Info section.

Executing Web Services

Creating and Consuming Web Services in Warehouse Builder 16-15

PROCESS - for process flows

SAP - for SAP mappings

DATA_AUDITOR - for Warehouse Builder data auditor mappings

■ task_name: Represents the physical name of the deployed object. For example,
MY_MAPPING. For process flows, qualify the process flow name with the
name of the process flow package to which it belongs (for example, MY_
PROCESS_FLOW_PACK. MY_PROCESS_FLOW).

■ connection_string: Represents the connection information of the computer
that has the Control Center Manager.

■ system_params: Represents the mapping execution parameters of the
mapping, if any, such as Bulk Size or Commit Frequency. When you have
multiple system parameters, use a comma to separate each parameter.

For example, OPERATING_MODE=SET_BASED,AUDIT_LEVEL=NONE.

■ custom_params: Represents the input parameters for the mapping.

The runCCJob operation returns 1 if the execution was successful, 2 if there were
warnings, and 3 if there were errors in the execution.

Terminating an Execution Job
The abortJob operation enables you to terminate a particular job that was submitted to
the Control Center Manager.

Use the following steps to terminate a particular job.

1. On the AgentWebService Endpoint page, select abortJob in the Operation field.

2. In the jobID field, enter the Job ID of the Control Center job that you want to
terminate.

3. In the timeOut field, enter the value for the time out in milliseconds. Entering a
zero in this field indicates that there is no timeout.

A return value of true in the Test Results page indicates that the terminate message
was sent to the Control Center Manager.

Running Deployed Applications
The invokeEAR operation enables you to run deployed applications such as Web
services and CT mappings.

Use the following steps to execute a Web service or CT mapping.

1. On the AgentWebService Endpoint page, select invokeEAR in the Operation field.

2. In the jndiName field, enter the JNDI name of the Web service.

3. In the soa_params field, enter the values of the mapping execution parameters.
Separate each value using a comma.

4. In the owb_params field, enter the values of the input parameters.

The Test Result page contains the Job ID of the Web service execution.

Using Web Services as Activities in Process Flows

16-16 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Using Web Services as Activities in Process Flows
You can use the functionality defined in a Web service as part of a process flow. The
Web service can either be created or imported into Warehouse Builder. To use Web
services in a process flow, use the Web Service activity.

For an example of using Web services in process flows, see "Case Study: Using Web
Services for Data Integration" on page 16-21.

Rules for Using Web Services in Process Flows
In process flows, Warehouse Builder only supports Web services that conform to the
following rules:

■ Only Web services described through an accessible WSDL file are supported.

■ If the WSDL file contains more than one service, then one service must be
nominated.

■ Web services that have basic authentications need a URI location to provide the
credentials. You must set the Deployed Location property of the Web Service
activity to this URI location.

■ If the Web service contains more than one port then the port must be nominated.

■ The port must use the http transport.

Steps to Use Web Services in Process Flows
To use a Web service in a process flow:

1. In the Projects Navigator, create a process flow.

For more information about creating process flows, see "Steps for Defining Process
Flows" on page 8-5.

2. Add all the activities, except the Web service activity, that are part of the process
flow and establish data flows between them.

3. If you are using an external Web service, import the Web service into Warehouse
Builder by creating a public Web service in the Globals Navigator.

4. Drag and drop the Web service, either from the Projects Navigator or the Globals
Navigator, onto the Process Flow Editor canvas.

or

From the Graph menu, select Available Objects. The Add Available Objects dialog
box is displayed. Select the required Web service and click OK.

The Web Service Operation dialog box is displayed.

5. Select an operation from the available operations of the Web service and click OK.
The selected operation is used in the process flow.

The Web service is added to the Process Flow Editor and its properties are listed in
the Structure panel.

The operation in a synchronous Web service has both input and output messages.
They will be mapped to input or output parameters of the Web Service activity in
the process flow.

See Also: "Creating Web Services Based on a URL" on page 16-10 for
more information about importing Web services

Using Web Services in Mappings

Creating and Consuming Web Services in Warehouse Builder 16-17

6. Provide the required input values for the Web service activity properties. Select the
property in the Structure panel, and use the Property Inspector to set values.

If the Web service needs authentication, create a URI location and set the Deployed
Location property of the Web Service activity to this URI location.

7. Establish data flows to and from the Web Service activity.

8. Generate the process flow and resolve any errors that may occur.

9. Ensure that all Web services that you added to the process flow in the form of Web
Service activities are deployed.

10. Deploy the process flow package containing the process flow created in Step 1.
Use the Control Center Manager or right-click the process flow package in the
Projects Navigator and select Deploy.

11. Execute the process flow. Right-click the process flow in the Projects Navigator
and select Start.

Synchronizing Web Service Activities with Their Referenced Web Services
When the definition of a Web service is modified, you must propagate these changes
to all the process flows that consume this Web service.

To synchronize Web services used in process flows:

1. Right-click the process flow that uses the Web service and select Open.

The Process Flow Editor for this process flow is displayed.

2. Select the Web Service activity that represents the Web service that has changed.
From the Edit menu, select Synchronize.

The Synchronize dialog box is displayed. The object with which the Web service
should be synchronized is selected, and you cannot modify this.

3. Specify the Matching Strategy by selecting one of the following matching options:
Match By Object Id, Match By Object Position, or Match by Object Name.

For details about these options, click Help.

4. Specify the Synchronize Strategy by selecting Replace or Merge.

5. Click OK to synchronize the Web service with the object on which it is based.

The changes made to the Web service are propagated to the Web Service activity that is
based on the Web service.

Using Web Services in Mappings
Because Web services are essentially functions, Warehouse Builder leverages the Web
services support provided by Oracle Database to enable you to use Web services in
mappings (which are PL/SQL packages). Thus, you can leverage functionality present
in existing Web services.

Use one of the following methods to create a mapping that uses Web services as
sources or targets:

■ Use the UTL_HTTP package.

■ Use the JPublisher utility to interface SQL to the Web service.

See "Steps to Consume a Web Service in a Mapping Using JPublisher" on
page 16-18.

Using Web Services in Mappings

16-18 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ Use the UTL_DBWS package to consume Web services.

Depending on the version of Oracle Database, you may need to download and
install the DBWS utility to perform these tasks.

■ Use the script use_webservice_in_mapping.tcl located in the OWB_
ORACLE_HOME/owb/misc/mappingWS directory to create an expert that you can
use to consume Web services in mapping.

Steps to Consume a Web Service in a Mapping Using JPublisher
The JPublisher utility translates your object types (which can be Oracle objects,
Varrays, nested tables, REFs, or object types) to Java classes and generates accessor
methods for each of the object's attributes. JPublisher creates the mapping between
object types and Java classes, and between object attribute types and their
corresponding Java types.

For PL/SQL packages, JPublisher creates a class containing a wrapper method for
each subprogram in the package. Like object methods, the wrapper methods generated
for each subprogram are always instance methods, even when the original method is
static. The wrapper methods generated by JPublisher provide a convenient way to
invoke PL/SQL stored procedures from Java code or to invoke a Java stored procedure
from a client Java program.

1. Use JPublisher to generate table function proxies for the WSDL file and publish
PL/SQL wrapper and proxy code.

For example, the following command generates proxies for the Web service
available at the URL http://99.22.32.21:9762/services/test_ws?wsdl.

jpub -user wh_tgt/wh_tgt_pswd -sysuser system/oracle -dir=test_ws
 -proxywsdl=http://90.22.32.21:9762/services/test_ws?wsdl

Here, wh_tgt and wh_tgt_pswd are the database credentials for the Warehouse
Builder location where the mapping is deployed.

JPublisher generates Java classes and PL/SQL wrappers and loads them into the
specified schema (WH_TGT).

2. (Optional) Define PL/SQL code to call the Web service.

This step verifies that the callout to the table function works at the Oracle
Database level, without involving Warehouse Builder.

The following example verifies that the callout to the function called my_func that
is part of the package my_pack works correctly:

SELECT * FROM TABLE(WH_TGT.MY_PROC.MY_FUNC)

3. Import the Web service metadata, for which you generated table function proxies,
into Warehouse Builder using the Import Metadata Wizard.

The metadata includes user-defined types and PL/SQL packages.

4. Open the Warehouse Builder mapping in which you want to consume the Web
service and add a Table Function operator to call the Web service. Perform the
following tasks:

■ In the Table Function Name property of the Table Function operator, enter the
name of the generated table function (from Step 1) that you want to add to the
mapping.

■ In the INGRP1 group of the Table Function operator, select the type of input
accepted by the table function using the Input Parameter Type field.

Using Secure Sockets Layer (SSL) to Access Web Services Securely

Creating and Consuming Web Services in Warehouse Builder 16-19

5. Define the source rows that represent the input to the Web service.

Map the operator that represents the Web service input to the inout group of the
Table Function operator.

6. Capture the output of the Web service in a table in the mapping.

Because the Table Function operator returns a collection type as output, use the
Expand Object operator, if required, to map the individual out rows to the target
table.

7. (Optional) If you need to set a Web proxy (for example because you are running
behind a corporate firewall), use a Pre-Mapping Process operator that uses the
procedure INITIALIZE_PROXY to configure the HTTP proxy.

8. Generate and execute the mapping.

Using Secure Sockets Layer (SSL) to Access Web Services Securely
Where security is a primary concern, Warehouse Builder enables you to access Web
services in a secure way using the Secure Sockets Layer (SSL). This ensures that
messages exchanged between the OC4J server and the Web service are secured.

You can access Web services deployed to both the OC4J server embedded in
Warehouse Builder and to other external OC4J servers securely.

J2EE Roles for Control Center Agent Security
Warehouse Builder provides the following three roles to facilitate Warehouse Builder
Control Center Agent security.

■ OWB_J2EE_EXECUTOR: Enables grantees to execute mappings in the Control
Center Agent (CCA).

■ OWB_J2EE_OPERATOR: Includes the OWB_J2EE_EXECUTOR role and enables
grantees to access and manipulate audit information.

■ OWB_J2EE_ADMINISTRATOR: Includes the OWB_J2EE_EXECUTOR role and
enables grantees to administer OC4J and deploy Warehouse Builder objects to the
Control Center Agent.

Setting Up Secure Access on External OC4J Servers
You can securely access Web services located on other OC4J servers (that are not
embedded in Warehouse Builder). Before you do so, you must set up security on the
OC4J server.

Use the following steps to set up secure access on other OC4J servers:

1. Create a key store with an RSA private/public key pair using the keytool utility.

The following example uses the RSA key pair generation algorithm to generate a
key store that resides in a file named mykeystore.jks and which has a
password of 123456.

%keytool -genkey -keylag RSA -keystore mykeystore.jks -storepass 123456

The keystore option sets the file name where the keys are stored. The
storepass option sets the password for protecting the key store. If you omit the
storepass option, you will be prompted for the password.

See Also: "Using a Browser to Execute Web Services" on page 16-12

Using Secure Sockets Layer (SSL) to Access Web Services Securely

16-20 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

2. You are prompted to enter a key entry password. In OC4J 10.1.3.x
implementations, the key store password must be the same as the key entry
password.

The mykeystore.jks file is created in the current directory. The default alias of
the key is mykey.

3. If you do not have a secure-web-site.xml file, create one in the following
location: ORACLE_HOME/j2ee/home/config.

To start, copy whatever content you need from default-web-site.xml. This
typically includes the following subelements under the <web-site> element:

■ <web-app> (for each Web application that you want to secure)

■ <access-log> (for logging; confirm that this specifies an appropriate log file)

■ <default-web-app>

4. Update secure-web-site.xml with the following elements:

■ Update the web-site element to add secure="true" and to set the port number
to some available port. For standalone OC4J, use the HTTP protocol, which is
the default setting. To use the default of 443, you must be a super user.

When you set protocol="http" and secure="true", the HTTPS protocol is used.

The following is an example of a <web-site> element.

<web-site port="4443" secure="true" protocol="http"
display-name="Default Oracle OAS Containers for J2EE Web Site">
...
...
</web-site>

■ Add an entry under the web-site element to define the key store and its
password as follows:

<ssl-config keystore="your_keystore" keystore-password="your_
password" />

Here, your_keystore is the path to the key store—either absolute, or
relative to ORACLE_HOME/j2ee/home/config (where the Web site XML
file is located)—and your_password is the key store password.

5. Save the changes to secure-web-site.xml.

6. Enable the secure Web site by adding the secure Web site to the server.xml file
located in OWB_ORACLE_HOME/owb/jrt/config directory.

7. Restart the OC4J server to ensure that the previous changes are applied.

8. If they are not yet created, create the OWB_J2EE_EXECUTOR, OWB_J2EE_
OPERATOR, and OWB_J2EE_ADMINISTRATOR roles.

See the file system-jazn-data.xml file located in the OWB_ORACLE_
HOME/owb/jrt/config folder.

9. Create the J2EE user used to execute Web services and grant the OWB_J2EE_
EXECUTOR role to this user.

Case Study: Using Web Services for Data Integration

Creating and Consuming Web Services in Warehouse Builder 16-21

Updating the Key Store Password
For the OC4J server that is embedded in Warehouse Builder, you are provided with a
secure key store for using SSL with Web services. This key store is available in the
serverkeystore.jks file in the OWB_ORACLE_HOME/owb/jrt/config folder.

The default password for this key store is welcome. Use the JAVA_
HOME/bin/keytool to change the password. Or just replace the key store with a
newly created key store using JAVA_HOME/bin/keytool.

Case Study: Using Web Services for Data Integration
Company A and Company B have just been merged. Company A is located in San
Francisco, USA, and Company B is located in Shanghai, China. Currently, they are still
following their own separate business processes. There is a need to develop a plan to
integrate their business processes.

Company A uses Oracle Database to store their data and Oracle Warehouse Builder
for data integration and ETL. A mapping is used to determine the total sales for a
specified period.

Company B uses a SQL Server database to store data and Oracle Warehouse Builder
for data integration and ETL. Because the source tables are in SQL Server, a CT
mapping is used to determine the total sales over a specified period.

Example: Publishing Mappings as Web Services
Company A stores the sales details in a table called ORDERS. The PRODUCTS table
stores details about products. The mapping LOAD_TOTAL_SALES_MAP transforms
source data and loads the details of total sales into the target table TOTAL_SALES. As
part of the data integration requirement, the business processes of Company A and
Company B must be integrated.

Publishing the mapping LOAD_TOTAL_SALES_MAP as a Web service will enable the
functionality defined in the mapping to be accessed remotely, without dependency on
the location, data format, or provider’s platform.

Company A uses the following tables to store data:

■ ORDERS: contains the columns order_id, order_date, product_id,
quantity, and customer_id

■ PRODUCTS: contains the columns product_id, product_name, product_desc,
and product_price

■ CUSTOMERS: contains the columns customer_id, first_name, last_name,
cust_address, and cust_city

Use the following steps to publish the LOAD_TOTAL_SALES_MAP as a Web service.

1. In the Projects Navigator, create an application server module called
INTEGRATION_AS_MOD that will contain the Web service you are creating. Ensure
that the location details of this module are set to the agent location to which the
Web service will be deployed.

2. Expand the Oracle module that contains the LOAD_TOTAL_SALES_MAP mapping.

3. Right-click the LOAD_TOTAL_SALES_MAP mapping and select Publish as Web
Service.

The Select Application Server or Web Service Package dialog box is displayed.

Case Study: Using Web Services for Data Integration

16-22 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

4. Select INTEGRATION_AS_MOD and click OK.

The Web service called WS_LOAD_TOTAL_SALES_MAP is created and deployed to the
agent location associated with the application server module INTEGRATION_AS_MOD.

Example: Consuming Web Services in Process Flows
Company B uses a CT mapping called LOAD_TOT_SALES_CT_MAP to load aggregate
sales during a specified period to the target table TOT_SALES. This mapping is similar
to the mapping used by Company A. However, a CT mapping is used because the
source tables ORDERS, PRODUCTS, and CUSTOMERS are stored in a SQL Server
database.

Because Company B is located in China, the source tables store the sales figures in
Chinese Yuan. However, because Company A and Company B have been merged, the
sales head wants to see the consolidated sales of both companies in a common
currency, U.S. Dollar. You must now convert the sales figures of Company B to U.S.
Dollar.

To determine the conversion rate, you can use an external Currency Converter Web
Service. This Web service takes two input parameters, From Currency and To
Currency. Its output is the multiple that must be used to convert the From Currency to
the To Currency. Because this is an external Web service, you must first import this
Web service into Warehouse Builder.

Steps to Consume a Web Service in a Process Flow
1. Modify the LOAD_TOT_SALES_CT_MAP Code Template (CT) Mapping.

2. Import the Currency Converter Web Service.

3. Create a Process Flow That Consumes the Currency Converter Web Service.

Modify the LOAD_TOT_SALES_CT_MAP Code Template (CT) Mapping
Edit the CT mapping LOAD_TOT_SALES_CT_MAP and add a Mapping Input operator
and an Expression operator. The Mapping Input operator is used to provide the
currency conversion value. The Expression operator is used to compute the total sales
in U.S. Dollar by multiplying the total sales in Chinese Yuan with the conversion value
and then loading the converted sales figures into the TOT_SALES table.

Import the Currency Converter Web Service
The Currency Converter Web service is an external Web service that is available at:

http://www.webservicex.net/CurrencyConvertor.asmx?WSDL

Before you can consume this Web service in a process flow, you must import this Web
service into Warehouse Builder, using the following steps:

1. In the Globals Navigator, create an application server module called PUBLIC_AS_
MOD.

To import a Web service that is based on a URL, you must create a public Web
service in the Globals Navigator.

2. In the Globals Navigator, right-click PUBLIC_AS_MOD and select New Web
Service to create a Web service based on a URL. This Web service is called WS_
CURR_CONVERT.

Use the URL to the currency converter Web service to specify the WSDL file
location.

Case Study: Using Web Services for Data Integration

Creating and Consuming Web Services in Warehouse Builder 16-23

For more details about creating a Web service based on a URL, see "Creating Web
Services Based on a URL" on page 16-10.

Create a Process Flow That Consumes the Currency Converter Web Service
Use a process flow to establish the order in which objects are executed and to use the
output of an object as input to another. The process flow loads the target table with
sales figures for Company B in U.S. Dollar.

Figure 16–1 displays the process flow that loads the TOT_SALES table with the sales
figures for Company B in U.S. Dollar.

The Web service CONVERTSERVICE_CONVERSIONRATE is executed first and its
output is the conversion value that should be multiplied to a value in Chinese Yuan to
convert it to U.S. Dollar. This value is provided as the input to the Mapping Input
Parameter operator in the LOAD_TOT_SALES_CT_MAP CT mapping, represented by
the Mapping activity CMAP1, that represents the conversion value.

Figure 16–1 Process Flow that Consumes a Web Service

Example: Integrating Warehouse Builder Web Services with Oracle BPEL Process
Manager

You can integrate ETL functionality developed using Warehouse Builder with
products such as Oracle BPEL Process Manager. This is achieved by publishing ETL
objects as Web services that can be consumed by Oracle BPEL Process Manager.

Oracle BPEL Process Manager provides a comprehensive and easy-to-use solution for
designing, deploying, and managing BPEL Processes.

Scenario
The sales head of Company A wants to evaluate the sales performance of both
Company A and Company B over a specified time period. Both company A and
Company B have their own processes to determine sales performance over a specified
period. The need is to integrate these processes so that you have an easy way to
determine the total sales, during a period, for the combined company.

Before You Integrate ETL Functionality with Oracle BPEL Process Manager
Company A uses the mapping LOAD_TOTAL_SALES_MAP, which is published as the
Web service WS_LOAD_TOTAL_SALES_MAP. Company B uses the Code Template
mapping LOAD_TOT_SALES_CT_MAP and a process flow to convert the sales in
Chinese Yuan to U.S. Dollar. Ensure that you publish this process flow as a Web
service. Also ensure that you publish any objects associated with these Web services.

Steps to Integrate With BPEL
1. Start the Oracle SOA Suite.

2. Start JDeveloper BPEL Designer

Case Study: Using Web Services for Data Integration

16-24 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

3. Create a BPEL process called BPEL_INTEG. This process uses the Web services
created by Company A and Company B.

Figure 16–2 displays the process BPEL_INTEG.

Case Study: Using Web Services for Data Integration

Creating and Consuming Web Services in Warehouse Builder 16-25

Figure 16–2 BPEL Process that Uses Web Services

Case Study: Using Web Services for Data Integration

16-26 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

4. Deploy the BPEL process by right-clicking the BPEL process in the Applications
Navigator, selecting Deploy, and choosing the deployment location.

You can use the Log panel to view the deployment results.

5. Login to BPEL Manager using a web browser.

6. On the Dashboard tab, select BPEL_INTEG in the Deployed BPEL Processes
section.

7. Select the Initiate tab.

8. Enter values for the input parameters START_DATE and END_DATE using the
Input field and click Post XML Message to run the BPEL process.

For example, enter the following value in the Input field: START_
DATA=2007-01-01,END_DATA=2008-12-31.

9. View the audit trail for the Business Process Execution. Select the Instances tab of
the BPEL Console and click the Flow link.

Moving Large Volumes of Data Using Transportable Modules 17-1

17
Moving Large Volumes of Data Using

Transportable Modules

Oracle Warehouse Builder enables you to build and publish an enterprise data
warehouse in stages. You can improve the performance and manageability of the data
warehouse.

Warehouse Builder mappings access remote data through database links. Processing
overhead and network delays make this data access process slower than local data
access by the mappings. You can use one of the following strategies to speed up data
access:

■ Create a transportable module to copy remote objects (tables, views, materialized
views, and so on) from a source database into a target database. The mappings in
the target data warehouse can then access data locally.

■ Data can be partially processed in the source database and then the preprocessed
data can be copied, using a transportable module, from source to target database
for final loading into the data warehouse.

A transportable module functions like a shipping service that moves a package of
objects from one site to another at the fastest possible speed.

Note: To utilize transportable modules, ensure that your organization has licensed the
Warehouse Builder Enterprise ETL Option.

The following sections provide information about transportable modules:

■ About Transportable Modules on page 17-1

■ Benefits of Using Transportable Modules on page 17-4

■ Instructions for Using Transportable Modules on page 17-5

■ Editing Transportable Modules on page 17-17

About Transportable Modules
Transportable modules enables you to rapidly copy a group of related database objects
from one database to another.

Using the Design Center, you first create a transportable module, and specify the
source database location and the target database location. Then, you select the
database objects to be included in the transportable module. The metadata of the
selected objects are imported from the source database into the transportable module.
The metadata is stored in the workspace. To physically move the data and metadata
from source into target, you must configure and deploy the transportable module to

About Transportable Modules

17-2 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

the target location. During deployment, both data and metadata are extracted from the
source database and created in the target database.

A combination of the following technologies enables the movement of data and
metadata:

■ Oracle Data Pump

■ Transportable Tablespace

■ DBMS_FILE_TRANSFER

■ Binary FTP

■ Local file copy

■ code generation and deployment

You can configure transportable modules to influence which technologies are used.

You can add the following source objects to transportable modules:

■ Tablespaces

■ Schemas

■ Tables

■ Views

■ Sequences

■ Materialized Views

■ PL/SQL Functions, Procedures, and Packages

■ Object Types

■ Varying Array Types (Varrays)

■ Nested Table Types

The traditional Extract, Transform, and Load (ETL) process extracts data from remote
databases through multiple remote accesses using database links.

Figure 17–1 displays the traditional extraction of data from remote databases.

Figure 17–1 Extraction Of Data From Remote Databases Through Multiple Remote
Accesses Using Database Links

During remote accesses using database links, significant performance degradation
occurs due to serial queries and serial DMLs, and network latencies. The performance
degradation will appear more if the same source tables are accessed multiple times.

In the transportable module architecture, all the source objects needed by the
mappings are bundled together and moved to the target during a deployment. The
transportable modules deployment uses Oracle Data Pump, FTP, and Oracle

About Transportable Modules

Moving Large Volumes of Data Using Transportable Modules 17-3

transportable table space to achieve very high transportation performance. This
transportation absorbs the cost of the network delays just once. After deployment,
mappings access data locally, which can easily benefit from parallel queries and
parallel DMLs. Repeated accesses to the same data increases the performance benefit
of transportable modules.

Figure 17–2 Transportable Modules Deployment

Using transportable modules, data warehouse loadings become more manageable. The
source database needs to be shut down only for a short period of time for the
transportable module to complete the deployment. Users of the source database do not
have to wait until the entire data is loaded into the data warehouse. For example, if
you are using the transportable tablespace implementation, transportable modules can
copy a tablespace of 20 GB in about five minutes, resulting in a down time of five
minutes in the source database.

Data copied into the target database is a snapshot of the information present in the
source database. This can be used to create a data versioning system. Advanced users
can create streams on the transported tables for capturing real-time changes from the
source. The transported tables can also be copied into larger tables as a partition.

In a multidepartmental enterprise environment, the target database may actually be an
operational data store that is used for intermediate reporting and updating purposes.
This target database could in turn, serve as a source to the next stage of data collection.
You can use the transportable modules at multiple stages, along the path on which the
data is moved before it is stored in the data warehouse.

Transportable modules can also be used for publishing data marts. A data mart is
normally a portion of a larger data warehouse for single or departmental access. At
times, creating a data mart amounts to copying what has already been collected and
processed in the data warehouse. A transportable module can be created to perform
this task. You can also use the same transportable module to deploy a data mart to
multiple locations.

Figure 17–3 displays a transportable module used for publishing for data marts.

Benefits of Using Transportable Modules

17-4 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Figure 17–3 Data Marts in a Data Warehouse

Because a transportable module deploys a snapshot of the source database objects, the
deployment time can be used to track the version of the data marts.

About Transportable Modules and Oracle Database Technology
Transportable modules work by leveraging technology in Warehouse Builder plus
technology in the Oracle Database. A transportable module replicates parts of a source
database into a target database. The parts of the source database that can be replicated
include tablespaces, tables, indexes, constraints, and other relational objects.

Depending on the database version, the Oracle Database replicates the tablespace.
When you transport data between two releases of 8i databases or between two releases
of 9i databases, the database calls the Oracle transportable tablespaces functionality.
When you transport data between two Oracle 10g databases, the database calls the
Oracle Data Pump functionality.

In the case of Oracle Database 10g and Oracle Data Pump, you can transport tables
without transporting their tablespaces. For example, if your table is 100 KB and its
tablespace size is 10MB, then you can deploy the table without deploying the entire
tablespace. Only Oracle Data Pump provides the option to copy an entire schema. For
Oracle 10g release database, you specify either data pump or transportable tablespaces
during configuration as described in "Configuring a Transportable Module" on
page 17-12.

Benefits of Using Transportable Modules
Before the introduction of transportable modules, the most scalable data
transportation method relied on moving flat files containing raw data. This method
required data to be unloaded or exported into files from the source database, and then
these files were loaded or imported into the target database. The transportable
modules method entirely bypasses the unload and reload steps and gives you access
to the Oracle Database technologies Transportable Tablespaces and Data Pump.

See Also: For more information about transportable tablespace and
Data Pump, see the Oracle Database 10g documentation.

Instructions for Using Transportable Modules

Moving Large Volumes of Data Using Transportable Modules 17-5

High Performance Data Extraction
Transportable modules reduce the need for mappings to access data remotely. If you
have large volumes of data on remote computers, then use transportable modules to
quickly replicate the source onto the Oracle target database. Warehouse Builder
mappings can then directly access a local copy of the data. In addition, because the
source becomes part of the target, you can perform the ETL operations directly on the
source data.

Distribute and Archive Data Marts
A central data warehouse handles ETL processing while dependent data marts are
read-only. You can use transportable modules to copy from a read-only data mart to
multiple departmental databases. In this way, you can use your central data
warehouse to periodically publish new data marts and then replace old data marts by
dropping the old tablespace and importing a new one. Because duplication and
distribution takes relatively less time, you can publish and distribute a data mart for
daily analytical or business operations.

Archive Sources
You can set the source tablespaces to read-only mode and then export them to a target.
All the data files are copied, creating a consistent snapshot of the source database at a
given time. This copy can then be archived. The archived data can be restored in the
source and target databases.

Instructions for Using Transportable Modules

Before You Begin
Ensure that you can connect to source and target databases as a user with the
necessary roles and privileges as described in Verifying the Requirements for Using
Transportable Modules on page 17-6.

Ensure that your organization has licensed the Warehouse Builder Enterprise ETL
Option.

To use transportable modules, refer to the following sections:

Note to Database Administrators: Step 1 of these instructions requires some powerful
database roles and privileges. Step 3 requires knowledge of schema passwords.
Depending on security considerations, you can allow developers to perform Step 3 or
restrict it to database administrators only.

1. Specifying Locations for Transportable Modules on page 17-7

Ensure to successfully test these connections before proceeding to the next step.

2. Creating a Transportable Module on page 17-8

3. Configuring a Transportable Module on page 17-12

4. Generating and Deploying a Transportable Module on page 17-15

5. Designing Mappings that Access Data through Transportable Modules on
page 17-17

6. Editing Transportable Modules on page 17-17

Instructions for Using Transportable Modules

17-6 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Verifying the Requirements for Using Transportable Modules
When creating a Transportable Module source location, the source location user must
possess specific roles and/or privileges depending on the version of the source
database.

■ If the source database is earlier than Oracle 10g, then the SYSDBA privilege is
required for the source location user.

■ If the source database is Oracle 10g, then the SYSDBA privilege is not required, but
the following must be assigned to the source location user.

– CONNECT role

– EXP_FULL_DATABASE role

– ALTER TABLESPACE privilege

When creating a Transportable Module target location, the target location user must
possess specific roles and/or privileges depending on the version of the target
database.

■ If the target database is earlier than Oracle 10g, then the SYSDBA privilege is
required for the target location user.

■ If the target database is Oracle 10g, then the SYSDBA privilege is not required but
the following must be assigned to the target location user.

– CONNECT role with admin option

– RESOURCE role with admin option

– IMP_FULL_DATABASE role

– ALTER TABLESPACE privilege

– EXECUTE_CATALOG_ROLE with admin option

– CREATE MATERIALIZED VIEW privilege with admin option

– CREATE ANY DIRECTORY privilege

The following is a SQL script for the DBA to assign source location users the required
roles and privileges in the source database:

grant connect to <TM src location user>;
grant exp_full_database,alter tablespace to <TM src location user>;

The following is a SQL script for the DBA to assign target location users the required
roles and privileges in the target database:

grant connect,resource to <TM tgt location user> with admin option;
grant imp_full_database,alter tablespace to <TM tgt location user>;
grant execute_catalog_role to <TM tgt location user> with admin option;

Note: Transportable Module source and target location users must be
assigned many powerful roles and privileges in order for the
transportable modules to read objects from the source database and
for creating objects in the target database. In a production
environment, if necessary, the DBA may choose to create the
transportable module source and target locations (using the Locations
Navigator) for the data warehouse developers, and conceal the
passwords.

Instructions for Using Transportable Modules

Moving Large Volumes of Data Using Transportable Modules 17-7

grant create materialized view to <TM tgt location user> with admin option;
grant create any directory to <TM tgt location user>;

Specifying Locations for Transportable Modules
Before you create a transportable module, first define its source and target locations in
the Location Navigator. Each transportable module can have only one source and one
target location.

To specify a transportable module location:

1. In the Locations Navigator, expand the Locations node.

2. Expand the Databases node.

3. Right-click either the Transportable Modules Source Locations or Transportable
Modules Target Locations node and then select New.

Warehouse Builder displays a dialog box for specifying the connection
information for the source or target location.

4. The instructions for defining source and target locations are the same except that
you do not specify optional FTP connection details for targets. Follow the
instructions in "Transportable Module Source Location Information" to specify the
connection information and then test the connection.

Transportable Module Source Location Information
Warehouse Builder first uses this connection information to import metadata for the
transportable module from the source computer into the workspace. During
deployment, the connection information is used to move data from the source to the
target.

Name
A name for the location of the source or target database.

Description
An optional description for the location.

User Name/Password
Warehouse Builder uses the database user name and password to retrieve the
metadata of the source objects you want to include in the transportable module.
Warehouse Builder also uses this information during deployment to perform
transportable tablespace or data pump operations.

To access databases for use with transportable modules, you must ensure that the user
has the necessary database roles and privileges as described in Verifying the
Requirements for Using Transportable Modules on page 17-6.

Host
Host name of the computer on which the database is installed.

Port
Port number of the computer on which the database is installed.

Instructions for Using Transportable Modules

17-8 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Service
Service name of the computer on which the database is installed.

Version
Choose the Oracle Database release number from the list.

FTP User Name/Password (Optional)
Specify FTP account credentials if you intend to use Oracle Transportable Tablespace
as the method for transporting data. FTP credentials are not required if you do not
plan to configure the Transportable Tablespace method.

You can leave the FTP account credentials blank, if you configure to use the
Transportable Tablespace, but both source and target databases are located in the same
computer, or both source and target can access shared disk volumes. Without the FTP
credentials, an attempt is made to perform a plain copy of the source files from the
source directory to target directory.

Test Connection
Click Test Connection to validate the connection information. Warehouse Builder
attempts to connect to the source database and, if applicable, to the FTP service on the
source computer. A success message is displayed only after both credentials are
validated.

Creating a Transportable Module
To create a transportable module:

1. From the Projects Navigator, expand the Databases node.

2. Right-click the Transportable Modules node and select New.

The Welcome page of the Create Transportable Module Wizard is displayed.

3. The wizard guides you through the following tasks:

Describing the Transportable Module

Selecting the Source Location

Selecting the Target Location

Selecting Tablespaces and Schema Objects to Import

Reviewing the Transportable Module Definitions

Describing the Transportable Module
On the Name and Description page, type a name and optional description for the
transportable module.

Selecting the Source Location
Although you can create a new source location from the wizard page, it is
recommended that you define locations for transportable modules before starting the
wizard as described in "Transportable Module Source Location Information" on
page 17-7.

When you select an existing location, the wizard tests the connection and does not
allow you to proceed until you specify a location with a valid connection.

Instructions for Using Transportable Modules

Moving Large Volumes of Data Using Transportable Modules 17-9

Selecting the Target Location
Select a target location from the list. If no target locations are displayed, click New and
define a target location as described in "Transportable Module Source Location
Information" on page 17-7.

Selecting Tablespaces and Schema Objects to Import
Use the Define Contents page to select tablespaces and schema objects to include in the
transportable module. On the left pane, Available Database Objects lists all source
tablespaces, schemas, and available schema objects. On the right pane, Selected
Database Objects displays the objects after you select and move the objects.

Expand the tablespaces to display the schemas in each tablespace and the objects in
each schema. Non-tablespace schema objects such as views and sequences are also
listed under their respective schema owners, even though these objects are not stored
in the tablespace. To select multiple objects at the same time, hold down the Ctrl key
while selecting them. You can include the following types of objects in transportable
modules:

■ Tables

■ Views

■ Materialized Views

■ Sequences

■ PL/SQL Functions, Procedures, and Packages

■ Object Types, Varray Types, and Nested Tables Types

Select the tablespaces and schema objects from the Available Database Objects field
and click the arrow buttons in the center to move the objects to the Selected Database
Objects field.

Available Database Objects
You can view the number of data files and their total size by placing your mouse over
a node. The wizard displays the information in a tooltip.

Figure 17–4 displays the wizard with the tooltip.

Instructions for Using Transportable Modules

17-10 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Figure 17–4 Viewing the Number of Data Files and Total Size

Finding Objects in the Available Database Object List: Click the flashlight icon to find source
data objects by type or name. In the Object field, type a name or pattern by which to
filter your search, using the % character as a wildcard. From the Type list, indicate the
object type you are searching. Check the required box to perform the search by name
or by description.

For example, type 'T%' in the Object field, select tablespaces from the Type field, and
click Find Next. The cursor on the Available Database Objects navigation tree selects
the name of the first tablespace that starts with a 'T.' If that is not the tablespace you
want to select, then click Find Next to find the next tablespace. During this searching
process, the navigation tree expands all the schema names and displays all the
tablespaces.

Filtering the Available Database Objects List: You can double-click a schema node or any of
the nodes in the schema to type in a filter pattern. For example, if you type T% and
click OK, the navigation tree displays only those objects that start with the letter T. The
filter criteria will be displayed with the object name in the navigation tree, providing a
helpful hint of which object types have filters applied.

Figure 17–5 displays the Define Contents page with a schema selected.

Tip: When searching for schema level objects such as tables, it is
recommended that you select a tablespace or schema from the
navigation tree before launching the search. This prevents a search
over all tablespaces and significantly reduces the search time.

Instructions for Using Transportable Modules

Moving Large Volumes of Data Using Transportable Modules 17-11

Figure 17–5 Schema Node Selected on Define Contents Page

Objects Not Available for Inclusion in Transportable Modules

If you select items that cannot be included in a transportable module, then a dialog
box is displayed listing items that cannot be included and describing why.

Figure 17–6 displays the Import Filter dialog box.

Figure 17–6 Import Filter Dialog Box

Reviewing the Transportable Module Definitions
Review the summary information and click Finish to import the metadata of the
selected tablespace and schema objects.

After the transportable module is created in your workspace, you can locate it on the
Projects Navigator under the Transportable Modules node. Expand the tree to display
the imported definitions.

Instructions for Using Transportable Modules

17-12 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Warehouse Builder creates separate modules for separate schemas. The schema names
on the Projects Navigator mirror the schema names in your source database.

Because the objects contained in a transportable module mirror the source database,
you cannot edit these objects using the user interface. If the source database changes,
then you can reimport the objects. If you want to delete objects from the transportable
module, then right-click the object and select Delete. This action deletes the object
from the definition of the transportable module but does not effect the underlying
source database.

Configuring a Transportable Module
In the Projects Navigator, right-click a transportable module and select Configure to
configure it for deployment to the target database. You set configuration parameters at
the following levels:

■ Transportable Module Configuration Properties

■ Schema Configuration Properties

■ Target DataFile Configuration Properties

■ Tablespace Configuration Properties

For most used cases, you can accept the default settings for all the configuration
parameters with the exception of the Password setting. You must specify a password
for each target schema. If the schema already exists in the target, then specify an
existing password. If the schema does not already exist, then the schema can be
created with the password you provide.

Depending on your company security polices, knowledge of schema passwords may
be restricted to database administrators only. In that case, the database administrator
must specify the password for each schema. Alternatively, developers can define new
passwords for new schemas if the target has no existing schemas that match source
schemas.

Transportable Module Configuration Properties
Set the following runtime parameters for the transportable module:

Target OS Type
Select the type of operating system for the target. For versions earlier than Oracle
Database 10g, the type of operating system on the target computer must be the same as
the source computer. For versions Oracle Database 10g or higher, you can deploy to
any operating system from any operating system.

Work Directory
You should create a directory on the target computer dedicated to the deployment of
transportable modules. This dedicated directory stores files generated at run time
including temporary files, scripts, log files, and transportable tablespace data files. If
you do not create a dedicated directory and type its full path as the Work Directory,
then the generated files are saved under the runtime home directory.

What to Deploy
Warehouse Builder enables you to select whether you want to deploy only the tables
in your transportable module or all the related catalog objects, such as views and
sequences, as well. Select the TABLES_ONLY if you want to deploy only tables.
Otherwise, select the ALL_OBJECTS.

Instructions for Using Transportable Modules

Moving Large Volumes of Data Using Transportable Modules 17-13

Use the TABLES_ONLY option to refresh the data in a transportable module. If you
had previously deployed a transportable module with the ALL_OBJECTS option and
want to replace only the tablespace from the same source, then redeploy the
transportable module with the TABLES_ONLY option. The deployment drops the
existing tablespace in the target, inserts the new one, and then recompiles the
previously deployed metadata.

Similarly, if you previously deployed the transportable module using Data Pump, then
the redeployment will only modify the tables in the transportable module.

Transport Tablespace
By default, this setting is enabled and the tablespaces are transported. If you enable
this setting, then also specify the settings under Target DataFile Configuration
Properties.

If both the source and target databases are Oracle 10g or higher, then consider
disabling this setting. For example, if your table is 100 KB and its tablespace size is 10
MB, then you can deploy the table without deploying the entire tablespace. When you
disable Transport Tablespace, Oracle Data Pump is used to deploy the table and you
can specify the Table Exists Action setting.

If Transport Tablespace is selected, then there are further restrictions, depending on the
versions of the source and target locations, as described in Table 17–1. When planning
for data replications, take these restrictions into consideration. In general, Oracle 10g,
particularly Oracle10g release 2, is the preferred target database.

Note: If source or target location is not Oracle 10g, the Transport
Tablespace option is selected by default. In that case, Transportable
Tablespace is the only implementation method for data movement. If
both source and target locations are Oracle 10g, then you can deselect
Transport Tablespace and use Data Pump.

Table 17–1 Requirements for Replicating Data Between Database Versions

Source location Target location

10g Targeting another Oracle 10g location requires that both
databases must have the same character set and the same
national character set.

Targeting an Oracle 8i or 9i location is not possible.

9i Targeting an Oracle 9i or 10g location requires that both
databases must have the same character set, the same national
character set, and both databases must be on the same operating
system platform.

Targeting an Oracle 8i or 9i location is not possible.

Instructions for Using Transportable Modules

17-14 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Schema Configuration Properties
Set the following schema parameters for the transportable module:

Target Schema Name
This property enables you to change the name of the source schema when it is
deployed to the target. Select the Default or click the Ellipsis button to type the new
name for your schema in the target and click OK. For example, you can change SCOTT
to SCOTT1.

Password
For existing schemas, type a valid password for the schema. For schemas to be created,
Warehouse Builder creates the schema with the password you provide.

Default Tablespace
Specify the default tablespace to be used when creating the target schema. If you leave
this setting blank, then the default specified by the target is used.

Schema Exists Action
Specify what action should be taken if the schema already exists in the target. The
default value is Skip.

Schema Does Not Exist Action
Specify what action should be taken if the schema does not already exist in the target.
The default value is Create.

Table Exists Action
When Transport Tablespace is disabled, use this property to specify what action
should be taken if the table already exists in the target. The default value is Skip.

Copy Source Schema
When you use Oracle Data Pump by deselecting Transport Tablespace, you can select
this option to copy the entire source schema into the target.

8i Targeting an Oracle 8i, 9i, or 10g requires all of the following:

■ Both source and target databases must have the same
character set.

■ Both source and target databases must have the same
national character set.

■ Both source and target databases must be on the same
operating system platform.

■ Both source and target databases must have the same block
size.

■ Cannot change schema names during transporting
tablespaces.

■ Cannot change tablespace names during transporting
tablespaces.

Table 17–1 (Cont.) Requirements for Replicating Data Between Database Versions

Source location Target location

Instructions for Using Transportable Modules

Moving Large Volumes of Data Using Transportable Modules 17-15

Parallel
When you use Oracle Data Pump by deselecting Transport Tablespace, specify the
maximum number of processes for the Oracle Database to use for carrying out the
transfer of data.

Target DataFile Configuration Properties
You must set the following data file parameters for the transportable module:

Directory
Indicate the directory where you want the data file to be stored on your target
computer. If you leave the directory unspecified, then the data file is stored in the
Work Directory.

File Name
Specify the name of the data file to be created in the target computer. You can use this
parameter to rename the data file. Accept the DEFAULT to persist the data file name
from the source database or click the Ellipsis button to type a new name for the data
file, and click OK.

Overwrite
If this parameter is selected, then the existing data file is overwritten. Otherwise, the
deployment is terminated if an existing data file is found.

Tablespace Configuration Properties
When you enable Transport Tablespace, set the following tablespace parameters for
the transportable module:

Tablespace Name
If you are using a database prior to 10g, then the target tablespace name must be the
same as your source tablespace name. For such cases, this field is read-only. If a
tablespace with the same name already exists in your target database, then the runtime
operation will first drop the existing tablespace and replace it with the new one.

If you are using Oracle Database 10g or higher, then you can change the target
tablespace name.

Drop Existing Tablespace
If this setting is selected, the existing tablespace is dropped and recreated in the target.
By default, this setting is not selected and prevents you from deleting the tablespace in
the target in the event that the tablespace with the same name already exists. In this
case, the deployment process stops with an error.

Generating and Deploying a Transportable Module
When you deploy a transportable module, the Control Center displays the
transportable module as including all the tables while the other catalog objects such as
views are displayed separately. When you select a deploy action for the transportable
module, the Control Center sets the associated catalog objects to the same deploy
action.

During deployment of a transportable module, there are two ways for users to
monitor the deployment progress. The first way is by the use of the Job Details

Instructions for Using Transportable Modules

17-16 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

window. The status line is instantly refreshed with the most up-to-date status. The
message box immediately above the status line shows all the messages logged so far.

Another way of observing the progress is by viewing the log file that the transportable
module deployment process generates. The transportable module log file is created in
the Work Directory that the user has configured. The name of the file is always <The
TM Name>.log, for example TM1.log if the name of the transportable module is TM1.
This file is a plain text file containing the same messages that you can see in the
message box in the Job Details window. Example 17–1 shows the contents of a
transportable module log file.

Currently, there are a total of 16 steps to view the log files. Some steps may be skipped
depending on the user configurations, and some steps may contain error messages
that transportable module considers ignorable, such as failures in creating referential
constraints due to referenced tables not found errors. This log file contains important
information. It must be carefully examined during and after the transportable module
deployment completes.

Example 17–1 Log file containing important information

step1 begin: making connection to target db ...
step1 end: connected to target
Target ORACLE_HOME = /data/oracle/ora1010
step2 begin: making connection to source db...
step2 end: skipped.
step3 begin: making source tablespaces read only...
step3 end: skipped.
step4 begin: exporting tts...
step4 end: skipped.
step 5 begin: checking for existing datafiles on target...
step5 end: skipped.
step 6 begin: drop existing tablespaces
step6 end: skipped.
step7 begin: transporting datafiles...
step7 end: skipped.
step8 begin: managing schemas/users ...
step8 end: completed setting up target schemas
step9 begin: drop non-table schema objects...
step9 end: nothing to drop.
step10 begin: converting datafiles...
step10 end: skipped.
step 11 begin: importing tts ...
find or create a useable dblink to source.
step11 end: importing tts is not requested by user.
step 11 end: import tts is successful
step 12 begin: restore source tablespaces original status ...
step12 end: skipped.
step13 end: skipped.
step14 begin: non-tts import ...

Import: Release 10.1.0.4.0 - Production on Tuesday, 04 April, 2006 10:43
Copyright (c) 2003, Oracle. All rights reserved.

Username:
Connected to: Oracle Database 10g Enterprise Edition Release 10.1.0.4.0 -
Production
With the Partitioning, OLAP and Data Mining options
Starting "TMTGT_U"."SYS_IMPORT_TABLE_02": TMTGT_
U/********@(DESCRIPTION=(ADDRESS=(HOST=LOCALHOST)(PROTOCOL=tcp)(PORT=1521))(CONNEC
T_DATA=(SERVICE_NAME=ORA1010.US.ORACLE.COM))) parfile=/home/ygong/tmdir/TM1_

Editing Transportable Modules

Moving Large Volumes of Data Using Transportable Modules 17-17

imptts.par
Estimate in progress using BLOCKS method...
Processing object type TABLE_EXPORT/TABLE/TBL_TABLE_DATA/TABLE/TABLE_DATA
Total estimation using BLOCKS method: 64 KB
Processing object type TABLE_EXPORT/TABLE/TABLE
. . imported "TMU1"."TA" 2 rows
Processing object type TABLE_EXPORT/TABLE/STATISTICS/TABLE_STATISTICS
Processing object type TABLE_EXPORT/TABLE/CONSTRAINT/REF_CONSTRAINT
ORA-39083: Object type REF_CONSTRAINT failed to create with error:
ORA-00942: table or view does not exist
Failing sql is:
ALTER TABLE "TMU1"."TA" ADD CONSTRAINT "TA_T1_FK" FOREIGN KEY ("C") REFERENCES
"TMU1"."T1" ("C") ENABLE

Job "TMTGT_U"."SYS_IMPORT_TABLE_02" completed with 1 error(s) at 10:44
step14: import has failures.
step14 end: non-tts import completed with warnings
step15 end: create flat file directories skipped.
step16 end: transporting flat files skipped.

Designing Mappings that Access Data through Transportable Modules
After you successfully deploy a transportable module, you can use the objects in the
transportable module in ETL designs. When you add source and target operators to a
mapping, you can select objects from the transportable module folder.

Editing Transportable Modules
A transportable module is located under the transportable modules node within the
Databases node on the Projects Navigator.

You can edit a transportable module by right-clicking the name of the transportable
module from the Projects Navigator and selecting Open. Warehouse Builder displays
the Edit Transportable Module dialog box containing four tabs.

Name
From the Name tab, you can edit the name and description of the transportable
module.

Source Location
Warehouse Builder uses this connection information to access the source computer
and import the metadata into its workspace. Warehouse Builder also uses this
information during runtime to move the tablespace data from the source to the target.

The Source Database tab is read-only. Once you have imported tablespace definitions
from a source computer, you cannot change the location information.

Tablespaces
The Tablespaces tab displays the tablespaces to be transported and their size. This tab
is read-only. You can also view the tablespace size for individual data files in a
tablespace. For details, see "Viewing Tablespace Properties" on page 17-18.

Editing Transportable Modules

17-18 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Target Locations
Displays the available and selected target locations. You can move a location from
Available Locations to Selected Locations, or configure a new location.

Viewing Tablespace Properties
You can view the properties of a tablespace by right-clicking the name of the
tablespace from the Projects Navigator and selecting Open. Warehouse Builder opens
the Edit Tablespace dialog box. This property sheet displays the size of individual data
files in a tablespace. It has two tabs, Name and Source Datafiles.

Reimporting Metadata into a Transportable Module
If your source data has changed since you last created a transportable module, then
you can reimport the metadata to update your workspace definitions. When you open
the Reimport dialog box, the source location you specified while creating the
transportable module is stored and the source objects are displayed.

To reimport transportable module definitions:

1. From the Projects Navigator, right-click the Transportable Modules name and
select Reimport.

The Re-create Transportable Module dialog box is displayed.

2. From the Available Database Objects column, select the objects you want to
reimport.

The database objects that have been previously imported into the workspace are
listed in bold. You can also choose to import new definitions.

3. Use the arrow buttons to move the objects to the Selected Database Objects
column, and click OK.

Warehouse Builder reimports existing definitions and creates new ones. The
transportable module reflects the changes and updates after the reimport is completed.

Part III
Data Profiling and Data Quality

Oracle Warehouse Builder provides data quality functionality that can be a part of
your ETL process. It also enables you to perform data profiling and check for data
compliance.

This part contains the following chapters:

■ Chapter 18, "Performing Data Profiling"

■ Chapter 19, "Designing and Deriving Data Rules"

■ Chapter 20, "Monitoring Quality with Data Auditors and Data Rules"

■ Chapter 21, "Data Cleansing and Correction with Data Rules"

■ Chapter 22, "Name and Address Cleansing"

■ Chapter 23, "Matching, Merging, and Deduplication"

See Also: Oracle Warehouse Builder Concepts for an overview of data
quality and data profiling.

Performing Data Profiling 18-1

18
Performing Data Profiling

This chapter describes the data profiling features of Oracle Warehouse Builder and
how to use them, with Warehouse Builder ETL or with other ETL tools. It contains the
following topics:

■ Overview of Data Profiling

■ Performing Data Profiling

■ Tuning the Data Profiling Process for Better Profiling Performance

■ Performing Data Watch and Repair (DWR) for Oracle Master Data Management
(MDM)

Overview of Data Profiling
Data profiling enables you to assess the quality of your source data before you use it in
data warehousing or other data integration scenarios.

Data profiling analyzes the content, structure, and relationships within data to
uncover patterns and rules, inconsistencies, anomalies, and redundancies.

Data profiling can be usefully applied to any source in a data integration or
warehousing scenario, and to master data stores in MDM scenarios. It is also useful for
any scenario involving a new source, because it enables the discovery of information
beyond the basic metadata defined in the data dictionary.

Sources Supported by Warehouse Builder for Data Profiling
Warehouse Builder data profiling can support the following source types:

■ Oracle databases

■ Data sources accessed through Oracle gateways or ODBC

■ Flat file sources

To profile flat files, you must import them into Warehouse Builder, create external
tables based on the flat files, and then profile the external tables.

■ SAP R/3 and other ERP application sources

Note: Data profiling does not support sources accessed through
JDBC.

Overview of Data Profiling

18-2 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Using Warehouse Builder Data Profiling with Warehouse Builder ETL
Warehouse Builder data profiling and the rest of the data quality features also derive
value from and add value to Warehouse Builder ETL in the following ways:

■ Warehouse Builder data quality can automatically generate data cleansing logic
based on data rules. The cleansing processes are implemented by automatically
created ETL mappings, with the same functionality as other ETL mappings.
Deployment, execution and scheduling for data cleansing processes is identical to
other mappings. Developers familiar with Warehouse Builder ETL features can,
for example, tune performance on data cleansing processes, look at the generated
code, and so on, as with any ETL mappings. Where custom data cleansing and
correction logic is required, it can be implemented in PL/SQL.

■ Metadata about data profiling results, represented as data rules, can be bound to
the profiled data objects, and those rules are then available in any context in which
the profiled objects are used in ETL.

For example, Warehouse Builder ETL can use data rules in ETL logic to implement
separate data flows for compliant and noncompliant rows in a table.
Noncompliant rows can be routed through any data cleansing, correction or
augmentation logic available in the database, transformed using ordinary
mapping operators, or simply logged in the error table. All required logic for the
different options for handling noncompliant rows is automatically generated, for
any Warehouse Builder mapping in which a data rule is used.

The data profiling features of Oracle Oracle Warehouse Builder also use the
infrastructure of Warehouse Builder ETL to connect to data sources, access the data to
be profiled, and move intermediate profiling results into a scratch area called a
profiling workspace.

Using Warehouse Builder Data Profiling with Other ETL Solutions
Warehouse Builder data profiling and data quality can be used alongside any
third-party ETL solution or hand-coded ETL solution. In such scenarios, the usage
model is:

■ Leave your existing ETL solution in place

■ In Warehouse Builder, create a workspace and locations so that you can connect to
your data sources.

■ Create a data profile, add the objects to be profiled, and set any profiling
parameters.

■ Run your profiling jobs

■ Explore the results in the Data Profile Editor

■ Derive data rules based on the profiling results, in order to better understand and
document patterns in your data.

See "Performing Data Profiling" on page 18-4 for details on how to perform these tasks.

You can also use the data cleansing and correction features of Warehouse Builder
alongside third party ETL solutions. See Chapter 21, "Data Cleansing and Correction
with Data Rules" for details on data cleansing and correction, and Chapter 20,
"Monitoring Quality with Data Auditors and Data Rules" for details on data auditing.

Overview of Data Profiling

Performing Data Profiling 18-3

About the Data Profile Editor
The Data Profile Editor provides the primary user interface for most of the data
profiling, data rules and data cleansing functionality of Warehouse Builder. From the
Data Profile Editor, you can:

■ Set up and run data profiling, that is, attribute analysis and structural analysis of
selected objects.

■ Generate a new target schema based on the profile analysis and source table rules,
where all of the data will be compliant with the data rules applied to objects in the
profile.

■ Automatically generate mappings and transformations that perform data
correction based on your data rules and selected cleansing strategies.

Figure 18–1 displays the Data Profile Editor.

Figure 18–1 Data Profile Editor

The Data Profile Editor consists of the following:

■ Menu Bar

■ Toolbars

■ Object Tree

■ Property Inspector

■ Monitor Panel

■ Profile Results Canvas

■ Data Drill Panel

Performing Data Profiling

18-4 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ Data Rule Panel

Refer to the online help for detailed information about the contents of each panel.

Performing Data Profiling
Data profiling is resource intensive and profile execution times can be quite long,
especially on large data volumes. Profiling the entire contents of one or all of your
source systems is not likely to be the most efficient way to produce useful profiling
results. An iterative approach, in which initial limited data profiling produces
discoveries that are used in deciding what to profile next, is more likely to be effective
when faced with a large and complex set of sources to profile.

The following guidelines can increase the usefulness of your data profiling results
while reducing profiling time and effort:

■ Profile sources that impact numerous downstream objects, or where the objects
affected are the most important outputs of your system. For example, if a source
table contains data that affect the contents of numerous downstream business
intelligence reports, then consider profiling that table. If only certain columns are
used in downstream targets, then consider using attribute sets to limit profiling to
those columns.

■ Profile sources that are more likely to contain erroneous data. For example,
customer and order data that are entered manually are more likely to contain
errors than product data downloaded from suppliers.

■ Profile any new source before integrating it into any existing system, especially
sources where initial data quality is unknown.

■ If you have documentation for a source, you may want to define data rules based
on that documentation, then specifically profile for compliance with those rules. If
this effort reveals noncompliant data, then consider more complete profiling.

■ Disable types of profiling that are not likely to provide significant results. For
example, you may want to perform an initial profiling pass limited to domain
discovery or before more advanced and computationally intensive profiling types
such as discovering functional dependencies.

■ Initially, limit profiling to a random sampling of data, rather than profiling the
entire contents of a source. After identifying an initial set of data rules, you can
profile all rows for compliance with those rules.

For example, consider a data source that contains five tables: CUSTOMERS, REGIONS,
ORDERS, PRODUCTS, and PROMOTIONS. You have the following information:

■ The CUSTOMERS table is known to contain many duplicate and erroneous entries
and is used in creating marketing campaigns.

■ The ORDERS table includes order data transcribed from handwritten forms and
telephone orders

■ The PRODUCTS table contains data downloaded from a trusted supplier, and has a
VARCHAR2(4000) column DESCRIPTION that contains free-form text.

Tip: Use the data lineage and impact analysis features of Warehouse
Builder to identify sources with wide impact in your system. For more
information, see Oracle Warehouse Builder Installation and
Administration Guide for Windows and UNIX.

Performing Data Profiling

Performing Data Profiling 18-5

■ The documentation for the source system says that there is a foreign key
relationship between the ORDERS and REGIONS tables, but this documentation is
several years old and the source systems may have changed.

In such a case, you can limit your initial profiling process as follows:

■ Profile the CUSTOMERS table before the others, because it is known to contain
errors

■ Exclude the PRODUCTS.DESCRIPTION column from all profiling, because
free-form text is not likely to produce useful information in profiling

■ Use random sampling to profile a limited number of rows from all of the tables

■ Profile the ORDERS and REGIONS tables together to test the foreign key
relationship

Later, you can do more profiling based on discoveries in the first passes.

Data Profiling Restrictions
■ You can only profile data stored in Oracle databases, data accessible through

Oracle Gateways, and data in SAP systems. If the data you need to profile is stored
in a flat file, create an external table based on this flat file.

■ You cannot directly profile data that is accessed through JDBC-based connectivity.
You must first stage this data in an Oracle Database and then profile it.

■ Data profiling always uses the default configuration. Customers using multiple
configurations should ensure that the default configuration has appropriate
settings for profiling.

■ The profiling workspace location must be an Oracle 10g database or higher.

■ You cannot profile a source table that contains complex data types if the source
module and the data profile are located on different database instances.

■ Data profiling cannot analyze more than 165 columns of data in each table, view or
materialized view at a time. If you need to profile an object with more than 165
columns, you must create an attribute set to select a subset of columns to be
profiled together. See "Using Attribute Sets to Profile a Subset of Columns from a
Data Object" on page 18-20 for details.

Prerequisites for Data Profiling
■ Before profiling data objects, ensure that your project contains the correct

metadata for the source objects on which you are performing data profiling.

■ The objects to be profiled must already contain source data. For example, if you
are profiling tables stored in a staging area, you must load the staging tables from
their sources before executing the profile.

■ Because data profiling uses mappings to run the profiling, you must ensure that all
locations that you are using are registered. Data profiling attempts to register your
locations. If, for some reason, data profiling cannot register your locations, you
must explicitly register the locations before you begin profiling.

See Also: "Tuning the Data Profiling Process for Better Profiling
Performance" on page 18-22 for information about how to tune the
data profiling process.

Performing Data Profiling

18-6 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Steps to Perform Data Profiling
To prepare for data profiling, you must create one or more data profile objects in your
project. Each data profile object is a metadata object in a project. A data profile object
stores the following:

■ The set of objects to be profiled together

■ The types of profiling to perform on this set of objects

■ Settings such as thresholds that control the profiling operations

■ Results returned by the most recent execution of data profiling using these settings

■ Metadata about data corrections generated from profiling results

After you have decided which objects to profile, use the following steps to guide you
through the profiling process:

1. In the Projects Navigator, expand a project node and import all objects that you
want to profile into this project.

See "Prerequisites for Data Profiling" on page 18-5.

2. Under the project into which you imported objects, create a data profile object that
will contain the objects to be profiled.

See "Creating Data Profiles" on page 18-6.

3. Configure the data profile to specify the types of analysis that you want to
perform on the data being profiled.

See "Configuring Data Profiles" on page 18-7.

4. Profile the data to perform the types of analysis specified in the previous step.

See "Profiling Data" on page 18-10.

5. View and analyze the data profiling results.

See "Viewing Profile Results" on page 18-11.

Based on the profiling results, you can decide to generate schema and data corrections.
These corrections are automatically generated by Warehouse Builder. For more
information about automatically generating schema and data corrections, see
"Generating Corrections Based on Data Profiling Results" on page 21-2.

You can also derive data rules based on the data profiling results. For more
information about deriving data rules based on profiling results, see "Deriving Data
Rules From Data Profiling Results" on page 19-4.

Creating Data Profiles
Once your locations are prepared and the data is available, you must create a data
profile object in Design Center. A data profile is a metadata object in the workspace
that specifies the set of data objects to profile, the settings controlling the profiling
operations, the results returned after you profile the data, and correction information
(if you decide to use these corrections).

To create a data profile:

See Also: Oracle Warehouse Builder Sources and Targets Guide for more
information about importing metadata.

Performing Data Profiling

Performing Data Profiling 18-7

1. From the Projects Navigator, expand the project node in which you want to create
a data profile.

2. Right-click Data Profiles and select New Data Profile.

The Welcome page of the Data Profile Wizard is displayed.

3. On the Welcome page, click Next.

4. On the Name and Description page, enter a name and an optional description for
the data profile. Click Next.

5. On the Select Objects page, select the objects that you want to include in the data
profile and use the arrows to move them to the Selected list. Click Next.

To select multiple objects, hold down the Ctrl key while selecting objects. You can
include tables, views, materialized views, external tables, dimensions, and cubes
in your data profile.

6. If you selected tables, views, or materialized views that contain attribute sets, the
Choose Attribute Set dialog box is displayed. The list at the bottom of this dialog
box displays the attribute sets defined on the data object.

■ To profile only the attributes defined in the attribute set, select the attribute set
from the list.

■ To profile all columns in the data object, select <all columns> from the list.

7. If you selected dimensional objects on the Select Objects page, a warning is
displayed informing you that the relational objects bound to these dimensional
objects will also be added to the profile. Click Yes to proceed.

8. On the Summary page, review the choices that you made on the previous wizard
pages. Click Back to change any selected values. Click Finish to create the data
profile.

The Warehouse Builder note dialog is displayed. Click OK to display the Data
Profile Editor for the newly created data profile.

The new data profile is added to the Data Profiles node in the navigation tree.

Configuring Data Profiles
You can, and should, configure a data profile before running it if there are specific
types of analysis that you do, or do not, want to run.

You can configure a data profile at one of the following levels:

■ The entire profile (all the objects contained in the profile)

■ An individual object in the data profile

For example, the data profile contains three tables. To perform certain types of
analysis on one table, configure this table only.

■ An attribute within an object

For example, you know that there is only one problematic column in a table and
you already know that most of the records should conform to values within a
certain domain. You can focus your profiling resources on domain discovery and
analysis. By narrowing down the type of profiling necessary, you use fewer
resources and obtain the results faster.

Performing Data Profiling

18-8 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Steps to Configure Data Profiles
1. In the Projects Navigator, right-click the data profile and select Open.

The Data Profile Editor for the data profile is displayed.

2. Select the level at which you want to set configuration parameters.

■ To configure the entire data profile, on the Profile Objects tab, select the data
profile.

■ To configure a particular object in the data profile, on the Profile Objects tab,
expand the node that represents the data profile. Select the data object by
clicking on the data object name.

■ To configure an attribute within an object in a data profile, on the Profile
Objects tab, expand the node that represents the data profile. Expand the data
object that contains the attribute and then select the required attribute by
clicking the attribute name.

3. Set the required configuration parameters using the Property Inspector panel.

Configuration parameters are categorized into the following types: Load,
Aggregation, Pattern Discovery, Domain Discovery, Relationship Attribute Count,
Unique Key Discovery, Functional Dependency Discovery, Row Relationship
Discovery, Redundant Column Discovery, and Data Rule Profiling. The following
sections provide descriptions for the parameters in each category.

Load Configuration Parameters
Table 18–1 describes the parameters in this category.

Aggregation Configuration Parameters
This category contains the Not Null Recommendation Percentage parameter. If the
percentage of null values in a column is less than this threshold percent, then that
column will be discovered as a possible Not Null column.

Table 18–1 Description of Load Configuration Parameters

Configuration Parameter Name Description

Enable Data Type Discovery Set this parameter to true to enable data type discovery for
the selected table.

Enable Common Format
Discovery

Set this parameter to true to enable common format
discovery for the selected table.

Copy Data Into Workspace Set this parameter to true to enable copying of data from
the source to the profile workspace.

Random Sample Rate This value represents the percent of total rows that will be
randomly selected during loading.

Always Force a Profile Set this parameter to true to force the data profiler to
reload and reprofile the data objects.

Sample Set Filter This represents the WHERE clause that will be applied on
the source when loading data into the profile workspace.
Click the Ellipsis button on this field to display the
Expression Builder. Use the Expression Builder to define
the WHERE clause.

Null Value Representation This value will be considered as null value during
profiling. You must enclose the value in single quotation
marks. The default value is null, which is considered as a
database null.

Performing Data Profiling

Performing Data Profiling 18-9

Pattern Discovery Configuration Parameters
■ Enable Pattern Discovery: Set this parameter to true to enable pattern discovery.

■ Maximum Number of Patterns: This represents the maximum number of patterns
that the profiler will get for the attribute. For example, when you set this
parameter to 10, it means that the profiler will get the top 10 patterns for the
attribute.

Domain Discovery Configuration Parameters
Table 18–2 describes the parameters in this category.

Relationship Attribute Count Configuration Parameters
This category contains the Maximum Attribute Count parameter that represents the
maximum number of attributes for unique key, foreign key, and functional
dependency profiling.

Unique Key Discovery Configuration Parameters
■ Enable Unique Key Discovery: Set this parameter to true to enable unique key

discovery.

■ Minimum Uniqueness Percentage: This is the minimum percentage of rows that
must satisfy a unique key relationship.

Functional Dependency Discovery Configuration Parameters
■ Enable Functional Dependency Discovery: Set this parameter to true to enable

functional dependency discovery.

Table 18–2 Description of Domain Discovery Configuration Parameters

Configuration Parameter
Name Description

Enable Domain Discovery Set this parameter to true to enable domain discovery.

Domain Discovery Max
Distinct Values Count

Represents the maximum number of distinct values in a column in order for that
column to be discovered as possibly being defined by a domain. Domain discovery of
a column occurs if the number of distinct values in that column is at or below the Max
Distinct Values Count property, and the number of distinct values as a percentage of
total rows is at or below the Max Distinct Values Percent property.

Domain Discovery Max
Distinct Values Percent

Represents the maximum number of distinct values in a column, expressed as a
percentage of the total number of rows in the table, in order for that column to be
discovered as possibly being defined by a domain. Domain Discovery of a column
occurs if the number of distinct values in that column is at or below the Max Distinct
Values Count property, and the number of distinct values as a percentage of total
rows is at or below the Max Distinct Values Percent property.

Domain Value Compliance
Min Rows Count

Represents the minimum number of rows for the given distinct value in order for that
distinct value to be considered as compliant with the domain. Domain Value
Compliance for a value occurs if the number of rows with that value is at or above the
Min Rows Count property, and the number of rows with that value as a percentage of
total rows is at or above the Min Rows Percent property.

Domain Value Compliance
Min Rows Percent

Represents the minimum number of rows, expressed as a percentage of the total
number of rows, for the given distinct value in order for that distinct value to be
considered as compliant with the domain. Domain Value Compliance for a value
occurs if the number of rows with that value is at or above the Min Rows Count
property, and the number of rows with that value as a percentage of total rows is at or
above the Min Rows Percent property.

Performing Data Profiling

18-10 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ Minimum Functional Dependency Percentage: This is the minimum percentage
of rows that must satisfy a functional dependency relationship.

Row Relationship Discovery Configuration Parameters
■ Enable Relationship Discovery: Set this parameter to true to enable foreign key

discovery.

■ Enable Soundex Relationship Discovery: Set this parameter to true to enable
soundex relationship discovery for columns with string data types. Note that you
must ensure that these attributes are part of relationship discovery.

■ Minimum Relationship Percentage: This is the minimum percentage of rows that
must satisfy a foreign key relationship.

■ Minimum Soundex Relationship Percentage: This is the minimum percentage of
rows that need to satisfy a soundex relationship. Values with the same soundex
value will be considered the same.

Redundant Column Discovery Configuration Parameters
■ Enable Redundant Columns Discovery: Set this parameter to true to enable

redundant column discovery with respect to a foreign key-unique key pair.

■ Minimum Redundancy Percentage: This is the minimum percentage of rows that
are redundant.

Performance Configuration
This category contains the Enable Materialized View Creation parameter. Set this
parameter to true to create materialized views for each column in every table of the
data profile. This enhances query performance during drill down.

Data Rule Profiling Configuration Parameters
This category contains the Enable Data Rule Profiling for Table parameter. Set this
parameter to true to enable data rule profiling for the selected table. This setting is
only applicable for a table, and not for an individual attribute.

Profiling Data
Data profiling is achieved by performing deep scans of the selected objects. This can be
a time-consuming process, depending on the number of objects and the type of
profiling that you are running. However, profiling is run as an asynchronous job, and
the Design Center client can be closed during this process. As with ETL jobs, you will
see the job running in the job monitor. Warehouse Builder prompts you when the
profiling job is complete.

Steps to Profile Data
After you have created a data profile, you can open it in the Data Profile Editor to
profile the data or review profile results from a previous run. The objects that you
selected when creating the profile are displayed in the object tree of the Data Profile
Editor. You can add objects to the profile by selecting Profile and then Add.

To profile data using a data profile:

1. Expand the Data Profiles node in the Projects Navigator, right-click a data profile,
and select Open.

The Data Profile Editor opens the selected data profile.

Performing Data Profiling

Performing Data Profiling 18-11

2. If you have not already done so, configure the data profile as described in
"Configuring Data Profiles" on page 18-7.

3. From the Profile menu, select Profile.

If this is the first time you are profiling data, the Data Profile Setup dialog box is
displayed. Enter the details of the profiling workspace. For more information
about the information to be entered, click Help.

Warehouse Builder begins preparing metadata for profiling. The progress window
containing the name of the object being created to profile the data is displayed.
After the metadata preparation is complete, the Profiling Initiated dialog box is
displayed, informing you that the profiling job has started.

4. On the Profiling Initiated dialog box, click OK.

Once the profiling job starts, the data profiling is asynchronous, and you can
continue working or even close the Design Center. Your profiling process will
continue to run until it is completed.

5. View the status of the profiling job in the Monitor panel of the Data Profile Editor.

You can continue to monitor the progress of your profiling job in the Monitor
panel. After the profiling job is complete, the status displays as complete.

6. After the profiling is complete, the Retrieve Profile Results dialog box is displayed,
and you are prompted to refresh the results. Click Yes to retrieve the data profiling
results and display them in the Data Profile Editor.

Viewing Profile Results
After the profile operation is complete, you can open the data profile in the Data
Profile Editor to view and analyze the results. The profiling results contain a variety of
analytical and statistical information about the data profiled. You can immediately
drill down into anomalies and view the data that caused them. You can then
determine what data must be corrected.

To view the profile results:

1. Select the data profile in the navigation tree, right-click, and select Open.

The Data Profile Editor opens and displays the data profile.

2. If you have previous data profiling results displayed in the Data Profile Editor,
refresh the view when prompted so that the latest results are shown.

The results of the profiling are displayed in the Profile Results Canvas.

3. Minimize the Data Rule and Monitor panels by clicking on the arrow symbol in
the upper-left corner of the panel.

This maximizes your screen space.

4. Select objects in the Profile Objects tab of the object tree to focus the results on a
specific object.

The profiling results for the selected object are displayed using the following tabs
of the Profile Results Canvas.

■ Data Profile

Note: Data profiling results are overwritten on subsequent profiling
executions.

Performing Data Profiling

18-12 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ Profile Object

■ Aggregation

■ Data Type

■ Domain

■ Pattern

■ Unique Key

■ Functional Dependency

■ Referential

■ Data Rule

You can switch between various objects in the data profile. The tab that you had
selected for the previous object remains selected.

Data Profile
The Data Profile tab contains general information about the data profile. Use this tab to
store any notes or information about the data profile.

Profile Object
The Profile Object tab contains two subtabs: Object Data and Object Notes. The Object
Data tab lists the data records in the object you have selected in the Profile Objects tab
of the object tree. The number of rows that were used in the sample is listed. You can
use the buttons along the top of the tab to execute a query, get more data, or add a
WHERE clause.

Aggregation
The Aggregation tab displays all the essential measures for each column, such as
minimum and maximum values, number of distinct values, and null values. Some
measures are available only for specific data types. These include the average, median,
and standard deviation measures. Information can be viewed from either the Tabular
or Graphical subtabs.

Table 18–3 describes the various measurement results available in the Aggregation tab.

Table 18–3 Aggregation Results

Measurement Description

Column Name of the column, within the profiled data object, for which data
profiling determined the aggregation measures

Minimum Minimum value with respect to the inherent database ordering for the
column

Maximum Maximum value with respect to the inherent database ordering of the
column

Distinct Total number of distinct values for the column

% Distinct Percentage of distinct values in the column over the entire row set

Not Null Indicates if a NOT NULL constraint is defined in the database for the
column

Recommended NOT
NULL

Indicates if data profiling results recommend that the column allow null
values. A value of Yes represents a recommendation that this column
should not allow null values

Performing Data Profiling

Performing Data Profiling 18-13

A hyperlinked value in the aggregation results grid indicates that you can click the
value to drill down into the data. This enables you to analyze the data in the sample
that produced this result.

For example, if you scroll to the SALARY column, shown in Figure 18–2, and click the
value in the Maximum cell showing 24000, the Data Drill Panel at the bottom changes
to show you all the distinct values in this column with counts on the left. On the right,
the Data Drill can zoom into the value that you select from the distinct values and
display the full record where these values are found.

Figure 18–2 Aggregation Tabular Results

The graphical analysis displays the results in a graphical format. You can use the
graphical toolbar to change the display. You can also use the Column and Property
menus to change the displayed data object.

Data Type
The Data Type tab provides profiling results about data types. This includes metrics
such as length for character data types and the precision and scale for numeric data
types. For each data type that is discovered, the data type is compared to the dominant

Nulls Total number of null values for the column

%Nulls Percentage of null values, for the column, over the entire row set

Six Sigma Number of null values (defects) to the total number of rows in the table
(opportunities)

Average Average value, for the column, in the entire row set

Median Median value, for the column, in the entire row set

Std Dev Standard deviation for the column

Table 18–3 (Cont.) Aggregation Results

Measurement Description

Performing Data Profiling

18-14 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

data type found in the entire attribute and the percentage of rows that comply with the
dominant measure is listed.

One example of data type profiling would be finding a column defined as VARCHAR
that stores only numeric values. Changing the data type of the column to NUMBER
would make storage and processing more efficient.

Table 18–4 describes the various measurement results available in the Data Type tab.

Domain
The Domain tab displays results about the possible set of values that exist in a certain
attribute. Information can be viewed from either the Tabular or Graphical subtabs.

Figure 18–3 displays the Domain tab of the Data Profile Editor.

Table 18–4 Data Type Results

Measurement Description

Columns Name of the column, within the data object, for which data type
analysis was performed

Documented Data Type Data type of the column in the source object

Dominant Data Type From analyzing the column values, data profiling determines that
this is the dominant (most frequent) data type.

% Dominant Data Type Percentage of total number of rows where column value has the
dominant data type

Documented Length Length of the data type in the source object

Minimum Length Minimum length of the data stored in the column

Maximum Length Maximum length of the data stored in the column

Dominant Length From analyzing the column values, data profiling determines that
this is the dominant (most frequent) length.

% Dominant Length Percentage of total number of rows where column value has the
dominant length

Documented Precision Precision of the data type in the source object

Minimum Precision Minimum precision for the column in the source object

Maximum Precision Maximum precision for the column in the source object

Dominant Precision From analyzing the column values, data profiling determines that
this is the dominant (most frequent) precision

% Dominant Precision Percentage of total number of rows where column value has the
dominant precision

Documented Scale Scale specified for the data type in the source object

Minimum Scale Minimum scale of the data type in the source object

Maximum Scale Maximum scale of the data type in the source object

Dominant Scale From analyzing the column values, data profiling determines that
this is the dominant (most frequent) scale.

% Dominant Scale Percentage of total number of rows where column value has the
dominant scale

Performing Data Profiling

Performing Data Profiling 18-15

Figure 18–3 Domain Discovery Results

The process of discovering a domain on a column involves two phases. First, the
distinct values in the column are used to determine whether that column might be
defined by a domain. Typically, there are few distinct values in a domain. Then, if a
potential domain is identified, the count of distinct values is used to determine
whether that distinct value is compliant with the domain. The properties that control
the threshold for both phases of domain discovery can be set in the Property Inspector.

If you find a result that you want to know more about, drill down and use the Data
Drill panel to view details about the cause of the result.

For example, a domain of four values was found for the column REGION_ID: 3,2,4,
and 1. To see which records contributed to this finding, select the REGION_ID row and
view the details in the Data Drill panel.

Table 18–5 describes the various measurement results available in the Domain tab.

Pattern
The Pattern tab displays information discovered about patterns within the attribute.
Pattern discovery is the profiler's attempt at generating regular expressions for data
that it discovered for a specific attribute. Note that non-English characters are not
supported in the pattern discovery process.

Table 18–6 describes the various measurement results available in the Pattern tab.

Table 18–5 Domain Results

Measurement Description

Column Name of the column for which domain discovery was
performed

Found Domain The discovered domain values

% Compliant The percentage of all column values that are compliant with the
discovered domain values

Six Sigma The Six Sigma value for the domain results

Performing Data Profiling

18-16 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Unique Key
The Unique Key tab provides information about the existing unique keys that were
documented in the data dictionary, and possible unique keys or key combinations that
were detected by the data profiling operation. The uniqueness % is shown for each.
The unique keys that have No in the Documented column are the ones that are
discovered by data profiling.

For example, a phone number is unique in 98% of the records. It can be a unique key
candidate, and you can then cleanse the noncompliant records. You can also use the
drill-down feature to view the cause of the duplicate phone numbers in the Data Drill
panel. Table 18–7 describes the various measurement results available in the Unique
Key tab.

Table 18–6 Pattern Results

Measurement Description

Columns Name of the column for which pattern results were discovered

Dominant Character Pattern The most frequently discovered character pattern or consensus
pattern

% Compliant The percentage of rows whose data pattern agrees with the
dominant character pattern

Dominant Word Pattern The most frequently discovered word character pattern or
consensus pattern

% Compliant The percentage of rows whose data pattern agrees with the
dominant word pattern

Common Format Name, Address, Date, Boolean, Social Security Number, E-mail,
URL. This is the profiler's attempt to add semantic
understanding to the data that it sees. Based on patterns and
some other techniques, it will try to determine which domain
bucket a certain attribute's data belongs to.

% Compliant The percentage of rows whose data pattern agrees with the
consensus common format pattern

Table 18–7 Unique Key Results

Measurement Description

Unique Key The discovered unique key

Documented Indicates if a unique key on the column exists in the data dictionary.

A value of Yes indicates that a unique key exists in the data dictionary.
A value of No indicates that the unique key was discovered as a result
of data profiling.

Discovered From analyzing the column values, data profiling determines whether
a unique key should be created on the column listed in the Local
Attribute(s) column.

Local Attribute(s) The name of the column in the data object that was profiled

Unique The number of rows, in the source object, in which the attribute
represented by Local Attribute is unique

% Unique The percentage of rows, in the source object, for which the attribute
represented by Local Attribute is unique

Six Sigma Number of null values (defects) to the total number of rows in the
table (opportunities)

Performing Data Profiling

Performing Data Profiling 18-17

Functional Dependency
The Functional Dependency tab displays information about the attribute or attributes
that seem to depend on or determine other attributes. Information can be viewed from
either the Tabular or Graphical subtabs. You can use the Show list to change the focus
of the report. Note that unique keys defined in the database are not discovered as
functional dependencies during data profiling.

Table 18–8 describes the various measurement results available in the Functional
Dependency tab.

For example, if you select Only 100% dependencies from the Show list, the
information shown is limited to absolute dependencies. If you have an attribute that is
always dependent on another attribute, it is recommended that it be a candidate for a
reference table. Suggestions are shown in the Type column. Removing the attribute
into a separate reference table normalizes the schema.

The Functional Dependency tab also has a Graphical subtab so that you can view
information graphically. You can select a dependency and property from the lists to
view graphical data.

For example, in Figure 18–4, you select the dependency where EMPLOYEE_ID seems to
determine DEPARTMENT_ID (EMPLOYEE_ID -> DEPARTMENT_ID). Warehouse Builder
determines that most EMPLOYEE_ID values determine DEPARMENT_ID. By switching
the Property to Non-Compliant, you can view the exceptions to this discovery.

Figure 18–4 Graphical Functional Dependency

Table 18–8 Functional Dependency Results

Measurement Description

Determinant Name of the attribute that is found to determine the attribute listed under
Dependent

Dependent Name of the attribute that is found to be determined by the value of another
attribute

Defects Number of values in the Determinant attribute that were not determined by
the Dependent attribute

% Compliant Percentage of values that are compliant with the discovered dependency

Six Sigma Six Sigma value

Type Type of functional dependency. Possible values are unidirectional or
bidirectional

Performing Data Profiling

18-18 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Referential
The Referential tab displays information about foreign keys that were documented in
the data dictionary, as well as relationships discovered during profiling. For each
relationship, you can see the level of compliance. Information can be viewed from both
the Tabular and Graphical subtabs. In addition, two other subtabs are available only in
the Referential tab: Joins and Redundant Columns.

Table 18–9 describes the various measurement results available in the Referential tab.

For example, you are analyzing two tables for referential relationships: the
Employees table and the Departments table. Using the Referential data profiling
results shown in Figure 18–5, you discover that the DEPARTMENT_ID column in the
Employees table is related to DEPARTMENT_ID column in the Departments table
98% of the time. You can then click the hyperlinked Yes in the Discovered column to
view the rows that did not comply with the discovered foreign key relationship.

Table 18–9 Referential Results

Measurement Description

Relationship Name of the relationship

Type Type of relationship. The possible values are Row Relationship and
Foreign Key.

Documented Indicates if a foreign key exists on the column in the data dictionary

Yes indicates that a foreign key on the column exists in the data
dictionary. No indicates that the foreign key was discovered as a result
of data profiling.

Discovered From analyzing the column values, data profiling determines whether a
foreign key should be created on the column represented by Local
Attribute(s).

Local Attribute(s) Name of the attribute in the source object

Remote Key Name of the key in the referenced object to which the local attribute
refers

Remote Attribute(s) Name of the attributes in the referenced object

Remote Relation Name of the object that the source object references

Remote Module Name of the module that contains the referenced object

Cardinality Range Range of the cardinality between two attributes.

For example, the EMP table contains 5 rows of employee data. There are
two employees each in department 10 and 20 and one employee in
department 30. The DEPT table contains three rows of department data
with deptno value 10, 20, and 30.

Data profiling will find a row relationship between the EMP and DEPT
tables. The cardinality range will be 1-2:1-1. This is because in EMP, the
number of rows per distinct value ranges from 1 (for deptno 30) to 2
(deptno 10 and 20). In DEPT, there is only one row for each distinct
value (10, 20, and 30).

Orphans Number of orphan rows in the source object

% Compliant Percentage of values that are compliant with the discovered dependency

Six Sigma Number of null values (defects) to the total number of rows in the table
(opportunities)

Performing Data Profiling

Performing Data Profiling 18-19

Figure 18–5 Referential Results

You can also select the Graphical subtab to view information graphically. This view is
effective for viewing noncompliant records, such as orphans. To use the Graphical
subtab, make a selection from the Reference and Property lists.

The Joins subtab displays a join analysis on the reference selected in the Reference list.
The results show the relative size and exact counts of the three possible outcomes for
referential relationships: joins, orphans, and childless objects.

For example, both the EMPLOYEES and DEPARTMENTS tables contain a DEPARTMENT_
ID column. There is a one-to-many relationship between the DEPARTMENT_ID column
in the DEPARTMENTS table and the DEPARTMENT_ID column in the EMPLOYEES table.
The Joins represent the values that have values in both tables. Orphans represent
values that are only present in the EMPLOYEES table and not the DEPARTMENTS table.
And Childless values are present in the DEPARTMENTS table and not the EMPLOYEES
table. You can drill into values on the diagram to view more details in the Data Drill
panel.

Figure 18–6 displays the Joins subtab of the Referential tab.

Figure 18–6 Join Results

The Redundant Columns subtab displays information about columns in the child table
that are also contained in the primary table. Redundant column results are only
available when perfectly unique columns are found during profiling.

Performing Data Profiling

18-20 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

For example, consider two tables EMP and DEPT, shown in Table 18–10 and
Table 18–11, having the following foreign key relationship: EMP.DEPTNO (fk) =
DEPT.DEPTNO (uk).

In this example, the Location column in the EMP table is a redundant column, because
you can get the same information from the join.

Data Rule
The Data Rule tab displays the data rules that are defined as a result of data profiling
for the table selected in the object tree. The details for each data rule include the
following:

■ Rule Name: Represents the name of the data rule.

■ Rule Type: Provides a brief description about the type of data rule.

■ Origin: Represents the origin of the data rule. For example, a value of Derived
indicates that the data rule is derived.

■ % Compliant: Percent of rows that comply with the data rule.

■ # Defects: Number of rows that do not comply with the data rule.

The data rules on this tab reflect the active data rules in the Data Rule panel. You do
not directly create data rules on this tab.

Using Attribute Sets to Profile a Subset of Columns from a Data Object
Attribute sets enable you to restrict a data profiling operation to a subset of columns
from a table, view, or materialized view.

Reasons to use an attribute set include:

■ You can decrease profiling time by excluding columns for which you do not need
profiling results.

■ Data profiling can only profile up to 165 columns from a table, view, or
materialized view at a time. You can use an attribute set to select a set of 165 or
fewer columns to profile from the object.

Table 18–10 EMP Table

Employee Number Dept. No Location

100 1 CA

200 2 NY

300 3 MN

400 1 CA

500 1 CA

Table 18–11 DEPT Table

Dept No Location Zip

1 CA 94404

3 NY 10022

3 MN 21122

Performing Data Profiling

Performing Data Profiling 18-21

Data profiling using attribute sets, consists of the following high-level steps:

1. Defining Attribute Sets

2. Creating a Data Profile That Contains the Attribute Set

3. Performing data profiling

See "Profiling Data" on page 18-10 for more information about profiling data.

4. Reviewing data profiling results

See "Viewing Profile Results" on page 18-11 for more information about viewing
profiling results.

Defining Attribute Sets
Use the following steps to define an attribute set in a table, view, or materialized view.

1. In the Projects Navigator, double-click the table, view, or materialized view.

The editor for the selected object is opened.

2. Select the Attribute Sets tab.

3. In the Attribute Sets section, click a blank area in the Name column, enter the
name of the attribute set you want to create, and press the Enter key.

4. Select the name of the attribute set created in Step 3.

The Attributes of the selected attribute set section displays the attributes in the
data object.

5. Select Include for all the attributes that you want included in the attribute set.

6. Save your changes by clicking the Save icon.

Creating a Data Profile That Contains the Attribute Set
1. In the Projects Navigator, right-click the Data Profiles node and select New Data

Profile.

The Welcome page of the Create Data Profile Wizard is displayed.

2. On the Welcome page, click Next.

3. On the Name and Description page, enter a name and an optional description for
the data profile. Click Next.

4. On the Select Objects page, select the data object that you want to profile and use
the shuttle arrows to move the data object to the Selected list.

When the selected data object contains attribute sets, the Choose Attribute Set
dialog box is displayed.

5. On the Choose Attribute Set dialog box, select the attribute set that you want to
profile and click OK.

6. On the Select Objects page, click Next.

7. On the Summary page, review the options you chose on the previous wizard
pages and click Finish.

The data profile is created and added to the navigator tree.

Tuning the Data Profiling Process for Better Profiling Performance

18-22 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Editing Data Profiles
Once you create a data profile, you can use the Data Profile Editor to modify its
definition. You can either modify profile settings or add to and remove from a data
profile. To add objects, you can use either the menu bar options or the Select Objects
tab of the Edit Data Profile dialog box.

To edit a data profile:

1. In the Projects Navigator, right-click the data profile and select Open.

The Data Profile Editor is displayed.

2. From the Edit menu, select Properties.

The Edit Data Profile dialog box is displayed.

3. On the Edit Data Profile dialog box, edit any of the following properties of the
data profile and click OK.

■ To modify the name or description of the data profile, on the Name tab, select
the name or description and enter the new value.

■ To add or remove objects, on the Select Objects tab, use the arrows to add
objects to or remove objects from the data profile.

■ To change the location that is used as the data profiling staging area, use the
Data Locations tab.

Use the arrows to move the new location to the Selected Locations section.
Ensure that you select New Configuration Default to set this location as the
default profiling location for the data profile.

Adding Data Objects to a Data Profile
To add data objects to a data profile:

1. Right-click the data profile in the Projects Navigator and select Open.

 The Data Profile Editor is displayed.

2. From the Profile menu, select Add.

The Add Profile Tables dialog box is displayed.

3. On the Add Profile Tables dialog box, select the objects that you want to add to the
data profile. Use the arrows to move them to the Selected section.

You can select multiple objects by holding down the Ctrl key and selecting objects.

Tuning the Data Profiling Process for Better Profiling Performance
Data profiling is a processor and I/O intensive process, and the execution time for
profiling ranges from a few minutes to a few days. You can achieve the best possible
data profiling performance by ensuring that the following conditions are satisfied:

■ Your database is set up correctly for data profiling.

■ The appropriate data profiling configuration parameters are used when you
perform data profiling.

Note: If you modify the profiling location after you have performed
data profiling, the previous profiling results are lost.

Tuning the Data Profiling Process for Better Profiling Performance

Performing Data Profiling 18-23

Tuning the Data Profile for Better Data Profiling Performance
You can configure a data profile to optimize data profiling results. Use the
configuration parameters to configure a data profile.

Use the following guidelines to make your data profiling process faster:

■ Perform only the types of analysis that you require.

If you know that certain types of analysis are not required for the objects that you
are profiling, use the configuration parameters to turn off these types of data
profiling.

■ Limit the amount of data profiled.

Use the WHERE clause and Sample Rate configuration parameters.

If the source data for profiling is stored in an Oracle Database, it is recommended that
the source schema should be located on the same database instance as the profile
workspace. You can do this by installing the profiling workspace into the same Oracle
Database instance as the source schema location. This avoids using a database link to
move data from source to profiling workspace.

Tuning the Oracle Database for Better Data Profiling Performance
To ensure good data profiling performance, the computer that runs Oracle Database
must have certain hardware capabilities. In addition to this, you must optimize the
Oracle Database instance on which you are performing data profiling.

For efficient data profiling, consider the following resources:

■ Multiple Processors

■ Memory

■ I/O System

Multiple Processors
The computer that runs Oracle Database needs multiple processors. Data profiling has
been designed and tuned to take maximum advantage of the parallelism provided by
Oracle Database. While profiling large tables (more than 10 million rows), it is highly
recommended that you use a multiple processor computer.

Hints are used in queries required to perform data profiling. It picks up the degree of
parallelism from the initialization parameter file of the Oracle Database. The default
initialization parameter file contains parameters that take advantage of parallelism.

Memory
It is important that you ensure a high memory hit ratio during data profiling. You can
ensure this by assigning a larger size of the System Global Area. Oracle recommends
that the size of the System Global Area be at least 500 megabytes (MB). If possible,
configure it to 2 gigabytes (GB) or 3 GB.

For advanced database users, Oracle recommends that you observe the buffer cache
hit ratio and library cache hit ratio. Set the buffer cache hit ratio to higher than 95%
and the library cache hit ratio to higher than 99%.

See Also: "Configuring Data Profiles" on page 18-7 for details about
configuring data profiles and the configuration parameters that you
can set

Performing Data Watch and Repair (DWR) for Oracle Master Data Management (MDM)

18-24 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

I/O System
The capabilities of the I/O system have a direct impact on the data profiling
performance. Data profiling processing frequently performs full table scans and
massive joins. Because today's CPUs can easily outdrive the I/O system, you must
carefully design and configure the I/O subsystem. Consider the following
considerations that aid better I/O performance:

■ You need a large number of disk spindles to support uninterrupted CPU and I/O
cooperation. If you have only a few disks, the I/O system is not geared towards a
high degree of parallel processing. It is recommended to have a minimum of two
disks for each CPU.

■ Configure the disks. Oracle recommends that you create logical stripe volumes on
the existing disks, each striping across all available disks. Use the following
formula to calculate the stripe width:

MAX(1,DB_FILE_MULTIBLOCK_READ_COUNT/number_of_disks) X DB_
BLOCK_SIZE

Here, DB_FILE_MULTIBLOCK_SIZE and DB_BLOCK_SIZE are parameters that
you set in your database initialization parameter file. You can also use a stripe
width that is a multiple of the value returned by the formula.

To create and maintain logical volumes, you need volume management software
such as Veritas Volume Manager or Sun Storage Manager. If you are using Oracle
Database 10g or a later and you do not have any volume management software,
you can use the Automatic Storage Management feature of Oracle Database to
spread the workload to disks.

■ Create different stripe volumes for different tablespaces. It is possible that some of
the tablespaces occupy the same set of disks.

For data profiling, the USERS and the TEMP tablespaces are normally used at the
same time. Consider placing these tablespaces on separate disks to reduce I/O
contention.

Performing Data Watch and Repair (DWR) for Oracle Master Data
Management (MDM)

Data Watch and Repair (DWR) is a profiling and correction solution designed to assist
data governance in Oracle’s Master Data Management (MDM) solutions. MDM
applications need to provide a single consolidated view of data. To do this, they need
to first clean up a system’s master data before they can share it with multiple
connected entities.

Warehouse Builder provides data profiling and data correction functionality that
enables MDM applications to cleanse and consolidate data. You can use DWR for the
following MDM applications:

■ Customer Data Hub (CDH)

■ Product Information Management (PIM)

■ Universal Customer Master (UCH)

Overview of Data Watch and Repair (DWR) for MDM
Data Watch and Repair (DWR) enables you to analyze, cleanse, and consolidates data
stored in MDM databases using the following:

Performing Data Watch and Repair (DWR) for Oracle Master Data Management (MDM)

Performing Data Profiling 18-25

■ Data profiling

Data profiling data analysis method that enables you to detect and measure
defects in your source data.

For more information about data profiling, see "Overview of Data Profiling" on
page 18-1.

■ Data rules

Data rules are help ensure data quality by determining the legal data and
relationships in the source data. You can import MDM-specific data rules, define
your own data rules before you perform data profiling, or derive data rules based
on the data profiling results.

For more information about data rules, see "Overview of Data Rules" on page 19-1.

■ Data correction

Data correction enables you to correct any inconsistencies, redundancies, and
inaccuracies in both the data and metadata. You can automatically create
correction mappings to cleanse source data.

For more information about data correction, see "Overview of Automatic Data
Correction and Data Rules" on page 21-1.

DWR enables you to measure crucial business rules regularly. As you discover
inconsistencies in the data, you can define and apply new data rules to ensure data
quality.

Predefined Data Rules for MDM
Warehouse Builder provides a set of data rules that are commonly used in MDM
applications. These include the following customer data rules that can be used in both
Customer Data Hub (CDH) and Universal customer Master (UCM) applications:

■ Attribute Completeness

■ Contact Completeness

■ Data Type

■ Data Domain

■ Restricted Values

■ Unique Key Discovery

■ Full Name Standardization

■ Common Pattern

■ Name Capitalization

■ Extended Phone Numbers

■ International Phone Numbers

■ No Access List by Name Only

■ No Access List by Name or SSN

■ No Email List

For more details about these data rules, refer to the Oracle Watch and Repair for MDM
User’s Guide.

Performing Data Watch and Repair (DWR) for Oracle Master Data Management (MDM)

18-26 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Prerequisites for Performing Data Watch and Repair (DWR)
To use Data Watch and Repair (DWR), you need the following software:

■ Oracle Database 11g Release 1 (11.1) or later

■ Oracle Warehouse Builder 11g Release 1 (11.1.0.7) or later

■ One or more of the following Master Data Management (MDM) applications:
Customer Data Hub (CDH), Product Information Management (PIM), or
Universal Customer Master (UCH)

For MDM applications that run on an Oracle Database, you can directly use DWR.
However, for MDM applications that do not run on an Oracle Database, you must set
up a gateway with the third-party database.

Steps to Perform Data Watch and Repair (DWR) Using Warehouse Builder
Use the following steps to perform Data Watch and Repair (DWR).

1. Create a location corresponding to the Master Data Management (MDM)
application database.

Use the Oracle node under the Databases node in the Locations Navigator. Specify
the details of the MDM database such as the user name, password, host name,
port, service name, and database version.

2. In the Projects Navigator, expand the Applications node to display the nodes for
the MDM applications.

The CDH node represents Customer Data Hub application, the PIM node to the
Product Information Management application, and UCM to Universal Customer
Master.

3. Right-click the node corresponding to the type of MDM application for which you
want to perform DWR and select Create CMI Module.

Use the Create Module Wizard to create a module that stores your MDM metadata
definitions. Ensure that you select the location you created in step 1 while creating
the module.

4. Import metadata from your MDM application into the module created in step 3.
Right-click the module and select Import.

The Metadata Import Wizard is displayed that enables you to import MDM
metadata.

5. Import data rules specific to MDM as described in "Importing MDM Data Rules"
on page 18-27.

6. Apply data rules to the MDM application tables as described in "Applying Data
Rules to Data Objects" on page 19-7.

Applying data rules to tables enables you to determine if your table data complies
with the business rules defined using data rules. You can apply data rules you
imported in step 5 or other data rules that you created.

For more information about creating data rules, see "Creating Data Rules Using
the Create Data Rule Wizard" on page 19-5.

7. Create a data profile that includes all tables from the MDM application that you
want to profile.

For more information about creating data profiles, see "Creating Data Profiles" on
page 18-6.

Performing Data Watch and Repair (DWR) for Oracle Master Data Management (MDM)

Performing Data Profiling 18-27

8. Perform data profiling on the MDM application objects as described in "Profiling
Data" on page 18-10.

9. View the data profiling results as described in "Viewing Profile Results" on
page 18-11.

10. (Optional) Derive data rules based on data profiling results as described in
"Deriving Data Rules From Data Profiling Results" on page 19-4.

Data rules derived from data profiling results are automatically applied to the
table.

11. Create correction mappings as described in "Steps to Create Correction Objects" on
page 21-2.

12. Correct data and metadata using the correction mappings generated by
Warehouse Builder as described in "Deploying Schema Corrections" on page 21-8
and "Deploying Correction Mappings" on page 21-8.

13. Write the corrected data, stored in the correction objects created in step 12, to the
MDM application as described in "Writing Corrected Data and Metadata to the
MDM Application" on page 18-27.

Importing MDM Data Rules
Data rules required for Customer Data Hub (CDH) and Universal Customer Master
(UCM) applications are provided in the OWB_ORACLE_
HOME/owb/misc/dwr/customer_data_rules.mdl file. To import these data
rules, from the File menu, select Import, then Warehouse Builder Metadata. In the
Metadata Import dialog box, select the customer_data_rules.mdl and click OK.
For more information about using the Metadata Import dialog, click Help on this page.

The imported data rules are listed in the Globals Navigator, in the MDM Customer
Data Rules node under the Public Data Rules node.

Writing Corrected Data and Metadata to the MDM Application
The cleansed and corrected data is contained in the correction objects created as a
result of data profiling.

To be more efficient, you can write back only those rows that must be corrected. You
can achieve this by modifying the generated correction mapping. Delete the branch
that passes through the compliant rows unchanged (this is the branch that contains the
minus filter and the minus set operators). Retain only the corrected rows processing
branch in the correction mapping.

Use the following steps to write corrected data to the source MDM application:

1. Create a mapping using the Mapping Editor.

2. Drag and drop the corrected table on to the Mapping Editor. This represents the
source table.

3. For UCM, drag and drop the interface table that corresponds to the base table with
which you are working.

Use the MDM application tools and documentation to determine the base table for
a particular interface table.

4. Map the columns from the corrected table to the interface table.

5. Deploy and execute the mapping to write corrected data to the source MDM
application.

Performing Data Watch and Repair (DWR) for Oracle Master Data Management (MDM)

18-28 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

6. Update the base table with changes made to the interface table. You can use Siebel
Enterprise Integration Manager (EIM). EIM can be run using the command line or
from a Graphical User Interface (GUI).

For more details about using the EIM, see Siebel Enterprise Integration Manager
Administration Guide.

Designing and Deriving Data Rules 19-1

19
Designing and Deriving Data Rules

This chapter describes Oracle Warehouse Builder data rules and their applications,
and describes how to design data rules and derive them from data profiling results.

This chapter contains the following topics:

■ Overview of Data Rules

■ Using Data Rules

Overview of Data Rules
Data rules are definitions for valid data values and relationships that can be created in
Warehouse Builder. They can be applied to tables, views, materialized views, and
external tables. They determine legal data within a table (or other object) or legal
relationships between data in different columns of a table or different tables.

Data rules are central to the data quality features of Warehouse Builder.

■ After data profiling, data rules can be automatically generated based upon any
discovered data relationships. Data profiling can also test data against specific
data rules.

■ Data auditors use data rules to test data for compliance, and generate statistics
about noncompliant data.

■ Automatically generated data cleansing mappings use data rules as the basis of
determining which data is noncompliant. Selecting a data rule and the cleansing
strategy to apply for noncompliant data determines the content of the cleansing
mapping.

■ Schema cleansing translates data rules bound to an object into constraints defined
on the cleansed schema.

■ In ETL mappings, if a table or other object has one or more data rules applied in
the context of the mapping, then Warehouse Builder automatically creates and
manages error tables and other logic to manage and audit noncompliant rows.

There are two ways to create a data rule:

■ Derive one or more rules from data profiling results, as described in "Deriving
Data Rules From Data Profiling Results" on page 19-4

■ Define a data rule directly, as described in "Creating Data Rules Using the Create
Data Rule Wizard" on page 19-5

Every Warehouse Builder workspace also has a certain number of predefined public
data rules, accessible in all projects in the workspace, for common conditions such as
testing for non-null values, testing for common data formats, and so on.

Overview of Data Rules

19-2 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

The metadata for a data rule is stored in the workspace. To use a data rule, you apply
the data rule to a data object. For example, you create a data rule called gender_rule
that specifies that valid values are 'M' and 'F'. You can apply this data rule to the emp_
gender column of the Employees table. Applying the data rule ensures that the
values stored for the emp_gender column are either 'M' or 'F'. You can view the
details of the data rule bindings on the Data Rule tab of the Table Editor for the
Employees table.

Types of Data Rules
Table 19–1 describes the types of data rules.

Table 19–1 Types of Data Rules

Data Rule Type Description Example

Domain List Defines a list of values that an
attribute is allowed to have

The Gender attribute can have
"M" or "F".

Domain Pattern List Defines a list of patterns that an
attribute is allowed to conform to.
The patterns are defined in the
Oracle Database regular
expression syntax.

A pattern for telephone number is:

(^[[:space:]]*[0-9]{ 3
}[[:punct:]|:space:]]?[0-9]{ 4
}[[:space:]]*$)

Domain Range Defines a range of values that an
attribute is allowed to have

The value of the Salary attribute
can be between 100 and 10000.

Common Format Defines a known common format
that an attribute is allowed to
conform to

This rule type has many subtypes:
Telephone Number, IP Address,
SSN, URL, E-mail Address. Each
type has predefined formats
listed. You can add more formats
to this list.

An E-mail address should be in
the following format:

^(mailto:[-_a-z0-9.]+@[-_
a-z0-9.]+$)

No Nulls Specifies that the attribute cannot
have null values

The department_id column for
an employee in the Employees
table cannot be null.

Functional
Dependency

Defines that the data in the data
object may be normalized

The Dept_name attribute is
dependent on the Dept_no
attribute.

Unique Key Defines whether an attribute or
group of attributes are unique in
the given data object

The name of a department must
be unique.

Referential Defines the type of relationship
(1:n) a value must have with
another value

The department_id column of
the Departments table must
have a 1:n relationship with the
Department_id column of the
Employees table.

Name and Address Uses the Name and Address
support to evaluate a group of
attributes as a name or address

Using Data Rules

Designing and Deriving Data Rules 19-3

Data Rules as Objects and Binding Data Rules
Data rules are objects in each workspace, independent of individual data elements that
a rule may govern. For example, the rule "No Nulls" exists independent of any
particular column that the rule is applied to, and a Common Format rule such as Email
Address is independent of any specific column in any specific table which is subject to
that rule.

In the Projects Navigator, the Data Rules node for a project contains Data Rule folders,
which group one or more data rules. There are also public data rules defined for all
projects in a workspace.

Data rules have input parameters that identify the objects to which the rules are
applied in a given instance. To bind a data rule is to associate that data rule with
particular data objects that the rule governs, such as one or more columns in one or
several tables. Note that a data rule can be bound multiple times, to several columns in
a single table or across multiple tables.

For example, the gender_rule domain list rule that limits a column to the values M
and F can be applied to several different columns in a table or even several different
tables, such as EMPLOYEES.emp_gender, EMPLOYEES.manager_gender, and
CHILDREN.child_gender. In such a case, if the rule is updated, all places where the
rule is bound are affected. The next time you generate and deploy code using that data
rule, the updated data rule definition is used. For example, if you changed the gender_
rule to accept X to indicate unknown gender, then you can enforce that rule change
everywhere by regenerating ETL for the objects to which the gender_rule is bound.

Using Data Rules
In addition to deriving data rules based on the results of data profiling, you can define
your own data rules. You can bind a data rule to multiple tables within the project in
which the data rule is defined. An object can contain any number of data rules.

Use the Design Center to create and edit data rules. Once you create a data rule, you
can use it in any of the following scenarios.

Using Data Rules in Data Profiling
When you are using data profiling to analyze tables, you can use data rules to analyze
how well data complies with a given rule, and to collect statistics. From the results,
you can derive a new data rule. If data profiling determines that the majority of
records have a value of red, white, and blue for a particular column, a new data rule
can be derived that defines the color domain (red, white, and blue). This rule can then
be reused to profile other tables, or used like other rules in schema correction, data
cleansing, and data auditing.

Custom Applies a SQL expression that you
specify to its input parameters

A custom rule called VALID_
DATE has two input parameters,
START_DATE and END_DATE. A
valid expression for this rule is
defined as follows:

"THIS"."END_DATE" >
"THIS"."START_DATE".

Table 19–1 (Cont.) Types of Data Rules

Data Rule Type Description Example

Using Data Rules

19-4 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Using Data Rules in Schema Correction
Data rules can be used to convert a source schema into a new target schema where the
structure of the new tables strictly adheres to the data rules. In the new schema, table
columns have data types consistent with the data rules, constraints based upon the
rules are generated and applied to the tables and enforced, and schemas are
normalized.

Using Data Rules in Data Cleansing
The second way that data rules are used is in a correction mapping that validates the
data in a source table against the data rules, to determine which records comply and
which do not. The analyzed data set is then corrected (for example, orphan records are
removed, domain value inaccuracies are corrected, and so on) and the cleansed data
set is loaded into the corrected target schema.

Using Data Rules in Data Auditing
Data rules are also used in data auditing. Data auditors are processes that validate
data against a set of data rules to determine which records comply and which do not.
Data auditors gather statistical metrics on how well the data in a system complies with
a rule, and they report defective data into auditing and error tables. In that sense they
are like data-rule-based correction mappings, which also offer a report-only option for
data that does not comply with the data rules.

Managing Data Rules in Folders
Each data rule belongs to a data rule folder, which is a container object that groups
related data rules. Before you can create any data rules, you must first create at least
one data rule folder.

To create a data rule folder, in the navigation tree, right-click Data Rules and select
New Data Rule Folder. The Create Data Rule Folder dialog box is displayed. Enter a
name for the new data rule folder and click OK.

Deriving Data Rules From Data Profiling Results
Based on the results of data profiling, you can derive data rules that can be used to
cleanse your data. Although you can create data rules and apply them manually to
your data profile, deriving data rules based on data profiling results enhances
productivity and ensures that your rules do reflect the underlying data.

A data rule is an expression that determines the set of legal data that can be stored
within a data object. Use data rules to ensure that only values compliant with the data
rules are allowed within a data object. Data rules will form the basis for correcting or
removing data if you decide to cleanse the data. You can also use data rules to report
on noncompliant data.

For example, you have a table called Employees with the following columns:
Employee_Number, Gender, Employee_Name. The profiling result shows that 90%
of the values in the Employee_Number column are unique, making it a prime
candidate for the unique key. The results also show that 85% of the values in the
Gender column are either 'M' or 'F', making it a good candidate for a domain. You can
then derive these rules directly from the Profile Results Canvas.

Steps to Derive Data Rules
1. Select a data profile in the navigation tree, right-click, and select Open.

The Data Profile Editor is displayed with the profiling results.

Using Data Rules

Designing and Deriving Data Rules 19-5

2. Review the profiling results and determine the findings from which you want to
derive data rules.

The types of results that warrant data rules vary. Some results commonly derived
into data rules include a detected domain, a functional dependency between two
attributes, or a unique key.

3. Select the tab that displays the results from which you want to derive a data rule.

For example, to create a data rule that enforces a unique key rule for the
EMPLOYEE_NUMBER column, navigate to the Unique Key tab.

4. Select the cell that contains the results from which you want to derive a data rule.

You can define a data rule on a cell that contains a blue arrow icon. If the cell
contains a green arrow icon, a data rule has already been defined for the column
represented in that cell

5. From the Profile menu select Derive Data Rule. Or click the Derive Data Rule
button.

For example, to create a Unique Key rule on the EMPLOYEE_NUMBER column,
select this column and click Derive Data Rule.

The Derive Data Rule Wizard is displayed.

6. On the Welcome page, click Next.

7. On the Name and Description page, the Name field displays a default name for
the data rule. To specify a new name, select the name, enter the new name, and
click Next.

8. On the Define Rule page, provide details about the data rule parameters and click
Next.

The Type field is automatically populated depending on the type of data being
derived. You cannot edit the type of data rule.

Additional fields in the lower portion of this page define the parameters for the
data rule. Some of these fields are populated with values based on the result of
data profiling. The number and type of fields depend on the type of data rule.

9. On the Summary page, review the options that you set in the wizard using this
page. Click Back to change any of the selected values. Click Finish to create the
data rule.

The data rule is created and it appears in the Data Rule panel of the Data Profile
Editor. The derived data rule is also added to the Derived_Data_Rules node under
the Data Rules node in the Projects Navigator. You can reuse this data rule by
attaching it to other data objects.

Creating Data Rules Using the Create Data Rule Wizard
The Data Rules folder in the Projects Navigator contains the data rules. Every data rule
must belong to a data rule folder. The subfolder DERIVED_DATA_RULES in each
project contains the data rules derived as a result of data profiling. You can create
additional data rule folders to contain any data rules that you create.

To create a data rule:

1. Right-click the data rule folder in which you want to create a data rule and select
New Data Rule.

The Welcome page of the Create Data Rule Wizard is displayed.

Using Data Rules

19-6 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

2. On the Welcome page, click Next.

3. On the Name and Description page, specify a name and an optional description
for the data rule. Click Next.

4. On the Define Rule page, specify the type of data rule to create. Also specify any
additional information required to create the data rule. Click Next.

For example, when you create a Domain Range rule, you must specify the values
that represent the valid domain values.

See "Defining the Data Rule" on page 19-6 for information about defining the data
rule.

5. On the Summary page, review the selections that you made in the wizard. Click
Back to modify any selected values. Click Finish to create the data rule.

The data rule is added to the data rule folder under which you created the data
rule.

Defining the Data Rule
Use the Define Rule page or the Define Rule tab to provide details about the data rule.
The top section of the page displays the Type list that represents the type of data rule.
When you are creating a data rule, expand the Type field to view the types of data
rules, and select the type that you want to create. When you edit a data rule, the Type
field is disabled, as you cannot change the type of data rule once it is created. For more
information about types of data rules, see "Types of Data Rules" on page 19-2.

The bottom section of this page specifies additional details about the data rule. The
number and names of the fields displayed in this section depend on the type of data
rule that you create.

For example, if you select Custom as the type, use the Attributes section to define the
attributes required for the rule. Use the Ellipsis button on the Expression field to define
a custom expression involving the attributes that you defined in the Attributes section.

If you select Domain Range as the type of data rule, the bottom section of the page
provides fields to specify the data type of the range, the minimum value, and the
maximum value. When you are deriving a data rule, some of these fields are
populated based on the profiling results from which you are deriving the rule. You can
edit these values.

Editing Data Rules
After you create a data rule, you can edit its definition. You can rename the data rule
and edit its description. You cannot change the type of data rule. However, you can
change the other parameters specified for the data rule. For example, for a Domain
Range type of data rule, you can edit the data type of the range, the minimum range
value, and the maximum range value.

To edit a data rule:

1. In the Projects Navigator, right-click the data rule and select Open.

The Edit Data Rule dialog box is displayed.

Note: When you are deriving a data rule, the Type field is
automatically populated and you cannot edit this value.

Using Data Rules

Designing and Deriving Data Rules 19-7

2. On the Name tab, you can perform the following tasks:

■ To rename a data rule, select the name and enter the new name.

■ To edit the description for the data rule, select the description and enter the
new description.

3. On the Define tab, edit the properties of the data rule.

Applying Data Rules to Data Objects
Applying a data rule to an object binds the definition of the data rule to the object. For
example, binding a rule to the table Dept ensures that the rule is implemented for the
specified attribute in the table. You apply a data rule using the object editor. You can
also apply a derived data rule from the Data Rule panel of the Data Profile Editor.

The Apply Data Rule Wizard enables you to apply a data rule to a data object. You can
apply precreated data rules, or any data rule you created to data objects. The types of
data objects to which you can apply data rules are tables, views, materialized views,
and external tables.

To apply a data rule to a data object:

1. In the Projects Navigator, right-click the object to which you want to apply a data
rule and select Open.

The editor for the data object is displayed.

2. On the Data Rules tab, any data rules already bound to the data object are
displayed. Click Apply Rule to apply a new data rule.

The Apply Data Rule Wizard is displayed.

3. On the Welcome page, click Next.

4. On the Select Rule page, select the data rule that you want to apply to the data
object and click Next.

Data rules are grouped under the nodes BUILT_IN, DERIVED_DATA_RULES, and
any other data rule folders that you create.

The BUILT_IN node contains the default data rules defined in the workspace.
These include rules such as foreign key, unique key, and not null.

The DERIVED_DATA_RULES node lists all the data rules that were derived as a
result of data profiling.

5. On the Name and Description page, enter a name and an optional description for
the data rule and click Next.

6. On the Bind Rule Parameters page, use the Binding list to select the column to
which the data rule must be applied and click Next.

7. On the Summary page, review the selections that you made on the previous
wizard pages. Click Back to modify selected values. Click Finish to apply the data
rule.

The data rule is bound to the data object and is listed on the Data Rules tab.

Note: You cannot change the type of data rule. You can only modify
the properties related to that type of data rule, such as the domain
bounds, domain list, and number of attributes in a unique key.

Using Data Rules

19-8 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Monitoring Quality with Data Auditors and Data Rules 20-1

20
Monitoring Quality with Data Auditors and

Data Rules

This chapter describes the use of data auditors to monitor data quality. It contains the
following topics:

■ Overview of Data Auditors

■ Monitoring Data Quality Using Data Auditors

Overview of Data Auditors
Data auditors are processes that validate data against a set of data rules to determine
which records comply and which do not. Data auditors gather statistical metrics on
how well the data in a system complies with a rule by auditing and marking how
many errors are occurring against the audited data. Data auditors ensure that your
data complies with the data rules you defined, and thus let you track compliance with
your business rules.

Data auditors are an important tool in ensuring, on an ongoing basis, that data quality
levels meet business requirements. Identifying sudden increases in bad data also
enables you to associate the increase with specific events and then identify possible
root causes, such as addition of new data sources or changes to a data source or
application that impacts your system.

To monitor data using Warehouse Builder, you must first discover or design data
rules, as described in "Performing Data Profiling" on page 18-4, then define data
auditors, and schedule them or incorporate them into larger process flows.

Data auditors can be deployed and executed ad hoc if necessary. More often, they are
scheduled for regular execution as part of a process flow, to monitor the quality of the
data in an operational environment such as a data warehouse or ERP system, either
immediately after updates like data loads, or at regular intervals.

Data Auditor Thresholds

Data auditors have thresholds that allow you to create logic based on the fact that too
many noncompliant records can divert the process flow into an error or notification
stream. You can specify a threshold value for each data rule that the data auditor
audits. This value is used to determine if the data in the data object is within the limits

See Also: "Monitoring Data Quality Using Data Auditors" on
page 20-2

See Also: "Auditing Data Objects Using Data Auditors" on page 20-6

Monitoring Data Quality Using Data Auditors

20-2 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

that you defined. Based on this threshold, the process can choose actions. In a process
flow, you can test this value and branch based upon the result.

For example, you create a data auditor to audit the data in the Employees table. This
table contains two data rules, emp_email_unique_rule and emp_sal_min_rule.
You specify that the threshold value for both rules is 80%. If less than 80% of the data
in the Employees table does not comply with the data rules, the auditing for the table
fails.

Audit Results for Data Auditors

In addition to setting thresholds for noncompliant records, you can capture audit
results and store them for analysis. When executed, the data auditor sets several
output values. One of these values is the audit result. Audit results provide
information about the extent of data rule violations that occurred while running the
data auditor.

Monitoring Data Quality Using Data Auditors
Data auditors are objects that you can use to continuously monitor your source schema
to ensure that the data adheres to the defined data rules. You can monitor an object
only if you have defined data rules for the object.

A data auditor can monitor data quality for more than one data object. You can create
data auditors for tables, views, materialized views, and external tables.

To monitor data quality, perform the following steps:

1. Create a data auditor containing the data objects that you want to monitor.

See "Creating Data Auditors" on page 20-3.

2. (Optional) Configure the data auditor and set physical deployment parameters for
the data auditor. These parameters are used while running the data auditor.

See "Configuring Data Auditors" on page 20-4.

3. Deploy the data auditor to create the data auditor in the target schema.

See "Deploying Objects" on page 12-6.

4. Run the data auditor to identify records that do not comply with the data rules
defined on the data objects. You can either run data auditors manually or schedule
them to run at specified times.

See "Auditing Data Objects Using Data Auditors" on page 20-6 for information
about running data auditors.

5. View the records that were identified as not complying with the defined data rules
for the objects that are part of the data auditor.

See "Viewing Data Auditor Error Tables" on page 20-8.

See Also: "Specifying Actions for Data That Violates Defined Data
Rules" on page 20-3 for information about specifying threshold value

See Also: "Data Auditor Execution Results" on page 20-7

See Also: "Overview of Data Auditors" on page 20-1 for more
information about data auditors

Monitoring Data Quality Using Data Auditors

Monitoring Quality with Data Auditors and Data Rules 20-3

Creating Data Auditors
Use the Create Data Auditor Wizard to create data auditors. Data auditors are part of
an Oracle module in a project.

To create a data auditor:

1. Expand the Oracle module in which you want to create the data auditor.

2. Right-click Data Auditors and select New Data Auditor.

The Create Data Auditor Wizard is displayed.

3. On the Name and Description page, provide the following details and click Next.

■ Name: Enter the name of the data auditor.

■ Description: Enter an optional description for the data auditor.

4. On the Select Objects page, select the data objects that you want to audit and click
Next.

The Available section lists the objects available for auditing. The Selected section
contains the objects that are selected for auditing. Use the buttons to move objects
to the Selected section. To select multiple objects, hold down the Ctrl key while
selecting objects.

5. On the Choose Actions page, specify the action to be taken for records that do not
comply with the data rules bound to the selected objects and click Next.

See "Specifying Actions for Data That Violates Defined Data Rules" on page 20-3.

6. On the Summary page, review the selections that you made. Click Back to modify
any selected values or click Finish to create the data auditor.

The new data auditor is added to the Data Auditors node. At this stage, only the
metadata for the data auditor is stored in your workspace. To use this data auditor to
monitor the quality of data in your data objects, you must run the data auditor as
described in "Auditing Data Objects Using Data Auditors" on page 20-6.

Specifying Actions for Data That Violates Defined Data Rules
Use the Choose Actions page of the Create Data Auditor Wizard or the Choose Action
tab of the Edit Data Auditor dialog box to specify how records that violate data rules
defined on the data objects are handled. You can also specify the level of
non-compliance that is permitted for the data.

This page contains two sections: Error threshold mode and Data Rules.

Error threshold mode

Use the Error threshold mode to specify the method used to determine compliance of
data to data rules.

Select one of the following methods:

■ Percent: The data auditor will set the audit result based on the percentage of
records that do not comply with the data rule. This percentage is specified in the
rule's Defect Threshold value.

Note: You cannot import metadata for data auditors in Merge mode.
For more information about import mode options, see Oracle
Warehouse Builder Installation and Administration Guide for Windows and
UNIX.

Monitoring Data Quality Using Data Auditors

20-4 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ Six Sigma: The data auditor will set the audit result based on the Six Sigma values
for the data rules. If the calculated Six Sigma value for any rule is less than the
specified Sigma Threshold value, then the data auditor will set the AUDIT
RESULT to 2.

Data Rules

The Data Rules section lists the data rules applied to the objects selected on the Select
Object page. For each rule, specify the following:

■ Action: The action to be performed if data in the source object does not comply
with the data rule. Select Report to ensure that the data rule is audited. Select
Ignore if you want the data rule to be ignored.

■ Defect Threshold: The percent of records that should comply with the data rules
to ensure successful auditing. Specify a value between 1 and 100. This value is
ignored if you select Six Sigma in the Error threshold mode section.

■ Sigma Threshold: The required success rate. Specify a number between 0 and 7. If
you set the value to 7, no failures are allowed. This value is ignored if you select
Percent in the Error threshold mode section.

Editing Data Auditors
After you create a data auditor, you can edit it and modify any of its properties using
the following steps.

1. In the Projects Navigator, right-click the data auditor and select Open.

The Edit Data Auditor dialog box is displayed.

2. On the Name tab, enter a new name or description for the data auditor.

3. On the Select Objects tab, use the buttons to add or remove objects that will be
audited as part of the data auditor.

4. On the Choose Actions tab, edit the data correction actions that you specified.

See "Specifying Actions for Data That Violates Defined Data Rules" on page 20-3.

5. On the Reconcile Objects tab, select the check box to the left of an object to
reconcile its definition with the latest repository definition. Click Reconcile.

6. Click OK to close the Edit Data Auditor dialog box.

Configuring Data Auditors
During the configuration phase, you assign physical deployment properties to the data
auditor that you created by setting the configuration parameters. The Configuration
tab for the data auditor enables you to configure the physical properties of the data
auditor.

To configure a data auditor:

1. From the Projects Navigator, expand the Databases node and then the Oracle
node.

2. Right-click the name of the data auditor that you want to configure and select
Configure.

The Configuration tab for the data auditor is displayed.

3. Based on your requirement, configure the parameters listed in Run Time
Parameters, Data Auditor Parameters, and Code Generation Options.

Monitoring Data Quality Using Data Auditors

Monitoring Quality with Data Auditors and Data Rules 20-5

Run Time Parameters
Table 20–1 lists the Run Time configuration parameters.

Data Auditor Parameters
This category uses the same name as the data auditor. Table 20–2 describes the generic
data auditor configuration parameters.

Table 20–1 Run Time Configuration Parameters for Data Auditors

Configuration Parameter
Name Description

Default Purge Group Used when executing the package. Each audit record in the
runtime schema is assigned to the purge group specified.

Bulk Size Number of rows to be fetched as a batch while processing
cursors

Analyze table sample
percentage

Percentage of rows to be sampled when the target tables are
analyzed. You analyze target tables to gather statistics that you
can use to improve performance while loading data into the
target tables.

Commit frequency Number of rows processed before a commit is issued

Maximum number of errors Maximum number of errors allowed before the execution of this
step is terminated

Default Operating mode Represents the operating mode used

The options that you can select are Row based, Row based
(target only), Set based, Set based fail over to row based, Set
based fail over to row based (target only).

Default Audit Level Indicates the audit level used when executing the package.
When the package is run, the amount of audit information
captured in the runtime schema depends on the value set for this
parameter.

The options that you can select are as follows:

ERROR DETAILS: At run time, error information and statistical
auditing information is recorded.

COMPLETE: All auditing information is recorded at run time.
This generates a huge amount of diagnostic data which may
quickly fill the allocated tablespace.

NONE: No auditing information is recorded at run time.

STATISTICS: At run time, statistical auditing information is
recorded.

Table 20–2 Data Auditor Configuration Parameters for Data Auditors

Configuration Parameter
Name Description

Generation Comments Specify additional comments for the generated code.

Threshold Mode Specify the mode that should be used to measure failure
thresholds. The options are PERCENTAGE and SIX SIGMA.

Language Language used to define the generated code. The options are
PL/SQL (default) and UNDEFINED. Ensure that PL/SQL
(default) is selected.

Deployable Select this option to indicate that you want to deploy this data
auditor. Warehouse Builder generates code only if the data
auditor is marked as deployable.

Monitoring Data Quality Using Data Auditors

20-6 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Code Generation Options
Table 20–3 describes the code generation options that you can set for data auditors.

Auditing Data Objects Using Data Auditors
After you create a data auditor, you can use it to monitor the data in your data objects.
This ensures that the data rule violations for the objects are detected. When you run a
data auditor, any records that violate the data rules defined on the data objects are
written to the error tables.

There are two ways of using data auditors:

■ Manually Running Data Auditors

■ Scheduling a Data Auditor to Run

Manually Running Data Auditors
To check if the data in the data object adheres to the data rules defined for the object,
you must run the data auditor. You can run data auditors from the Design Center or
the Control Center Manager. To run a data auditor from the Design Center, right-click
the data auditor and select Start. In the Control Center Manager, select the data
auditor, and from the File menu, select Start. The results are displayed in the Job
Details window as described in "Data Auditor Execution Results" on page 20-7.

Referred Calendar Specify the schedule to associate with the data auditor. The
schedule defines when the data auditor will run.

Table 20–3 Code Generation Options for Data Auditors

Configuration Parameter
Name Description

ANSI SQL Syntax Select this option to use ANSI SQL code in the generated code. If
this option is not selected, Oracle SQL syntax is generated.

Commit Control Specifies how commit is performed. The options available for
this parameter are: Automatic, Automatic Correlated, and
Manual. Ensure that this parameter is set to Automatic.

Enable Parallel DML Select this option to enable parallel DML at run time.

Analyze table statements Set this option to True to generate the statement used to collect
statistics for the data auditor. If the target table is not in the same
schema as the mapping and you want to analyze the table, then
you must grant ANALYZE ANY privilege to the schema owning
the mapping.

Optimized Code Select this option to indicate that optimized code should be
generated.

Generation Mode Select the mode in which optimized code should be generated.
The options that you can select are: All Operating Modes, Row
based, Row based (target only), Set based, Set based fail over to
row based, and Set based fail over to row based (target only).

Use Target Load Ordering Select this option to generate code for target load ordering.

Error Trigger Specify the name of the error trigger procedure.

Bulk Processing Code Select this option to generate bulk processing code.

Table 20–2 (Cont.) Data Auditor Configuration Parameters for Data Auditors

Configuration Parameter
Name Description

Monitoring Data Quality Using Data Auditors

Monitoring Quality with Data Auditors and Data Rules 20-7

Scheduling a Data Auditor to Run
You can schedule the execution of a data auditor using the following steps:

1. Create a process flow that contains a Data Auditor Monitor activity that represents
the data auditor.

2. Schedule this process flow to run at a predefined time.

For more information about scheduling objects, see "Defining Schedules" on
page 11-2.

Figure 20–1 displays a process flow that contains a Data Auditor Monitor activity. In
this process flow, LOAD_EMP_MAP is a mapping that loads data into the EMP table. If
the data load is successful, the data auditor EMP_DATA_AUDIT is run. The data auditor
monitors the data in the EMP table based on the data rules defined for the table.

Figure 20–1 Data Auditor Monitor Activity in a Process Flow

Data Auditor Execution Results
After you run a data auditor, the Job Details window displays the details of the
execution. The Job Details window contains two tabs: Input Parameters and Execution
Results. Note that the Job Details window is displayed only when you set the
deployment preference Show Monitor to true.

Figure 20–2 displays the Job Details window containing the Input Parameters Tab and
the Execution Results Tab.

Figure 20–2 Data Auditor Execution Results

Input Parameters Tab

See Also: Oracle Warehouse Builder Concepts for more information
about deployment preferences.

Monitoring Data Quality Using Data Auditors

20-8 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

The Input Parameters tab contains the values of input parameters used to run the data
auditor.

Execution Results Tab

The Execution Results tab displays the results of running the data auditor. This tab
contains two sections: Row Activity and Output Parameters.

The Row Activity section contains details about the inserts into the error table for each
step. Note that when more than one data rule is specified, multitable insert may be
used in the data auditor. In this case, the count of the number of rows will not be
accurate.

For example, in the data auditor execution result in Figure 20–2, the data rule called E_
NOT_NULL inserted one record into the error table.

The Output Parameters section contains the following three parameters:

■ AUDIT_RESULT: Indicates the result of running the data auditor. The possible
values for this parameter are as follows:

– 0: No data rule violations occurred.

– 1: At least one data rule violation occurred, but no data rule failed to meet the
minimum quality threshold as defined in the data auditor.

– 2: At least one data rule failed to meet the minimum quality threshold.

For more information about setting the threshold, see the step on choosing actions
in "Creating Data Auditors" on page 20-3.

■ EO_<data_rule_name>: Represents the calculated error quality for the specified
data rule. Zero (0) indicates all errors and 100 indicates no errors.

■ SO_<data_rule_name>: Represents the Six Sigma quality calculated for the
specified data rule.

Viewing Data Auditor Error Tables
When you run a data auditor, either manually or as part of the process flow,
Warehouse Builder writes records that do not comply with defined data rules for the
objects contained in the data auditor to error tables. Each object contained in the data
auditor has a corresponding error table that stores noncompliant records for that
object.

You view all noncompliant records that are written to error tables by using the
Repository Browser.

To view error tables created as a result of data auditor execution:

1. Grant privileges on the error tables as described in "Granting Privileges on Error
Tables" on page 20-9.

2. Use the Repository Browser to view the error tables. Perform the following steps:

a. Open the Repository Browser as described in "Opening the Repository
Browser" on page 13-5.

b. View error tables using the Repository Browser as described in "Viewing Error
Tables Created as a Result of Data Auditor Execution" on page 13-23.

Monitoring Data Quality Using Data Auditors

Monitoring Quality with Data Auditors and Data Rules 20-9

Granting Privileges on Error Tables
Before you view data stored in error tables using the Repository Browser, you must
grant privileges on the error tables to the OWBSYS user. This enables the Repository
Browser to access error table data.

To grant privileges on error tables:

1. In SQL*Plus, log in to the schema containing the error tables.

The error table for an object is stored in the same schema as the object.

2. Run the SQL script OWB_ORACLE_HOME\owb\rtp\sql\grant_error_table_
privileges.sql.

3. When prompted, enter the name of the error table for which you want to grant
privileges.

If you did not specify a name for the error table of an object using the Error Table
Name property, Warehouse Builder provides a default name. For objects that use
error tables, the default error table name is the object name suffixed by "_ERR".

4. Repeat Steps 2 and 3 for each error table to which you want to grant privileges.

Monitoring Data Quality Using Data Auditors

20-10 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Data Cleansing and Correction with Data Rules 21-1

21
Data Cleansing and Correction with Data

Rules

This chapter describes the data cleansing features of Oracle Warehouse Builder and
how to use them. It contains the following topics:

■ Overview of Automatic Data Correction and Data Rules

■ Generating Corrections Based on Data Profiling Results

■ Cleansing and Transforming Source Data Based on Data Profiling Results

Overview of Automatic Data Correction and Data Rules
After you derive data rules from profiling results, you can automate the process of
correcting source data based on profiling results. You can create the schema and
mapping corrections. The schema correction creates scripts that you can use to create a
corrected set of data objects with the same structure as the source objects, but with the
derived data rules applied. The mapping correction creates new correction mappings
to take your data from the source objects and load them into new objects.

For a given set of data objects (tables, views and so on) and a given set of data rules
applied to those objects, Warehouse Builder can automatically generate the following
data correction objects and logic:

■ Definitions for corrected schema objects, that is, tables that have the same columns
as the source tables and the same data rules bound to them, but which have
constraints, stricter data types and other structures that enforce the data rules
being corrected. Details of how individual data rules are enforced on corrected
schema objects are described in Table 21–1, " Data Rules Implementation for
Schema Correction" on page 21-4

■ Cleansing ETL mappings for loading a clean version of the source data into the
new corrected tables. Compliant rows can be passed through to the clean tables
without change. Noncompliant data can be filtered out, reported on, or corrected
to be made compliant. Many common data correction algorithms are built into
Warehouse Builder, or you can implement your own cleansing logic. Details of the
available correction strategies are described in Table 21–2, " Cleansing Strategies
for Data Correction" on page 21-6

To actually create your corrected data, you must then deploy the corrected schema
objects, mappings and relevant data rules to the target location and either run the
mappings or schedule them to run as needed. You can then implement further ETL
using the cleansed schema objects as a source instead of the original dirty data.

Generating Corrections Based on Data Profiling Results

21-2 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Generating Corrections Based on Data Profiling Results
When automatically generating corrections for source tables or other objects based on
data rules, the objects generated include the following.

■ Definitions for corrected schema objects, that is, tables that have the same columns
as the source tables, but which have constraints, types and other structures that
correspond to the data rules being corrected.

■ Cleansing ETL mappings that move compliant source data into the target tables
and either filter out noncompliant data or generate corrected, compliant data from
the noncompliant data based on algorithms you specify.

To actually create your corrected data, you must then deploy the corrected schema
objects, mappings and relevant data rules to the target database and either run the
mappings or schedule them to run as needed.

Prerequisites for Creating Corrections
The prerequisites for creating corrections are:

■ You must already have a data profile where you have profiled the source data
objects (tables, views and so on) to be corrected.

■ You must already have data rules to be used to identify noncompliant data for
correction.

Steps to Create Correction Objects
The Data Profile Editor enables you to create mappings that will perform schema
correction and data cleansing based on your data profiling results.

To create corrections:

1. If the data profile is not already open, open it by right-clicking the data profile in
the Projects Navigator and selecting Open.

2. From the Profile menu, select Create Correction.

The Create Correction Wizard is displayed.

3. On the Welcome page, click Next.

4. On the Select Target Module page, specify the target module that will contain the
corrections and click Next.

You can either create a new module or use an existing module.

■ To store the corrections in an existing target module, choose Select an existing
module. The Available list displays the existing modules in which corrections
can be stored. Select the module from this list.

■ To store the corrections in a new target module, select Create a new target
module. The Create Module Wizard guides you through the steps of creating a
new target module.

To remove correction objects created as a result of previous corrections, select
Remove previous correction objects.

5. On the Select Objects page, select the objects for which corrections should be
generated by moving them to the Selected list. Click Next.

Generating Corrections Based on Data Profiling Results

Data Cleansing and Correction with Data Rules 21-3

The Filter list enables you to filter the objects that are available for selection. The
default selection is All Objects. You can display only particular types of data
objects such as tables or views.

6. On the Select Data Rules and Data Types page, select the corrections that must be
generated to perform schema correction. Click Next.

See "Selecting the Data Rules and Data Types for Corrected Schema Objects" on
page 21-3 for information about specifying data corrections.

7. (Optional) On the Data Rules Validation page, note the validation errors, if any,
and correct them before proceeding.

If correction objects from a previous data correction action exist for the objects
selected for correction, this page displays a message. Click Next to remove
previously created correction objects.

8. On the Verify and Accept Corrected Tables page, select the objects that you want to
correct and click Next.

See "Selecting the Objects to Be Corrected" on page 21-4 for more information
about how to specify how objects should be corrected.

9. On the Choose Data Correction Actions page, specify the correction actions to be
performed to cleanse source data and click Next.

See "Choosing Data Correction and Cleansing Actions" on page 21-5 for more
details about specifying the actions that perform data correction and cleansing.

10. On the Summary page, click Finish to create the correction objects.

The correction schema is created and added to the Projects Navigator. The correction
objects and mappings are displayed under the module that you specify as the target
module on the Select Target Module page of the Create Correction Wizard. The
correction object uses the same name as the source object. The name of the correction
mapping is the object name prefixed with M_. The correction mapping is used to
cleanse source data and load it into the corrected target object.

Selecting the Data Rules and Data Types for Corrected Schema Objects
Use the Data Rules and Data Types page to select the schema corrections that should
be generated for the corrected data objects. Based on the data profiling results,
Warehouse Builder populates this page with data type corrections and data rules that
you can apply to the data object.

Schema correction consists of correcting data type definitions and defining data rules
that should be applied to the corrected objects. The objects selected for correction are
displayed on the left side of the page and are organized into a tree by modules. The
panel on the right contains two tabs: Data Rules and Data Types. Select an object by
clicking the object name and then define how schema correction should be performed
for this object using the Data Rules and Data Types tabs.

Data Rules The Data Rules tab displays the available data rules for the object
selected in the object tree. Specify the data rules that should be generated for the
corrected object by selecting the check box to the left of the data rule. Warehouse
Builder uses these data rules to create constraints on the tables during the schema
generation.

The Bindings section contains details about the table column to which the rule is
bound. Click a rule name to display the bindings for that rule.

Generating Corrections Based on Data Profiling Results

21-4 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Warehouse Builder uses different methods of enforcing data rules on corrected
schema objects. The method used depends on the type of data rule that you are
implementing.

Table 21–1 describes the methods used for object schema correction. It also lists the
data rule types for which each correction is used.

Data Types The Data Types tab displays the columns that are selected for correction.
The change could be a modification of the data type, precision, or from fixed-length to
variable-length. The Documented Data Type column on this tab displays the existing
column definition and the New Data Type column displays the proposed correction to
the column definition.

To correct a column definition, select the check box to the left of the column name.

Selecting the Objects to Be Corrected
Use the Verify and Accept Corrected Tables page to confirm the objects that you want
to correct and to provide additional details about how data correction should be
performed. This page contains the objects you selected for schema correction on the
Data Rules and Data Types page.

Use the following steps to specify how your data objects should be corrected.

1. In the Verify and Accept Corrected Tables that Will be Generated section, select
Create to the left of a data object to create this data object in the corrected schema.

The Definition of the Corrected Table section displays the corrections details for
the selected data object. The Columns tab displays the details of columns that will
be created in the corrected data object. The Constraints tab displays details of
constraints that will be created on the corrected data object. The Data Rules tab
displays details of data rules that will be created on the corrected data object.

Table 21–1 Data Rules Implementation for Schema Correction

Schema Correction
Method Description

Data Rule Types for
which Correction
Method Can be Used

Create Constraints Creates a constraint reflecting the data rule on the correction
table. If a constraint cannot be created, a validation message is
displayed on the Data Rules Validation page of the Apply Data
Rule Wizard.

Custom

Domain List

Domain Pattern List

Domain Range

Common Format

No Nulls

Unique Key

Change the data type Changes the data type of the column to NUMBER or DATE
according to the results of profiling. The data type is changed
for data rules of type Is Number and Is Name.

Is Number

Is Date

Create a lookup table Creates a lookup table and adds the appropriate foreign key or
unique key constraints to the corrected table and the lookup
table.

Functional
Dependency

Name and Address Parse Adds additional name and address attributes to the correction
table. The name and address attributes correspond to a
selection of the output values of the Name and Address
operator. In the map that is created to cleanse data, a Name
and Address operator is used to perform name and address
cleansing.

Name and Address

Generating Corrections Based on Data Profiling Results

Data Cleansing and Correction with Data Rules 21-5

2. On the Columns tab of the Definition of the Corrected Table section:

■ Select Create to the left of a column name to create this column in the
corrected data object.

■ Deselect Create to the left of a column name to remove this column from the
corrected object.

■ Edit the Data Type, Length, Precision, Seconds Precision, and Scale for a
column by clicking the value and entering the new value. However, you
cannot modify a column name.

3. On the Constraints tab of the Definition of the Corrected Table section:

■ Click Add Constraint to create additional constraints.

■ Select the constraint and click Delete to remove a constraint from the corrected
data object.

4. On the Data Rules tab of the Definition of the Corrected Table section:

■ Select the check box to the left of a data rule to apply this derived data rule to
the corrected data object.

Ensure that the Bindings column contains the column to which the data rule
should be applied.

■ Click Apply Rule to apply a new data rule to the corrected object. The Apply
Data Rule Wizard guides you through the process of applying a data rule.

Choosing Data Correction and Cleansing Actions
When you decide to automatically generate corrected objects based on data profiling
results, you must specify how inconsistent data from the source object should be
cleansed before being stored in the corrected object. To do this, you specify a cleansing
strategy for each data rule that is applied to the correction object.

The Choose Data Correction Actions page enables you to specify how to correct source
data. This page contains two sections: Select a Corrected Table and Choose Data
Correction Actions. The Select a Corrected Table section lists the objects that you
selected for corrections. This section contains the following columns for each data
object that you selected for correction:

■ Correct: Select this option to enable generation of correction objects for the data
object listed in the Table column.

■ Table: Represents the name of the data object for which correction actions are
being specified.

■ Load Option: Indicates which records should be loaded by the correction
mapping. Select All Records to indicate that the generated correction mapping
should load all records. Select Corrected Objects to indicate that the generated
correction mapping should load only the records being corrected.

■ Audit Option: Select this option to create a data auditor for the table represented
by the Table column.

■ Description: Represents a description for the correction mapping that is created.

Select a data object in the Select a Corrected Table section to display the affiliated data
rules in the Choose Data Correction Actions section.

Generating Corrections Based on Data Profiling Results

21-6 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Choosing Data Correction Actions
For each data rule, you must choose a correction action that specifies how data values
that violate data rules set for the data object should be handled. Use the list in the
Action column to specify the correction action that you want to perform.

The correction actions that you can choose are:

■ Ignore: The data rule is ignored and, therefore, no values are rejected based on this
data rule.

■ Report: The data rule is run only after the data has been loaded for reporting
purposes. It is similar to the Ignore option, except that a report containing values
that do not adhere to the data rules is created. This action can be used for some
rule types only.

■ Cleanse: The values rejected by this data rule are moved to an error table where
cleansing strategies are applied. When you select this option, you must specify a
cleansing strategy as described in "Specifying the Cleansing Strategy" on
page 21-6.

Specifying the Cleansing Strategy
For each data rule, use the Cleansing Strategy list to specify how data that violates a
set data rule should be cleansed. This option is enabled only if you select Cleanse in
the Action column. The cleansing strategy depends on the type of data rule and the
rule configuration. Error tables are used to store the records that do not conform to the
data rule.

Table 21–2 describes the cleansing strategies and lists the types of data rules for which
each strategy is applicable.

Table 21–2 Cleansing Strategies for Data Correction

Cleansing
Strategy Description

Applicable to Data Rule
Types

Remove Does not populate the target table with
error records

All

Custom Creates a function in the target table that
contains a header, but no implementation
details. You must add the implementation
details to this function.

Domain List

Domain Pattern List

Domain Range

Common Format

No Nulls

Name and Address

Custom

Use Existing
Function

Select from a list of existing functions to
perform the correction

Domain List

Domain Pattern List

Domain Range

Common Format

No Nulls

Name and Address

Custom

Set to Min Sets the attribute value of the error record
to the minimum value defined in the data
rule

Domain Range rules that have
a minimum value defined

Generating Corrections Based on Data Profiling Results

Data Cleansing and Correction with Data Rules 21-7

Viewing the Correction Tables and Mappings
You can view the correction tables in the Table Editor to see the data rules and
constraints created as part of the design of your table. You can also view the correction
mappings as you can view any other ETL mapping.

To view the correction mappings:

1. Double-click the mapping to open the object in the Mapping Editor.

2. After the mapping is open, select View and then Auto Layout to view the entire
mapping.

Figure 21–1 displays a correction map generated by the Create Correction Wizard.

Figure 21–1 Generated Correction Mapping

3. Select the submapping ATTR_VALUE_1 and click the Visit Child Graph icon from
the toolbar to view the submapping.

Figure 21–2 displays the submapping that is displayed.

Set to Max Sets the attribute value of the error record
to the maximum value defined in the data
rule

Domain Range rules that have
a maximum value defined

Similarity Uses a similarity algorithm based on
permitted domain values to find a value
that is similar to the error record. If no
similar value is found, the original value is
used

Domain List rules with
character data types

Soundex Uses a soundex algorithm based on
permitted domain values to find a value
that is similar to the error record. If no
soundex value is found, the original value
is used

Domain List rules with
character data types

Merge Uses the match-merge algorithm to merge
duplicate records into a single row

Unique Key

Set to Mode Uses the mode value to correct the error
records if a mode value exists for the
functional dependency partition that fails

Functional Dependency

See Also: "Types of Data Rules" on page 19-2

Table 21–2 (Cont.) Cleansing Strategies for Data Correction

Cleansing
Strategy Description

Applicable to Data Rule
Types

Cleansing and Transforming Source Data Based on Data Profiling Results

21-8 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Figure 21–2 Correction Submapping

The submapping is the element in the mapping that performs the actual correction
cleansing that you specified in the Create Correction Wizard. In the middle of this
submap is the DOMAINSIMILARITY transformation that was generated as a
function by the Create Correction Wizard.

Cleansing and Transforming Source Data Based on Data Profiling Results
After you generate correction objects, you must deploy and execute the correction
objects to perform schema correction and data cleansing. Your data is corrected after
you run the correction mappings with the data rules. The relevant data rules also
remain bound to the objects in the corrected schema for optional use in data auditors.

Correcting your schema and cleansing data requires the following steps:

1. Deploying Schema Corrections

2. Deploying Correction Mappings

Deploying Schema Corrections
When you perform schema correction based on data profiling results, Warehouse
Builder generates the schema correction actions that you specified and generates
corrected data objects. The name of the corrected data object is the name of the original
source object prefixed with TMP_.

When deploying schema corrections, deploy all corrected data objects, along with any
data rules that were defined for the corrected objects as part of the data correction
process.

Deploying Correction Mappings
When you generate correction mappings to cleanse source data based on data profiling
results, Warehouse Builder creates the correction mappings in the workspace. The
name of the correction mapping for a particular data object is the name of the data
object prefixed with M_. For example, the correction mapping generated to cleanse the
DEPT table is called M_DEPT.

To deploy the correction mappings created as part of the data correction process:

1. Grant the SELECT privilege on the source tables to PUBLIC.

Cleansing and Transforming Source Data Based on Data Profiling Results

Data Cleansing and Correction with Data Rules 21-9

For example, your correction mapping contains the table EMPLOYEES from the HR
schema. You can successfully deploy this correction mapping only if the SELECT
privilege is granted to PUBLIC on the HR.EMPLOYEES table.

2. Deploy the correction tables created as a result of data profiling.

You can right-click the table in the Projects Navigator and select Deploy. Or you
can use the Control Center to deploy data objects.

3. Deploy the correction mappings generated to cleanse source data.

4. To cleanse source data and load it into the corrected tables, execute the correction
mapping as you would any other ETL mapping.

To execute the mapping, right-click the mapping in the Projects Navigator and
select Start.

You can also schedule this mapping to run like any other mapping or include it in
process flows.

Cleansing and Transforming Source Data Based on Data Profiling Results

21-10 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Name and Address Cleansing 22-1

22
Name and Address Cleansing

This chapter discusses the name and address cleansing features of Oracle Warehouse
Builder. It contains the following topics:

■ About Name and Address Cleansing in Warehouse Builder on page 22-1

■ Using the Name and Address Operator to Cleanse and Correct Name and Address
Data on page 22-19

■ Managing the Name and Address Server on page 22-23

About Name and Address Cleansing in Warehouse Builder
Warehouse Builder includes name and address cleansing functionality and can
integrate with third-party name and address cleansing tools from a number of
vendors. Warehouse Builder parses the names and addresses, and uses methods
specific to this type of data, such as matching common nicknames and abbreviations.
You can compare the input data to the data libraries supplied by third-party name and
address cleansing software vendors, identify and correct errors and inconsistencies in
name and address source data. You can then further augment your records with
information such as postal routes and geographic coordinates.

Note: Warehouse Builder exposes its name and address cleansing
functionality through the Name and Address operator, used in a
Warehouse Builder ETL mapping.

Users of third-party ETL products can still use Warehouse Builder for
name and address cleansing, while retaining their existing ETL
solution.

■ Use the third-party ETL tool to load name and address cleansing
input data in a staging table, or use an existing table as a source

■ Use a Warehouse Builder ETL mapping to apply name and
address cleansing, and load the corrected data into an output table

■ Use the third-party ETL tool to pick up the cleansed results from
the output table for further processing.

Because the deployed code for the mapping is just a PL/SQL package
loaded in the database where the name and address cleansing takes
place, this technique can be used from any ETL tool that can call logic
from a PL/SQL package.

Also note that data libraries are not bundled with Warehouse Builder.
Licenses must be purchased directly from third-party vendors.

About Name and Address Cleansing in Warehouse Builder

22-2 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Types of Name and Address Cleansing Available in Warehouse Builder
The errors and inconsistencies corrected by the Name and Address operator include
variations in address formats, use of abbreviations, misspellings, outdated
information, inconsistent data, and transposed names. The operator fixes these errors
and inconsistencies by:

■ Parsing the name and address input data into individual elements.

■ Standardizing name and address data, using standardized versions of nicknames
and business names and standard abbreviations of address components, as
approved by the postal service of the appropriate country. Standardized versions
of names and addresses facilitate matching and householding, and ultimately help
you obtain a single view of your customer.

■ Correcting address information such as street names and city names. Filtering out
incorrect or undeliverable addresses can lead to savings on marketing campaigns.

■ Augmenting names and addresses with additional data such as gender, postal
code, country code, apartment identification, or business and consumer
identification. You can use this and other augmented address information, such as
census geocoding, for marketing campaigns that are based on geographical
location.

Augmenting addresses with geographic information facilitates geography-specific
marketing initiatives, such as marketing only to customers in large metropolitan
areas (for example, within an n-mile radius of large cities); marketing only to
customers served by a company's stores (within an x-mile radius of these stores).
Oracle Spatial, an option with Oracle Database, and Oracle Locator, packaged
with Oracle Database, are two products that you can use with this feature.

The Name and Address operator also enables you to generate postal reports for
countries that support address correction and postal matching. Postal reports often
qualify you for mailing discounts. For more information, see "About Postal Reporting"
on page 22-5.

Example: Correcting Address Information
This example follows a record through a mapping using the Name and Address
operator. This mapping also uses a Splitter operator to demonstrate a highly
recommended data quality error handling technique.

Example Input
In this example, the source data contains a Customer table with the row of data
shown in Table 22–1.

Note: The Name and Address operator requires separate licensing
and installation of third-party name and address cleansing
software. See Oracle Warehouse Builder Installation and Administration
Guide for Windows and UNIX.

Table 22–1 Sample Input to Name and Address Operator

Address Column Address Component

Name Joe Smith

Street Address 8500 Normandale Lake Suite 710

About Name and Address Cleansing in Warehouse Builder

Name and Address Cleansing 22-3

The data contains a nickname, a last name, and part of a mailing address, but it lacks
the customer's full name, complete street address, and the state in which he lives. The
data also lacks geographic information such as latitude and longitude, which can be
used to calculate distances for truckload shipping.

Example Steps
This example uses a mapping with a Name and Address operator to cleanse name and
address records, followed by a Splitter operator to load the records into separate
targets depending on whether they were successfully parsed. This section explains the
general steps required to design such a mapping.

To make the listed changes to the sample record:

1. In the Mapping Editor, begin by adding the following operators to the canvas:

■ A CUSTOMERS table from which you extract the records. This is the data
source. It contains the data in Table 22–1.

■ A Name and Address operator. This action starts the Name and Address
Wizard. Follow the steps of the wizard.

■ A Splitter operator. For information about using this operator, see "Splitter
Operator" on page 26-37.

■ Three target operators into which you load the successfully parsed records, the
records with parsing errors, and the records whose addresses are parsed but
not found in the postal matching software.

2. Map the attributes from the CUSTOMERS table to the Name and Address operator
ingroup. Map the attributes from the Name and Address operator outgroup to the
Splitter operator ingroup.

You are not required to use the Splitter operator, but it provides an important
function in separating good records from problematic records.

3. Define the split conditions for each of the outgroups in the Splitter operator and
map the outgroups to the targets.

Figure 22–1 shows a mapping designed for this example. The data is mapped from the
CUSTOMERS source table to the Name and Address operator, and then to the Splitter
operator. The Splitter operator separates the successfully parsed records from those
that have errors. The output from OUTGRP1 is mapped to the CUSTOMERS_GOOD
target. The split condition for OUTGRP2 is set such that records whose Is Parsed
flag is False are loaded to the NOT_PARSED target. That is, the Split Condition for
OUTGRP2 is set as INGRP1.ISPARSED='F'. The Records in the REMAINING_
RECORDS group are successfully parsed, but their addresses are not found by the
postal matching software. These records are loaded to the PARSED_NOT_FOUND
target.

City Bloomington

ZIP Code 55437

Table 22–1 (Cont.) Sample Input to Name and Address Operator

Address Column Address Component

About Name and Address Cleansing in Warehouse Builder

22-4 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Figure 22–1 Name and Address Operator Used with a Splitter Operator in a Mapping

Example Output
If you run the mapping designed in this example, the Name and Address operator
standardizes, corrects, and completes the address data from the source table. In this
example, the target table contains the address data as shown in Table 22–2. Compare it
with the input record from Table 22–1 on page 22-2.

In this example, the following changes were made to the input data:

■ Joe Smith was separated into separate columns for First_Name_Standardized
and Last_Name.

■ Joe was standardized into JOSEPH and Suite was standardized into STE.

Table 22–2 Sample Output from Name and Address Operator

Address Column Address Component

First Name
Standardized

JOSEPH

Last Name SMITH

Primary Address 8500 NORMANDALE LAKE BLVD

Secondary Address STE 710

City BLOOMINGTON

State MN

Postal Code 55437-3813

Latitude 44.849194

Longitude -093.356352

Is Parsed True

Is Good Name True

Is Good Address True

Is Found True

Name Warning False

Street Warning False

City Warning False

About Name and Address Cleansing in Warehouse Builder

Name and Address Cleansing 22-5

■ Normandale Lake was corrected to NORMANDALE LAKE BLVD.

■ The first portion of the postal code, 55437, was augmented with the ZIP+4 code to
read 55437-3813.

■ Latitude and longitude locations were added.

■ The records were tested in various ways, and the good records were directed to a
different target from the ones that have problems.

About Postal Reporting
All address lists used to produce mailings for discounted automation postal rates must
be matched by postal report-certified software. Certifications depend on the
third-party vendors of name and address software and data. The certifications may
include the following:

■ United States Postal Service: Coding Accuracy Support System (CASS)

■ Canada Post: Software Evaluation and Recognition Program (SERP)

■ Australia Post: Address Matching Approval System (AMAS)

United States Postal Service CASS Certification
The Coding Accuracy Support System (CASS) was developed by the United States
Postal Service (USPS) in cooperation with the mailing industry. The system provides
mailers a common platform to measure the quality of address-matching software,
focusing on the accuracy of five-digit ZIP Codes, ZIP+4 Codes, delivery point codes,
and carrier route codes applied to all mail. All address lists used to produce mailings
for automation rates must be matched by CASS-certified software.

To meet USPS requirements, the mailer must submit a CASS report in its original form
to the USPS.

Canada Post SERP Certification
Canada Post developed a testing program called Software Evaluation and Recognition
Program (SERP), which evaluates software packages for their ability to validate, or
validate and correct, mailing lists to Canada Post requirements. Postal programs that
meet SERP requirements are listed on the Canada Post Web site.

Canadian postal customers who use Incentive Lettermail, Addressed Admail, and
Publications Mail must meet the Address Accuracy Program requirements. Customers
can obtain a Statement of Accuracy by comparing their databases to Canada Post's
address data.

Australia Post AMAS Certification
The Address Matching Approval System (AMAS) was developed by Australia Post to
improve the quality of addressing. It provides a standard by which to test and
measure the ability of address-matching software to:

■ Correct and match addresses against the Postal Address File (PAF).

■ Append a unique Delivery Point Identifier (DPID) to each address record, which is
a step toward barcoding mail.

AMAS enables companies to develop address matching software which:

■ Prepares addresses for barcode creation

■ Ensures quality addressing

About Name and Address Cleansing in Warehouse Builder

22-6 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ Enables qualification for discounts on PreSort letters lodgements

PreSort Letters Service prices are conditional upon customers using AMAS Approved
Software with Delivery Point Identifiers (DPIDs) being current against the latest
version of the PAF.

A declaration that the mail was prepared appropriately must be made when using the
Presort Lodgement Document, available from post offices.

Input Role Descriptions
For each attribute that you select for Name or Address cleansing, you must specify an
input role to indicate the type of data that is stored in the source attribute. Warehouse
Builder provides a set of predefined input roles from which you can select the most
suitable one for your data.

For example, the Employees table contains the columns last_name and city. You can
select the Last Name and City respectively for these columns.

Table 22–3 describes the input roles for the Name and Address Operator.

Table 22–3 Name and Address Operator Input Roles

Input Role Description

Pass Through Any attribute that requires no processing

First Name First name, nickname, or shortened version of the first name.

Middle Name Middle name or initial. Use when there is only one middle name, or for
the first of several middle names (for example, "May" in Ethel May
Roberta Louise Mertz).

Middle Name 2 Second middle name (for example, "Roberta" in Ethel May Roberta Louise
Mertz)

Middle Name 3 Third middle name (for example, "Louise" in Ethel May Roberta Louise
Mertz)

Last Name Last name or surname.

First Part Name First part of the Person name, including:

■ Pre name

■ First name

■ Middle name(s)

Use when these components are contained in one source column.

Last Part Name Last part of Person Name, including:

■ Last name

■ Post Name

Use when these components are all contained in one source column.

Pre Name Information that precedes and qualifies the name (for example, Ms., Mr.,
or Dr.)

Post Name Generation or other information qualifying the name (for example, Jr. or
Ph.D.)

Person Full person name, including:

■ First Part Name (consisting of Pre Name, First Name, and Middle
Names)

■ Last Part Name (consisting of Last Name and Post Name)

Use when these components are all contained in one source column.

About Name and Address Cleansing in Warehouse Builder

Name and Address Cleansing 22-7

Person 2 Designates a second person if the input includes multiple personal
contacts

Person 3 Designates a third person if the input includes multiple personal contacts

Firm Name Name of the company or organization

Primary Address Box, route, or street address, including:

■ Street name

■ House number

■ City map grid direction (for example, SW or N)

■ Street type (for example, Avenue, Street, or Road)

This does not include the Unit Designator or the Unit Number.

Secondary Address The second part of the street address, including:

■ Unit Designator

■ Unit Number

For example, in a secondary address of Suite 2100, the Unit Designator is
STE (a standardization of "Suite") and the Unit Number is 2100.

Address Full address line, including:

■ Primary Address

■ Secondary Address

Use when these components share one column.

Address 2 Generic address line

Neighborhood Neighborhood or barrio, common in South and Latin American
addresses.

Locality Name The city (shi) or island (shima) in Japan.

Locality 2 The ward (ku) in Japan.

Locality 3 The district (machi) or village (mura) in Japan

Locality 4 The subdistrict (aza, bu, chiwari, or sen) in Japan

City Name of city

State Name of state or province

Postal Code Postal code, such as a ZIP code in the United States or a postal code in
Canada

Country Name Full country name

Country Code The ISO 3166-1993 (E) 2-character or 3-character country code. For
example, US or USA for United States; CA or CAN for Canada

Last Line Last address line, including:

■ City

■ State or province

■ Postal code

Use when these components are all contained in one source column.

Last Line 2 For Japanese adaptors, specifies additional line information that appears
at the end of an address

Table 22–3 (Cont.) Name and Address Operator Input Roles

Input Role Description

About Name and Address Cleansing in Warehouse Builder

22-8 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Descriptions of Output Components
Use output components to define attributes that will store data cleansed by the Name
and Address operator. Any attributes with an input role of Pass Through are
automatically displayed as output components. You can define additional output
components to store cleansed data.

Categories of Output Components
Output components are grouped in the following categories:

■ Pass Through

■ Name

■ Address

■ Extra Vendor

■ Error Status

■ Country-Specific

Pass Through
The Pass Through output component is for any attribute that requires no processing.
When you create a Pass Through input role, the corresponding Pass Through
output component is created automatically. You cannot edit a Pass Through output
component, but you can edit the corresponding input role.

Name
Table 22–4 describes the Name output components. Many components can be used
multiple times to process a record, as noted in the table. For example, in records with
two occurrences of Firm Name, you can extract both by adding two output attributes.
Assign one as the First instance, and the other as the Second instance.

Line1... Line10 Use for free-form name, business, personal, and address text of any type.
These roles do not provide the parser with any information about the
data content. Whenever possible, use the discrete input roles provided
instead.

Table 22–4 Name Output Components

Subfolder
Output
Component Description

None Pre Name Title or salutation appearing before a name (for example,
Ms. or Dr.). Can be used multiple times.

None First Name
Standardized

Standard version of first name; for example, Theodore for
Ted or James for Jim. Can be used multiple times.

None Middle Name
Standardized

Standardized version of the middle name; for example,
Theodore for Ted or James for Jim. Use when there is only
one middle name, or for the first of several middle names.
Can be used multiple times.

None Middle Name 2
Standardized

Standardized version of the second middle name; for
example, Theodore for Ted or James for Jim. Can be used
multiple times.

Table 22–3 (Cont.) Name and Address Operator Input Roles

Input Role Description

About Name and Address Cleansing in Warehouse Builder

Name and Address Cleansing 22-9

None Middle Name 3
Standardized

Standardized version of the third middle name; for
example, Theodore for Ted or James for Jim. Can be used
multiple times.

None Post Name Name suffix indicating generation; for example, Sr., Jr., or
III. Can be used multiple times.

None Other Post
Name

Name suffix indicating certification, academic degree, or
affiliation; for example, Ph.D., M.D., or R.N. Can be used
multiple times.

None Title Personal title, for example, Manager. Can be used
multiple times.

None Name
Designator

Personal name designation; for example, ATTN (to the
attention of) or C/O (care of). Can be used multiple times.

None Relationship Information related to another person; for example,
Trustee For. Can be used multiple times.

None SSN Social security number

None Email Address E-mail address

None Phone Number Telephone number

None Name/Firm
Extra

Extra information associated with the firm or personal
name

None Person First name, middle name, and last name. Can be used
multiple times.

Person First Name The first name found in the input name. Can be used
multiple times.

Person Middle Name Middle name or initial. Use this for a single middle name,
or for the first of several middle names; for example,
"May" in Ethel May Roberta Louise Mertz. Can be used
multiple times.

Person Middle Name 2 Second middle name; for example, "Roberta" in Ethel May
Roberta Louise Mertz. Can be used multiple times.

Person Middle Name 3 Third middle name; for example, "Louise" in Ethel May
Roberta Louise Mertz. Can be used multiple times.

Person Last Name Last name or surname. Can be used multiple times.

Derived Gender Probable gender:

■ M = Male

■ F = Female

■ N = Neutral (either male or female)

■ Blank = Unknown

Can be used multiple times.

Derived Person Count Number of persons that the record references; for
example, a record with a Person name of "John and Jane
Doe" has a Person Count of 2.

Business Firm Name Name of the company or organization, including
divisions. Can be used multiple times.

Business Firm Count Number of firms referenced in the record. Can be used
multiple times.

Table 22–4 (Cont.) Name Output Components

Subfolder
Output
Component Description

About Name and Address Cleansing in Warehouse Builder

22-10 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Address
Table 22–5 describes the Address output components. In records with dual addresses,
you can specify which line is used as the Normal Address (and thus assigned to the
Address component) and which is used as the Dual Address for many output
components, as noted in the table.

Business Firm Location Location within a firm; for example, Accounts Payable

Table 22–5 Address Output Components

Subfolder
Output
Component Description

None Address Full address line, including:

■ Primary Address

■ Secondary Address

Can be used as the Normal Address or the Dual
Address.

None Primary
Address

Box, route, or street address, including:

■ Street name

■ House number

■ City map grid direction; for example, SW or N

■ Street type; for example, Avenue, Street, or Road.

Does not include the output components Unit
Designator or Unit Number. Can be used as the Normal
Address or the Dual Address.

Primary Address Street Number Number that identifies the address, such as a house or
building number, sometimes referred to as the primary
range. For example, in 200 Oracle Parkway, the Street
Number value is 200. Can be used as the Normal
Address or the Dual Address.

Primary Address Pre Directional Street directional indicator appearing before the street
name; for example, in 100 N University Drive, the Pre
Directional value is "N". Can be used as the Normal
Address or the Dual Address.

Primary Address Street Name Name of street. Can be used as the Normal Address or
the Dual Address.

Primary Address Primary Name 2 Second street name, often used for addresses at a street
intersection.

Primary Address Street Type Street identifier; for example, ST, AVE, RD, DR, or HWY.
Can be used as the Normal Address or the Dual
Address.

Primary Address Post Directional Street directional indicator appearing after the street
name; for example, in 100 15th Ave. S., the Post
Directional value is "S". Can be used as the Normal
Address or the Dual Address.

Table 22–4 (Cont.) Name Output Components

Subfolder
Output
Component Description

About Name and Address Cleansing in Warehouse Builder

Name and Address Cleansing 22-11

None Secondary
Address

The second part of the street address, including:

■ Unit Designator

■ Unit Number

For example, in a secondary address of Suite 2100, Unit
Designator is "STE" (a standardization of "Suite") and
Unit Number is '2100'. Can be used as the Normal
Address or the Dual Address.

Secondary
Address

Unit Designator Type of secondary address, such as APT or STE. For
example, in a secondary address of Suite 2100, Unit
Designator is "STE" (a standardization of "Suite").
Can be used as the Normal Address or the Dual
Address.

Secondary
Address

Unit Number A number that identifies the secondary address, such as
the apartment or suite number. For example, in a
secondary address of Suite 2100, Unit Number is
"2100". Can be used as the Normal Address or the Dual
Address.

Secondary
Address

Non-postal
Secondary
Address

A secondary address that is not in official postal format

Secondary
Address

Non-postal Unit
Designator

A unit designator that is not in official postal format

Secondary
Address

Non-postal Unit
Number

A unit number that is not in official postal format

Address Last Line Final address line, including:

■ City

■ State, province, or county

■ Formatted postal code if the address was fully
assigned

Last Line Neighborhood Neighborhood or barrio, common in South and Latin
American addresses

Last Line City Name of city. The U.S. city names may be converted to
United States Postal Service preferred names.

Last Line City
Abbreviated

Abbreviated city name, composed of 13 characters for
the United States

Last Line City
Abbreviated 2

Alternative abbreviation for the city name

Last Line Alternate City An alternate name for a city that may be referenced by
more than one name. In the United States, a city may be
referenced by its actual name or the name of a larger
urban area. For example, Brighton, Massachusetts may
have Boston as an alternate city name.

Last Line Locality Code The last three digits of the International Mailsort Code,
which represents a geographical region or locality
within each country. Locality Codes are numeric in the
range 000 to 999.

Table 22–5 (Cont.) Address Output Components

Subfolder
Output
Component Description

About Name and Address Cleansing in Warehouse Builder

22-12 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Last Line Locality Name In the United Kingdom, the following address is
assigned Locality Name KNAPHILL:

Chobham Rd
Knaphill
Woking GU21 2TZ

Last Line Locality 2 The ward (ku) in Japan

Last Line Locality 3 The district (machi) or village (mura) in Japan

Last Line Locality 4 The subdistrict (aza, bu, chiwari, or sen) in Japan

Last Line County Name The name of a county in the United Kingdom, United
States, or other country

Last Line State Name of state or province

Last Line Postal Code Full postal code with spaces and other
nonalphanumeric characters removed

Last Line Postal Code
Formatted

Formatted version of postal code that includes spaces
and other nonalphanumeric characters, such as dashes

Last Line Delivery Point A designation used in the United States and Australia.

■ For the United States, this is the 2-digit postal
delivery point, which is combined with a full
9-digit postal code and check digit to form a
delivery point bar code.

■ For Australia, this is a 9-digit delivery point.

Last Line Country Code The ISO 3166-1993 (E) 2-character country code, as
defined by the International Organization for
Standardization; for example, "US" for United States or
'CA' for Canada.

Last Line Country Code 3 The ISO 3166-1993 (E) 3-character country code, as
defined by the International Organization for
Standardization; for example, "USA" for United States,
"FRA" for France, or "UKR" for Ukraine.

Last Line Country Name The full country name

Address Address 2 A second address line, typically used for Hong Kong
addresses that have both a street address and a building
or floor address

Address Last Line 2 Additional information that appears at the end of an
address in Japan

Other Address
Line

Box Name The name for a post office box address; for example, for
"PO Box 95", the Box Name is "PO BOX". Can be used as
the Normal Address or the Dual Address.

Other Address
Line

Box Number The number for a post office box address; for example,
for "PO Box 95", the Box Number is "95". Can be used as
the Normal Address or the Dual Address.

Other Address
Line

Route Name Route name for a rural route address. For an address of
"Route 5 Box 10", the Route Name is "RTE" (a
standardization of "Route"). Can be used as the Normal
Address or the Dual Address.

Other Address
Line

Route Number Route number for a rural route address. For an address
of "Route 5 Box 10", the Route Number is "5". Can be
used as the Normal Address or the Dual Address.

Table 22–5 (Cont.) Address Output Components

Subfolder
Output
Component Description

About Name and Address Cleansing in Warehouse Builder

Name and Address Cleansing 22-13

Extra Vendor
Twenty components are open for vendor-specified usage.

Error Status
Table 22–6 describes the Error Status output components. See "Handling Errors in
Name and Address Data" on page 22-18 for usage notes about the Error Status
components.

Other Address
Line

Building Name Building name, such as "Cannon Bridge House".
Building names are common in the United Kingdom.

Other Address
Line

Complex Building, campus, or other complex. For example,

USS John F. Kennedy
Shadow Green Apartments
Cedarvale Gardens
Concordia College

You can use the Instance field in the Output
Components dialog box to specify which complex
should be returned if an address has more than one
complex.

Other Address
Line

Miscellaneous
Address

Miscellaneous address information.

In records with multiple miscellaneous fields, you can
extract them by specifying which instance to use in the
Output Components page.

Geography Latitude Latitude in degrees north of the equator: Positive for
north of the equator; negative for south (always positive
for North America)

Geography Longitude Longitude in degrees east of the Greenwich Meridian:
positive for east of GM; negative for west (always
negative for North America)

Geography Geo Match
Precision

Indicates how closely the location identified by the
latitude and longitude matches the address

Table 22–5 (Cont.) Address Output Components

Subfolder
Output
Component Description

About Name and Address Cleansing in Warehouse Builder

22-14 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Table 22–6 Error Status Output Components

Subfolders
Output
Component Description

Name and
Address

Is Good Group Indicates whether the name group, address group, or
name and address group was processed successfully.

■ T =

For name groups, the name has been successfully
parsed.

For address groups, the address has been found in a
postal matching database if one is available, or has
been successfully parsed if no postal database is
installed.

For name and address groups, both the name and
the address have been successfully processed.

■ F = The group was not parsed successfully.

Using this flag in conjunction with another flag, such as
the Is Parsed flag, followed by the Splitter operator,
enables you to isolate unsuccessfully parsed records in
their own target, where you can address them separately.

Name and
Address

Is Parsed Indicates whether the name or address was parsed:

■ T = The name or address was parsed successfully,
although some warning conditions may have been
flagged.

■ F = The name or address cannot be parsed.

Check the status of warning flags such as Name
Warning or City Warning.

Name and
Address

Parse Status Postal matching software parse status code

Name and
Address

Parse Status
Description

Text description of the postal matching software parse
status

Name Only Is Good Name Indicates whether the name was parsed successfully:

■ T = The name was parsed successfully, although
some warning conditions may have been flagged.

■ F = The name cannot be parsed.

Name Only Name Warning Indicates whether the parser found unusual or possibly
erroneous data in a name:

■ T = The parser had difficulty parsing a name or
found unusual data. Check the Parse Status
component for the cause of the warning.

■ F = No difficulty parsing name

About Name and Address Cleansing in Warehouse Builder

Name and Address Cleansing 22-15

Address Only Is Good
Address

Indicates whether the address was processed
successfully:

■ T = Successfully processed. Either the address was
found in the postal matching database or, if no
postal matching database is installed for the country
indicated by the address, the address was
successfully parsed.

■ F = Not successfully processed. If a postal matching
database is installed for the country indicated by the
address, the address was not found in the database.
If no postal matching database is available for the
country, the address cannot be parsed.

Use this component when you have a mix of records
from both postal-matched and non-postal-matched
countries.

Address Only Is Found Indicates whether the address is listed in the postal
matching database for the country indicated by the
address:

■ T = The address was found in a postal matching
database.

■ F = The address was not found in a postal matching
database. This status may indicate either that the
address is not a legal address, or that postal
matching is not available for the country.

This flag is true only if all of the other "Found" flags are
true. If postal matching is available, this flag is the best
indicator of record quality.

Address Only: Is
Found

City Found T = The postal matcher found the city; otherwise, F.

Address Only: Is
Found

Street Name
Found

T = The postal matcher found the street name; otherwise,
F.

Address Only: Is
Found

Street Number
Found

T = The postal matcher found the street number within a
valid range of numbers for the named street, otherwise,
F.

Address Only: Is
Found

Street
Components
Found

T = The postal matcher found the street components,
such as the Pre Directional or Post Directional;
otherwise, F.

Address Only: Is
Found

Non-ambiguous
Match Found

Indicates whether the postal matcher found a matching
address in the postal database:

■ T = The postal matcher found a match between the
input record and a single entry in the postal
database.

■ F = The address is ambiguous. The postal matcher
found that the address matched several postal
database entries and could not make a selection. For
example, if the input address is "100 4th Avenue,"
but the postal database contains "100 4th Ave N"
and "100 4th Ave S," the input's missing directional
causes the match to fail.

Address Only City Warning T = The parser found unusual or possibly erroneous data
in a city; otherwise, F.

Table 22–6 (Cont.) Error Status Output Components

Subfolders
Output
Component Description

About Name and Address Cleansing in Warehouse Builder

22-16 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Address Only Street Warning T = The parser found unusual or possibly erroneous data
in a street address; otherwise, F.

Address Only Is Address
Verifiable

T = Postal matching is available for the country of the
address; otherwise, F.

F does not indicate whether or not a postal matching
database is installed for the country in the address. It
only indicates that matching is not available for a
particular address.

Address Only Address
Corrected

Indicates whether the address was corrected in any way
during matching. Standardization is not considered
correction in this case.

■ T = Some component of the address was changed,
aside from standardization. One of the other
Corrected flags must also be true.

■ F = No components of the address were changed,
with the possible exception of standardization.

Address Only:
Address
Corrected

Postal Code
Corrected

T = The postal code was corrected during matching,
possibly by the addition of a postal extension; otherwise,
F.

Address Only:
Address
Corrected

City Corrected T = The city name was corrected during matching;
otherwise, F.

Postal code input is used to determine the city name
preferred by the postal service.

Address Only:
Address
Corrected

Street Corrected T = The street name was corrected during matching;
otherwise, F.

Some correct street names may be changed to an
alternate name preferred by the postal service.

Address Only:
Address
Corrected

Street
Components
Corrected

T = One or more street components, such as Pre
Directional or Post Directional, were corrected
during matching.

Address Only Address Type Type of address. The following are common examples;
actual values vary with vendors of postal matching
software:

■ B= Box

■ F = Firm

■ G= General Delivery

■ H= High-rise apartment or office building

■ HD= High-rise default, where a single Zip+4 postal
code applies to the entire building. The Name and
Address operator can detect a finer level of postal
code assignment if a floor or suite address is
provided, in which case the record is treated as an H
type, with a more specific Zip+4 code for that floor
or suite.

■ M= Military

■ P= Post Office Box

■ R= Rural Code

■ S= Street

Table 22–6 (Cont.) Error Status Output Components

Subfolders
Output
Component Description

About Name and Address Cleansing in Warehouse Builder

Name and Address Cleansing 22-17

Country-Specific
Table 22–7 describes the output components that are specific to a particular country.

Address Only Parsing Country Country parser that was used for the final parse of the
record

Table 22–7 Country-Specific Output Components

Subfolder
Output
Component Description

United States ZIP5 The 5-digit United States postal code

United States ZIP4 The 4-digit suffix that is added to the 5-digit United
States postal code to further specify location.

United States Urbanization
Name

Urban unit name used in Puerto Rico

United States LACS Flag T = Address requires a LACS conversion and should be
submitted to a LACS vendor; otherwise, F.

The Locatable Address Conversion System (LACS)
provides new addresses when a 911 emergency system
has been implemented. The 911 address conversions
typically involve changing rural-style addresses to
city-style street addresses, but they may involve
renaming or renumbering existing city-style addresses.

United States CART The 4-character USPS Carrier route

United States DPBC Check
Digit

Check digit for forming a delivery point bar code

United States Automated
Zone Indicator

T = The mail in this zip code is sorted by bar code
sorting equipment; otherwise, F.

United States Urban
Indicator

T = An address is located within an urban area;
otherwise, F.

United States Line of Travel United States Postal Service (USPS) line of travel

United States Line of Travel
Order

United States Postal Service (USPS) line of travel order

United States:
Census/Geography

Metropolitan
Statistical Area

Metropolitan Statistical Area (MSA) number. For
example, "0000" indicates that the address does not lie
within any MSA, and typically indicates a rural area.

United States:
Census/Geography

Minor Census
District

Minor Census District

United States:
Census/Geography

CBSA Code A 5-digit Core-Based Statistical Area (CBSA) code that
identifies metropolitan and micropolitan areas.

United States:
Census/Geography

CBSA
Descriptor

Indicates whether the CBSA is metropolitan
(population of 50,000 or more) or micropolitan
(population of 10,000 to 49,999).

United States:
Census/Geography

FIPS Code The complete (state plus county) code assigned to the
county by the Federal Information Processing Standard
(FIPS). Because FIPS county codes are unique within a
state, a complete FIPS Code includes the 2-digit state
code followed by the 3-digit county code.

Table 22–6 (Cont.) Error Status Output Components

Subfolders
Output
Component Description

About Name and Address Cleansing in Warehouse Builder

22-18 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Handling Errors in Name and Address Data
Name and Address parsing, like any other type of parsing, depends on identification
of keywords and patterns containing those keywords. Free-form name and address
data is sometimes difficult to parse because the keyword set is large and it is never
100% complete. Keyword sets are built by analyzing millions of records, but each new
data set is likely to contain some undefined keywords.

Because most free-form name and address records contain common patterns of
numbers, single letters, and alphanumeric strings, parsing can often be performed
based on just the alphanumeric patterns. However, alphanumeric patterns may be
ambiguous, or a particular pattern may not be found. Name and Address parsing
errors set parsing status codes that you can use to control data mapping.

Because the criteria for quality vary among applications, numerous flags are available
to help you determine the quality of a particular record. For countries with postal
matching support, use the Is Good Group flag, because it verifies that an address is
a valid entry in a postal database. Also use the Is Good Group flag for U.S. Coding

United States:
Census/Geography

FIPS County The 3-digit county code as defined by the Federal
Information Processing Standard (FIPS).

United States:
Census/Geography

FIPS Place
Code

The 5-digit place code as defined by the Federal
Information Processing Standard (FIPS).

United States:
Geography

Census ID United States Census tract and block-group number.
The first six digits are the tract number; the final digit is
the block-group number within the tract. These codes
are used for matching to demographic-coding
databases.

Canada Installation
Type

A type of Canadian postal installation:

■ STN= Station

■ RPO = Retail Postal Outlet

For example, for the address, "PO Box 7010,
Scarborough ON M1S 3C6," the Installation Type is
"STN".

Canada Installation
Name

Name of a Canadian postal installation. For example,
for the address, "PO Box 7010, Scarborough ON M1S
3C6," the Installation Name is "AGINCOURT".

Hong Kong Delivery Office
Code

A mailing code used in Hong Kong. For example, the
following address is assigned the Delivery Office Code
"WCH":

Oracle
39/F The Lee Gardens
33 Hysan Ave
Causeway Bay

Hong Kong Delivery Beat
Code

A mailing code used in Hong Kong. For example, the
following address is assigned the Delivery Beat Code
"S06":

Oracle
39/F The Lee Gardens
33 Hysan Ave
Causeway Bay

Table 22–7 (Cont.) Country-Specific Output Components

Subfolder
Output
Component Description

Using the Name and Address Operator to Cleanse and Correct Name and Address Data

Name and Address Cleansing 22-19

Accuracy Support System (CASS) and Canadian Software Evaluation and Recognition
Program (SERP) certified mailings.

Unless you specify postal reporting, an address does not have to be found in a postal
database to be acceptable. For example, street intersection addresses or building names
may not be in a postal database, but they may still be deliverable. If the Is Good
Group flag indicates failure, additional error flags can help determine the parsing
status.

The Is Parsed flag indicates success or failure of the parsing process. If Is Parsed
indicates parsing success, you may still want to check the parser warning flags, which
indicate unusual data. You may want to check those records manually.

 If Is Parsed indicates parsing failure, you must preserve the original data to
prevent data loss.

Use the Splitter operator to map successful records to one target and failed records to
another target.

Using the Name and Address Operator to Cleanse and Correct Name and
Address Data

The Name and Address operator accepts one PL/SQL input and generates one
PL/SQL output.

If you experience timeout errors, you may need to increase the socket timeout setting
of the Name and Address Server. The timeout setting is the number of seconds that the
server will wait for a parsing request from a mapping before the server drops a
connection. The default setting is 600 seconds (10 minutes). After the server drops a
connection because of inactivity, subsequent parsing requests fail with a NAS-00021
error.

For most mappings, long time lapses between parsing requests are rare. However,
maps operating in row-based mode with a Filter operator may have long time lapses
between record parsing requests, because of the inefficiency of filtering records in
row-based mode. For this type of mapping, you may need to increase the socket
timeout value to prevent connections from being dropped.

To increase the socket timeout setting, see "Managing the Name and Address Server"
on page 22-23.

Creating a Mapping with a Name and Address Operator
The Name and Address operator has one input group and one output group.

To create a mapping with a Name and Address operator:

1. Drag and drop the operators representing the source data and the operator
representing the cleansed data onto the Mapping Editor canvas:

For example, if your source data is stored in a table, and the cleansed data will be
stored in another table, drag and drop two Table operators that are bound to the
tables onto the canvas.

2. Drag and drop a Name and Address operator onto the Mapping Editor canvas.

The Name and Address Wizard is displayed.

3. On the Name page, specify a name and an optional description for the Name and
Address operator.

Using the Name and Address Operator to Cleanse and Correct Name and Address Data

22-20 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Or, you can retain the default name displayed in the Name field.

4. On the Definitions page, select values that define the type of source data.

See "Specifying Source Data Details and Setting Parsing Type" on page 22-21.

5. On the Groups page, optionally rename the input and output groups.

The Name and Address operator has one input group, INGRP1, and one output
group, OUTGRP1. You cannot edit, add, or delete groups. If the input data
requires multiple groups, create a separate Name and Address operator for each
group.

6. On the Input Connections page, select attributes from any operator in your
mapping that you want to copy and map to the Name and Address operator.

To complete the Input Connections page for an operator:

a. Select complete groups or individual attributes from the Available Attributes
panel.

To search for a specific attribute or group by name, type the text in Search for
and click Go. To find the next match, click Go again.

Hold the Shift key down to select multiple groups or attributes. If you want to
select attributes from different groups, you must first combine the groups with
a Joiner or Set operator.

b. Use the right-arrow button between the two panels to move your selections to
the Mapped Attributes panel.

The Mapped Attributes section lists the attributes that will be processed by the
Name and Address operator.

7. On the Input Attributes page, assign input roles to each attribute that you selected
on the Input Attributes page.

Input roles indicate the type of name and address information that resides in a line
of data. Whenever possible, choose discrete roles (such as City, State, and Postal
Code) rather than nondiscrete ones (such as Last Line). Discrete roles improve
parsing.

For attributes that have the input role set to Pass Through, specify the data type
details using the Data Type, Length, Precision, Scale, and Seconds Precision fields.

8. On the Output Attributes page, define output attributes that determine how the
Name and Address operator handles parsed data. The output attribute properties
characterize the data extracted from the parser output.

Any attributes that have the Pass Through input role assigned are automatically
listed as output attributes. You can add additional output attributes.

Note: If you have not created any operators for the source data, the
Available Attributes section is empty.

See Also: "Input Role Descriptions" on page 22-6

Note: The attributes for output components with the Pass Through
role cannot be changed

Using the Name and Address Operator to Cleanse and Correct Name and Address Data

Name and Address Cleansing 22-21

To add output attributes:

a. Click an empty row on the Output tab and enter the attribute name.

You can rename the output attribute by selecting the name and typing the new
name.

b. Click the Ellipsis button on the Output Component field to select an output
component for the attribute.

Ensure that you add error handling flags such as Is Parsed, Is Good Name,
and Is Good Address. You can use these flags with the Splitter operator to
separate good records from the records with errors and load them into
different targets.

c. Specify the data type details for the output attribute using the Data Type,
Length, Precision, Scale, and Seconds Precision fields.

9. For countries that support address correction and postal matching, use the Postal
Report page to specify the details for the postal report.

See "Specifying Postal Report Details" on page 22-22.

Specifying Source Data Details and Setting Parsing Type
Use the Definitions page or the Definitions tab to provide information about your
source data and to specify the type of parsing to be performed on the source data. Set
the following values: Parsing Type, Primary Country, and Dual Address Assignment.

Parsing Type Select one of the following parsing types:

■ Name Only: Select this option when the input data contains only name data.
Names can include both personal and business names. Selecting this option
instead of the more generic Name and Address option may improve performance
and accuracy, depending on the adapter.

■ Address Only: Select this option when the input data contains only address data
and no name data. Selecting this option instead of the more generic Name and
Address option may improve performance and accuracy, depending on the
adapter.

■ Name and Address: Select this option when the input data contains both name
and address data.

Primary Country Select the country that best represents the country distribution of your
data. The primary country is used by some providers of name and address cleansing
software as a hint for the appropriate parser or parsing rules to use on the initial parse
of the record. For other name and address service providers, external configuration of
their installation controls this behavior.

Dual Address Assignment A dual address contains both a Post Office (PO) box and a
street address for the same address record. For records that have dual addresses, your

See Also: "Descriptions of Output Components" on page 22-8 for the
descriptions of output components

Note: You can only specify the parsing type when you first add
the Name and Address operator to your mapping. You cannot
modify the parsing type in the editor.

Using the Name and Address Operator to Cleanse and Correct Name and Address Data

22-22 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

selection determines which address becomes the normal address and which address
becomes the dual address. A sample dual address is:

PO Box 2589
4439 Mormon Coulee Rd
La Crosse WI 54601-8231

Note that the choice for Dual Address Assignment affects which postal codes are
assigned during postal code correction, because the street address and PO box address
may correspond to different postal codes.

■ Street Assignment: The street address is the normal address and the PO Box
address is the dual address. This means that the Address component is assigned
the street address. In the preceding example, the Address is 4439 MORMON
COULEE RD. This choice corrects the postal code to 54601-8220.

■ PO Box Assignment: The PO Box address is the normal address and the street
address is the dual address. This means that the Address component is assigned
the Post Office (PO) box address. In the preceding example, the Address is PO
BOX 2589. This choice corrects the postal code to 54602-2589.

■ Closest to Last Line: Whichever address occurs closest to the last line is the normal
address; the other is the dual address. This means that the Address component is
assigned the address line closest to the last line. In the preceding example, the
Address is 4439 MORMON COULEE RD. This choice corrects the postal code to
54601-8220.

This option has no effect for records having a single street or PO box address.

Specifying Postal Report Details
Country certification varies with different vendors of name and address cleansing
software. The most common country certifications are United States, Canada, and
Australia. The process provides mailers with a common platform to measure the
quality of address-matching software, focusing on the accuracy of postal codes (in the
case of the United States, of 5-digit ZIP Codes and ZIP+4 Codes), delivery point codes,
and carrier route codes applied to all mail. Some vendors of name and address
cleansing software may ignore these parameters and require external setup for
generating postal reports. For more information, see "About Postal Reporting" on
page 22-5.

To specify postal reporting, select Yes in the Postal Report files and then provide
values for the fields:

Processor Name: The use of this field varies with vendors of name and address
cleansing software. Typically, this value appears on the United States Coding Accuracy
Support System (CASS) report.

List Name: An optional reference field that appears on the United States and United
Kingdom reports under the List Name section, but is not included in other reports.
The list name provides a reference for tracking multiple postal reports (for example,
"July 2005 Promotional Campaign").

Processor Address Lines: These address lines may appear on various postal reports.
Various name and address cleansing software vendors use these fields differently.
They often contain the full address of your company.

Note: Dual Address Assignment may not be supported by all name
and address cleansing software providers.

Managing the Name and Address Server

Name and Address Cleansing 22-23

Managing the Name and Address Server
An external Name and Address server provides an interface between Oracle Database
and third-party name and address processing libraries. This section discusses details
of configuring, starting, and stopping the Name and Address server.

Configuring the Name and Address Server
The Name and Address operator generates PL/SQL code, which calls the UTL_NAME_
ADDR package installed in the Runtime Schema. A private synonym, NAME_ADDR, is
defined in the target schema to reference the UTL_NAME_ADDR package. The UTL_
NAME_ADDR package calls Java packages, which send processing requests to an
external Name and Address server, which then interfaces with third-party Name and
Address processing libraries, such as Trillium.

You can use the server property file, NameAddr.properties, to configure server
options. This file is located in owb/bin/admin under the Oracle home that you
specified when installing the server components. The following code illustrates several
important properties with their default settings.

TraceLevel=0
SocketTimeout=180
ClientThreads=4
Port=4040

The TraceLevel property is often changed to perform diagnostics on server
communication and view output from the postal matching program parser. Other
properties are rarely changed.

■ TraceLevel: Enables output of file NASvrTrace.log in the owb/bin/admin
folder. This file shows all incoming and outgoing data, verifies that your mapping
is communicating with the Name and Address server, and that the Name and
Address server is receiving output from the service provider. The trace log shows
all server input and output and is most useful for determining whether any
parsing requests are being made by an executing mapping. Set TraceLevel=1 to
enable logging. However, tracing degrades performance and creates a large log
file. Set TraceLevel=0 to disable logging for production.

■ SocketTimeOut: Specifies the number of seconds that the Name and Address
server will wait for a parsing request before closing the connection. You can
increase this time to 1800 (30 minutes) when running concurrent mappings to
prevent timing out.

■ ClientThreads: Specifies the number of threads used to service client connections.
One client connection is made for each database session or slave session if a map is
parallelized. Most maps are parallelized, and the number of parallel processes is
proportional to the number of processors. On a single-processor computer, two
parallel processes are spawned for large maps. On a four processor computer, up
to eight processes may be spawned. Parallelism may also be controlled by
database initialization settings such as Sessions.

For the best performance, set ClientThreads to the maximum number of clients
that will be connected simultaneously. The actual number of connected clients is
recorded in NASvr.log after a map run. You should increase the value of
ClientThreads when the number of client connections shown in the log is greater.

When the number of clients exceeds the number of threads, all clients are still
serviced because the threads are shared among clients.

Managing the Name and Address Server

22-24 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ Port: Specifies the port on which the server listens and was initially assigned by
the installer. This value may be changed if the default port conflicts with another
process. If the port is changed, the port attribute must also be changed in the
runtime_schema.nas_connection table to enable the utl_name_addr
package to establish a connection.

Starting and Stopping the Name and Address Server
Whenever you edit the properties file or perform table maintenance, you must stop
and restart the Name and Address server for the changes to take effect.

To manually stop the Name and Addresss server:

■ In Windows, run OWB_ORACLE_HOME/owb/bin/win32/NAStop.bat.

■ In UNIX, run OWB_ORACLE_HOME/owb/bin/unix/NAStop.sh.

To manually restart the Name and Address Server:

■ In Windows, run OWB_ORACLE_HOME/owb/bin/win32/NAStart.bat.

■ In UNIX, run OWB_ORACLE_HOME/owb/bin/unix/NAStart.sh.

Alternatively, you can also automatically restart the Name and Address Server.
However, before automatic startup, ensure that you grant the Execute privilege for the
script OWB_ORACLE_HOME/owb/bin/unix/NAStart.sh to the OWBSYS schema.

For example, log in to SQL*Plus using the SYS user as SYSBDBA and execute the
following:

SQL> EXEC DBMS_JAVA.GRANT_PERMISSION('OWBSYS', 'SYS:java.io.FilePermission',
 '/owb_11g/oracle/owb/bin/unix/NAStart.sh', 'execute');

Here, /owb_11g is the path in which Oracle Warehouse Builder is installed.

Matching, Merging, and Deduplication 23-1

23
Matching, Merging, and Deduplication

This chapter discusses the matching, merging and data deduplication features of
Oracle Warehouse Builder. It contains the following topics:

■ About Matching and Merging in Warehouse Builder on page 23-1

■ Using the Match Merge Operator to Eliminate Duplicate Source Records on
page 23-22

About Matching and Merging in Warehouse Builder
Warehouse Builder implements general-purpose data matching and merging
capabilities that can be applied to any type of data.

You can write the list of rows matched by your algorithms to a target table. You can
also implement complex deduplication logic to generated merged records, again using
a variety of built-in merge rules or implementing your own merge rules.

Warehouse Builder matching and merging provides the following functionality:

■ Determine matches using built-in algorithms, such as the Jaro-Winkler and
Levenshtein edit distance algorithms, or using a custom algorithm you implement.

■ Use weighting to determine matches between records.

■ Generate a table containing candidate matches, as input to some other merge logic,
such as an existing master data management application

■ Generate a table with merged data records, with merge logic based on built-in
merge rules, custom-implemented merge logic, or complex merge rules that can
combine packaged and custom rules

■ Cross reference data to track and audit matches.

■ Built-in advanced matching rules for person, firm and address data

Warehouse Builder matching and merging can be combined with Warehouse Builder
name and address cleansing functionality to support householding, which is the
process of identifying unique households in name and address data.

See Chapter 22, "Name and Address Cleansing" on page 23-1 for details on name and
address cleansing.

About Matching and Merging in Warehouse Builder

23-2 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Example: A Basic Mapping with a Match Merge Operator
Figure 23–1 shows a mapping that uses a Match Merge operator. Notice that the Match
Merge operator is preceded by a Name and Address operator, NAMEADDR, and a
staging table, CLN_CUSTOMERS. In many scenarios, when cleansing and
deduplicating name and address data, it makes sense to combine the Match Merge
operator with the Name and Address operator in a mapping. Performing name and
address cleansing on your source data provides clean and standardized input data for
matching and merging. This improves the quality of your results, and can improve
performance because cleansed rows are more easily identified as matches

Figure 23–1 Match Merge Operator in a Mapping

The simple mapping represents the flow of data for the matching and merging
process:

■ The Customers table provides input to the Name and Address operator, which
stores its output in the CLN_CUSTOMERS table.

■ The CLN_CUSTOMERS table provides FIRST, LAST, and ADDRESS columns as
inputs to the Match Merge operator.

■ The Match Merge operator provides FIRST, LAST, and ADDRESS input to the
MM_CUSTOMERS table (the actual deduplicated rows), as well as FIRST, LAST,

Note: Warehouse Builder exposes its matching and merging
functionality through the Match Merge operator used in a Warehouse
Builder ETL mapping. Users of third-party ETL products can still use
Warehouse Builder for matching and merging, while retaining their
existing ETL solution.

■ Use the third-party ETL tool to load match-merge input data in a
staging table

■ Use a Warehouse Builder ETL mapping to apply match-merge
and load the results into an output table

■ Use the third-party ETL tool to pick up the merged results from
the output table for further processing

Because the deployed code for the mapping is just a PL/SQL package
loaded in the database where the matching and merging takes place,
this technique can be used from any ETL tool that can call logic from a
PL/SQL package.

About Matching and Merging in Warehouse Builder

Matching, Merging, and Deduplication 23-3

ADDRESS, MM_FIRST, MM_LAST, and MM_ADDRESS input to the REF_TABLE
table, which identifies the groups of matched rows from the input.

Details of how this matching process works are described in "Overview of the
Matching and Merging Process" on page 23-3.

Overview of the Matching and Merging Process
Matching determines which records refer to the same logical data. Warehouse Builder
provides a variety of match rules to compare records. Match rules range from a simple
exact match to sophisticated algorithms that can discover and correct common data
entry errors.

Merging consolidates matched records into a single consolidated "golden" record
based on survivorship rules called merge rules that you select or define for creating a
merged value for each column.

If you have some other tool, such as a packaged MDM application, that already has
logic for merging duplicate records, you can still use Warehouse Builder to generate
the set of candidate matched rows and store those in an intermediate table.

Elements of Matching and Merging Records
The following concepts and terms are important in understanding the matching and
merging process.

■ Match Bins

■ Match Bin Attributes

■ Match Record Sets

■ Merged Records

Match Bins

Match bins are containers for similar records and are used to identify potential
matches. The match bin attributes are used to determine how records are grouped into
match bins. While performing matching, Warehouse Builder compares only records
within the same match bin. Match bins limit the number of potential matches in a data
set, thus improving performance of the match algorithm.

Match Bin Attributes

Before performing matching, Warehouse Builder divides the source records into
smaller groups of similar records. Match bin attributes are the source attributes used to
determine how records are grouped. Records having the same match bin attributes
reside in the same match bin. Match bin attributes also limit match bins to manageable
sets.

Select match bin attributes carefully to fulfill the following two conflicting needs:

■ Ensure that any records that could match reside in the same match bin.

■ Keep the size of the match bin as small as possible.

See Also:

■ "Match Rules" on page 23-5

■ "Merge Rules" on page 23-19

About Matching and Merging in Warehouse Builder

23-4 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

A small match bin is desirable for efficiency, because records that are binned
together must be tested against each other to identify matches. The larger the bin,
the slower the performance.

Match Record Sets

A match record set consists of one or more similar records within the match bin. After
matching, each match bin will contain one or more match record sets. You can define
match rules that determine if two records are similar.

Merged Records

A merged record contains data that is merged using multiple records in the match
record set. Each match record set generates its own merged record.

Process for Matching and Merging Records
You use the Match Merge operator to match and merge records. This operator accepts
records from an input source, determines the records that are logically the same, and
constructs a new merged record from the matched records.

The high-level tasks involved in matching and merging process include the following:

■ Constructing Match Bins

■ Constructing Match Record Sets

■ Constructing Merge Records

Figure 23–2 represents high-level tasks involved in the matching and merging process.

Figure 23–2 Matching and Merging Process

Constructing Match Bins

The match bin is constructed using the match bin attributes. Records with the same
match bin attribute values will reside in the same match bin. A small match bin is
desirable for efficiency.

Constructing Match Record Sets

Match rules are applied to all the records in each match bin to generate one or more
match record sets. Match rules determine if two records match. The matching
algorithm is an n X n algorithm where all records in the match bin are compared.

One important point of this algorithm is the transitive matching. Consider three
records A, B, and C. If record A is equal to record B and record B is equal to record C,
this means that record A is equal to record C.

See Also: "Match Rules" on page 23-5 for information about the
types of match rules and how to create them

About Matching and Merging in Warehouse Builder

Matching, Merging, and Deduplication 23-5

Constructing Merge Records

A single merge record is constructed from each match record set. You can create
specific rules to define merge attributes by using merge rules.

Match Rules
Match rules are used to determine if two records are logically similar. Warehouse
Builder enables you to use different types of rules to match source records. You can
define match rules using the MatchMerge Wizard or the MatchMerge Editor. Use the
editor to edit existing match rules or add new rules.

Match rules can be active or passive. Active rules are generated and executed in the
order specified. Passive rules are generated but are not automatically executed. A
passive rule may be executed by a custom rule.

Table 23–1 describes the types of match rules.

Conditional Match Rules
Conditional match rules specify the conditions under which records match.

A conditional match rule enables you to combine multiple attribute comparisons into
one composite rule. When more than one attribute is involved in a rule, two records
are considered to be a match only if all comparisons are true. Warehouse Builder
displays an AND icon in the left-most column of subsequent conditions.

You can specify how attributes are compared using comparison algorithms.

See Also: "Merge Rules" on page 23-19 for more information about
the types of merge rules

Table 23–1 Types of Match Rules

Match Rule Description

All Match Matches all rows within a match bin

None Match Turns off matching. No rows match within the match bin.

Conditional Matches rows based on the algorithm you set. For more
information about Conditional match rules and how to create
one, see "Conditional Match Rules" on page 23-5.

Weight Matches rows based on scores that you assign to the attributes.
For more information about Weight match rules and how to
create one, see "Weight Match Rules" on page 23-10.

Person Matches records based on the names of people. For more
information about Person match rules and how to create one, see
"Person Match Rules" on page 23-12.

Firm Matches records based on the name of the organization or firm.
For more information about Firm match rules and how to create
one, see "Firm Match Rules" on page 23-14.

Address Matches records based on postal addresses. For more
information about Address match rules and how to create one,
see "Address Match Rules" on page 23-16.

Custom Matches records based on a custom comparison algorithm that
you define. For more information about Custom match rules and
how to create one, see "Custom Match Rules" on page 23-18.

About Matching and Merging in Warehouse Builder

23-6 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Attribute
Identifies the attribute that will be tested for a particular condition. You can select from
any input attribute (INGRP1).

Position
The order of execution. You can change the position of a rule by clicking on the row
header and dragging the row to its new location. The row headers are the boxes to the
left of the Attribute column.

Algorithm
A list of methods that can be used to determine a match. Table 23–2 describes the
algorithms.

Similarity Score
The minimum similarity value required for two strings to match, as calculated by the
Edit Distance, Standardized Edit Distance, Jaro-Winkler, or Standardized Jaro-Winkler
algorithms. Enter a value between 0 and 100. A value of 100 indicates an exact match,
and a value of 0 indicates no similarity.

Blank Matching
Lists options for handling empty strings in a match.

Comparison Algorithms
Each attribute in a conditional match rule is assigned a comparison algorithm, which
specifies how the attribute values are compared. Multiple attributes may be compared
in one rule with a separate comparison algorithm selected for each.

Table 23–2 describes the types of comparisons.

Table 23–2 Types of Comparison Algorithms for Conditional Match Rules

Algorithm Description

Exact Attributes match if their values are exactly the same. For
example, "Dog" and "dog!" would not match, because the second
string is not capitalized and contains an extra character.

For data types other than STRING, this is the only type of
comparison allowed.

Standardized Exact Standardizes the values of the attributes before comparing them
for an exact match. With standardization, the comparison
ignores case, spaces, and nonalphanumeric characters. Using
this algorithm, "Dog" and "dog!" would match.

Soundex Converts the data to a Soundex representation and then
compares the text strings. If the Soundex representations match,
then the two attribute values are considered matched.

About Matching and Merging in Warehouse Builder

Matching, Merging, and Deduplication 23-7

Edit Distance A "similarity score" in the range 0 to 100 is entered. If the
similarity of the two attributes is equal to or greater than the
specified value, the attribute values are considered matched.

The similarity algorithm computes the edit distance between
two strings. A value of 100 indicates that the two values are
identical; a value of zero indicates no similarity whatsoever.

For example, if the string "tootle" is compared with the string
"tootles", then the edit distance is 1. The length of the string
"tootles" is 7. The similarity value is therefore (6/7)*100 or 85.

The algorithm used here is the Levenshtein edit distance
algorithm.

Standardized Edit Distance Standardizes the values of the attribute before using the
Similarity algorithm to determine a match. With
standardization, the comparison ignores case, spaces, and
nonalphanumeric characters.

Partial Name The values of a string attribute are considered a match if the
value of one entire attribute is contained within the other,
starting with the first word. For example, "Midtown Power"
would match "Midtown Power and Light", but would not match
"Northern Midtown Power". The comparison ignores case and
nonalphanumeric characters.

Abbreviation The values of a string attribute are considered a match if one
string contains words that are abbreviations of corresponding
words in the other. Before attempting to find an abbreviation,
this algorithm performs a Std Exact comparison on the entire
string. The comparison ignores case and nonalphanumeric
character.

For each word, the match rule will look for abbreviations, as
follows. If the larger of the words being compared contains all of
the letters from the shorter word, and the letters appear in the
same order as the shorter word, then the words are considered a
match.

For example, "Intl. Business Products" would match
"International Bus Prd".

Acronym The values of a string attribute are considered a match if one
string is an acronym for the other. Before attempting to identify
an acronym, this algorithm performs a Std Exact comparison on
the entire string. If no match is found, then each word of one
string is compared to the corresponding word in the other string.
If the entire word does not match, each character of the word in
one string is compared to the first character of each remaining
word in the other string. If the characters are the same, the
names are considered a match.

For example, "Chase Manhattan Bank NA" matches "CMB North
America". The comparison ignores case and nonalphanumeric
characters.

Table 23–2 (Cont.) Types of Comparison Algorithms for Conditional Match Rules

Algorithm Description

About Matching and Merging in Warehouse Builder

23-8 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Creating Conditional Match Rules
To define a conditional match rule, complete the following steps:

1. On the top portion of the Match Rules tab or the Match Rules page, select
Conditional in the Rule Type column.

A Details section is displayed.

2. Click Add to add a new row.

3. Select an attribute in the Attribute column.

4. In the Algorithm column, select a comparison algorithm. See Table 23–2 for
descriptions.

5. Specify a similarity score for the Edit Distance, Standardized Edit Distance,
Jaro-Winkler, or Standardized Jaro-Winkler algorithms.

6. Select a method for handling blanks.

Match Rules: Basic Example
The following discussions illustrate how some basic match rules apply to real data and
how multiple match rules can interact with each other.

Example: Matching and Merging Customer Data
Consider how you could use the Match Merge operator to manage a customer mailing
list. Use matching to find records that refer to the same person in a table of customer
data containing 10,000 rows.

For example, you can define a match rule that screens records that have similar first
and last names. Through matching, you may discover that 5 rows could refer to the
same person. You can then merge those records into one new record. For example, you
can create a merge rule to retain the values from the one of the five matched records

Jaro-Winkler Matches strings based on their similarity value using an
improved comparison system over the Edit Distance algorithm.
The Jaro-Winkler algorithm accounts for the length of the strings
and penalizes more for errors at the beginning. It also recognizes
common typographical errors.

The strings match when their similarity value is equal to or
greater than the Similarity Score that you specify. A similarity
value of 100 indicates that the two strings are identical. A value
of zero indicates no similarity whatsoever. Note that the value
actually calculated by the algorithm (0.0 to 1.0) is multiplied by
100 to correspond to the Edit Distance scores.

Standardized Jaro-Winkler Eliminates case, spaces, and nonalphanumeric characters before
using the Jaro-Winkler algorithm to determine a match.

Double Metaphone Matches phonetically similar strings using an improved coding
system over the Soundex algorithm. It generates two codes for
strings that could be pronounced in multiple ways. If the
primary codes match for the two strings, or if the secondary
codes match, then the strings match. The Double Metaphone
algorithm accounts for alternate pronunciations in Italian,
Spanish, French, and Germanic and Slavic languages. Unlike the
Soundex algorithm, Double Metaphone encodes the first letter,
so that "Kathy" and "Cathy" evaluate to the same phonetic code.

Table 23–2 (Cont.) Types of Comparison Algorithms for Conditional Match Rules

Algorithm Description

About Matching and Merging in Warehouse Builder

Matching, Merging, and Deduplication 23-9

with the longest address. The newly merged table now contains one record for each
customer.

Table 23–3 shows records that refer to the same person prior to using the Match Merge
operator.

Table 23–4 shows the single record for Jane Doe after using the Match Merge operator.
Notice that the new record includes data from different rows in the sample.

Example: How Multiple Match Rules Combine
If you create more than one match rule, Warehouse Builder determines two rows
match if those rows satisfy any of the match rules. In other words, Warehouse Builder
evaluates multiple match rules using OR logic.

The following example illustrates how Warehouse Builder evaluates multiple match
rules.

In the top portion of the Match Rules tab, create two match rules as described in
Table 23–5.

In the lower portion of the tab, assign the details to Rule_1 as described in Table 23–6.

For Rule_2, assign the details as described in Table 23–7.

Table 23–3 Sample Records

Row First Name Last Name SSN Address Unit Zip

1 Jane Doe NULL 123 Main Street NULL 22222

2 Jane Doe 111111111 NULL NULL 22222

3 J. Doe NULL 123 Main Street Apt 4 22222

4 NULL Smith 111111111 123 Main Street Apt 4 22222

5 Jane Smith-Doe 111111111 NULL NULL 22222

Table 23–4 Match-Merge Results

First Name Last Name SSN Address Unit Zip

Jane Doe 111111111 123 Main Street Apt 4 22222

Table 23–5 Two Match Rules

Name Position Rule Type Usage Description

Rule_1 1 Conditional Active Match SSN

Rule_2 2 Conditional Active Match Last Name and PHN

Table 23–6 Details for Rule_1

Attribute Position Algorithm
Similarity
Score Blank Matching

SSN 1 Exact 0 Do not match if either is blank

About Matching and Merging in Warehouse Builder

23-10 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Assume that you have the data listed in Table 23–8.

According to Rule_1, rows B and C match. According to Rule_2, rows A and B match.
Therefore, because Warehouse Builder handles match rules using OR logic, all three
records match.

Example of Transitive Matching
The general rule is, if A matches B, and B matches C, then A matches C. Assign a
conditional match rule based on similarity such as described in Table 23–9.

Assume that you have the data listed in Table 23–10.

Jones matches James with a similarity of 80, and James matches Jamos with a
similarity of 80. Jones does not match Jamos because the similarity is 60, which is less
than the threshold of 80. However, because Jones matches James, and James matches
Jamos, all three records match (Jones, James, and Jamos).

Weight Match Rules
A weighted match rule enables you to assign an integer weight to each attribute
included in the rule. You must also specify a threshold. For each attribute, the Match
Merge operator multiplies the weight by the similarity score, and sums the scores. If
the sum equals or exceeds the threshold, the two records being compared are
considered a match.

Table 23–7 Details for Rule_2

Attribute Position Algorithm
Similarity
Score Blank Matching

LastName 1 Exact 0 Do not match if either is blank

PHN 2 Exact 0 Do not match if either is blank

Table 23–8 Example Data

Row First Name Last Name PHN SSN

A John Doe 650-123-1111 NULL

B Jonathan Doe 650-123-1111 555-55-5555

C John Dough 650-123-1111 555-55-5555

Table 23–9 Conditional Match Rule

Attribute Position Algorithm
Similarity
Score Blank Matching

LastName 1 Similarity 80 Do not match if either is blank

Table 23–10 Sample Data

Row First Name Last Name PHN SSN

A John Jones 650-123-1111 NULL

B Jonathan James 650-123-1111 555-55-5555

C John Jamos 650-123-1111 555-55-5555

About Matching and Merging in Warehouse Builder

Matching, Merging, and Deduplication 23-11

Weight match rules are most useful when you need to compare a large number of
attributes, without having a single attribute that is different causing a non-match, as
can happen with conditional rules.

Weight rules implicitly invoke the similarity algorithm to compare two attribute
values. This algorithm returns an integer, a percentage value in the range 0 to 100,
which represents the degree to which two values are alike. A value of 100 indicates
that the two values are identical; a value of zero indicates no similarity whatsoever.

Similarity Algorithm
The method used to determine a match. Choose from these algorithms:

■ Edit Distance: Calculates the number of deletions, insertions, or substitutions
required to transform one string into another.

■ Jaro-Winkler: Uses an improved comparison system over the Edit Distance
algorithm. It accounts for the length of the strings and penalizes more for errors at
the beginning. It also recognizes common typographical errors.

Attribute
Identifies the attribute that will be tested for a particular condition. You can select from
any input attribute (INGRP1).

Maximum Score
The weight value for the attribute. This value should be greater than the value of
Required Score to Match.

Score When Blank
The similarity value when one of the records is empty.

Required Score to Match
A value that represents the similarity required for a match. A value of 100 indicates
that the two values are identical. A value of zero indicates there is no similarity.

Example of Weight Match Rules
Table 23–11 displays the attribute values contained in two separate records that are
read in the following order.

You define a match rule that uses the Edit Distance similarity algorithm. The Required
Score to Match is 120. The attributes for first name and middle name are defined with
a Maximum Score of 50 and Score When Blank of 20. The attribute for last name has a
Maximum Score of 80 and a Score When Blank of 0.

Consider an example of the comparison of Record 1 and Record 2 using the weight
match rule.

■ Because first name is blank for Record 2, the Blank Score = 20.

Table 23–11 Example of Weight Match Rule

Record Number First Name Middle Name Last Name

Record 1 Robert Steve Paul

Record 2 Steven Paul

About Matching and Merging in Warehouse Builder

23-12 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ The similarity of middle name in the two records is 0.83. Since the weight assigned
to this attribute is 50, the similarity score for this attribute is 43 (0.83 X 50).

■ Because the last name attributes are the same, the similarity score for the last name
is 1. The weighted score is 80 (1 X 80).

The total score for this comparison is 143 (20+43+80). Since this is more than the value
defined for Required Score to Match, the records are considered a match.

Creating Weight Match Rules
To use the Weight match rule, complete the following steps:

1. On the Match Rules tab or the Match Rules page, select Weight as the Rule Type.

The Details tab is displayed at the bottom of the page.

2. Select Add at the bottom of the page to add a new row.

3. For each row, select an attribute to add to the rule using the Attribute column.

4. In Maximum Score, assign a weight to each attribute. Warehouse Builder
compares each attribute using a similarity algorithm that returns a score between 0
and 100 to represent the similarity between the rows.

5. In Score When Blank, assign a value to be used when the attribute is blank in one
of the records.

6. In Required score to match, assign an overall score for the match.

For two rows to be considered a match, the total counts must be greater than the
value specified in the Required score to match parameter.

Person Match Rules
Built-in Person rules provide an easy and convenient way for matching names of
individuals. Person match rules are most effective when the data has first been
corrected using the Name and Address operator.

When you use Person match rules, you must specify which data within the record
represents the name of the person. The data can come from multiple columns. Each
column must be assigned an input role that specifies what the data represents.

To define a Person match rule, you must define the Person Attributes that are part of
the rule. For example, you can create a Person match rule that uses the Person
Attributes first name and last name for comparison. For each Person Attribute, you
must define the Person Role that the attribute uses. Next you define the rule options
used for the comparison. For example, while comparing last names, you can specify
that hyphenated last names should be considered a match.

Person Roles
Table 23–12 describes the roles for different parts of a name that are used for matching.
On the Match Rules page or Match Rules tab, use the Roles column on the Person
Attributes tab to define person details.

About Matching and Merging in Warehouse Builder

Matching, Merging, and Deduplication 23-13

Person Details
Table 23–13 describes the options that determine a match for Person match rules. Use
the Details tab of the Match Rules tab or the Match Rules page to define person details.

Table 23–12 Name Roles for Person Match Rules

Role Description

Prename Prenames are compared only if the following are true:

■ The Last_name and, if present, the middle name (Middle_
name_std, Middle_name_2_std, and Middle_name_3_std
roles) in both records match.

■ The "Mrs. Match" option is selected.

■ Either record has a missing First_name_std.

First Name Standardized Compares the first names. By default, the first names must
match exactly, but you can specify other comparison options as
well.

First names match if both are blank. A blank first name will
not match a nonblank first name unless the Prename role has
been assigned and the "Mrs. Match" option is set. If a Last_
name role has not been assigned, a role of First_name_std
must be assigned.

Middle Name Standardized,
Middle Name 2 Standardized,
Middle Name 3 Standardized

Compares the middle names. By default, the middle names
must match exactly, but other comparison options can be
specified. If more than one middle name role is assigned,
attributes assigned to the different roles are cross-compared.

For example, values for Middle_name_std will be compared
not only against other Middle_name_std values, but also
against Middle_name_2_std, if that role is also assigned.
Middle names match if either or both are blank. If any of the
middle name roles are assigned, the First_name_std role must
also be assigned.

Last Name Compares the last names. By default, the last names must
match exactly, but you can specify other comparison options.
The last names match if both are blank, but not if only one is
blank.

Maturity Post Name Compares the post name, such as "Jr.", "III," and so on. The
post names match if the values are exactly the same, or if
either value is blank.

Table 23–13 Options for Person Match Rule

Option Description

Detect switched name
order

Detects switched name orders such as matching "Elmer Fudd" to
"Fudd Elmer". You can select this option if you selected First Name
and Last Name roles for attributes on the Person Attributes tab.

Match on initials Matches initials to names such as "R"' and "Robert". You can select
this option for first name and middle name roles.

Match on substrings Matches substrings to names such as "Rob" to "Robert". You can
select this option for first name and middle name roles.

Similarity Score Records are considered a match if the similarity is greater than or
equal to the score. For example, "Susan" will match "Susen" if the
score is less than or equal to 80.

Uses a similarity score to determine a match, as calculated by the
Edit Distance or Jaro-Winkler algorithm. A value of 100 requires an
exact match, and a value of 0 requires no similarity whatsoever.

About Matching and Merging in Warehouse Builder

23-14 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Creating Person Match Rules
To define a Person match rule, complete the following steps:

1. On the Match Rules tab, select Person as the Rule Type.

The Person Attributes tab and Details tab are displayed at the bottom of the page.

2. In the left panel of the Person Attributes tab, select the attributes that describe a
full name and use the right arrow to move them to the Name Roles section.

3. For each attribute, select the role that it plays in a name.

You must define either the Last Name or First Name Standardized for the match
rule to be effective. See Table 23–12 for the types of roles that you can assign.

4. Select the Details tab and select the applicable options as listed in Table 23–13.

Firm Match Rules
Built-in Firm match rules provide an easy and convenient way for matching business
names. Firm match rules are most effective when the data has first been corrected
using the Name and Address operator. Similar to the Person rule, this rule requires
users to set what data within the record represents the name of the firm. The data can
come from multiple columns and each column specified must be assigned an input
role that indicates what the data represents.

Note that you need not assign a firm role to every attribute, and not every role needs
to be assigned to an attribute. The attributes assigned to firm roles are used in the
match rule to compare the records. The attributes are compared based on the role that
they have been assigned and other comparison options that you have set. For a
complete list of firm roles and how each role is treated in a firm match rule, see "Firm
Roles" on page 23-14.

Firm Roles
Firm roles define the parts of a firm name that are used for matching. The options that
you can select for firm role are Firm1 or Firm2. If you select one attribute, for firm
name, select Firm1 as the role. If you select two attributes, designate one of them as
Firm1 and the other as Firm2.

■ Firm1: If this role is assigned, the business names represented by Firm1 are
compared. Firm1 names will not be compared against Firm2 names unless the

Match on Phonetic Codes Determines a match using either the Soundex or the Double
Metaphone algorithm.

Detect compound name Matches compound names to names such as "De Anne" to
"Deanne". You can select this option for the first name role.

"Mrs" Match Matches prenames to first and last names such as "Mrs.
Washington" to "George Washington". You can select this option for
the prename role.

Match hyphenated
names

Matches hyphenated names to unhyphenated names such as
"Reese-Jones" to "Reese". You can select this option for the last name
role.

Detect missing hyphen The operator detects missing hyphens, such as matching "Hillary
Rodham Clinton" to "Hillary Rodham-Clinton". You can select this
option for the last name role.

Table 23–13 (Cont.) Options for Person Match Rule

Option Description

About Matching and Merging in Warehouse Builder

Matching, Merging, and Deduplication 23-15

Cross-match firm1 and firm2 box is checked. By default, the firm names must
match exactly, but other comparison options can also be specified. Firm1 names do
not match if either or both names are blank.

■ Firm2: If this role is assigned, the values of the attribute assigned to Firm2 will be
compared. Firm2 names will not be compared against Firm1 names unless the
Cross-match firm1 and firm2 box is checked. By default, the firm names must
match exactly, but other comparison options can also be specified. Firm2 names do
not match if either or both names are blank. If a Firm1 role is not assigned, a Firm2
roles must be assigned.

Firm Details
Table 23–14 describes the rule options that you can set for each component of the firm
name to determine a match.

Creating Firm Match Rules
To define a Firm match rule, complete the following steps:

1. On the Match Rules tab or the Match Rules page, select Firm as the Rule Type.

The Firm Attributes tab and Details tab are displayed at the bottom of the page.

2. In the left panel of the Firm Attributes tab, select one or two attributes that
represent the firm name and click the right shuttle button.

The attributes are moved to the Firm Roles box.

3. For each attribute, click Roles. From the list, select Firm 1 for the first attribute,
and Firm 2 for the second attribute, if it exists.

4. On the Details tab, select the applicable options. For more details, see "Firm
Details" on page 23-15.

Table 23–14 Options for Firm Rules

Option Description

Strip noise words Removes the following words from Firm1 and Firm2 before
matching: THE, AND, CORP, CORPORATION, CO, COMPANY,
INC, INCORPORATED, LTD, TO, OF, and BY.

Cross-match firm1 and
firm2

When comparing two records for matching, in addition to
matching firm1 to firm1 and firm2 to firm2 of the respective
records, match firm1 against firm2 for the records.

Match on partial firm name Uses the Partial Name algorithm to determine a match. For
example, match "Midtown Power" to "Midtown Power and
Light".

Match on abbreviations Uses the Abbreviation algorithm to determine a match. For
example, match "International Business Machines" to "IBM".

Match on acronyms Uses the Acronym algorithm to determine a match. For example,
match "CMB, North America" to "Chase Manhattan Bank, NA".

Similarity score Uses a similarity score to determine a match, as calculated by the
Edit Distance or Jaro-Winkler algorithm. Enter a value between 0
and 100 as the minimum similarity value required for a match. A
value of 100 requires an exact match, and a value of 0 requires
no similarity whatsoever.

Two records are considered as a match if the similarity is greater
than or equal to the value of similarity score.

About Matching and Merging in Warehouse Builder

23-16 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Address Match Rules
Address match rules provide a method of matching records based on postal addresses.
Address match rules are most effective when the data has first been corrected using a
Name and Address operator.

Address match rules work differently depending on whether or not the address being
processed has been corrected using the Name and Address operator. Generally,
corrected addresses have already been identified in a postal matching database, and
are therefore syntactically correct, legal, and existing addresses according to the Postal
Service of the country containing the address. Corrected addresses can be processed
more quickly, because the match rule can make certain assumptions about their
format.

Uncorrected addresses may be syntactically correct, but have not been found in a
postal matching database. Addresses may have not been found because they are not in
the database, or because there is no postal matching database installed for the country
containing the address. Address match rules determine whether an address has been
corrected based on the Is_found role. If the Is_found role is not assigned, then the
match rule performs the comparisons for both the corrected and uncorrected
addresses.

To create an Address match rule, assign address roles to the various attributes. The
attributes assigned to address roles are used in the match rule to compare the records.
Attributes are compared depending on which role they have been assigned, and what
other comparison options have been set.

Address Roles
Table 23–15 describes the address roles that you can select for each part of an address.

Table 23–15 Address Roles

Role Description

Primary Address Compares the primary addresses. Primary addresses can be, for example,
street addresses ("100 Main Street") or PO boxes ("PO Box 100"). By
default, the primary addresses must match exactly, but a similarity
option can also be specified.

The Primary_address role must be assigned.

Unit Number Unit numbers (such as suite numbers, floor numbers, or apartment
numbers) are compared if the primary addresses match. The unit
numbers match if both are blank, but not if one is blank, unless the
Match on blank secondary address option is set. If the Allow differing
secondary address option is set, the unit numbers are ignored.

PO Box Compares the Post Office Boxes. The PO Box is just the number portion
of the PO Box ("100"), and is a subset of the primary address, when the
primary address represents a PO Box ("PO Box 100"). If the primary
address represents a street address, the PO Box will be blank.

Dual Primary
Address

The Dual_primary_address is compared against the other record's Dual_
primary_address and Primary_address to determine a match.

Dual Unit Number Compares the Dual_unit_number address with the Dual_unit_number
and Unit_number of the other record. The unit numbers will match if one
or both are blank. To assign the Dual_unit_number role, the Dual_
primary_address role must also be assigned.

Dual PO Box Dual_PO_Box address of a record is compared with the Dual_PO_Box
and the PO_Box of the other record. To assign the Dual_PO_Box role, the
Dual_primary_address role must also be assigned.

About Matching and Merging in Warehouse Builder

Matching, Merging, and Deduplication 23-17

Address Details
Table 23–16 describes the options for determining a match for an Address rule.

Creating Address Match Rules
To define an Address match rule, complete the following steps:

City Compares the cities for uncorrected addresses. For corrected addresses,
the cities are only compared if the postal codes do not match. If both City
and State roles match, then the address line roles, such as Primary_
address, can be compared.

By default, the cities must match exactly. But you may specify a last line
similarity option. The cities match if both are blank, but not if only one is
blank. If the City role is assigned, then the State role must also be
assigned.

State Assign this role only when also assigning the City role.

The states are compared for uncorrected addresses. For corrected
addresses, the states are only compared if the postal codes do not match.
If both State and City roles match, then the address line roles, such as
Primary_address, can be compared. By default, the states must match
exactly, but a last line similarity option may be specified. The states
match if both are blank, but not if only one is blank. If the State role is
assigned, then the City role must also be assigned.

Postal Code For uncorrected address data, the operator does not use Postal Code.

The postal codes are compared for corrected addresses. For uncorrected
addresses, the Postal_code role is not used. To match, the postal codes
must be exactly the same. The postal codes are not considered a match if
one or both are blank. If the postal codes match, then the address line
roles, such as Primary_address, can be compared. If the postal codes do
not match, City and State roles are compared to determine whether the
address line roles should be compared.

Is Found The Is_found_flag attributes are not compared, but instead are used to
determine whether an address has been found in a postal matching
database, and therefore represents a legal address according to the postal
service of the country containing the address. This determination is
important because the type of comparison done during matching
depends on whether or not the address has been found in the postal
database.

Table 23–16 Options for Address Roles

Option Description

Allow differing secondary
address

Allow addresses to match even if the unit numbers are not
null and are different.

Match on blank secondary
address

Allow addresses to match even if exactly one unit number is
null.

Match on either street or post
office box

Match records if either the street address or the post office box
match.

Address line similarity Match if address line similarity >= the score. All spaces and
non-alpanumeric characters are removed before the similarity
is calculated.

Last line similarity Match if the last line similarity >= score. The last line consists
of city and state. All spaces and nonalphanumeric characters
are removed before the similarity is calculated.

Table 23–15 (Cont.) Address Roles

Role Description

About Matching and Merging in Warehouse Builder

23-18 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

1. On the Match Rules tab or the Match Rules page, select Address as the Rule Type.

The Address Attributes tab and Details tab are displayed at the bottom of the
page.

2. In the left panel of the Address Attributes tab, select the attribute that represents
the primary address. Use the right shuttle key to move it to the Address Roles
Attributes column.

3. Click Role Required and designate that attribute as the Primary Address.

You must designate one attribute as the primary address. If you do not assign the
Primary Address role, the match rule is invalid.

4. Add other attributes and designate their roles as necessary. See Table 23–15 for the
types of roles that you can assign.

5. Select the Details tab and select the applicable options as listed in Table 23–16.

Custom Match Rules
Custom match rules enable you to write your own comparison algorithms to match
records. You can use any input attributes or match functions within this comparison.
You can use an active custom rule to control the execution of passive rules.

Consider the following three passive built-in rules:

■ NAME_MATCH: built-in name rule

■ ADDRESS_MATCH: built-in address rule

■ TN_MATCH: built-in conditional rule

You can create a custom rule to specify that two records can be considered a match if
any two of these rules are satisfied. Example 23–1 describes the PL/SQL code used to
create the custom match rule that implements this example.

Example 23–1 Creating a Custom Rule Using Existing Passive Rules

BEGIN
 RETURN(
 (NAME_MATCH(THIS_,THAT_) AND ADDRESS_MATCH(THIS_,THAT_))
 OR
 (NAME_MATCH(THIS_,THAT_) AND TN_MATCH(THIS_,THAT_))
 OR
 (ADDRESS_MATCH(THIS_,THAT_) AND TN_MATCH(THIS_,THAT_))
);
END;

Creating Custom Match Rules
To define a Custom match rule, complete the following steps:

1. On the Match Rules tab or the Match Rules page, select Custom as the Rule Type.

A Details field is displayed at the bottom of the page with the skeleton of a
PL/SQL program.

2. Click Edit to open the Custom Match Rules Editor.

For more information about using the editor, select Help Topic from the Help
menu.

3. To enter PL/SQL code, use any combination of the following:

About Matching and Merging in Warehouse Builder

Matching, Merging, and Deduplication 23-19

■ To read in a file, select Open File from the Code menu.

■ To enter text, first position the cursor using the mouse or arrow keys, then
begin typing. You can also use the commands on the Edit and Search menus.

■ To reference any function, parameter, or transformation in the navigation tree,
first position the cursor, then double-click or drag-and-drop the object onto the
Implementation field.

4. To validate your code, select Validate from the Test menu.

The validation results appear on the Messages tab.

5. To save your code, select Save from the Code menu.

6. To close the Custom Match Rules Editor, select Close from the Code menu.

Merge Rules
Matching produces a set of records that are logically the same. Merging is the process
of creating one record from the set of matched records. A Merge rule is applied to
attributes in the matched record set to obtain a single value for the attribute in the
merged record.

You can define one Merge rule for all the attributes in the Merge record or define a rule
for each attribute. For instance, if the merged record is a customer record, it may have
attributes such as ADDRESS1, ADDRESS2, CITY, STATE, and ZIP. You can write five
rules that select the value of each attribute from up to five different records, or one
Record rule that selects the values of all five attributes from one record. Use Record
rules when multiple attributes compose a logical unit, such as an address. For
example, City, State, and Zip Code might be three different attributes, but the data for
these attributes should all come from the same record.

Table 23–17 describes the types of merge rules.

Table 23–17 Merge Rule Types

Merge Rule Description

Any Uses the first nonblank value

Match ID Merges records that have already been output from another Match Merge
operator

Rank Ranks the records from the match set. The associated attribute from the
highest ranked record will be used to populate the merge attribute value

Sequence Specify a database sequence for this rule. The next value of the sequence
will be used for the value.

Min Max Specify an attribute and a relation to choose the record to be used as a
source for the merge attribute.

Copy Choose a value from a different previously merged value.

Custom Create a PL/SQL package function to select the merge value. The operator
will provide the signature of this function. The user is responsible for the
implementation of the rule from "BEGIN" to "END;" The matched records
and merge record are parameters for this function.

Any Record Identical to the Any rule, except that an Any Record rule applies to
multiple attributes

Rank Record Identical to the Rank rule, except that a Rank Record rule applies to
multiple attributes

About Matching and Merging in Warehouse Builder

23-20 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Match ID Merge Rule
Use the Match ID merge rule to merge records that have already been output in the
XREF group from another Match Merge operator. No other operator is valid for this
type of input. For more information, see "Example: Using Two Match Merge Operators
for Householding" on page 23-24.

Next Value of the Sequence
Identifies the sequence that will be used by the rule.

Sequences list
Lists all sequences defined in the current project.

Select Sequence
Sets the sequence for the rule to the sequence currently selected in the list. Move a
sequence from the sequences list to Select Sequence.

Rank and Rank Record Merge Rules
Use the Rank and Rank Record rules when merging data from multiple sources. These
rules enable you to identify your preference for certain sources. Your data must have a
second input attribute on which the rule is based.

For example, the second attribute might identify the data source, and these data
sources are ranked in order of reliability. The most reliable value would be used in the
merged record. The merge rule might look like this:

INGRP1.SOURCE = 'Order Entry'

Name
An arbitrary name for the rule. Warehouse Builder creates a default name such as
RULE_0 for each Rank merge rule. You can replace these names with meaningful ones.

Position
The order of execution. You can change the position of a rule by clicking on the row
header and dragging the row to its new location. The row headers are the boxes to the
left of the Name column.

Expression Record Selection
The custom SQL expression used in the ranking. Click the Ellipsis button to display
the Rank Rule Editor (also called the Expression Builder User Interface). Use this
editor to develop the ranking expression.

Sequence Merge Rule
The Sequence rule uses the next value in a sequence.

Min Max Record Identical to the Min Max rule, except that a Min Max Record rule applies
to multiple attributes

Custom Record Identical to the Custom rule, except that a Custom Record rule applies to
multiple attributes

Table 23–17 (Cont.) Merge Rule Types

Merge Rule Description

About Matching and Merging in Warehouse Builder

Matching, Merging, and Deduplication 23-21

Next Value of the Sequence
Identifies the sequence that will be used by the rule.

Sequences list
Lists all sequences defined in the current project.

Select Sequence
Sets the sequence for the rule to the sequence currently selected in the list.

Min Max and Min Max Record Merge Rules
The Min Max and Min Max Record rules select an attribute value based on the size of
another attribute value in the record.

For example, you might select the First Name value from the record in each bin that
contains the longest Last Name value.

Selecting Attribute
Lists all input attributes. Select the attribute whose values provide the order.

Attribute Relation
Select the characteristic for choosing a value in the selected attribute.

■ Minimum. Selects the smallest numeric value or the oldest date value.

■ Maximum. Selects the largest numeric value or the most recent date value.

■ Shortest. Selects the shortest character value.

■ Longest. Selects the longest character value.

Copy Merge Rule
The Copy rule uses the values from another merged attribute.

Merged Attribute
Lists the other merged attributes, which you selected on the Merge Attributes page.

Custom and Custom Record Merge Rules
The Custom and Custom Record rules use PL/SQL code that you provide to merge
the records. The following is an example of a Custom merge rule, which returns the
value of the TAXID attribute for record 1.

BEGIN
RETURN M_MATCHES(1)."TAXID";
END;

The following is an example of a Custom Record merge rule, which returns a record
for record 1:

BEGIN
RETURN M_MATCHES(1);
END;

Using the Match Merge Operator to Eliminate Duplicate Source Records

23-22 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Merge Rules Detail
Displays the PL/SQL code composing your custom algorithm. You can edit code
directly in this field or use the Custom Merge Rule Editor.

Edit
Displays the Custom Merge Rule Editor.

Using the Match Merge Operator to Eliminate Duplicate Source Records
Use the Match Merge operator to identify matching records in a data source and to
merge them into a single record.

The Match Merge operator has one input group and two output groups, Merge and
Xref. The source data is mapped to the input group. The Merge group contains records
that have been merged after the matching process is complete. The Xref group
provides a record of the merge process. Every record in the input group will have a
corresponding record in the Xref group. This record may contain the original attribute
values and the merged attributes.

The Match Merge operator uses an ordered record stream as input. From this stream, it
constructs the match bins. From each match bin, matched sets are constructed. From
each matched set, a merged record is created. The initial query will contain an ORDER
BY clause consisting of the match bin attributes.

Steps to Use a Match Merge Operator
To match and merge source data using the Match Merge operator:

1. Drag and drop the operators representing the source data and the operator
representing the merged data onto the Mapping Editor canvas.

For example, if your source data is stored in a table, and the merged data will be
stored in another table, drag and drop two Table operators that are bound to the
tables onto the canvas.

2. Drag and drop a Match Merge operator onto the Mapping Editor canvas.

The MatchMerge Wizard is displayed.

3. On the Name page, the Name field contains a default name for the operator. You
can change this name or accept the default name.

You can enter an optional description for the operator.

4. On the Groups page, you can rename groups or provide descriptions for them.

This page contains the following three groups:

■ INGRP1: Contains input attributes.

■ MERGE: Contains the merged records (usually this means fewer records than
INGRP1).

■ XREF: Contains the link between the original and merged data sets. This is the
tracking mechanism used when a merge is performed.

5. On the Input Connections page, move the attributes that you want to match and
merge from the Available Attributes section to the Mapped Attributes section.
Click Next.

The Available Attributes section of this page displays nodes for each operator on
the canvas. Expand a node to display the attributes contained in the operator,

Using the Match Merge Operator to Eliminate Duplicate Source Records

Matching, Merging, and Deduplication 23-23

select the attributes, and use the shuttle arrows to move selected attributes to the
Mapped Attributes section.

6. On the Input Attributes page, review the attribute data types and lengths.

In general, if you go through the wizard, you need not change any of these values.
Warehouse Builder populates them based on the output attributes.

7. On the Merge Output page, select the attributes to be merged from the input
attributes.

These attributes appear in the Merge output group (the cleansed group). The
attributes in this group retain the name and properties of the input attributes.

8. On the Cross Reference Output page, select attributes for the XREF output group.

The Source Attributes section contains all the input attributes and the Merge
attributes that you selected on the Merge Output page. The attributes from the
Merge group are prefixed with MM_. The other attributes define the unmodified
input attribute values. Select at least one attribute from the Merge group that will
provide a link between the input and Merge groups.

9. On the Match Bins page, specify the match bin attributes. These attributes are used
to group source data into match bins.

After the first deployment, you can choose whether to match and merge all
records or only new records. To match and merge only the new records, select
Match New Records Only.

You must designate a condition that identifies new records. The Match Merge
operator treats the new records in the following way:

■ No matching is performed for any records in a match bin unless the match bin
contains a new record.

■ Old records are not compared with each other.

■ A matched record set is not presented to the merge processing unless the
matched record set contains a new record.

■ An old record is not presented to the Xref output unless the record is matched
to a new record.

For more information about match bin attributes and match bins, see "Overview of
the Matching and Merging Process" on page 23-3.

10. On the Define Match Rules page, define the match rules that will be used to match
the source data.

Match rules can be active or passive. A passive match rule is generated but not
automatically invoked. You must define at least one active match rule.

For more information about the match rules, the types of match rules that you can
define, and the steps used to define them, see "Match Rules" on page 23-5.

11. On the Merge Rules page, define the rules that will be used to merge the sets of
matched records created from the source data.

Note: The Match Merge operator requires an ordered input data set.
If you have source data from more than one operator, use a Set
Operation operator to combine the data and obtain an ordered data
set.

Using the Match Merge Operator to Eliminate Duplicate Source Records

23-24 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

You can define Merge rules for each attribute in a record or for the entire record.
Warehouse Builder provides different types of Merge rules.

For more information about the types of Merge rules and the steps to create Merge
rules, see "Merge Rules" on page 23-19.

12. On the Summary page, review your selections. Click Back to modify any selection
that you made. Click Next to complete creating the Match Merge operator.

13. Map the Merge group of the Match Merge operator to the input group of the
operator that stores the merged data.

Considerations When Designing Mappings Containing Match Merge Operators
Be aware of the following considerations as you design your mapping:

■ Operating modes: A mapping that contains a Match Merge operator can only run
in set-based mode. Operators may accept either set-based or row-based input and
generate either set-based or row-based output. SQL is set-based, so a set of records
is processed at one time. PL/SQL is row-based, so each row is processed
separately. When the Match Merge operator matches records, it compares each
row with the subsequent row in the source, and generates row-based code only.

■ SQL-based operators before Match Merge: The Match Merge operator accepts
set-based SQL input, but generates only row-based PL/SQL output. Any
operators that generate only SQL code must precede the Match Merge operator.
For example, the Joiner, Lookup, and Set operators generate set-based SQL output,
so they must precede the Match Merge operator. If set-based operators appear
after Match Merge operator, then the mapping is invalid. If you need to process
the output of a match-merge mapping using a set-based SQL operator, stage the
output in an intermediate table.

■ PL/SQL input: The Match Merge operator requires SQL input except from another
Match Merge operator, as described in "Example: Using Two Match Merge
Operators for Householding" on page 23-24. If you want to precede a Match
Merge operator with an operator that generates only PL/SQL output, you must
first load the data into a staging table.

■ Refining data from Match Merge operators: To achieve greater data refinement,
map the XREF output from one Match Merge operator into another Match Merge
operator. This scenario is the one exception to the SQL input rule for Match Merge
operators. With additional design elements, the second Match Merge operator
accepts PL/SQL. For more information, see "Example: Using Two Match Merge
Operators for Householding" on page 23-24.

Restrictions on Using the Match Merge Operator
■ Because the match-merge process generates only PL/SQL, you cannot map the

Merge or XREF output groups of the Match Merge operator to a SQL-only
operator such as a Sorter operator or another Match Merge operator.

■ Because the Match Merge operator only accepts SQL input, you cannot map the
output of the Name and Address operator directly to the Match Merge operator.
You must use a staging table.

Example: Using Two Match Merge Operators for Householding
Most match-merge operations can be performed by a single Match Merge operator.
However, if you are directing the output to two different targets, then you may need to
use two Match Merge operators in succession.

Using the Match Merge Operator to Eliminate Duplicate Source Records

Matching, Merging, and Deduplication 23-25

For example, when householding name and address data, you may need to merge the
data first for addresses and then again for names. Assuming that you map the MERGE
output to a target table, you can map the XREF group to another Match Merge
operator.

Figure 23–3 shows a mapping that uses two Match Merge operators. The XREF group
from MM is mapped directly to MM_1. For this mapping to be valid, you must assign
the Match ID generated for the first XREF group as the Match Bin rule on the second
Match Merge operator.

Figure 23–3 Householding Data: XREF Group Merged to Second Match Merge Operator

Note: Although you could map the XREF group to a staging table,
this intermediate step adds significant overhead. The match-merge
functionality is designed to support maximum performance using two
Match Merge operators together as described in this section.

Note: A more complete solution for the householding problem
might apply name and address cleansing on individual records before
performing the matching and merging to group customers into
households.

Using the Match Merge Operator to Eliminate Duplicate Source Records

23-26 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Part IV
Reference

This part contains the following chapters:

■ Chapter 24, "Mappings and Process Flows Reference"

■ Chapter 25, "Source and Target Operators"

■ Chapter 26, "Data Flow Operators"

■ Chapter 27, "Activities in Process Flows"

■ Chapter 28, "Warehouse Builder Transformations Reference"

Mappings and Process Flows Reference 24-1

24
Mappings and Process Flows Reference

This chapter contains the following topics:

■ Configuring ETL Objects

■ Configuring Mappings Reference

■ Configuring Process Flows Reference

Configuring ETL Objects
Earlier in the design phase, you defined a logical model for your target system using
Oracle Warehouse Builder design objects. This chapter includes reference information
for assigning physical properties to mappings and process flows. This chapter presents
configuration parameters in the order in which they appear in the user interface.

This section contains the following topics:

■ Configuring Mappings Reference on page 24-1

■ Configuring Process Flows Reference on page 24-13

Configuring Mappings Reference
When you configure mappings properly, you can improve the Extract, Transform, and
Load (ETL) performance. Use this section as a reference for setting configuration
parameters that govern how data is loaded and to optimize code for better
performance.

Configuration parameters for mappings are classified into the following categories:

■ Runtime Parameters on page 24-1

■ Code Generation Options on page 24-5

In addition to these parameters, you can configure the source and target operators in
the mapping as described in Sources and Targets Reference on page 24-7.

Runtime Parameters
When you configure Runtime parameters for a mapping, you set the default behaviors
for the mapping. You can override these parameters when you execute the mapping
either in the Control Center, the Process Flow Editor, or Oracle Enterprise Manager.

The Runtime parameters include the following parameters:

■ Analyze Table Sample Percentage

Configuring Mappings Reference

24-2 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ Bulk Size

■ Chunk Size

■ Chunking Column

■ Chunking Method for Parallel Chunking

■ Chunking Strategy

■ Chunking Table

■ Chunking Table Owner

■ Commit Frequency

■ Default Audit Level

■ Default Operating Mode

■ Default Purge Group

■ Maximum Number of Errors

■ Number of Threads to Process Chunks

Analyze Table Sample Percentage
When you select the Analyze Table Statements option, Warehouse Builder estimates
when gathering statistics on the target tables. After data is loaded into the target
tables, statistics used for cost-based optimization are gathered on each target table. You
can set this parameter to the percentage of rows in each target table used for this
analysis.

Bulk Size
Use Bulk Size to specify the number of rows in each bulk for PL/SQL Bulk
Processing. Warehouse Builder uses the Bulk Size parameter only when the Bulk
Processing Code option is selected and the operating mode is set to row-based. For
more information, see Oracle PL/SQL Reference Guide.

Chunk Size
Use Chunk Size to specify the number of chunks into which the source data must be
divided while performing data chunking. This parameter is applicable only for
parallel chunking.

Chunking Column
The Chunking Column parameter is applicable when you perform parallel chunking
using a numeric column in the source table. Use this parameter to select the source
column based on which parallel chunking is performed.

Chunking Method for Parallel Chunking
Use Chunking Methods for Parallel Chunking to specify how parallel chunking
should be performed. This parameter is applicable only when performing parallel
chunking.

You can perform parallel chunking using either the ROWID or a numeric column in
the source data. Select ROWID to perform parallel chunking using the ROWID of the
source data. Select NUMBER_COLUMN to use a numeric column from the source
table based on which parallel chunking is performed.

Configuring Mappings Reference

Mappings and Process Flows Reference 24-3

Chunking Strategy
Use Chunking Strategy to specify the type of chunking used for the mapping. The
options you can select for this parameter are as follows:

■ None: Indicates that no chunking is performed for the mapping.

■ Serial: Indicates that serial chunking must be performed for the mapping.

■ Parallel: Indicates that parallel chunking must be performed for the mapping.

Chunking Table
Use Chunking Table to select the source table on which parallel data chunking must
be performed. This parameter is applicable only for parallel chunking.

Chunking Table Owner
The Chunking Table Owner represents the owner of the source table on which parallel
data chunking is performed. This parameter is applicable only for parallel chunking.

Commit Frequency
Commit frequency applies only to non-bulk mode mappings. Bulk mode mappings
commit according to the bulk size.

If you set the Default Operating Mode to row-based and deselect Bulk Processing
Code, then use the Commit Frequency parameter to determine the number of rows to
be processed before a commit operation. Warehouse Builder commits data to the
database after processing the number of rows specified in this parameter.

If you select the Bulk Processing Code option, set the Commit Frequency equal to the
Bulk Size. If the two values differ, then Bulk Size overrides Commit Frequency and a
commit operation is implicitly performed for every bulk size.

Default Audit Level
Use Default Audit Level to indicate the audit level used when executing the package.
Audit levels dictate the amount of audit information captured in the runtime schema
when the package is run. The audit level settings are:

■ None: No auditing information is recorded in run time.

■ Statistics: Statistical auditing information is recorded in run time.

■ Error Details: Error information and statistical auditing information is recorded in
run time.

■ Complete: All auditing information is recorded in run time. Running a mapping
with the audit level set to Complete generates a large amount of diagnostic data,
which may quickly fill the allocated tablespace.

Default Operating Mode
For mappings with a PL/SQL implementation, select a default operating mode. The
operating mode, you select can greatly affect mapping performance. For details on
how operating modes affect performance, see "Set-Based Versus Row-Based Operating
Modes" on page 10-4. You can select one of the following operating modes:

■ Set based: A single SQL statement that inserts all data and performs all operations
on the data is generated. This increases the speed of Data Manipulation Language
(DML) operations. Set based mode offers optimal performance but minimal
auditing details.

Configuring Mappings Reference

24-4 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ Row based: Statements that process data row by row are generated. The select
statement is a SQL cursor. All subsequent statements are PL/SQL. Because data is
processed row by row, the row-based operating mode has the slowest performance
but offers exhaustive auditing details.

■ Row based (Target Only): A cursor select statement is generated and attempts are
made to include as many operations as possible in the cursor. For each target,
Warehouse Builder generates a PL/SQL insert statement and inserts each row into
the target separately.

■ Set based fail over row based: The mapping is executed in set based mode. If an
error occurs, the execution fails and the mapping is started over again in the
row-based mode. This mode is recommended for use only in test environments
and is not recommended for use in production environments.

■ Set based fail over row based (Target Only): The mapping is first executed in set
based mode. If an error occurs, the execution fails over to Row based (Target
Only) mode. This mode is recommended for use only in test environments and is
not recommended for use in production environments.

Default Purge Group
Default Purge Group is used when executing the package. Each audit record in the
runtime schema is assigned to the purge group specified.

Maximum Number of Errors
Use Maximum Number of Errors to indicate the maximum number of errors allowed
while executing the package. Execution of the package terminates when the number of
errors exceeds the maximum number of errors value.

The Maximum Number of Errors parameter applies to the count of errors for the entire
mapping run, whether run in set-based, row-based, or failover modes. Consider the
following cases:

■ Maximum number of errors is set to 50 and the mapping is run in set-based mode.
The data did not load successfully. One error resulted from failure of the set-based
load DML statement. The mapping return status is WARNING.

■ Maximum number of errors is set to 50, the mapping is run in set-based mode, and
Enable Constraint parameter is set to false. The data is loaded successfully, but 60
constraint violation errors occurred during reenabling of the constraint. The
mapping return status is ERROR.

■ Max number of errors is set to 50 and the mapping is run in row-based mode.
Some of the data loaded successfully, but with many errors. The mapping will
terminate after reaching the 50th error. The mapping return status is ERROR.

■ Max number of errors is set to 50 and the mapping is run in set-based failover to
row-based mode. The data did not load successfully in the set-based mode. One
error resulted from the failure of the set-based load DML statement. Some of the
data loaded successfully in the row-based mode, but with many errors. The
mapping will terminate after reaching the 49th error in the row-based mode
because there was one error counted in set-based mode. The mapping return
status is ERROR.

Number of Threads to Process Chunks
The Number of Threads to Process Chunks parameter represents the number of
threads used to process the chunks of source data.

Configuring Mappings Reference

Mappings and Process Flows Reference 24-5

Code Generation Options
The Code Generation Options include the following:

■ ANSI SQL Syntax

■ Commit Control

■ Analyze Table Statements

■ Enable Parallel DML

■ Optimized Code

■ Authid

■ Use Target Load Ordering

■ ERROR TRIGGER

■ Bulk Processing Code

■ Generation Mode

ANSI SQL Syntax
If you select this option, ANSI SQL syntax is generated. Otherwise, Oracle SQL syntax
is generated.

Commit Control
Automatic: This is the default setting. Warehouse Builder loads and then
automatically commits data based on the mapping design. This setting is valid for all
mapping types. For multiple targets in a single mapping, data is committed based on
target by target processing (insert, update, delete).

Automatic Correlated: Automatic correlated commit is a specialized type of automatic
commit that applies only to PL/SQL mappings with multiple targets.Warehouse
Builder considers all targets collectively and commits or rolls back data uniformly
across all targets.

The mapping behavior varies according to the operating mode that you select. For
more information about automatic correlated commit, see "Committing Data from a
Single Source to Multiple Targets" on page 10-7.

Manual: Select manual commit control for PL/SQL mappings when you want to
interject complex business logic or perform validations before committing data.

You have the following options for specifying manual commits:

■ You can define the commit logic within the mapping as described in "Embedding
Commit Logic into the Mapping" on page 10-9.

■ You can commit data in a process flow or from a SQL*Plus session as described in
"Committing Data Independently of Mapping Design" on page 10-10.

No Commit: If you set this option, then Warehouse Builder mapping does not issue a
commit while the mapping executes.

Analyze Table Statements
If you select this option, code is generated for analyzing the target table after the target
is loaded, if the resultant target table is double or half its original size.

If the target table is not in the same schema as the mapping and you want to analyze
the table, then you must grant ANALYZE ANY to the schema owning the mapping.

Configuring Mappings Reference

24-6 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Enable Parallel DML
If you select this option, parallel DML is enabled at run time. Executing DML
statements in parallel improves the response time of data-intensive operations in large
databases that are present in a data warehouse.

Optimized Code
Select this option to improve performance for mappings that include the Splitter
operator and inserts into multiple target tables. When this option is selected and the
mapping is executed by Oracle9i or later, a single SQL statement is generated (multi_
table_insert) that inserts data into multiple tables based on the same set of source
data.

Note that the multiple table insert is performed only if this option is selected and the
Oracle target module database is Oracle9i or later. The multiple table insert is
performed only for mappings in set-based mode that include a Splitter operator, and
does not include active operators, such as an Aggregator or Joiner operator, between
the Splitter and the target. In addition, the multiple insert is available only for tables. It
is not available for views, materialized views, dimensions, or cubes. Each target table
must have fewer than 999 columns. For detailed instructions on how to create a
mapping with multiple targets, see "Example: Creating Mappings with Multiple
Targets" on page 26-38.

Do not select this option for mappings run in row-based mode or for mappings
executed by Oracle8i server. Also, do not select this option when auditing information
for individual targets is required.

When this option is selected, one total SELECT and INSERT count is returned for all
targets.

Authid
Specifies the AUTHID option to be used while generating the code. The options that
you can select are Current_User, Definer, or None.

Use Target Load Ordering
For PL/SQL mappings with multiple targets, you can generate code that defines an
order for loading the targets. This is important when a parent-child relationship exists
between two or more targets in a mapping. The option is selected by default.

ERROR TRIGGER
Specify the name of the error trigger procedure in this field.

Bulk Processing Code
If this configuration parameter is selected and the operating mode is set to row-based,
Warehouse Builder generates PL/SQL bulk processing code. PL/SQL bulk processing
improves row-based ETL performance by collecting, processing, and writing rows in
bulk, instead of doing it row by row. The size of each bulk is determined by the
configuration parameter Bulk Size. Set-based mode offers optimal performance,
followed by bulk processing, and finally by row-based mode. For more information,
see Oracle PL/SQL Reference Guide.

Generation Mode
By default, when code is generated for a mapping, the code for all possible operating
modes is generated. That is, if you set the Default Operating Mode to Set based,

Configuring Mappings Reference

Mappings and Process Flows Reference 24-7

Warehouse Builder still generates code for all possible operating modes when
Generation Mode is set to All Operating Modes. This enables you to switch the
operating modes for testing purposes at run time.

Sources and Targets Reference
For relational and dimensional sources and targets such as tables, views, and cubes,
Warehouse Builder displays the following set of properties for each operator:

■ Use LCR APIs

■ Database Link

■ Location

■ Conflict Resolution

■ Schema

■ Partition Exchange Loading

■ Hints

■ Constraint Management

■ SQL*Loader Parameters

Use LCR APIs
By default, this setting is enabled and DML is performed using LCR APIs if available.
If no LCR APIs are available, then the standard DML is used.

Database Link
This parameter is maintained for backward compatibility only.

In previous releases, you could select a database link by name from the list. Source
operators can be configured for schemas and database links, but targets can be
configured for schemas only. Sources and targets can reside in different schemas, but
they must reside in the same database instance.

Location
This setting specifies the location that is used to access the source or target operator.

Conflict Resolution
Enable this setting to detect and resolve any conflicts that may arise during DML
operations using the LCR APIs.

Schema
This parameter is maintained for backward compatibility only.

In previous releases, you could link the mapping to a particular schema by clicking on
the Schema field and typing a name.

Partition Exchange Loading
Use the settings in this section to enable Partition Exchange Loading (PEL) into a
target table. For specific information about each of these settings and additional
information about how to design mappings for PEL, see "Improved Performance
through Partition Exchange Loading" on page 10-21.

Configuring Mappings Reference

24-8 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Hints
Define loading or extraction hints. Application developers often develop insights into
their data. For example, they know that a query runs much faster if a set of tables is
joined in one order rather than another. Warehouse Builder can incorporate these
insights into the generated SQL code packages as SQL Optimizer Hints.

When you select a hint from the Hints dialog box, the hint appears in the Existing
Hints field. Enter additional text as appropriate in the Extra Text column. The editor
includes the hint in the mapping definition as is. There is no validation or checking on
this text.

You can define loading hints for mappings that load data in INSERT or UPDATE
mode. By default, commonly used hints such as APPEND and PARALLEL are added.
For all loading modes other than INSERT, the APPEND hint causes no effect and you
can choose to remove it.

Hint is available during mapping configuration. To configure a hint:

1. In the Projects Navigator, expand the Databases folder, and then the required
module.

2. In the module, expand the Mappings node.

3. Right-click the required mapping and select Configure.

The Configuration tab displays the configuration parameters of the mapping.

4. In the Configuration tab, expand the required operator type and then expand the
required operator.

5. Expand the Hints node and click the Ellipsis button to the right of a hint type to
enter a hint.

For information about optimizer hints and how to use them, see Oracle Database
Performance Tuning Guide.

Constraint Management
Configure the following Constraint Management parameters:

■ Exceptions Table Name: All rows that violate their foreign key constraints during
reenabling are logged into the specified exceptions table. No automatic truncation
of this table is performed either before or after the load. Constraint violations are
also loaded into the runtime audit error tables.

For SQL and PL/SQL loading, if you do not specify an exceptions table, invalid
rows are loaded into a temporary table located in the default tablespace and then
loaded into the Runtime Audit error table. The table is dropped at the end of the
load.

If you are using SQL*Loader direct path loading, you must specify an exception
table. Consult the SQL*Loader documentation for more information.

■ Enable Constraints: If you set this option to False, Warehouse Builder disables
constraints on the target tables, loads data, and then reenables the constraints.
Constraint violations found during reenable are identified in the runtime audit
error table and, if specified, loaded into an exceptions table. If you set this option
to True, Warehouse Builder does not manage constraints and the data from the
source is loaded into the target table.

When you disable constraints, loading is quicker because a constraint check is not
performed. However, if exceptions occur for any rows during reenabling, the
constraints for those rows will remain in a nonvalidated state. These rows are

Configuring Mappings Reference

Mappings and Process Flows Reference 24-9

logged in the runtime audit error table by their ROWID. You must manually
inspect the error rows to take any necessary corrective action.

The disabling and enabling of constraints happens on the target table. When the
Enable Constraints parameter is set to True, the constraints on the target table will
be disabled prior to the loading of data, and will be reenabled after the loading of
data. When the constraints are reenabled, the entire table is scanned and rows that
violate the constraints are logged in the exceptions table. These rows are reported
as constraint violation errors in the audit browser.

Consider a scenario where the target table is empty and the Enable Constraints
parameter is set to True. Initially suppose that the source table has 10 rows, of
which 2 rows violate the constraint on the target table. When the mapping is
executed, the constraints on the target table are first disabled, then data is loaded
(all 10 rows), and then constraints on the target table are reenabled. When the
constraints are reenabled, the 2 rows that violate the constraints are logged into the
exceptions table. The audit browser reports that there are 2 constraint violation
errors.

Later, the mapping is again executed with a new source table containing 20 rows,
of which 5 rows violate the constraint on the target table. After the data is loaded
into the target table (all 20 rows), the target table has 30 rows. When the
constraints on the target table are reenabled, 7 rows will be logged in to the
exceptions table and reported as constraint violation errors in the audit browser.
These include the 5 rows reported newly as well as the 2 rows reported initially.
This is because Warehouse Builder scans the entire target table, which means that
all 30 rows will be checked and therefore the 2 rows with violations from the first
data load will still be included. Warehouse Builder cannot identify only the new
rows added when the mapping was executed the second time. Therefore, unless
you truncate the target table before each data load, you will always see the
constraint violations from the previous data loads reported each time.

Setting the Enable Constraints option to True is subject to the following
restrictions:

– For set-based operating mode, the foreign key constraints on the targets are
disabled before loading, and then reenabled after loading. This parameter has
no effect on foreign key constraints on other tables referencing the target table.
If the load is done using SQL*Loader instead of a SQL or PL/SQL package,
then a reenable clause is added to the .ctl file.

– For set-based fail over to row-based and set-based fail over to row-based
(target only) operating modes, the deselect setting disables the foreign key
constraints on the targets before loading and then reenables them if the load
succeeds in set-based mode. This setting has no effect on foreign keys
referencing other tables. If the load fails over to row-based, then loading will
repeat in row-based mode and all constraints remain enabled.

– For row-based or row-based (target only) operating modes, all foreign key
constraints remain enabled even if the option is not selected.

– For the TRUNCATE/INSERT DML type, the deselect setting disables foreign
key constraints on other tables referencing the target table before loading, and

Note: Constraint violations created during reenabling will not
cause the load to fail from set-based mode over to row-based mode.

Configuring Mappings Reference

24-10 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

then reenables the constraints after loading, regardless of the default operating
mode.

SQL*Loader Parameters
When you have a Table operator that contains inputs from a flat file, you must
configure the following SQL*Loader Parameters properties:

■ Partition Name: Indicates that the load is a partition-level load. Partition-level
loading enables you to load one or more specified partitions or subpartitions in a
table. Full database, user, and transportable tablespace mode loading does not
support partition-level loading. Because incremental loading (incremental,
cumulative, and complete) can be done only in full database mode, partition-level
loading cannot be specified for incremental loads. In all modes, partitioned data is
loaded in a format such that partitions or subpartitions can be selectively loaded.

■ Sorted Indexes Clause: Identifies the indexes on which the data is presorted. This
clause is allowed only for direct path loads. Because the data sorted for one index
is not usually in the right order for another index, you specify only one index in
the SORTED INDEXES clause. When the data is in the same order for multiple
indexes, all indexes can be specified at once. All indexes listed in the SORTED
INDEXES clause must be created before you start the direct path load.

■ Singlerow: Intended for use during a direct path load with APPEND on systems
with limited memory, or when loading a small number of records into a large
table. This option inserts each index entry directly into the index, one record at a
time. By default, SQL*Loader does not use SINGLEROW to append records to a
table. Index entries are stored in a temporary area and merged with the original
index at the end of the load. Although this method achieves better performance
and produces an optimal index, it requires extra storage space. During the merge,
the original index, the new index, and the space for new entries all simultaneously
occupy storage space. With the SINGLEROW option, storage space is not required
for new index entries or for a new index. Although the resulting index may not be
as optimal as a freshly sorted one, it takes less space to produce. It also takes more
time, because additional UNDO information is generated for each index insert.
This option is recommended when the available storage is limited. It is also
recommended when the number of records to be loaded is small compared to the
size of the table. A ratio of 1:20 or less is considered small.

■ Trailing Nullcols: Sets SQL*Loader to treat any relatively positioned columns that
are not present in the record as null columns.

■ Records To Skip: Invokes the SKIP command in SQL*Loader. SKIP specifies the
number of logical records from the beginning of the file that should not be loaded.
By default, no records are skipped. This parameter continues loads that have been
interrupted for some reason. It is used for all conventional loads, for single-table
direct loads, and for multiple-table direct loads when the same number of records
is loaded into each table. It is not used for multiple-table direct loads when a
different number of records is loaded into each table.

■ Database File Name: Specifies the names of the export files to import. The default
extension is .dmp. Because you can export multiple export files, you may must
specify multiple file names to be imported. You must have read access to the
imported files. You must also have the IMP_FULL_DATABASE role.

Configuring Flat File Operators
The Configuration tab of the Flat File operator contains additional settings for Flat File
operators, depending on how the operators are used in the mapping.

Configuring Mappings Reference

Mappings and Process Flows Reference 24-11

■ Flat File Operators as a Target: A PL/SQL deployment code package is generated.
For information about configuring the parameters associated with a Flat File
operator used as a target, see "Flat File Operators as a Target" on page 24-11.

■ Flat File Operator as a Source: SQL*Loader scripts are generated. For information
about the parameters associated with a Flat File operator used as a source, see
"Flat File Operator as a Source" on page 24-11.

Flat File Operators as a Target
To configure properties unique to mappings with flat file targets:

1. Select a mapping from the Projects Navigator, select Design from the menu bar,
and select Configure.

Or, right-click the mapping you want to configure and select Configure.

Warehouse Builder displays the Configuration tab for the mapping.

2. Choose the parameters that you want to configure and click the space to the right
of the parameter name to edit its value.

For each parameter, you can either select an option from a list, enter a value, or
click the Ellipsis button to display another properties dialog box.

3. Select the Deployable option to generate a set of scripts for mapping objects
marked as deployable. If this option is not selected for a mapping, scripts are not
generated for that mapping.

4. Set Language to the type of code that you want to generate for the selected
mapping. The options you can choose from depend upon the design and use of
the operators in the mapping. Depending on the mapping, you can select from
PL/SQL, ABAP (for an SAP source mapping), or SQL*Loader.

5. Specify the location to deploy the mapping.

6. Under Runtime Parameters, set the Default Operating Mode to Row based
(target only). This type of mapping will not generate code in any other default
operating mode. For a description of each runtime parameter, see "Runtime
Parameters" on page 24-1.

7. Set the Code Generation Options as described in "Code Generation Options" on
page 24-5.

8. Set the Sources and Targets Reference as described in "Sources and Targets
Reference" on page 24-6.

9. For Access Specification, specify the name of the flat file target in Target Data File
Name. For the Target Data File Location, specify a target file located on the
computer where you installed the Runtime Platform. Select Output as XML file if
you want the output to be in an xml file.

Flat File Operator as a Source
To configure a mapping with a Flat File operator as a source:

1. Select a mapping from the Projects Navigator, select Design from the menu bar,
and select Configure. Or, right-click the mapping that you want to configure and
select Configure.

2. Select the parameters that you want to configure and click the space to the right of
the parameter name to edit its value.

Configuring Mappings Reference

24-12 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

For each parameter, you can specify whether you want the parameter to be
selected, select an option from a list, enter a value, or click the Ellipsis button to
display another properties dialog box.

3. Select the Deployable option to generate SQL*Loader script.

4. Specify the Log File Location and Log File Name.

5. Select Continue Load.

If SQL*Loader runs out of space for data rows or index entries, the load is
discontinued. If the Continue Load option is selected, an attempt is made to
continue discontinued loads.

6. In Nls Characterset, specify the character set to place in the CHARACTERSET
clause.

7. Select Direct Mode to indicate that a direct path load will be done. If this option is
not selected, a conventional load will be done. In general, direct mode is faster.

8. Select Operation Recoverable to indicate that the load is recoverable. If this option
is not selected, the load is not recoverable and records are not recorded in the redo
log.

9. Configure the following parameters that affect the OPTIONS clause in the
SQL*Loader script that is generated for mappings with flat file sources.

Perform Parallel Load: If this option is selected, direct loads can operate in
multiple concurrent sessions.

Errors Allowed: If the value specified is greater than 0, then the ERRORS = n
option is generated. SQL*Loader terminates the load at the first consistent point
after it reaches this error limit.

Records To Skip: If the value specified is greater than 0, then the SKIP = n option
is generated. This value indicates the number of records from the beginning of the
file that should not be loaded. If the value is not specified, no records are skipped.

Records To Load: If the value specified is greater than 0, then the LOAD = n
option is generated. This value specifies the maximum number of records to load.
If a value is not specified, then all of the records are loaded.

Rows Per Commit: If the value specified is greater than 0, then the ROWS = n
option is generated. For direct path loads, the value identifies the number of rows
to read from the source before a data is saved. For conventional path loads, the
value specifies the number of rows in the bind array.

Read Size: If the value specified is greater than 0, then the READSIZE = n option
is generated. The value is used to specify the size of the read buffer.

Bind Size: If the value specified is greater than 0, then the BINDSIZE = n option is
generated. The value indicates the maximum size, in bytes, of the bind array.

Read Buffers: If the value specified is greater than 0, then the READBUFFERS = n
clause is generated. READBUFFERS specifies the number of buffers to use during
a direct path load. Do not specify a value for READBUFFERS unless it is necessary.

Preserve Blanks: If this option is selected, then the PRESERVE BLANKS clause is
generated. PRESERVE BLANKS retains leading white space when optional
enclosure delimiters are not present. It also leaves the trailing white space intact
when fields are specified with a predetermined size.

Configuring Process Flows Reference

Mappings and Process Flows Reference 24-13

Database File Name: This parameter enables you to specify the characteristics of
the physical files to be loaded. The initial values of these parameter is set from the
properties of the flat file used in the mapping.

If this parameter is set to a nonblank value, then the FILE= option is generated.
The value specified is enclosed in single quotation marks in the generated code.

Control File Location and Control File Name: The control file name necessary for
audit details.

For more information about each SQL*Loader option and clause, see Oracle
Database Utilities.

10. Expand the Runtime Parameters to configure your mapping for deployment.

Audit: Select this option to perform an audit when the package is executed.

Default Purge Group: The Default Purge Group is used when executing the
package. Each audit record in the runtime schema is assigned to the purge group
specified.

11. Expand Sources and Targets Reference to set the physical properties of the
operators in the mapping as described in "Sources and Targets Reference" on
page 24-7.

Configuring Process Flows Reference
To configure a process flow module:

1. Right-click the process flow module and select Configure.

Warehouse Builder displays the Configuration tab for the process flow module.

2. Set the parameters for Evaluation Location and Identification Location.

Evaluation Location is the location from which this process flow is evaluated.

Identification Location provides the location where the generated code will be
deployed to.

To configure a process flow package:

1. Right-click the process flow package and select Configure.

Warehouse Builder displays the Configuration tab for the process flow package.

2. Set the parameters for Referred Calendar and Generation Comments.

Referred Calendar provides the schedule to associate with this package.

Generation Comments provides additional comments for the generated code.

Click any of the activities of a package to view its properties.

Under Path Settings, set the following properties for each activity in the process flow:

Execution Location: The location from which this activity is executed. If you
configured Oracle Enterprise Manager, you can select an OEM agent to execute the
process flow.

Remote Location: The remote location for FTP activities only.

Working Location: The working location for FTP, FILE EXISTS, and External Process
activities only.

Configuring Process Flows Reference

24-14 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Deployed Location: The deployment location. This setting applies to transformation
activities only. For activities referring to predefined transformations, you must change
the setting from Use Default Location and specify a valid location.

Under General Properties, you can view the bound name, which is the name of the
object that the activity represents in the process flow. Only mapping, transformation,
and subprocess activities have bound names.

Under Execution Settings, select the option Use Return as Status.

This setting governs the behavior for activities that return NUMBER in their output.
These activities include the FTP, User Defined, and Transform activities. When you
select Use Return as Status, the Process Flow Editor assigns the outgoing transition
conditions based on the following numeric return values for the activity:

1 = Success Transition

2 = Warning Transition

3 = Error Transition

Source and Target Operators 25-1

25
Source and Target Operators

This chapter provides details on how to use operators as sources and targets in an
Oracle Warehouse Builder mapping.

This chapter contains the following topics:

■ List of Source and Target Operators

■ Using Oracle Source and Target Operators

■ Using Remote and non-Oracle Source and Target Operators

■ Using Flat File Source and Target Operators

List of Source and Target Operators
The source and target operators are:

■ Constant Operator on page 25-9

■ Construct Object Operator on page 25-9

■ Cube Operator on page 25-10

■ Data Generator Operator on page 25-12

■ Dimension Operator on page 25-14

■ Expand Object Operator on page 25-18

■ External Table Operator on page 25-19

■ Flat File Operator on page 25-32

■ Mapping Input Parameter Operator on page 25-20

■ Mapping Output Parameter Operator on page 25-21

■ Materialized View Operator on page 25-22

■ Queue Operator on page 25-23

■ Sequence Operator on page 25-25

■ Table Operator on page 25-26

■ Varray Iterator Operator on page 25-29

■ View Operator on page 25-30

Using Oracle Source and Target Operators

25-2 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Using Oracle Source and Target Operators
Oracle source and target operators refer to operators that are bound to Oracle data
objects in the workspace. Use these operators in a mapping to load data into or source
data from Oracle data objects.

Setting Properties for Oracle Source and Target Operators
The Property Inspector displays the properties of the selected operator. It contains the
following categories of parameters for source and target operators:

■ Change Data Capture: This category is displayed only for tables and views. It
contains the following properties: Capture Consistency, Change Data Capture
Filter, Enabled, and Trigger Based Capture.

■ Conditional Loading: You can set the following properties: Target Filter for
Update, Target Filter for Delete, and Match By Constraint.

■ Data Chunking: This category is displayed for tables, views, and materialized
views. It contains the following properties: Chunk Filter Condition, Chunking
Enabled, and Parallel Chunk Filter Condition. For information about these
properties, see "Chunking for Table Operators" on page 25-27.

■ Error Table: You can set the Error Table Name, Roll up Errors, and Select Only
Errors from this Operator properties. This section of properties is displayed only
for the following mapping operators: Table, View, Materialized View, External
Table, and Dimension.

■ General: Under the General node, you can set Primary Source, Target Load Order,
and the Loading Type. Depending upon the type of target, you can set different
values for the Loading Type as described in Loading Types for Oracle Target
Operators and Loading Types for Flat Files.

■ Keys (read-only): You can view the Key Name, Key Type, and Referenced Keys. If
the operator functions as a source, the key settings are used in conjunction with
the join operator. If the operator functions as a target, the key settings are used in
conjunction with the Match By Constraint parameter.

■ File Properties: Under the file properties, you can view the Bound Name.

■ Temp Stage Table: This category is displayed for tables, views, materialized
views, and external tables.It contains the following properties: Extra DDL Clauses,
Is Temp Staging Table, and Temp Stage Table ID. These properties are described in
"Creating Temporary Tables While Performing ETL" on page 25-28.

Capture Consistency
The Capture Consistency determines the type of Change Data Capture performed.
Select one of the following options:

■ Consistent Set: Performs consistent set Change Data Capture.

■ Non Consistent Set: Performs non consistent set Change Data Capture.

■ None: Does not perform Change Data Capture.

Change Data Capture Filter
The Change Data Capture Filter property represents the filter used to capture changes
for a particular subscriber.

Using Oracle Source and Target Operators

Source and Target Operators 25-3

Enabled
Select the Enabled property to enable the functionality that performs Change Data
Capture.

Trigger Based Capture
Select the Trigger Based Capture property to indicate changes are captured and
propagated using triggers on the source tables.

Primary Source
Oracle Application Embedded Data Warehouse (EDW) users, refer to EDW
documentation. All other users can disregard this parameter.

Loading Types for Oracle Target Operators
Select a loading type for each target operator using the Loading Type property.

For all Oracle target operators, except for dimensions and cubes, select one of the
following options.

■ CHECK/INSERT: Checks the target for existing rows. If there are no existing rows,
the incoming rows are inserted into the target.

■ DELETE: The incoming row sets are used to determine which of the rows on the
target are to be deleted.

■ DELETE/INSERT: Deletes all rows in the target and then inserts the new rows.

■ INSERT: Inserts the incoming row sets into the target. The insert operation fails if
a row already exists with the same primary or unique key.

■ INSERT/UPDATE: For each incoming row, the insert operation is performed first.
If the insert fails, an update operation occurs. If there are no matching records for
update, the insert is performed. If you select INSERT/UPDATE and the Default
Operating Mode is set to Row based, you must set unique constraints on the
target. If the operating mode is set to Set based, Warehouse Builder generates a
MERGE statement.

■ NONE: No operation is performed on the target. This setting is useful for testing.
Extraction and transformations run but have no effect on the target.

■ TRUNCATE/INSERT: Truncates the target and then inserts the incoming row set.
If you select this option, the operation cannot be rolled back even if the execution
of the mapping fails. Truncate permanently removes the data from the target.

■ UPDATE: Uses the incoming row sets to update existing rows in the target. If no
rows exist for the specified match conditions, no changes are made.

If you set the configuration parameter PL/SQL Generation Mode of the target
module to Oracle 10g, Oracle 10gR2, Oracle 11gR1, or Oracle 11gR2, the target is
updated in set-based mode. The generated code includes a MERGE statement
without an insert clause. For modules configured to generate Oracle 9i and earlier
versions of PL/SQL code, the target is updated in row-based mode.

■ UPDATE/INSERT: If the Default Operating Mode is set to Row based, for each
incoming row, the update is performed first followed by an insert if no rows are
updated. If the Default Operating Mode is set to Set based, a MERGE statement is
generated. Set-based mode can only be generated if the PL/SQL Generation Mode
parameter of the target module is Oracle 10g or higher.

Using Oracle Source and Target Operators

25-4 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

For dimensions and cubes, the Loading Type property has the following options: Load
and Remove. Use Load to load data into the dimension or cube. Use Remove to
remove data from the dimension or cube.

Loading Types for Flat File Targets
Configure SQL*Loader parameters to define SQL*Loader options for your mapping.
The values chosen during configuration directly affect the content of the generated
SQL*Loader and the run time control files. SQL*Loader provides two methods for
loading data:

■ Conventional Path Load: Executes a SQL INSERT statement to populate tables in
Oracle Database.

■ Direct Path Load: Eliminates much of the Oracle Database overhead by formatting
Oracle data blocks and writing the data blocks directly to the database files.
Because a direct load does not compete with other users for database resources, it
can usually load data at or near disk speed.

Certain considerations such as restrictions, security, and backup implications are
inherent to each method of access to database files. For more information, see
Oracle Database Utilities.

When designing and implementing a mapping that extracts data from a flat file
using SQL*Loader, you can configure different properties affecting the generated
SQL*Loader script. Each load operator in a mapping has an operator property
called Loading Type. The value contained by this property affects how the
SQL*Loader INTO TABLE clause for that load operator is generated. Although
SQL*Loader can append, insert, replace, or truncate data, it cannot update any
data during its processing.

Table 25–1 lists the INTO TABLE clauses associated with each load type and their
affect on data in the existing targets.

Target Load Order
This property enables you to specify the order in which multiple targets within the
same mapping are loaded. Warehouse Builder determines a default load order based
on the foreign key relationships. Use this property to overrule the default order.

Target Filter for Update
If the condition evaluates to true, the row is included in the update loading operation.

Table 25–1 Loading Types and INTO TABLE Relationship

Loading Types
INTO TABLE
Clause Affect on Target with Existing Data

INSERT/UPDATE APPEND Adds additional data to target

DELETE/INSERT REPLACE Removes existing data and replaces with
new (DELETE trigger fires)

TRUNCATE/INSERT TRUNCATE Removes existing data and replaces with
new (DELETE trigger fires)

CHECK/INSERT INSERT Assumes target table is empty

NONE INSERT Assumes target table is empty

Using Oracle Source and Target Operators

Source and Target Operators 25-5

Target Filter for Delete
If the condition evaluates to true, the row is included in the delete loading operation.

Match By Constraint
When loading target operators with the UPDATE or the DELETE conditions, you can
specify matching criteria. You can set matching and loading criteria manually or
choose from several built-in options. Use Match By Constraint to indicate whether
unique or primary key information on a target overrides the manual matching and
loading criteria set on its attributes. When you click the property Match By Constraint,
Warehouse Builder displays a list containing the constraints defined on that operator
and the built-in loading options.

If you select All Constraints, all manual attribute load settings are overruled and the
data is loaded as if the load and match properties of the target attributes were set as
displayed in Table 25–2.

When you select All Constraints, the load setting Load Column when Updating Row
is not automatically assumed to be No for key attributes. However, when performing
MERGE generation, this will be validated and a validation warning is displayed when
certain attributes that are used for UPDATE matching are also used for UPDATE
loading.

If you select No Constraints, all manual load settings are honored, and the data is
loaded accordingly.

If you select a constraint previously defined for the operator, all manual attribute load
settings are overruled, and the data is loaded as if the load and match properties of the
target were set as displayed in Table 25–3.

When you select a previously defined constraint, the load setting Load Column when
Updating Row is not automatically assumed to be No for key attributes. However,
when performing MERGE generation, a validation warning is displayed when certain
attributes that are used for UPDATE matching are also used for UPDATE loading

Reverting Constraints to Default Values
If you made changes at the attribute level and you want to default all settings, click
Advanced. A list containing the loading options is displayed. Warehouse Builder
defaults the settings based on the constraint type that you select.

Table 25–2 All Constraints Target Load Settings

Load Setting Key Attribute All Other Attributes

Match Column when Updating Row YES NO

Match Column when Deleting Row YES NO

Table 25–3 Target Load Settings for a Selected Constraint

Load Setting
Selected Key
Attributes All Other Attributes

Load Column when Updating Row NO YES

Match Column when Updating Row YES NO

Match Column when Deleting Row YES NO

Using Oracle Source and Target Operators

25-6 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

For example, if you want to reset the match properties for all key attributes, click
Advanced, select No Constraints, and click OK. The manual load settings are
overwritten and the data is loaded based on the settings displayed in Table 25–4.

Alternatively, if you click Advanced and select All Constraints, the manual load
settings are overwritten and data is loaded based on the settings displayed in
Table 25–5.

Bound Name
The name used by the code generator. If an operator is currently bound and
synchronized, then this property is read-only. If an operator is not yet bound, you can
edit the bound name within the Mapping Editor before you synchronize it to a
workspace object.

Key Name
Name of the primary, foreign, or unique key.

Key Columns
Local columns that define this key. Each key column is comma-delimited if the
operator contains more than one key column.

Key Type
Type of key, either primary, foreign, or unique.

Referenced Keys
If the operator contains a foreign key, Referenced Keys displays the primary key or
unique key for the referenced object.

Error Table Name
The name of the error table that stores the invalid records during a load operation.

Table 25–4 Default Load Settings for Advanced No Constraints

Load Setting All Key Attributes All Other Attributes

Load Column when Inserting Row YES NO

Load Column when Updating Row YES YES

Match Column when Updating Row NO NO

Match Column when Deleting Row NO NO

Table 25–5 Default Load Settings for Advanced All Constraints

Load Setting All Key Attributes All Other Attributes

Load Column when Inserting Row YES YES

Load Column when Updating Row NO YES

Match Column when Updating Row YES NO

Match Column when Deleting Row YES NO

Using Oracle Source and Target Operators

Source and Target Operators 25-7

Roll up Errors
Select Yes to roll up records selected from the error table by the error name. Thus all
errors generated by a particular input record will be rolled up into a single record with
the error names concatenated in the error name attribute.

Select Only Errors from this Operator
Rows selected from the error table will contain only errors created by this operator in
this map execution

Setting Attribute Properties
For each attribute in a source and target operator, parameters are categorized into the
following types:

■ General: Under the General properties, you can view the Bound Name property,
the Business name, and Physical name.

■ Chunking_column: This category is displayed only for attributes in Table, View,
and Materialized View operators. It contains one property Chunking Number
Column.

■ Code Template Metadata Tags: This category contains the following properties:
SCD, UD1, UD2, UD3, UD4, UD5, and UPD.

■ Data Type Information: The data type properties are applicable to all operators.
They include Data Type, Precision, Scale, Length, and Fractional Seconds
Precision.

■ Loading Properties: The operators for tables, dimensions, cubes, views, and
materialized views have a Loading Properties category. This category contains the
following settings: Load Column When Inserting Row, Load Column When
Updating Row, Match Column When Updating Row, Update: Operation, and
Match Column When Deleting Row.

Certain operators contain properties that are specific to that particular operator. These
properties are listed under the Operator Specific Properties node and are described in
the sections that discuss that operator.

Bound Name
Name used by the code generator to identify this item. By default, it is the same name
as the item. This is a read-only setting when the operator is bound.

Data Type
Data type of the attribute.

Precision
The maximum number of digits this attribute will have if the data type of this attribute
is a number or a float. This is a read-only setting.

Scale
The number of digits to the right of the decimal point. This only applies to number
attributes.

Length
The maximum length for a CHAR, VARCHAR, or VARCHAR2 attribute.

Using Oracle Source and Target Operators

25-8 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Fractional Seconds Precision
The number of digits in the fractional part of the datetime field. It can be a number
between 0 and 9. This property is used only for TIMESTAMP, TIMESTAMP WITH TIME
ZONE, and TIMESTAMP WITH LOCAL TIME ZONE data types.

Load Column When Inserting Row
This setting prevents data from moving to a target even though it is mapped to do so.
If you select Yes (default), the data will reach the mapped target.

Load Column When Updating Row
This setting prevents the selected attribute data from moving to a target even though it
is mapped to do so. If you select Yes (default), the data reaches the mapped target
attribute. If all columns of a unique key are not mapped, then the unique key is not
used to construct the match condition. If no columns of a unique key are mapped, an
error is displayed. If a column (not a key column) is not mapped, then it is not used in
loading.

Match Column When Updating Row
This setting updates a data target row only if there is a match between the source
attribute and mapped target attribute. If a match is found, then an update occurs on
the row. If you set this property to Yes (default), the attribute is used as a matching
attribute. If you use this setting, then all the key columns must be mapped. If there is
only one unique key defined on the target entity, use constraints to override this
setting.

Update: Operation
You can specify an update operation to be performed when a matching row is located.
An update operation is performed on the target attribute using the data of the source
attribute. Table 25–6 lists the update operations that you can specify and describes the
update operation logic.

Match Column When Deleting Row
Deletes a data target row only if there is a match between the source attribute and
mapped target attribute. If a match is found, then a delete operation occurs on the row.

Table 25–6 Update Operations

 Operation Example
Result If Source Value = 5 and Target
Value = 10

= TARGET = SOURCE TARGET = 5

+= TARGET = SOURCE + TARGET TARGET = 15 (5 + 10)

-= TARGET = TARGET - SOURCE TARGET = 5 (10 - 5)

=- TARGET = SOURCE - TARGET TARGET = negative 5 (5 - 10)

*= TARGET = SOURCE * TARGET TARGET = 50 (5 * 10)

/= TARGET = TARGET / SOURCE TARGET = 2 (10 / 5)

=/ TARGET = SOURCE / TARGET TARGET = 0.5 (5 /10)

||= TARGET = TARGET || SOURCE TARGET = 105 (10 concatenated with 5)

=|| TARGET = SOURCE || TARGET TARGET = 510 (5 concatenated with 10)

Using Oracle Source and Target Operators

Source and Target Operators 25-9

If you set this property to Yes (default), the attribute is used as a matching attribute.
Constraints can override this setting.

Chunking Number Column
Select Chunking Number column for an attribute to use that attribute as the chunking
attribute. This property is applicable only for parallel chunking.

Constant Operator
The Constant operator enables you to define constant values. You can place constants
anywhere in any PL/SQL or ABAP mapping.

The Constant operator produces a single output group that contains one or more
constant attributes. Warehouse Builder initializes constants at the beginning of the
execution of the mapping.

For example, use a Constant operator to load the value of the current system date into
a Table operator. In the Expression Builder, select the public transformation SYSDATE
from the list of predefined transformations.

For more information about public transformations, see Chapter 4, "Overview of
Transforming Data".

To define a Constant operator in a PL/SQL or ABAP mapping:

1. Drop a Constant operator onto the Mapping Editor canvas.

2. Right-click the Constant operator and select Open.

The Constant Editor dialog box is displayed.

3. On the Output tab, create an output attribute by clicking the blank cell in the
Attribute column and entering the name of the output attribute.

The default data type assigned is NUMERIC. You can modify the data type and
any other parameters associated with it such as length, precision, and so on.

4. Enter the expression associated with the output attribute.

Use the Expression field for an output attribute to enter the expression. Or, click
the Ellipsis button to the right of the Expression field to use the Expression Builder
dialog box to define an expression.

The length, precision, and scale properties assigned to the output attribute must
match the values returned by the expressions defined in the mapping. For
VARCHAR, CHAR, or VARCHAR2 data types, enclose constant string literals within
single quotation marks, such as, 'my_string'.

5. Click OK to close the Constant Editor dialog box.

Construct Object Operator
The Construct Object operator enables you to create SQL object data types (object
types and collection types), PL/SQL object types, and cursors in a mapping by using
the individual attributes that they comprise.

For example, you can use a Construct Object operator to create a SQL object type that
is used to load data into a table that contains a column whose data type is an object
type. You can also use this operator to create the payload that loads data into an
advanced queue. This operator also enables you to construct a SYS.REFCURSOR
object.

Using Oracle Source and Target Operators

25-10 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

The Construct Object operator has one input group and one output group. The input
group represents the individual attributes that comprise the object type. The output of
the Construct Object operator is an object type that is created using the individual
attributes. In a mapping, the data type of the output attribute of the Construct Object
operator should match the target attribute to which it is being mapped.

Figure 25–1 displays a mapping that uses a Construct Object operator. The source table
CUST_SRC uses separate attributes to store each component of the customer address.
But the target table CUSTOMERS uses an object type to store the customer address. To
load data from the CUST_SRC table into the CUSTOMERS table, the customer address
should be an object type whose signature matches that of the customer address in
CUSTOMERS. The Construct Object operator takes the individual attributes from
CUST_SRC, that store the customer address as input, and constructs an object type.
The Construct Object operator is bound to the user-defined data type CUST_ADDR
stored in the workspace.

Figure 25–1 Construct Object Operator in a Mapping

To define a Construct Object operator in a mapping:

1. Drag and drop a Construct Object operator onto the Mapping Editor canvas.

2. Use the Add Construct Object dialog box to create or select an object. For more
information about these options, see "Using the Add Operator Dialog Box to Add
Operators" on page 5-13.

3. Map the individual source attributes that are used to construct the object to the
input group of the Construct Object operator.

4. Map the output attribute of the Construct Object operator to the target attribute.
The data type of the target attribute should be an object type.

Note that the signatures of the output attribute of the Construct Object operator
and the target attribute should be the same.

Cube Operator
Use the Cube operator to source data from or load data into cubes.

The Cube operator contains a group with the same name as the cube. This group
contains an attribute for each of the cube measures. It also contains the attributes for

Using Oracle Source and Target Operators

Source and Target Operators 25-11

the surrogate identifier and business identifier of each dimension level that the cube
references. Additionally, the Cube operator displays one group for each dimension
that the cube references.

If you specify an Orphan Management Policy and create an error table for a cube,
when you add this cube to a mapping, the Cube operator contains a group called
ERROR_<cube_name>. This is an output group that contains attributes that are
displayed in the Cube operator details, but not in the Cube operator on the mapping
canvas. To create data flows using these attributes, display these attributes on the
canvas by selecting the ERROR_<cube_name> group on the canvas and from the Graph
menu, selecting Select Display Set, and then All.

You can bind a Cube operator to a cube defined in any Oracle module in the current
project. You can also synchronize the Cube operator and update it with changes made
to the cube to which it is bound. To synchronize a Cube operator, right-click the Cube
operator on the Mapping Editor canvas and select Synchronize.

Cube Operator Properties
The Cube operator has the following properties that you can use to load a cube.

Loading Type Use the Loading Type property to specify if you are loading data into
the cube or removing data from the cube. Set one of the following values for this
property.

■ INSERT_LOAD

All records from the source data set are inserted into the cube. Oracle recommends
that you set this option with orphan management.

■ LOAD

The records from the source data set are merged into the cube. Thus, if a record
that is being loaded from the source already exists in the cube, this record is
updated. Any records in the source data set that do not exist are inserted.

■ REMOVE

The records in the cube that match the incoming source records are deleted from
the cube.

Target Load Order This property determines the order in which multiple targets
within the same mapping are loaded. Warehouse Builder determines a default order
based on the foreign key relationships. You can use this property to overrule the
default order.

Enable Source Aggregation Set this property to True to aggregate source data before
loading the cube. The source data is grouped by all dimension keys.

The default Aggregation function on cube measure attributes is SUM. You can
changed the setting Source Aggregation Function property of the cube measure.

If you set the Orphan Management Policy for the cube to Default Dimension Record
and you set the Enable Source Aggregation property of the Cube operator to False,
execution errors may occur when the cube table is updated. Thus, in this scenario,
Warehouse Builder displays a warning during cube validation.

Solve the Cube Select YES for this property to aggregate the cube data while loading
the cube. This increases the load time, but decreases the query time. The data is first
loaded and then aggregated.

Using Oracle Source and Target Operators

25-12 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Incremental Aggregation Select this option to perform incremental loads. This means
that if the cube has been solved earlier, subsequent loads will only aggregate the new
data.

AW Staged Load If you set AW Staged Load to true, the set-based AW load data is
staged into a temporary table before loading into the AW.

AW Truncate Before Load Indicates whether all existing cube values should be
truncated before loading the cube. Setting this property to YES truncates existing cube
data.

Cube Attribute Properties
You can set the following properties for attributes in a Cube operator.

Update:Operation This property is only applicable to cubes with a ROLAP
implementation and to attributes that represent cube measures.

Specifies the type of update operation for cube measures while loading the cube. The
options that you can select are +=, -=, /=,=,=-, =||, and ||=. The default values is =
and using this value inserts the source fact records into the cube.

For example, if you set this property to +=, the source attribute value that is mapped to
the cube measure is added to the existing measure value. If there are multiple source
fact records with the same dimensionality, ensure that you use an Aggregator operator
to aggregate these records before loading them into the cube.

Null Data Value Specifies the value that is interpreted as null by the orphan
management policy of the cube. While loading cubes, you can use the Orphan Tab of
the Cube editor to specify how records with null dimension key values and records
with invalid dimension key values are treated.

The default value for this property is NULL.

Data Generator Operator
Use a Data Generator operator to introduce a sequence, record number, or system date
into a mapping. You can use a single Data Generator operator to map more than one of
these functions.

For mappings with flat file sources and targets, the Data Generator operator connects
the mapping to SQL*Loader to generate the data stored in the database record.

The following functions are available:

■ RECNUM

■ SYSDATE1

■ SEQUENCE

Warehouse Builder can generate data by specifying only sequences, record numbers,
system dates, and constants as field specifications. SQL*Loader inserts as many
records as are specified by the LOAD keyword.

Recommendation: For PL/SQL mappings, use a Constant
Operator or Sequence Operator instead of a Data Generator
operator.

Using Oracle Source and Target Operators

Source and Target Operators 25-13

The Data Generator operator has one output group with predefined attributes
corresponding to Record Number, System Date, and a typical Sequence. Use the Data
Generator operator to obtain record number, system date, or a sequence. For all other
functions, use a Constant operator or Expression operator.

Figure 25–2 shows a mapping that uses the Data Generator operator to obtain the
current system date. The data from a flat file CUSTOMERS_TXT is loaded in to a staging
table CUST_STAGE. The staging table contains an additional attribute for the date on
which the data was loaded. The SYSDATE1 attribute of the Data Generator operator is
mapped to the DATE_LOADED attribute of the staging table CUST_STAGE.

Figure 25–2 Data Generator in a Mapping

To define a Data Generator in a SQL*Loader mapping:

1. Drop a Data Generator operator onto the Mapping Editor canvas.

2. Select the SEQUENCE attribute from the Data Generator operator and map it to
the target column.

Warehouse Builder displays the properties of this attribute in the Property
Inspector.

3. In the Expression field, click the Ellipsis button to open the Expression Builder and
define an expression.

4. (Optional) Repeat steps 2 and 3 for the RECNUM attribute.

Setting a Column to the Data File Record Number
To set an attribute to the number of the records that the record was loaded from, map
from the RECNUM attribute. Records are counted sequentially from the beginning of
the first data file, starting with record 1. RECNUM increments as each logical record is
assembled. It increments for records that are discarded, skipped, rejected, or loaded.
For example, if you use the option SKIP=10, the first record loaded has a RECNUM of
11.

Setting a Column to the Current Date
A column mapped from SYSDATE1 gets the current system date, as defined by the
SQL SYSDATE function.

The target column must be of type CHAR or DATE. If the column is of type CHAR, the
date is loaded in the format dd-mon-yy. If the system date is loaded into a DATE

Using Oracle Source and Target Operators

25-14 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

column, then you can access it in the time format and the date format. A new system
date/time is used for each array of records inserted in a conventional path load and
for each block of records loaded during a direct path load.

Setting a Column to a Unique Sequence Number
Map the SEQUENCE attribute to the target column to generate sequence numbers for
the column. The SEQUENCE keyword ensures a unique value for a column.
SEQUENCE increments for each record that is loaded or rejected. It does not increment
for records that are discarded or skipped.

The default sequence generated is SEQUENCE (COUNT). You can edit the sequence
expression in the property expression, but you must provide the syntax.

The combination of column name and the SEQUENCE function is a complete column
specification. Table 25–7 lists the options available for sequence values.

If records are rejected during loading, the sequence of inserts is preserved despite data
errors. For example, if four rows are assigned sequence numbers 10, 12, 14, and 16 in a
column, and the row with 12 is rejected, the valid rows with assigned numbers 10, 14,
and 16, not 10, 12, 14 are inserted. When you correct the rejected data and reinsert it,
you can manually set the columns to match the sequence.

Dimension Operator
Use the Dimension operator to source data from or load data into dimensions and
Slowly Changing Dimensions.

The Dimension operator contains one group for each level in the dimension. The
groups use the same name as the dimension levels. The level attributes of each level
are listed under the group that represents the level.

You cannot map a data flow to the surrogate identifier attribute or the parent surrogate
identifier reference attribute of any dimension level. Warehouse Builder automatically
populates these columns when it loads a dimension.

You can bind and synchronize a Dimension operator with a dimension stored in the
workspace. To avoid errors in the generated code, ensure that the workspace
dimension is deployed successfully before you deploy the mapping that contains the
Dimension operator. To synchronize a Dimension operator with the workspace
dimension, right-click the dimension on the Mapping Editor canvas and select
Synchronize.

If you specify an Orphan Management Policy and create an error table for a
dimension, when you add this dimension to a mapping, the Dimension operator
contains a group called ERROR_<dimension_name>. This is an output group that
contains attributes that are displayed in the dimension operator details, but not in the

Table 25–7 Sequence Value Options

Value Description

COUNT The sequence starts with the number of records already in the table plus
the increment

integer Specifies the beginning sequence number

MAX The sequence starts with the current maximum value for the column
plus the increment.

incr The value that the sequence number is to increment after a record is
loaded or rejected

Using Oracle Source and Target Operators

Source and Target Operators 25-15

Dimension operator on the mapping canvas. To create data flows using these
attributes, display these attributes on the canvas by selecting the ERROR_<dimension_
name> group on the canvas and from the Graph menu, selecting Select Display Set,
and then All.

To use a Dimension operator in a mapping:

1. Drag and drop a Dimension operator onto the Mapping Editor canvas.

Warehouse Builder displays the Add Dimension dialog box.

2. Use the Add Dimension dialog box to select a dimension.

Alternatively, you can combine Steps 1 and 2 into one single step. In the Mapping
Editor, navigate to the Projects Navigator. Select the dimension and drag and drop
it onto the Mapping Editor canvas.

3. Map the attributes from the Dimension operator to the target, or map attributes
from the source to the Dimension operator.

Dimension Operator Properties
Use the Property Inspector to set options that define additional details about loading
or removing data from a dimension or Slowly Changing Dimension.

You can set properties at the following three levels: operator, group that represents
each level in the dimension, and level attribute. The following sections describe the
Dimension operator properties. The properties are categorized as follows: AW
Properties, Dimension Properties, Error Table, History Logging Properties, and
Orphan Management Policies.

Target Load Order Specifies the order in which multiple targets within the same
mapping are loaded. Warehouse Builder determines a default order based on the
foreign key relationships. Use this property to overrule the default order.

AW Properties

AW Name Represents the name of the analytic workspace in which the dimension
data is stored.

Aw Staged Load This property is applicable to MOLAP dimensions only. Select this
option to stage the set-based load data into a temporary table before loading into the
analytic workspace.

Each group in the Dimension operator represents a dimension level. You can set the
following properties for each dimension level:

■ Extracting Type: Represents the extraction operation to be performed when the
dimension is used as a source. Select Extract Current Only (Type 2 Only) to
extract current records only from a Type 2 SCD. This property is valid only for
Type 2 SCDs. Select Extract All to extract all records from the dimension or SCD.

■ Default Expiration Time of Open Record: This property is applicable to Type 2
SCDs only. It represents a date value that is used as the expiration time of a newly
created open record. The default value is NULL.

Note: If you set the Commit Control property to Manual, ensure that
you set the Automatic Hints Enable property to false. Otherwise, your
mapping may not execute correctly.

Using Oracle Source and Target Operators

25-16 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Aw Truncate Before Load This property is applicable to MOLAP dimensions only. It
indicates whether all existing dimension data should be truncated before loading fresh
data. Set this property to YES to truncate any existing dimension data before you load
fresh data.

Dimension Properties

Loading Type Represents the type of operation to be performed on the dimension.
The options that you can select are as follows:

■ LOAD: Select this value to load data into the dimension or Slowly Changing
Dimension.

■ REMOVE: Select this value to delete data from the dimension or Slowly Changing
Dimension.

While you are loading or removing data, a lookup is performed to determine if the
source record exists in the dimension. The matching is performed by the natural key
identifier. If the record exists, a REMOVE operation removes existing data. A LOAD
operation updates existing data and then loads new data.

Note that when you remove a parent record, the child records will have references to a
nonexistent parent.

Type 2 Extract/Remove Current Only This property is applicable only to Type 2
SCDs. Use this property to specify which records are to be extracted or removed. You
can set the following values for this property:

■ YES: When you are extracting data from the Type 2 SCD, only the current record
that matches the business identifier in the source data is extracted. When you are
removing data from a Type 2 SCD, only the current record that matches the
business identifier in the source data is closed (expiration date is set either to
SYSDATE or to the date defined in the Default Expiration Time of Open Record
property).

Note that in a Type 2 SCD that uses a snowflake implementation, you cannot
remove a record if it has child records that have a Type 2 trigger.

■ NO: When you are extracting data from a Type 2 SCD, all the records, including
historical records, that match the business identifier from the source data are
extracted from the dimension.

When you are removing data from the Type 2 SCD, all records, including historical
records, that match the business identifier in the source data set are deleted.

Error Table

DML Error Table Name Represents the name of the table that stores DML errors
associated with the dimension. To log DML errors, you must enable DML error
logging for the dimension. For more information about DML error logging, see "Using
DML Error Logging" on page 15-4.

Error Table Name Represents the name of the error table that stores logical errors
caused by enforcing data profiling and orphan management. If you specify a value for
the Error Table Name property of a dimension, the Error Table Name property of the
Dimension operator associated with this dimension displays the same name and you
cannot edit the name. Else, specify the name if the error table.

Using Oracle Source and Target Operators

Source and Target Operators 25-17

Truncate Error Table(s) This property is applicable to error tables only and not to
DML error tables. Set this property to Yes to truncate error tables very time they are
used.

History Logging Properties

Default Effective Time of Initial Record This property is applicable to Type 2 SCDs
only. It represents the default value assigned as the effective time for the initial load of
a particular dimension record. The default value set for this property is SYSDATE.

Default Effective Time of Open Record This property is applicable to Type 2 SCDs
only. It represents the default value set for the effective time of the open records, after
the initial record. The default value of this property is SYSDATE. This value should not
be modified.

Default Expiration Time of Open Record This property is applicable to Type 2 SCDs
only. It represents a date value that is used as the expiration time of a newly created
open record for all the levels in the dimension. The default value is NULL.

Support Multiple History Loading This property is applicable only to Type 2 SCDs.
Select this option to load multiple rows for a particular business identifier during a
single load operation. Then you select this option, the mapping is run in row-based
non-bulk mode.

To load multiple records for a particular business identifier, ensure that the effective
date of the Type 2 levels are loaded from a source or transformation operator.

Typically, this situation would arise when your dimension records change multiple
times within during the period between two dimension updates. For example, you
update your dimension only once per day, but there are multiple changes to a
dimension record within that day.

Support Out of Order History Loading This property is applicable only to Type 2
SCDs. Setting this property to true enables you to load out-of-order changes to
historical records in consecutive data loads.

You can also use this property in conjunction with Support Multiple History Loading.
However, using this property has a performance overhead.

Type 2 Gap This property is applicable to Type 2 SCDs only. It represents the time
interval between the expiration time of an old record and the effective time of the
current record when a record is versioned.

When the value of a triggering attribute is updated, the current record is closed and a
new record is created with the updated values. Because the closing of the old record
and opening of the current record occur simultaneously, it is useful to have a time
interval between the expiration time of the old record and the effective time of the
open record, instead of using the same value for both.

Type 2 Gap Units This property is applicable for Type 2 SCDs only. It represents the
unit of time used to measure the gap interval represented in the Type2 Gap property.
The options are: Seconds, Minutes, Hours, Days, and Weeks. The default value is
Seconds.

Orphan Management Policies

Using Oracle Source and Target Operators

25-18 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Create Default Level Records Indicates if default level records should be created for
the dimension to which the Dimension operator is bound. Set this property to Yes to
create default rows for the business identifier and surrogate identifier of the
dimension.

The values used by the default record depend on the orphan management policy that
you selected for the dimension to which the Dimension operator is bound. If you
specified No Maintenance as the orphan management policy of the dimension, use the
Default Value property of the attributes in each level of Dimension operator to specify
the values that the default record should use. If you set the orphan management policy
of the dimension to Default Parent and specified the attribute values to be used for the
default record, these values are automatically displayed in the Default Value property
of the attributes and these values are used for the default records. If you do not specify
default values for the attributes in the dimension levels, the default records are created
using NULL values.

You can use this property to generate default records for time dimensions too. Time
dimensions do not have an Orphan tab where you can use to set the orphan
management policy. But, if you need to use a time dimension with a cube that has its
orphan management policy set to a value other than No Maintenance, you can
generate default records for the time dimension by setting the Default Value property
of the level attributes and then setting the Create Default Level Records property of
the time dimension to Yes.

LOAD Policy for Invalid Keys Represents the orphan management policy to be used
to load records that contain an invalid parent record. The options are No Maintenance,
Default Parent, and Reject Orphan.

LOAD Policy for NULL Keys Represents the orphan management policy to be used to
load records that contain a NULL parent key reference. The options are No
Maintenance, Default Parent, and Reject Orphan.

Record Error Rows Select Yes to store orphan records contained in the source data
set that is used to load the dimension in the error table. The error table is represented
by the Error Table Name property.

Expand Object Operator
The Expand Object operator enables you to expand an object type and obtain the
individual attributes that comprise the object type.

You can bind and synchronize an Expand Object operator with a workspace object
type. To avoid generation errors in the mapping, ensure that you deploy the
workspace object type before you deploy the mapping.

The Expand Object operator has one input group and one output group. The input
group represents the object type that you want to expand in order to obtain its
individual attributes. When you bind an Expand Object operator to a workspace
object, the output group of the operator contains the individual attributes that
comprise the object type.

To successfully deploy a mapping that contains an Expand Object operator, ensure that
the following conditions are satisfied.

■ The schema that contains the source tables must be on the same instance as the
warehouse schema.

■ The warehouse schema is granted the SELECT privilege on the source tables.

Using Oracle Source and Target Operators

Source and Target Operators 25-19

■ The warehouse schema is granted the EXECUTE privilege on all the object types
and nested tables used in the Expand Object operator.

Figure 25–3 displays a mapping that uses an Expand Object operator. The source table
CUSTOMERS contains a column CUSTOMER_ADDRESS of data type ADDR_TYPE, a SQL
object type. But the target table CUST contains four different columns, of Oracle
built-in data types, that store each component of the customer address. To obtain the
individual attributes of the column CUSTOMER_ADDRESS, create an Expand Object
operator that is bound to the object type ADDR_TYPE. You then map the CUSTOMER_
ADDRESS column to the input group of an Expand Object operator. The output group
of the Expand Object operator contains the individual attributes of the column
CUSTOMER_ADDRESS. Map these output attributes to the target operator.

Figure 25–3 Expand Operator in a Mapping

To define an Expand Object operator in a mapping:

1. Drag and drop an Expand Object operator onto the Mapping Editor canvas.

2. Use the Add Expand Object dialog box to create or select an object. For more
information about these options, see "Using the Add Operator Dialog Box to Add
Operators" on page 5-13.

3. Map the source attribute that needs to be expanded to the input group of the
Expand Object operator.

Note that the signature of the input object type should be same as that of the
Expand Object operator.

4. Map the output attributes of the Expand Object operator to the target attributes.

External Table Operator
The External Table operator enables you to source data stored in external tables in the
workspace. You can then load the external table data into another workspace object or
perform transformations on the data. For example, you can source data stored in an
external table, transform the data using mapping operators, and then load the data
into a dimension or a cube.

Figure 25–4 displays a mapping that uses the External Table operator. The External
Table operator EXPENSE_CATEGORY_EXT is bound to the external table of the same
name in the workspace. The data stored in this external table is used to load the
dimension EXPENSE_CATEGORIES.

Using Oracle Source and Target Operators

25-20 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Figure 25–4 External Table Operator in a Mapping

To create a mapping that contains an External Table operator:

1. Drag and drop an External Table operator onto the Mapping Editor canvas.

Warehouse Builder displays the Add External Table dialog box.

2. Use the Add External Table dialog box to create or select an external table. For
more information about these options, see "Using the Add Operator Dialog Box to
Add Operators" on page 5-13.

3. Map the attributes from the output group of the External Table operator to the
target operator or the intermediate transformation operator.

Mapping Input Parameter Operator
You can introduce information external to Warehouse Builder as input into a mapping
using a Mapping Input Parameter.

For example, you can use a Mapping Input Parameter operator to pass SYSDATE to a
mapping that loads data to a staging area. Use the same Mapping Input Parameter
operator to pass the timestamp to another mapping that loads the data to a target.

When you generate a mapping, a PL/SQL package is created. Mapping input
parameters become part of the signature of the main procedure in the package.

The Mapping Input Parameter operator has a cardinality of one. It creates a single row
set that can be combined with another row set as input to the next operator.

Each Mapping Input Parameter operator becomes an output attribute in the Mapping
Input Parameter operator. These output attributes can then be used by connecting
them to other operators within the Mapping Editor.

When you define the Mapping Input Parameter operator, you specify a data type and
an optional default value.

To define a Mapping Input Parameter operator in a mapping:

1. Drag and drop a Mapping Input Parameter operator onto the Mapping Editor
canvas.

2. Right-click the Mapping Input Parameter operator and select Open Details.

The Mapping Input Parameter Editor is displayed.

3. Select the Output Attributes link on the left, to display the Output Attributes tab.

4. To add an output attribute, click a blank field in the Attribute column and provide
a name for the output attribute. Also specify details such as data type, length,
precision, scale, and seconds description for the attribute, as applicable.

Using Oracle Source and Target Operators

Source and Target Operators 25-21

You can rename the attributes and define the data type and other attribute
properties.

5. Click OK to close the Mapping Input Parameter Editor.

6. Connect the output attribute of the Mapping Input Parameter operator to an
attribute in the target operator.

Figure 25–5 displays the mapping that uses a Mapping Input Parameter operator.

Figure 25–5 Mapping Editor Showing A Mapping Input Parameter

Mapping Output Parameter Operator
Use a single Mapping Output Parameter operator to send values out of a PL/SQL
mapping to applications external to Warehouse Builder.

A Mapping Output Parameter operator is not valid for a SQL*Loader mapping. When
you generate a mapping, a PL/SQL package is created. Mapping Output Parameters
become part of the signature of the main procedure in the package.

The Mapping Output Parameter operator has only one input group and no output
groups. You can have only one Mapping Output Parameter operator in a mapping.
Only attributes that are not associated with a row set can be mapped into a Mapping
Output Parameter operator. For example, constant, input parameter, output from a
premapping process, or output from a post process can all contain attributes that are
not associated with a row set.

To define a Mapping Output Parameter operator in a mapping:

1. Drag and drop a Mapping Output Parameter operator onto the Mapping Editor
canvas.

2. Right-click the Mapping Output Parameter operator and select Open Details.

The Mapping Output Parameter Editor is displayed.

3. Click the Input Attributes tab link on the left to display the Input Attributes page.

4. To add an input attribute, click a blank field in the Attribute column and provide a
name for the input attribute. Also specify details such as data type, length,
precision, scale, and seconds description for the attribute, as applicable.

You can rename the attributes and define the data type and other attribute
properties.

5. Click OK to close the Mapping Output Parameter editor.

6. Connect the input attribute of the Mapping Output Parameter operator to an
attribute in the target operator.

Using Oracle Source and Target Operators

25-22 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Figure 25–6 displays an example of a Mapping Output Parameter operator used in
a mapping.

Figure 25–6 Mapping Editor Showing An Output Parameter Operator

Materialized View Operator
The Materialized View operator enables you to source data from or load data into a
materialized view stored in the workspace.

For example, you can use the data stored in a materialized view to load a cube. The
Materialized View operator has one Input/Output group called INOUTGRP1. You
cannot add additional groups to this operator, but you can add attributes to the
existing Input/Output group.

You can bind and synchronize a Materialized View operator to a workspace
materialized view. The workspace materialized view must be deployed before the
mapping that contains the Materialized View operator is generated to avoid errors in
the generated code package.

Figure 25–7 displays a mapping that uses a Materialized View operator. The data from
the two source tables PRODUCTS and ALL_SALES is joined using a Joiner operator.
This data is then aggregated using an Aggregator operator. The aggregated data is
used to load the materialized view SALES_MV.

Figure 25–7 Mapping that Contains a Materialized View Operator

To create a mapping that contains a Materialized View operator:

1. Drag and drop a Materialized View operator onto the Mapping Editor canvas.

Warehouse Builder displays the Add Materialized View dialog box.

Using Oracle Source and Target Operators

Source and Target Operators 25-23

2. Use the Add Materialized View dialog box to create or select a materialized view.
For more information about these options, see "Using the Add Operator Dialog
Box to Add Operators" on page 5-13.

3. Map the attributes of the Materialized View operator.

If you are using the Materialized View operator as a target, connect the source
attributes to the Materialized View operator attributes. If you are using the
materialized view as a source, connect the Materialized View operator attributes to
the target.

Queue Operator
A Queue operator enables you to use advanced queues as sources or targets in
mappings.

Some of the most critical tasks in creating and maintaining a data warehouse include
refreshing existing data, and adding new data from the operational databases. Use the
Queue operator to capture changes made to source objects and send those changes to a
staging database or directly to a data warehouse or operational data store.

Using a Queue Operator
You have the following options for using a Queue operator:

■ Define a new Queue operator: Drag a Queue operator from the Palette onto the
mapping. The Mapping Editor displays a wizard.

■ Edit an existing Queue operator: Right-click the Queue operator and select Open
Details.

For an example of using a Queue operator, see "LCR Cast Operator" on page 26-19.

Whether you are using the operator wizard or the Operator Editor, complete the
following tasks:

■ Selecting the Queue

■ Selecting the Source Type for a Queue Operator

■ Selecting the User-Defined or Primary Type for a Queue Operator

■ Selecting the Source Object

■ Specifying the Source Changes to Process

The tasks that you must perform depend on the payload type of the advanced queue
to which the Queue operator is bound. For all payload types, except SYS.ANYDATA,
you need to only select the queue to which the Queue operator should be bound. For a
payload type of SYS.ANYDATA, you must complete all the tasks listed.

Selecting the Queue
Use the Select Queue page of the Queue Operator Wizard or the Select page of the
Queue Operator Editor to select the advanced queue to which the operator is bound.

The node tree on this page lists the advanced queues in the current project. Select the
advanced queue to which your Queue operator should be bound.

Note: You cannot use a Queue operator as a source and target in the
same mapping.

Using Oracle Source and Target Operators

25-24 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Selecting the Source Type for a Queue Operator
Use the Select Source Type page to specify if the queue will be used as a real-time
queue or a batch queue. Also specify the type of messages that the queue will receive.

Select one of the following options to indicate the type of queue:

■ Real-Time Source

Select this option to indicate that the Queue operator represents a real-time source.
Real-time queues enable you to populate source changes to the target objects
instantly. All DML changes to the source objects associated with the Queue
operator, as specified in "Selecting the Source Object" on page 25-25, are instantly
added to the AQ.

Mappings that contain real-time sources are called real-time mappings. You need
to just deploy real-time mappings once. Subsequently, whenever source changes
are added to the queue, Warehouse Builder automatically runs the mapping and
publishes the changes to the target objects.

■ Batch Source

Select this option to indicate that the Queue operator represents a batch source.
Batch mappings populate the target objects with changes from the source only
when you explicitly execute the mapping.

When you define a batch source, you do not need to provide any more details in
the wizard or editor for a batch source. All the wizard or editor pages related to
the other tasks for defining the Queue operator are disabled.

For real-time queues that use a SYS.ANYDATA payload, you must specify the format of
the messages in the queue. Select one of the following options to specify the message
format:

■ Oracle Capture Process Message Format

Specifies that the messages received are in the form of LCRs. Warehouse Builder
takes care of capturing DML changes, formatting the changes into LCRs and
adding the LCRs to the queue.

For more information about LCRs, see Oracle Streams Concepts and Administration.

When you choose this option, you must specify the source table and the DML
operations that need to be captured as described in "Selecting the Source Object"
on page 25-25 and "Specifying the Source Changes to Process" on page 25-25.

■ User-Defined Message Format

Specifies that the messages received by the queue are in a user-defined format.
When you choose this option, specify the user-defined type that represents the
message format using the Select User-Defined or Primary Type page as described
in "Selecting the User-Defined or Primary Type for a Queue Operator" on
page 25-24.

Selecting the User-Defined or Primary Type for a Queue Operator
When your queue uses a user-defined message format, you must specify the
user-defined type that represents the message format. Use the User-Defined or
Primary Type page to select the user-defined type.

This page contains a node tree that you can to select the user-defined type. The
Primary Data Types node lists the primary data types you can select. If your message
format uses primary data types, expand this node and select a primary data type. A
separate node is displayed for each Oracle module that contains user-defined types.

Using Oracle Source and Target Operators

Source and Target Operators 25-25

Expand the required module node and select the user-defined type they represents the
queue message format.

Selecting the Source Object
Use the Select Source page to specify the source tables for which you want to capture
data changes. This page is enabled only if your queue is a real-time source that uses
the Oracle capture message format.

The Available Tables section lists the tables for which can capture data changes. Select
the tables and use the arrows to move them to the Selected Tables section. You can
choose multiple tables by holding down the Ctrl key and selecting the tables.

Specifying the Source Changes to Process
Use the Source Changes to Process page to specify the DML changes that should be
captured for the tables selected on the Select Source page. This page is enabled only if
your queue is a real-time source that uses an Oracle Capture Message Format.

The Identify Changes to Process section lists the tables selected on the Select Objects
page. For each tables, use the check boxes to the right of the table name to select the
DML operations that should be captured. Select Insert for a table to capture any rows
inserted in the table. To capture any modifications made to a table, select Update to the
right of the table. To capture rows deleted from a table, select Delete to the right of the
table name.

Sequence Operator
A Sequence operator generates sequential numbers that increment for each row.

For example, you can use the Sequence operator to create surrogate keys while loading
data into a dimension table. You can connect a Sequence to a target operator input or
to the inputs of other types of operators. You can combine the sequence outputs with
outputs from other operators.

Because sequence numbers are generated independently of tables, the same sequence
can be used for multiple tables. Sequence numbers may not be consecutive, because
the same sequence can be used by multiple sessions.

This operator contains an output group containing the following output attributes:

■ CURRVAL: Generates from the current value

■ NEXTVAL: Generates a row set of consecutively incremented numbers beginning
with the next value

You can bind and synchronize Sequences to a workspace sequence in one of the
modules. The workspace sequence must be generated and deployed before the
mapping containing the Sequence is deployed to avoid errors in the generated code
package. See "Using the Add Operator Dialog Box to Add Operators" on page 5-13 for
more information.

Generate mappings with sequences using row-based mode. Sequences may be
incremented even if rows are not selected. If you want a sequence to start from the last
number, then do not run your SQL package in set-based or in set-based with failover
operating modes. See "Runtime Parameters" on page 24-1 for more information about
configuring mode settings.

Figure 25–8 shows a mapping that uses a Sequence operator to automatically generate
the primary key of a table. The NEXTVAL attribute of the Sequence operator is
mapped to an input attribute of the target table UNIFIED_PRODUCTS. The other input

Using Oracle Source and Target Operators

25-26 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

attributes from the source table, ORACLE_PRODUCTS, are mapped directly to the
target.

Figure 25–8 Sequence Operator in a Mapping

To define a Sequence operator in a mapping:

1. Drag and drop the Sequence operator onto the Mapping Editor canvas.

Warehouse Builder displays the Add Sequence dialog box.

2. Use the Add Sequence dialog box to create or select a sequence. For more
information about these options, see "Using the Add Operator Dialog Box to Add
Operators" on page 5-13.

3. Connect the required output attribute from the Sequence operator to a target
attribute.

Table Operator
The Table operator enables you to source data from and load data into tables stored in
the workspace.

You can bind and synchronize a Table operator to a workspace table. To avoid errors in
the generated code package, the workspace table must be deployed before the
mapping that contains the Table operator is generated.

Figure 25–8 displays a mapping that uses Table operators as both source and target.
Figure 25–2 displays a mapping that uses the Table operator as a target.

To define a Table operator in a mapping:

1. Drag and drop a Table operator onto the Mapping Editor canvas.

Warehouse Builder displays the Add Table dialog box.

2. Use the Add Table dialog box to create or select a table. For more information
about these options, see "Using the Add Operator Dialog Box to Add Operators"
on page 5-13.

3. Map the attributes of the Table operator.

If you are using the table as a target, connect the source attributes to the Table
operator attributes. If you are using the table as a source, connect the Table
operator attributes to the target.

Using Oracle Source and Target Operators

Source and Target Operators 25-27

Merge Optimization for Table Operators
Beginning with the Oracle Warehouse Builder 10.2.0.3 release, you can enable the
Merge Optimization property for Table operators. When set to True, this property
optimizes the invocation or execution of expressions and transformations in the MERGE
statement.

For example, consider a mapping in which the target table contains a column that is
part of the update operation only and is mapped to a transformation. In previous
releases, Warehouse Builder would execute the transformation for all rows, including
rows that did not require transformation. Beginning in this release, if Merge
Optimization is enabled, then Warehouse Builder calls the transformation only in the
update part of the MERGE statement.

Chunking for Table Operators
Chunking enables you to divide the source data in a mapping into chunks. The chunks
are defined by a data partitioning algorithm and each then processed and loaded into
the targets separately. You can perform serial or parallel chunking. Serial chunking is
typically used in scenarios where you cannot logically process all the source data in
one set because of multiple updates of the same source row.

To use source data chunking for a Table operator, select the Table operator on the
mapping canvas. The Property Inspector displays the properties of the Table operator.
Set some or all of the following properties contained under the Data Chunking node.

Chunking Enabled
Select this option to enable data chunking for the source table represented by the Table
operator.

You can enable data chunking for only certain source tables in a mapping. For
example, if your mapping contains three Table operators and you enable data
chunking for only one Table operator, the entire mapping functionality is executed
multiple times, once for each data chunk. However, since the other two tables do not
have chunking enabled, these sources will provide data rows only during the first
iteration of the mapping.

Chunk Filter Condition
The Chunk Filter Condition enables you to specify the condition used to divide source
data into multiple chunks while performing serial chunking. For each iteration, the
Chunk Filter Condition filters the source data from the source.

Warehouse Builder provides a predefined mapping constant, get_chunk_iterator, that
must be used in all chunk filter conditions. This is an iteration count that starts at 1
and is incremented for each map execution in the chunk processing. You can set the
condition to use a value from the data source.

For example, your filter condition can be get_chunk_iterator = INOUTGRP1.CHUNK_
GRP_NUM, where CHUNK_GRP_NUM is an attribute in the source table.

Parallel Chunk Filter Condition
Use the Parallel Chunk Filter condition to set the condition used to divide source data
into multiple chunks for parallel chunking.

Using Oracle Source and Target Operators

25-28 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Creating Temporary Tables While Performing ETL
Warehouse Builder enables you to use temporary tables while extracting and loading
data. Temporary tables are useful when you must extract data from remote sources
into multiple targets.

Temporary staging tables are typically used in the dimension loading logic that is
automatically generated by the Dimension operator submapping expansion. This
prevents problems that would be caused by doing lookups on the target table.

The following properties enable you to create temporary tables while performing ETL.

Is Temp Stage Table

When you set the Is Temp Stage Table property to True, any existing bindings for the
Table operator are ignored. A temporary staging table is deployed with the mapping
and all loading and extracting operations from this Table operator are performed from
the staging table.

The name of the deployed table in the database is based on the operator name, with a
unique identifier appended to the name to prevent name conflicts. The table is
automatically dropped when the map is dropped or redeployed. Before each execution
of the mapping, the table is automatically truncated.

When you set this property to its default value of False, it has no effect.

Extra DDL Clauses

Use this property to add additional clauses to the DDL statement that is used to create
the table. For example, use the following TABLESPACE clause to allocate storage for
the temporary table in the MY_TBLSPC tablespace, instead of in the default tablespace:
TABLESPACE MY_TBLSPC.

If you do not provide a value for the Extra DDL Clauses property, this property has no
effect on the table creation.

Temp Stage Table ID

Use the Temp Stage Table ID property to specify the internal identifier used for the
temporary staging table by the code generator. If any other temporary staging table in
the mapping has the same value for the Temp Stage Table ID property, then the same
deployed temporary staging table will be bound to both operators. This enables
multiple usages of the same temporary staging table in the same mapping.

DML Error Logging
You can perform DML error logging on target tables. Use the property DML Error
Table Name of the Table operator to specify the name of the error table that stores
errors encountered while performing DML operations on that table. The error table is
created when you execute the mapping containing the Table operator.

For more information about DML error logging, see "Using DML Error Logging" on
page 15-4.

Data Rules and Loading Tables
In addition to logging DML errors, you can also store logical errors such as data
profiling and orphan management errors. Use the Error Table Name property for the
Table operator to specify the name of the table that stores logical errors for the
repository table associated with the Table operator. If you have specified a name for

Using Oracle Source and Target Operators

Source and Target Operators 25-29

the Error Table Name property of the table, the Error Table Name property of the Table
operator associated with this table automatically uses the same name.

Varray Iterator Operator
When you have an object of type nested table or Varray, you can use the Varray
Iterator operator to iterate through the values in the table type.

This operator accepts a table type attribute as the source, and generates a value that is
of the base element type defined in the nested table or Varray type. If the operator is
bound, reconciliation operations are performed on the operator. Reconciliation
operations are not supported for unbound Varray Iterator operators.

You can create the Varray Iterator operator as either a bound operator or an unbound
operator. You cannot synchronize or validate an unbound Varray Iterator operator. It
has only one input group and one output group. You can have an input group with
attributes of other data types. However, there must be at least one table type attribute.

The attributes of the output group are a copy of the attributes of the input group. The
only difference is that instead of the table type to which the operator is bound (which
is one of the input group attributes), the output group will have an attribute that is the
same as the base element type of the input group. The input group is editable. The
output group is not editable.

Figure 25–9 displays a mapping that contains a Varray Iterator operator.

Figure 25–9 Varray Iterator Operator in a Mapping

To define a Varray Iterator operator in a mapping:

1. Drag and drop a Varray Iterator operator onto the Mapping Editor canvas.

Warehouse Builder displays the Add Varray Iterator dialog box.

2. From the Add Varray Iterator dialog box, select either an unbound operator or a
bound operator.

■ If you select the unbound operator, then a Varray Iterator operator with no
attributes is created. You must create these attributes manually.

■ If you select the bound operator, then you must select one of the available
nested table or Varray types shown in the tree. The output attribute is the
same as the base element.

3. Click OK.

4. Map the attributes of the Varray Iterator operator.

For an unbound operator, right-click the unbound Varray Iterator operator on the
Mapping Editor canvas and then select Open Details. This opens the Varray Iterator

Using Remote and non-Oracle Source and Target Operators

25-30 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

editor dialog box. You can add attributes to the input group by using the Add button.
You can only change the data type of the attributes in the output group.

View Operator
The View operator enables you to source data from or load data into a view stored in
the workspace.

You can bind and synchronize a View operator to a workspace view. The workspace
view must be deployed before the mapping that contains the View operator is
generated to avoid errors in the generated code package.

To define a View operator in a mapping:

1. Drag and drop a View operator onto the Mapping Editor canvas.

Warehouse Builder displays the Add View dialog box.

2. Use the Add View dialog box to create or select a view. For more information
about these options, see "Using the Add Operator Dialog Box to Add Operators"
on page 5-13.

3. Map the attributes of the View operator.

If you are using the view as a target, connect the source attributes to the View
operator attributes. If you are using the view as a source, connect the View
operator attributes to the target.

Using the View Operator for Inline Views
You can use the View operator to create inline views in a mapping. For inline views,
you must set the following operator properties.

Inlined: Select this property to indicate that the operator represents an inline view.

View Query: Use this property to specify the query text for the inline view. The query
text must have column aliases that correspond to the operator attribute names.

Using Remote and non-Oracle Source and Target Operators
You can bind a target operator in a mapping to an object in a remote Oracle Database
location or a non-Oracle Database location such as SQL Server or DB2 through a
Gateway location. Such operators are referred to as Gateway targets. Use database
links to access these targets. The database links are created using the locations. SAP
targets are not supported, because it is not possible to generate a database link to
access SAP tables remotely from an Oracle database.

There are certain restrictions on using remote or Gateway targets in a mapping, as
described in the following sections:

■ Limitations of Using Non-Oracle or Remote Targets

■ Warehouse Builder Workarounds for Non-Oracle and Remote Targets

Limitations of Using Non-Oracle or Remote Targets
The following limitations apply when you use a remote or Gateway target in a
mapping:

■ You cannot set the Loading Type property of the target operator to
TRUNCATE/INSERT.

Using Flat File Source and Target Operators

Source and Target Operators 25-31

This results in a validation error when you validate the mapping.

■ For Gateway targets, setting the Loading Type property of the target operator to
INSERT/UPDATE produces the same result as setting the loading type to INSERT.

■ The RETURNING clause is not supported in a DML statement.

The RETURNING clause enables you to obtain the ROWIDs of the rows that are
loaded into the target using row-based mode. These ROWIDs are recorded by the
runtime auditing system. But in a remote or Gateway target, the RETURNING
clause is not generated, and nulls are passed to the runtime auditing system for
the ROWID field.

■ In set-based mode, you cannot load data from an Oracle database into a remote or
Gateway target. All other modes, including set-based failover, are supported.

When you set the Operating Mode property of the target operator to set-based, a
runtime error occurs.

■ Row-based bulk processing is not supported.

Warehouse Builder Workarounds for Non-Oracle and Remote Targets
When you use a remote or Gateway target in a mapping, default workarounds are
used for certain restricted activities. These workarounds are listed for your
information only. You need not explicitly do anything to enable these workarounds.

The default workarounds used for a remote or a Gateway target are as follows:

■ When you set the loading type of a target to INSERT/UPDATE or
UPDATE/INSERT in Oracle 9i database and to UPDATE in Oracle Database 11g, a
MERGE statement is generated to implement this mapping in set-based mode. But
a MERGE statement cannot be run against remote or Gateway targets. Thus, when
you use a remote or Gateway target in a mapping, code is generated without a
MERGE statement. The generated code is the same as that generated when the
PL/SQL generation mode is set to Oracle8i.

■ For set-based DML statements that reference a database sequence that loads into a
remote or Gateway target, the GLOBAL_NAMES parameter must be set to TRUE.
When code is generated for a mapping, this parameter is set to TRUE if the
mapping contains a remote or Gateway target.

■ For a multitable insert to a remote or Gateway target, an INSERT statement is
generated per table instead of a multitable insert statement.

■ While performing bulk inserts on a remote or non-Oracle Database, bulk
processing code is not generated. Instead, code that processes one row at a time is
generated. This means that the Generate Bulk property of the operator is ignored.

Using Flat File Source and Target Operators
The Flat File operator enables you to use flat files as sources or targets in a mapping.
The following section describes the usage of Flat File operators.

Note: The loading types used for remote or Gateway targets are the
same as the ones used for other Oracle target operators. For more
information about the loading type property, see "Loading Types for
Oracle Target Operators" on page 25-3.

Using Flat File Source and Target Operators

25-32 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Flat File Operator
Use a Flat File operator to extract data from or load data into flat file.

A Flat File operator can be used either as a source or target in a mapping. However,
the two are mutually exclusive within the same mapping. There are differences in code
generation languages for flat file sources and targets. Subsequently, mappings can
contain a mix of flat files, relational objects, and transformations, but with the
restrictions discussed later in this section.

You have the following options for Flat File operators:

■ Using previously imported flat files

■ Importing and binding new flat files into your mapping

■ Defining new flat file sources or targets in mappings

To use a Flat File operator in a mapping:

1. Drag and drop a Flat File operator onto the Mapping Editor canvas.

2. Use the Add Flat File dialog box to create or select an object. For more information
about these options, see "Using the Add Operator Dialog Box to Add Operators"
on page 5-13.

3. Map the attributes from the Flat File operator to the target, or map attributes from
the source to the Flat File operator.

For examples of using flat files as sources and targets in a mapping, see Chapter 7,
"Creating SQL*Loader, SAP, and Code Template Mappings".

Flat File Source Operators
You can introduce data from a flat file into a mapping using either a Flat File operator
or an External Table operator. If you are loading large volumes of data, loading from a
flat file enables you to use the DIRECT PATH SQL*Loader option, which results in
better performance.

If you are not loading large volumes of data, you can benefit from many of the
relational transformations available in the external table feature.

As a source, the Flat File operator acts as the row set generator that reads from a flat
file using the SQL*Loader utility. Do not use a Flat File source operator to map to a flat
file target or to an external table. When you design a mapping with a Flat File source
operator, you can use the following operators:

■ Filter Operator

■ Constant Operator

■ Data Generator Operator

■ Sequence Operator

■ Expression Operator

■ Transformation Operator

■ Other relational target objects, excluding the External Table operator.

See Also: Oracle Warehouse Builder Sources and Targets Guide for a
comparison of external tables and flat files.

Using Flat File Source and Target Operators

Source and Target Operators 25-33

When you use a flat file as a source in a mapping, remember to create a directory from
the target location to the flat file location for the mapping to deploy successfully.

Flat File Target Operators
A mapping with a flat file target generates a PL/SQL package that loads data into a
flat file instead of loading data into rows in a table.

You can use an existing flat file with either a single record type or multiple record
types. If you use a multiple-record-type flat file as a target, you can only map to one of
the record types. If you want to load all of the record types in the flat file from the
same source, you can drop the same flat file into the mapping as a target again and
map to a different record type. For an example of this, see "Using Direct Path Loading
to Ensure Referential Integrity in SQL*Loader Mappings" on page 10-18. Alternatively,
create a separate mapping for each record type that you want to load.

For more information about creating a new flat file target, see Oracle Warehouse Builder
Sources and Targets Guide.

Setting Properties for Flat File Source and Target Operators
You can set properties for a Flat File operator as either a source or target. You can set
Loading Types for Flat Files and the Field Names in the First Row setting. All other
settings are read-only and depend upon how you imported the flat file.

Loading Types for Flat Files
Select a loading type from the list:

■ Insert: Creates a new target file. If there is an existing target file, then the newly
created file replaces the previous file.

■ Update: Creates a new target file if one does not already exist. If there is an
existing target file, then that file is appended.

■ None: No operation is performed on the data in the target file. This setting is
useful for testing purposes. All transformations and extractions are run without
affecting the target.

Field Names in the First Row
Set this property to True if you want to write the field names in the first row of the
operator or False if you do not.

Note: If you use the Sequence, Expression, or Transformation
operators, you cannot use the SQL*Loader Direct Load setting as a
configuration parameter.

Note: A mapping can contain a maximum of 50 Flat File target
operators at one time.

Using Flat File Source and Target Operators

25-34 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Data Flow Operators 26-1

26
Data Flow Operators

The Mapping Editor provides a set of pre-built mapping operators. These operators
enable you to define common transformations that specify how data moves from the
source to the target.

This chapter provides details on how to use operators in a mapping to transform data.
Some operators have wizards that assist you in designing the mapping. And some
operators allow you to start the Expression Builder as an aide to writing SQL
expressions.

This chapter contains the following topics:

■ List of Data Flow Operators on page 26-1

■ About Operator Wizards on page 26-2

■ About the Expression Builder on page 26-3

List of Data Flow Operators
The list of data flow operators is as follows:

■ Aggregator Operator on page 26-5

■ Anydata Cast Operator on page 26-9

■ Deduplicator Operator on page 26-10

■ Expression Operator on page 26-10

■ Filter Operator on page 26-12

■ Joiner Operator on page 26-13

■ LCR Cast Operator on page 26-19

■ LCR Splitter Operator on page 26-20

■ Lookup Operator on page 26-20

■ Pivot Operator on page 26-26

■ Post-Mapping Process Operator on page 26-32

■ Pre-Mapping Process Operator on page 26-33

■ Set Operation Operator on page 26-34

■ Sorter Operator on page 26-35

■ Splitter Operator on page 26-37

■ Subquery Filter Operator on page 26-39

About Operator Wizards

26-2 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ Table Function Operator on page 26-41

■ Transformation Operator on page 26-44

■ Unpivot Operator on page 26-45

About Operator Wizards
For operators that require you to make numerous design decisions, wizards guide you
in defining the operator. Each wizard begins with a welcome page that provides an
overview of the steps you must perform. And each wizard concludes with a summary
page listing your selections. Use Next and Back to navigate through the wizard. To
close an operator wizard, click Finish on any of the wizard pages.

The following operators have wizards to assist you:

■ Lookup Operator

■ Match Merge operator, see "Using the Match Merge Operator to Eliminate
Duplicate Source Records"

■ Name and Address operator, see "Using the Name and Address Operator to
Cleanse and Correct Name and Address Data"

■ Queue Operator

■ Pivot Operator

■ Unpivot Operator

Once you become proficient with defining an operator, you may prefer to disable the
wizard and use the operator editor instead. To start the operator editor, right-click the
operator on the Mapping Editor and select Open Details. The operator editor displays
the same content as the wizard except in a tab format rather than wizard pages.

Whether you are using an operator wizard or the operator editor, you must complete
the following pages for each operator:

■ Operator Wizard General Page

■ Operator Wizard Groups Page

■ Operator Wizard Input and Output Pages

■ Operator Wizard Input Connections

Operator Wizard General Page
Use the General page to specify a name and optional description for the operator. By
default, the wizard assigns the operator type as the name. For example, the default
name for a new pivot operator is "Pivot".

Operator Wizard Groups Page
Edit group information on the Groups tab.

Each group has a name, direction, and optional description. You can rename groups
for most operators but cannot change group direction for any of the operators. A
group can have one of these directions: Input, Output, Input/Output.

Depending on the operator, you can add and remove groups from the Groups tab. For
example, you add input groups to Joiners and output groups to Splitters.

About the Expression Builder

Data Flow Operators 26-3

Operator Wizard Input and Output Pages
The operator editor displays a tab for each type of group displayed on the Groups tab.
Each of these tabs displays the attribute name, data type, length, precision, scale and
optional description.

Depending on the operator, you may be able to add, remove, and edit attributes. The
Mapping Editor grays out properties that you cannot edit. For example, if the data
type is NUMBER, you can edit the precision and scale but not the length.

Operator Wizard Input Connections
Use the Input Connections page to copy and map attributes into the operator. The
attributes you select become mapped members in the input group. The Available
Attributes panel displays a list of all the operators in the mapping.

To complete the Input Connections page for an operator:

1. Select complete groups or individual attributes from the Available Attributes
panel.

To search for a specific attribute or group by name, type the text in Search for and
select Go. To find the next match, select Go again.

Hold the Shift key down to select multiple groups or attributes. If you want to
select attributes from different groups, you must first combine the groups with a
Joiner or Set operator.

2. Use the right arrow button between the two panels to move your selections to the
Mapped Attributes panel.

You can use the left arrow to remove groups or attributes from the input
connections list. Warehouse Builder removes the selection from the input group
and removes the data flow connection between the source operator and the
current operator.

About the Expression Builder
Some of the data flow operators require that you create expressions. An expression is a
statement or clause that transforms data or specifies a restriction. These expressions
are portions of SQL that are used inline as part of a SQL statement. Each expression
belongs to a type that is determined by the role of the data flow operator. You can
create expressions using Expression Builder, or by typing them into the expression
field located in the Property Inspector of the operator or operator attributes.

Opening the Expression Builder
You can open the Expression Builder from the Property Inspector of the operator for
operators such as filters, joiners, and aggregators. For operators such as expressions,
data generators, splitters, and constants, you can open the Expression Builder from the
Property Inspector of the operator attribute.

To open the Expression Builder:

1. On the Mapping Editor, select the operator or the attribute for which you want to
open the Expression Builder.

The Property Inspector displays the properties of the selected operator or operator
attribute.

About the Expression Builder

26-4 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

2. In the Property Inspector, click the Ellipsis button in the property that you want to
set using the Expression Builder.

The Expression Builder displays as shown in Figure 26–1.

Figure 26–1 Expression Builder Interface

3. Create an expression by:

■ Typing text into the Expression field on the right of the Expression Builder.

■ Dragging items from the Inputs and Transformations tabs on the left panel
and dropping them into the Expression field on the right.

■ Double clicking on items from the Inputs and Transformations tabs on the left
panel.

■ Clicking arithmetic operator buttons available under the Expression field.

4. Click Validate.

This verifies the accuracy of the Expression syntax.

5. Click OK to save the expression and close the Expression Builder.

The Expression Builder User Interface
The Expression Builder contains the following parts:

■ In the left panel, the navigation tree displays two tabs:

– Inputs Tab: A list of input parameters.

– Transformations Tab: A list of predefined functions and procedures located in
the public Oracle Predefined library, the public Oracle Custom library, and a
private Oracle library.

■ Expression Field: At the top of the right panel is the Expression field. Use this
field to type and edit expressions.

■ Arithmetic Operator Buttons: Below the Expression field are buttons for
arithmetic operators. Use these buttons to build an expression without typing. The
arithmetic operators available vary by the type of data flow operator that is active.

Aggregator Operator

Data Flow Operators 26-5

■ Others: A list of available SQL clauses that are appropriate for the active
expression type.

Beginning in Oracle 9i, the CASE function is recommended over the DECODE
function because the CASE function generates both SQL and PL/SQL while
DECODE is limited to SQL. If you use the DECODE function in an expression, it is
promoted to CASE where appropriate during code generation. This enables you to
deploy the DECODE functionality in all operating modes (such as setbased or
rowbased) and transparently across Oracle Database releases (8.1, 9.0 and higher).

For example, the function

DECODE (T1.A, 1, 'ABC', 2, 'DEF', 3, 'GHI', 'JKL')

is converted to the following:

CASE T1.A WHEN 1 THEN 'ABC'
WHEN 2 THEN 'DEF'
WHEN 3 THEN 'GHI'
ELSE 'JKL'

■ Validate Button: Use this button to validate the current expression in the
Expression Builder. Validation ensures that all mapping objects referred to by the
expression have associated workspace objects. The expressions you create with the
Expression Builder are limited to the operator inputs and to any transformations
available in a project. This limitation protects the expression from becoming
invalid because of changes external to the operator. If the deployment database is
different from the design workspace, it may not accept the expression. If this
happens, the expression may be valid but incorrect against the database. In this
case, expression errors can only be found at deployment time.

■ Validation Results Field: At the bottom of the right panel is the Validation
Results field. After you select the Validate button to the right of this field, this
field displays the validation results.

Aggregator Operator
The Aggregator operator calculates data aggregations, such as summations and
averages, on the input data. It provides an output row set that contains the aggregated
data.

The Aggregator operator has one input group and one output group. For the output
group, define a GROUP BY clause that specifies the attributes over which the
aggregation is performed. You can optionally specify a HAVING clause that restricts
the aggregated data. Each attribute in the output group has the same cardinality. The
number of rows in the output row set is less than or equal to the number of input
rows.

You can use a single Aggregator operator to perform multiple aggregations. Although
you can specify a different aggregation function for each attribute in the output group
of an Aggregator, each Aggregator supports only one GROUP BY and one HAVING
clause.

Figure 26–2 shows a mapping that uses the Aggregator operator to aggregate the total
sales over channels and products. Use the Expression property of the output attribute
to specify that the aggregate function to be applied to the attribute TOTAL_SALES is
SUM. Use the Group By property of the Aggregator operator to specify that the sales
are aggregated over channel ID and product ID. The output of the Aggregator
operator is mapped to the target table SALES_FACT.

Aggregator Operator

26-6 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Figure 26–2 Aggregator Operator in a Mapping

To define an Aggregator operator in a mapping:

1. Drag and drop an Aggregator operator onto the Mapping Editor canvas.

2. On the canvas, connect source attributes to the input group of the Aggregator
operator.

3. Right-click the Aggregator operator and select Open Details.

Warehouse Builder displays the Aggregator Editor.

4. On the Output Attributes tab, create the output attributes that store the aggregated
data.

To create an output attribute, click the empty cell under the Attribute column and
enter the attribute name. The default data type assigned to the attribute is NUMBER.
You can change the data type and other parameters related to the data type such
as length, precision, and so on.

If the output attribute refers to an input attribute (from the Input group), the
Group By Clause is automatically set.

In the example displayed in Figure 26–2, you add an output attribute and rename
it to TOTAL_SALES.

5. Define an expression for each output attribute. You can directly enter the
expression in the Expression column associated with the attribute. Or, click the
Ellipsis button to the right of the Expression field to display the Expression
Builder. For detailed instructions on using the Expression Builder, see "Aggregate
Function Expression" on page 26-7.

In the example displayed in Figure 26–2, you define the expression as
SUM(amount_sold).

6. Click OK to close the Aggregator Editor.

7. Define a Group By clause and an optional Having clause for the operator. For
detailed instructions, see "Group By Clause" on page 26-6 and "Having Clause" on
page 26-7.

8. Map the attributes in the output group of the Aggregator operator to the input
group of the target.

Group By Clause
The Group By clause defines how to group the incoming row set to return a single
summary row for each group. An ordered list of attributes in the input group specifies
how this grouping is performed. The default GROUP BY clause is NONE.

To define the Group By Clause:

1. Select the Aggregator operator on the Mapping Editor canvas.

Aggregator Operator

Data Flow Operators 26-7

The Property Inspector displays the properties of the Aggregator operator.

2. Click the Ellipsis button to the right of the Group By Clause property.

The Expression Builder is displayed.

3. Move the attributes that you want to use to group source data from the Inputs tab
to the Group By Clause for Aggregator section. When you select more than one
attribute, separate attributes using a comma.

4. Click OK.

Having Clause
The Having clause is a boolean condition that restricts the groups of rows returned in
the output group to those groups for which this condition is true. If this clause is not
specified, all summary rows for all groups are returned in the output group.

To define the Having Clause:

1. Select the Aggregator operator on the mapping canvas.

The Property Inspector displays the properties of the Aggregator operator.

2. Click the Ellipsis button to the right of the Having Clause property.

The Expression Builder dialog box for the Having Clause displays as shown in
Figure 26–3.

Figure 26–3 Having Clause Dialog Box

3. Create an expression for the Having Clause of the Aggregator operator.

For example, Figure 26–3 shows a sample Having Clause expression.

4. Click OK to close the Expression Builder.

5. Map the attributes you edited from the output group of the Aggregator operator to
the attributes in the target.

Aggregate Function Expression
The Expression property of an attribute defines the aggregation functions to be
performed on the attribute. For each ungrouped output attribute, select whether the

Aggregator Operator

26-8 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

aggregation expression should be a DISTINCT or ALL result. ALL is the default
setting. For example,

■ ALL: Select AVG(ALL sal) from emp;

■ DISTINCT: Select AVG(DISTINCT sal) from emp;

A DISTINCT result removes all duplicate rows before the average is calculated.

An ALL result returns an average value on all rows.

If no aggregation function is necessary, specify NONE for the function. Specifying
NONE on the attribute aggregation automatically adds the attribute to the resulting
GROUP BY function.

To define expressions for output attributes:

1. In the Aggregator operator on the mapping canvas, select the output attribute for
which you want to define an aggregate function.

The Property Inspector displays the properties of the selected output attribute.

2. Click the Ellipsis button to the right of the Expression property.

The Expression dialog box displays as shown in Figure 26–4.

Figure 26–4 Expression Dialog Box

3. Select an aggregate function from the Function list.

The aggregate functions you can select are as follows: AVG, COUNT, GROUP_ID,
GROUPING, GROUPING_ID, MAX, MEDIAN, MIN, None, STDDEV, STDDEV_
POP, STDDEV_SAMP, SUM, VAR_POP, VAR_SAMP, VARIANCE, and WB_RT_
CONCAT.

In the example displayed in Figure 26–2, you select SUM as the aggregate
function.

Anydata Cast Operator

Data Flow Operators 26-9

4. Select either ALL or DISTINCT as the aggregation expression.

5. Select the attribute that should be aggregated from the Attribute list.

In the example displayed in Figure 26–2, you select the attribute amount_sold
from the list.

6. Click Use Above Values to display the aggregate expression in the Expression
field.

7. Click OK.

Anydata Cast Operator
Anydata Cast operator enables you to convert an object of type Sys.AnyData to either
a primary type or to a user-defined type. The Anydata Cast operator accepts an
Anydata attribute as a source and transforms the object to the desired type.

The Anydata Cast operator is used with user-defined data types and primitive data
types. This operator acts as a filter. The number of attributes in the output group is n+1
where n is the number of attributes in the input group. This operator has one input
group and one output group. The input group is editable. The output group is not
editable. In an output group, you can only rename the attributes and change the data
type of only the cast target. You cannot change the data type of any other output group
attribute.

You can connect attributes to the input group. Each output group gets a copy of the
input group attributes, including the Anydata attributes. You must choose an Anydata
attribute of the input group as the source of the Cast operation.

If you change the data type to which you are going to cast the Anydata attribute, then
you must:

1. Edit the output group attribute that is the target of the Cast operation

2. Change the data type of the attribute.

Because the Anydata Cast operator is unbound, it will not support any
synchronization operations.

Figure 26–5 displays a mapping that uses an Anydata Cast operator.

Figure 26–5 Anydata Cast in a Mapping

To define a Anydata Cast operator in a mapping:

1. Drop an Anydata Cast operator onto the Mapping Editor canvas.

Deduplicator Operator

26-10 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

The AnyData Cast dialog box is displayed. The tree inside the dialog box has one
parent node that will open to display the primary data types (other than Anydata).
Each of the other parent nodes will correspond to the modules.

2. Select the target type for casting and click Finish.

3. Right-click the ANYDATA CAST operator and select Open Details.

Warehouse Builder displays the ANYDATA_CAST Editor.

4. On the Input Attributes tab, click Add and specify the attribute name, data type,
and other properties.

5. Click OK to close the operator editor.

6. Map the attributes of the output group of the Anydata Cast operator to the target.

Deduplicator Operator
The Deduplicator operator enables you to remove duplicate data in a source by
placing a DISTINCT clause in the select code represented by the mapping.

For example, when you load data from a source table into a dimension, the higher
levels within a dimension may be duplicated in the source.

All attributes from a source rowset must pass through the Deduplicator operator. You
cannot map part of the output from a source rowset and part of the output from the
Deduplicator operator to the same target table.

Figure 26–6 displays a mapping that uses the Deduplicator operator to remove
duplicate values in the source while loading data into the PRODUCTS dimension. The
source table contains duplicate values for category ID because more than one products
may belong to the same category. The Deduplicator operator removes these duplicates
and loads distinct values of category ID into the PRODUCTS dimension.

Figure 26–6 Deduplicator in a Mapping

To remove duplicates:

1. Drop the Deduplicator operator onto the Mapping Editor canvas.

2. Connect the attributes from the source operator to the input/output group of the
Deduplicator operator.

3. Connect the attributes from the Deduplicator operator group to the attributes of
the target operator.

Expression Operator
Use the Expression operator to write SQL expressions that define non-procedural
algorithms for one output parameter of the operator.

Expression Operator

Data Flow Operators 26-11

The expression text can contain combinations of input parameter names, variable
names, and library functions. Use the Expression operator to transform the column
value data of rows within a row set using SQL-type expressions, while preserving the
cardinality of the input row set. To create these expressions, open the Attribute
properties window for the output attribute and then open the Expression Builder.

By default, the Expression operator contains one input group and one output group.

Figure 26–7 shows a mapping that uses the Expression operator. The transaction table
ORACLE_ORDERS contains order details such as product ID, unit price, and quantity
sold. The ORDERS_FACT table contains an aggregation of the total sales amount across
channels, products, and orders. The Expression operator is used to compute the
amount of sale for each product by multiplying the unit price by the quantity sold. The
Aggregator operator aggregates the sale amounts over channel code, product ID, and
order ID before loading the target table.

Figure 26–7 Expression Operator in a Mapping

Do not use the Expression operator to write aggregation functions. Use the Aggregator
operator. See "Aggregator Operator" on page 26-5 for more information about the
Aggregator operator.

To define an Expression operator in a mapping:

1. Drag and drop an Expression operator onto the Mapping Editor canvas.

2. Right-click the Expression operator and select Open Details.

Warehouse Builder displays the Expression Editor.

3. On the Output Attributes tab, create an output attribute by clicking on a blank cell
under the Attribute column. The default data type assigned is NUMERIC. You can
modify the data type and other parameters associated with the data type.

4. Define the expression used for the output attribute.

Enter the expression directly in the Expression field of the output attribute. Or
click the Ellipsis button to the right of the Expression field to display the
Expression builder dialog box that enables you to specify the expression.

5. Click OK to close the Expression Editor.

6. Connect the Expression output attribute to the appropriate target attribute.

Filter Operator

26-12 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Filter Operator
You can conditionally filter out rows using the Filter operator.

You connect a source operator to the Filter operator, apply a filter condition, and send
a subset of rows to the next operator. The Filter operator filters data from a source to a
target by placing a WHERE clause in SQL statement or a IF statement of the generated
PL/SQL code. You specify the filter condition using the Expression Builder. The filter
condition can be based on all supported data types and can contain constants.

A Filter operator has only one input/output group that can be connected to both a
source and target row set. The resulting row set is a filtered subset of the source row
set-based on a boolean filter condition expression. All rows that are required at the
target must pass through the Filter operator. No row set can bypass the filter and be
directly inserted in the target.

For a mapping that contains a Filter operator, code that displays the filter condition
expression as a WHERE clause for set-based view mode is generated. The filter input
names in the original filter condition are replaced by actual column names from the
source table, qualified by the source table alias.

Figure 26–8 shows the mapping that uses the Filter operator to move selected data to
the target table. The ORACLE_ORDERS table contains orders data. Use the Filter
Condition property of the Filter operator to move only the booked orders which were
last updated on the current system date into the ORDERS table.

Figure 26–8 Filter in a Mapping

To define a Filter operator in a mapping:

1. Drag and drop the Filter operator onto the Mapping Editor canvas.

2. Connect source attributes to the input/output group of the Filter operator.

3. Select the Filter operator header.

The Property Inspector displays the properties of the Filter operator.

4. Click the Ellipsis button to the right of the Filter Condition property.

Warehouse Builder displays the Expression Builder dialog box for the filter
condition.

5. Define a filter condition expression using the Expression Builder.

6. Click OK to close the Expression Builder.

7. Connect the Filter operator outputs to the input/output group in the target.

Joiner Operator

Data Flow Operators 26-13

Adding Self Joins in a Mapping
The Mapping Editor enables you to recursively join a table, view, or other source data
operators onto itself.

Also known as tree walking, recursively joining a table back onto itself enables you to
retrieve records in a hierarchy. For example, consider a table that contains employee
data including the manager for each employee. Using tree walking, you could
determine the hierarchy of employees reporting up to a given manager.

To perform tree walking:

1. Create a mapping and add the desired source data operator such as a Table, View,
or a Materialized View operator, which contains the hierarchal definition.

2. Connect that source data operator to a Filter operator.

3. In the Filter operator, define the filter condition with CONNECT BY as the first
two words. Make sure that you include only the connect by logic in the Filter
operator. That is, do not include any AND or OR logic in the filter.

Joiner Operator
The Joiner operator joins multiple row sets from different sources with different
cardinalities, and produces a single output row set. You can use the Joiner operator to
create inner joins, outer joins, equijoins, and non- equijoins. You can also create self
joins by using a Filter operator as described in "Adding Self Joins in a Mapping" on
page 26-13.

The Joiner operator uses a boolean condition that relates column values in each source
row set to at least one other row set. The Joiner operator results in a WHERE clause in
the generated SQL query. When executed on Oracle 9i or higher, ANSI full outer joins
are supported. For more information about joins, see Oracle Database SQL Language
Reference.

To define a join between row sets, you must define the following:

■ Join condition

■ Join Input roles, see "Joiner Input Roles" on page 26-14

If the input row sets are related through foreign keys, that relationship is used to form
a default join condition. You can use this default condition or you can modify it. If the
sources are not related through foreign keys, then you must define a join condition.

If two tables in a join query do not have a join condition specified, the Cartesian
product of the two tables is returned and each row of one table is combined with each
row of the other table.

If the default foreign keys result in duplicate WHERE clauses, the Joiner operator will
remove the duplicate clauses. This can happen if the join condition references several
foreign keys. For example, if table T1 has a foreign key FK1 pointing to unique key
UK1 in table T2 and table T2 has a foreign key FK2 pointing to unique key UK2 in T1,
the resulting join condition

T1.A = T2.A AND T1.B = T2.B /*All instances of FK1 -> UK1 are reduced to one WHERE
clause*/ AND

Note: Operators placed between data sources and a Joiner can
generate complex SQL or PL/SQL.

Joiner Operator

26-14 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

T2.B = T1.B AND T2.C = T1.C /*All instances of FK2 -> UK2 are reduced to one
E-Business Suite clause*/

is generated by the Joiner operator as

T2.A = T2.A AND T1.B = T2.B AND T2.C = T1.C

If you define a join condition before you map attributes to the input group of the
Joiner operator, the generated code treats the join condition as a literal. Since the
attributes are not yet mapped to the Joiner operator, the code generator does not
recognize these attributes. To avoid this problem, it is recommended that you first map
the input groups of the Joiner operator and then define the join condition.

The join condition is defined in a SQL context. For SAP sources, ABAP code can be
generated by interpreting the SQL join condition in the ABAP context. ABAP can only
join over defined foreign key relationships.

Joiner Input Roles
A Join Input Role defines how each input data flow to the Joiner operator contributes
to the output flow. Use the input role to specify the type of join you want to create.

Warehouse Builder provides the following input roles:

■ Standard

Using the Standard role for a row set indicates that a regular join must be used
while joining data from the row set. Rows from the input row set are matched with
other input row sets. All matched rows from this row set is added to the resulting
joined output. All unmatched rows are not included in the joined output.

■ Outer join

Using the Outer Join role for a row set indicates that the row set should be part of
an outer join. Rows from the input row set are matched with other input row sets.
All matched rows from this row set is added to the resulting joined output. All
unmatched rows collectively contribute NULL values to the output rows.

For example, you use a Joiner operator to join data from two tables T1 and T2
using a join condition. T1 is mapped to the first input group and T2 is mapped to
the second input group of the Joiner operator.

Table 26–1 describes how input data is joined when different input roles are
assigned to the input row sets.

Steps to Use a Joiner Operator in a Mapping
To define a Joiner operator in a mapping:

1. Drag and drop the Joiner operator onto the Mapping Editor canvas.

Table 26–1 Examples of Different Join Input Roles

Input Role for Table T1 Input Role for Table T2
Join Operation Performed
for Tables T1 and T2

Standard Standard T1 join T2

Outer join Standard T1 RIGHT OUTER JOIN T2

Standard Outer Join T1 LEFT OUTER JOIN T2

Outer Join Outer Join T1 FULL OUTER JOIN T2

Joiner Operator

Data Flow Operators 26-15

2. Connect an output group from the first source to the Joiner input group INGRP1.

The output attributes are created with data types matching the corresponding
input data types.

3. Connect a group from the second source operator to the INGRP2 group of the
Joiner operator.

4. Select the Joiner operator header.

The Property Inspector displays the properties of the Joiner operator.

5. Click the Ellipsis button to the right of the Join Condition property.

The Expression Builder dialog box is displayed.

6. Define the join condition.

7. Select an Input Role for both sources. The options are Standard or Outer Join.

See "Joiner Input Roles" on page 26-14.

8. Click OK to close the Expression Builder.

9. Map the attributes of the output group of the Joiner operator to the target.

Example: Using the Joiner Operator
Figure 26–9 shows a mapping that contains a Joiner operator. The two source tables
ORACLE_ORDERS and ORACLE_ORDER_LINES are joined to combine the data from
these tables into one table. The output of the Joiner operator is passed to the target
table DAILY_ORDERS.

Figure 26–9 Joiner in a Mapping

Joiner Restrictions
Do not include aggregation functions in a join condition.

 A Joiner can have unlimited number of input groups but only one output group.

The order of input groups in a joiner is used as the join order. The major difference
between ANSI join and an Oracle join is that ANSI join must clearly specify the join
order, while an Oracle join does not require it.

SELECT ...

Joiner Operator

26-16 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

 FROM T1 FULL OUTER JOIN T2 ON (T1.A=T2.A)
 JOIN T3 ON (T2.A=T3.A);

If you create input groups in another order, such as T1, T3, T2. Warehouse Builder will
generate the following:

 SELECT ...
 FROM T1 JOIN T3 ON (1=1)
 JOIN T2 ON (T1.A=T2.A and T2.A=T3.A);

When T1 and T3 are joined, there is no join condition specified. Warehouse Builder
fills in a condition 1=1 (essentially a boolean true) and the two conditions you
specified are used to join T2.

The filter condition is applied after join. For example, consider the following join:

Input1.c --- +
Input2.c --- +---> Joiner
Input3.c --- +

with the following conditions:

■ Condition 1: Input1.c (+) = Input2.c (+)

■ Condition 2: Input2.c = Input3.c

■ Condition 3: Input1.c is null

The first two conditions are true joins while the third is a filter condition. If ANSI code
is to be generated, the join condition is interpreted as

select ...
from Input1 full outer join Input2 on (Input1.c = Input2.c)
join Input3 on (Input2.c = Input3.c)
WHERE Input1.c is not null;

Specifying a Full Outer Join
If your target warehouse is based on Oracle 9i or a later version, the Joiner operator
also supports the full outer join. To specify a full outer join condition, you must place
the (+) sign on both sides of a relational operator. The relational operator is not
restricted to equality. You can also use other operators such as, >, <, !=, >=, <= .

T1.A (+) = T2.B (+)

The results of the full outer join are as follows:

■ Rows from sources T1 and T2 that satisfy the condition T1.A = T2.B.

■ Rows from source T1 that do not satisfy the condition. Columns corresponding
with T2 are populated with nulls.

■ Rows from source T2 that do not satisfy the condition. Columns corresponding
with T1 are populated with nulls.

When using the Oracle SQL syntax for partial outer join such as T1.A = T2.B (+), if you
place a (+) sign on both sides of the relational operator, it is invalid Oracle SQL syntax.
However, any condition with the double (+) sign is translated into ANSI SQL syntax.
For example,

SELECT ...
FROM T1 FULL OUTER JOIN T2 ON (T1.A = T2.B);

Joiner Operator

Data Flow Operators 26-17

When using full outer join, keep in mind the following:

■ Do not specify a full outer join condition for versions earlier than Oracle 9i.

■ The ANSI join syntax is generated only if you specify a full outer join condition in
the joiner. Otherwise, the following Oracle proprietary join syntax is generated:

SELECT ...
FROM T1, T2
WHERE T1.A = T2.B;

■ You can specify both full outer join and join conditions in the same joiner.
However, if both conditions are specified for the same sources, the stronger join
type is used for generating code. For example, if you specify:

T1.A(+) = T2.A(+) and T1.B = T2.B

Warehouse Builder will generate a join statement instead of a full outer join
because T1.B = T2.B is stronger than the full outer join condition between T1
and T2.

■ You cannot specify a full outer join and partial outer join condition in the same
joiner. If you specify a full outer join, then you cannot specify a partial outer join
anywhere in the join condition. For example, T1.A (+) = T2.A (+) and
T2.B = T3.B (+) is not valid.

Creating Full Outer Join Conditions
In an equijoin, key values from the two tables must match. In a full outer join, key
values are matched and nulls are created in the resulting table for key values that
cannot be matched. A left or a right outer join retains all rows in the specified table.

In Oracle8i, you create an outer join in SQL using the join condition variable (+):

SELECT ...
FROM A, B
WHERE A.key = B.key (+);

This example is a left outer join. Rows from table A are included in the joined result
even though no rows from table B match them. To create a full outer join in Oracle8i,
you must use multiple SQL statements.

The Expression Builder allows the following syntax for a full outer join:

TABLE1.COL1 (+) = TABLE2.COL2 (+)

This structure is not supported by Oracle8i. Oracle Database is ANSI SQL 1999
compliant. The ANSI SQL 1999 standard includes a solution syntax for performing full
outer joins. The code generator translates the preceding expression into an ANSI SQL
1999 full outer join statement, similar to:

SELECT ...
FROM table1 FULL OUTER JOIN table2 ON (table1.col1 = table2.col2)

Note: You can also specify as full outer join using join roles as
described in "Joiner Input Roles" on page 26-14. Note that if you use
join roles, the (+) syntax in the Join Condition is ignored and the
validation error VLD-1518 is displayed.

Joiner Operator

26-18 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Because the full outer join statement complies to ANSI SQL 1999, it is only valid if the
generated code is deployed to an Oracle 9i database. Specifying a full outer join to an
Oracle8i database results in a validation error.

A full outer join and a partial outer join can be used together in a single SQL
statement, but it must in an AND or an AND/OR condition. If a full outer join and
partial outer join are used in the OR condition, an unexpected AND condition will
result. For example,

SELECT ...
FROM table1 FULL OUTER JOIN table2 ON (A = B or C = D)

is evaluated by Oracle Server as A (+) = B (+) AND C = D.

To use a full outer join in a mapping:

1. Follow steps one through four described in "Steps to Use a Joiner Operator in a
Mapping" on page 26-14 to add a Joiner operator.

2. Click the Ellipsis button to the right of the Join Condition property to define an
expression for the full outer join using the Expression Builder.

3. Click OK to close the Expression Builder.

Grouping Join Conditions
When you create a join between more than two tables containing multiple conditions,
you must clearly indicate which conditions should be grouped together.

Follow these guidelines while defining joins that contain multiple conditions:

■ Use parenthesis to specify the clauses in the join condition that must be combined
into one single condition.

For example, A.ID = B.ID AND (B.ID (+) = C.ID (+) AND B.ID > 10).

Warehouse Builder generates the following code for this join condition:

SELECT ...
FROM
 "A" "A"
 JOIN "B" "B" ON (("A"."ID" = "B"."ID"))
 FULL OUTER JOIN "C" "C" ON (("B"."ID" = "C"."ID" and "B"."ID" > 10)/*
OPERATOR JOINER JOIN CONDITION */)

If you omit the parenthesis, Warehouse Builder generates the following code:

SELECT ...
FROM
 "A" "A"
 JOIN "B" "B" ON (("A"."ID" = "B"."ID"))
 FULL OUTER JOIN "C" "C" ON ("B"."ID" = "C"."ID")
 WHERE
 ("B"."ID" > 10)

Notice that the last clause, B.ID (+) > 10 is not included in any join condition but is
treated as a WHERE clause.

■ Use the outer join condition sign (+) to mark a condition as part of the join.

For example, setting the join condition as A.ID = B.ID AND B.ID (+) = C.ID (+)
AND B.ID (+) > 10 generates the following code.

SELECT ...

LCR Cast Operator

Data Flow Operators 26-19

FROM
 "A" "A"
 JOIN (SELECT
/* B.INOUTGRP1 */
 "B"."ID" "ID",
 "B"."NAME" "NAME",
 "B"."ATTR" "ATTR"
FROM
 "B" "B") "B" ON ((("A"."ID" = "B"."ID")) AND (("B"."ID" > 10)))
 FULL OUTER JOIN "C" "C" ON ("B"."ID" = "C"."ID")

In this case, since parenthesis is not used, the single condition B.ID (+) > 10 is
moved into the first ON clause.

For Code Template mappings, if you do not follow either of the guidelines listed
above, a validation warning is displayed and one of the following actions is
performed:

■ If the condition listed last cannot be combined with the condition adjacent to it, the
last condition is moved to the WHERE clause.

Consider the condition C.ENAME = A.ENAME AND A.DEPTNO = B.DEPTNO
AND C.SAL (+) > 1000. The condition C.SAL (+) > 1000 can be paired with
C.ENAME = A.ENAME. However, its placement is not consistent with such a
pairing and so a validation warning is displayed.

■ If the condition listed last can be combined with the condition adjacent to it, a
combined group condition is formed.

Consider the condition A.DEPTNO = B.DEPTNO AND C.ENAME = A.ENAME
AND C.SAL (+) > 1000. The condition C.SAL (+) > 1000 can be paired with
C.ENAME = A.ENAME. Thus it is included as part of the combined condition
C.ENAME = A.ENAME AND C.SAL (+) > 1000.

LCR Cast Operator
Use the LCR Cast operator to expand an LCR (Logical Change Record) object into its
constituent columns. This enables you to update the target object with insert, update,
or delete operations contained in the LCR. Typically, the LCR Cast operator is used just
after a Queue operator in a real-time mapping that publishes source changes to target
objects.

Note: When you set the Joiner Input Role to Outer Join or when you
use ANSI syntax to generate a mapping containing a Joiner operator
(by setting the Mapping configuration parameter ANSI SQL Syntax to
True), it is recommended that you inspect the generated code to verify
that the conditions are grouped as intended. Sometimes, because of
ambiguous conditions, the generated code may group conditions
differently from what you intended.

Alternatively, you can set the ANSI SQL Syntax parameter to false.
This generates the WHERE clause exactly as specified by the Join
Condition property.

You can also design mappings so that they contains nested Joiner
operators with each of the Join operators having 2 groups. This
ensures that there is no ambiguity in defining join conditions.

LCR Splitter Operator

26-20 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

The LCR Cast operator must be bound to the table for which it stores change records.
It contains one input group and one output group, both of which are non-editable. You
cannot add groups to this operator, but you can rename the existing input or output
group. The input group contains an attribute Event, of type SYS.LCR$_ROW_
RECORD, that stores the LCRs. You must connect a SYS.ANYDATA attribute to the
input group. The output group contains the columns of the tables to which the LCR
Cast operator is bound.

To add an LCR Cast operator to a mapping:

1. Drag and drop a LCR Cast operator onto the Mapping Editor canvas.

Warehouse Builder displays the Add LCR Cast dialog box.

2. Select the table to which the LCR Cast operator must be bound.

3. Connect the output attribute of a source operator to the input group of the LCR
Cast operator.

4. Connect the attributes of the output group in the LCR Cast operator to the target
table to which you want to publish the changes contained in the LCR.

Figure 26–10 describes an example of using the LCR Cast operator in a mapping. The
Queue operator ADVANCED_QUEUE represents the advanced queue that stores the
change records for the source table. The LCR Cast operator is bound to the target table
into which the changed records from the source should be transferred.

The AQ contains a payload that is represented by the PAYLOAD attribute. The
payload stores change data in the form of LCRs. Map the PAYLOAD attribute the LCR
Cast operator to expand the LCR into the columns contained in the target table that is
bound to the LCR Cast operator. You then map the output attributes of the LCR Cast
operator to the target table ORDERS.

Figure 26–10 Mapping that Uses an LCR Cast Operator

LCR Splitter Operator
Use the LCR Splitter operator to direct changes to different tables along data flow
paths.

The LCR Splitter contains one input group and one output group. Both groups contain
one attribute called Event of type SYS.LCR$_ROW_RECORD. The input group
represents the represents the LCR object. You cannot add input or output groups.

Lookup Operator
Use the Lookup operator to lookup data from a table, view, cube, or dimension. For
example, use the Lookup operator when you define a mapping that loads a cube or
when you define surrogate keys on the dimension.

You can use the same Lookup operator to lookup data from multiple objects.

Lookup Operator

Data Flow Operators 26-21

The key that you look up can be any unique value. It need not be a primary or unique
key, as defined in an RDBMS. The Lookup operator reads data from a lookup table
using the key input you supply and returns exactly one matching row. This operator
returns a row for each input key. You can have multiple Lookup operators in the same
mapping.

The output of the Lookup operator corresponds to the columns in the lookup object. In
case multiple records are returned by the lookup operation, you can specify which of
these records is selected.

The Lookup Wizard contains one input group and one output group. You can create
additional input and output groups. The attributes in each input group must be
connected from the same data source. Each output group is bound to one lookup
object. Each lookup uses attributes from only one input group as search values. That is,
each output group is associated with only one input group. The tooltip for each output
group displays the input group associated with it and the lookup condition used.

Since an output group is bound to an object, its attributes are the columns in the object.
You can create additional output attributes, that are derived from the object columns,
by using the Expression property of the output attribute.

Each output attribute for the lookup has a property called DEFAULT VALUE. The
DEFAULT VALUE property is used instead of NULL in the outgoing row set if no
value is found in the lookup table for an input value. The generated code uses the
NVL function. The Lookup always results in an outer-join statement.

The table, view, or dimension from which the data is being looked up is bound to the
Lookup operator. You can synchronize a Lookup operator with the workspace object
to which it is bound. But you cannot synchronize the workspace object with the
Lookup operator. For more information about synchronizing operators, see
"Synchronizing Operators and Workspace Objects" on page 5-26.

Points to Keep In Mind while Using the Lookup Operator
The Lookup operator returns only one row. When the result of the lookup returns
multiple rows, you must specify which of the rows must be used as the return value.
You can select either the first row or the last row from the returned rows.

Since you are selecting the first or last row, the order in which the lookup results are
returned is important. Since SQL queries do not guarantee repeatable order, you must
specify the appropriate ORDER BY clause to sort lookup results. To eliminate
non-determinism, ensure that you specify a detailed ordering clause that ensures that
the desired record is picked as the lookup result.

Figure 26–11 shows a mapping that is used to load a cube. Data from four source tables
is joined using a Joiner operator. But the data in the source tables only contains a
channel name. To load the cube, we need the value of the surrogate identifier. A
Lookup operator is used to lookup the surrogate identifier of the CHANNELS
dimension and then load this value into the cube.

See Also: Oracle Warehouse Builder Concepts for information about
surrogate identifiers.

Lookup Operator

26-22 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Figure 26–11 Lookup Operator in a Mapping

Using the Lookup Operator
You have the following options for using a Lookup operator:

■ Define a new Lookup operator: Drag a Lookup operator from the Palette onto the
mapping. The Mapping Editor displays a wizard.

■ Edit an existing Lookup operator: Right-click the Lookup operator and select
Open Details.

Whether you are using the operator wizard or the operator editor, complete the
following pages:

■ Name

■ Groups

■ Lookup Tables

■ Input Attributes

■ Output Attributes

■ Lookup Conditions

■ Multiple Match Rows

■ Type 2 History Lookup

■ No-match Rows

Name
Use the Name page or Name tab to specify a name and optional description for the
Lookup operator.

Groups
Use the Groups page to specify one input and one output group.

Lookup Operator

Data Flow Operators 26-23

In a Lookup operator, the input group represents the data from the source that is
contained across multiple attributes. The output group represents that data
transformed into rows.

You can rename and add descriptions to the default input and output groups. You can
also create additional input and output groups that you require. To create an input or
output group, specify a name for the group, select the direction (Input or Output), and
provide an optional description.

Lookup Tables
Every output group is associated with a lookup table. Use the Lookup Tables page or
the Lookup Tables tab to select the lookup table that must be associated with each
output group.

The Group field displays all the output groups defined for the Lookup operator. Select
an output group and specify the lookup table to which the output group is bound. To
select the lookup table, click the list in the section below the Group field. The objects
from which you can perform a lookup are listed in the tree displayed. Select the
lookup object.

Repeat this step for all the output groups in the Lookup operator.

Input Attributes
Use the Input Attributes page to define the input attributes of each input group.

The Group field lists all the input groups defined for the Lookup operator. Select an
input group, and create the attributes for that group. Each input attribute contains a
field called Default Value. Use this field to specify a default value for the input
attribute.

Output Attributes
Use the Output Attributes field to create output attributes in each output group. Since
each output group is bound to a lookup object, the columns from the bound lookup
object are automatically listed as output attributes for the group. Create any additional
output attributes that are required. These could be values that are derived from the
existing attributes using expressions.

The Groups list lists the output groups defined for the Lookup operator. Select an
output group to display the attributes in this group. To create an output attribute, click
a blank cell in the Name field and enter the attribute name. Then specify the additional
parameters of the attribute such as data type, default values, description, and so on.

Output attributes have an additional parameter called Expression. Use this column to
specify the expression used to determine the value of the output attribute. You can
enter the expression directly in the Expression column. Or, click the Ellipsis button to
the right of the Expression column to display the Expression Builder interface. Use this
interface to define the expression.

Lookup Conditions
Use the Lookup page to provide details about the object on which the lookup is being
performed. This object is referred to as the lookup result. You can perform a lookup on
any table, view, or dimension that belongs to the current project.

On the Lookup page, also associate each output group with its corresponding input
group. Each output group must be bound to one input group. This input group
provides the values that are searched for in the lookup table represented by the output
group.

Lookup Operator

26-24 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

The Output field lists the output groups and the Input field lists the input groups of
the Lookup operator. Select and output group and from the Input list, select the input
group to which it is bound. Repeat this process for all output groups.

Once the output groups are bound to the corresponding input groups, you must map
the output attributes and the input attributes that must be compared to perform the
lookup. Select the output group in the Output field and use the area at the bottom of
this page to specify the lookup condition. The contents displayed in this area depend
on whether you choose Simple Editing or Freestyle Editing.

If you selected Simple Editing, a table with two columns is displayed. Use the Lookup
Table Column to select the column from the lookup table with which the attribute
selected in the Input Attribute column is compared.

If you select Freestyle Editing, an interface similar to the Expression Builder is
displayed. Use this to define the condition that will be used as the lookup condition.
You can use an equality or a non-equality condition as the lookup condition.

If you select a dimension level for the lookup, the options displayed are the surrogate
and business identifier of the dimension level and the primary key of the database
table that stores the dimension data.

Multiple Match Rows
Use the Multiple Match Rows page to define which row from the lookup result should
be selected as the lookup result if the lookup returns multiple rows. Multiple rows are
returned if the lookup condition specified matched more than one record.

For each output group, you must define the action to be taken if multiple rows are
returned by the lookup operation.

Select an output group in the Output Group field and then specify values for this
group as described in the following sections.

Selecting the Action to Perform When Multiple Rows are Returned
Select one of the following options:

■ Error: multiple rows cause mapping to fail

Select this option to indicate that when the mapping that contains this Lookup
operator is run, if the lookup operation for the selected output group returns more
than one row, the mapping execution fails.

■ All Rows (number of result rows may differ from the number of input rows)

Select this option to indicate that when the Lookup operator returns multiple rows
for the selected output group, all the rows should be returned as the lookup result.

■ Select single row

Select this option to specify that when the Lookup operator returns multiple rows
for the selected output group, only one row from the returned rows must be
selected as the lookup result. When you select this option, the fields contained in
the section below this option are enabled. Use these fields to specify which row
from the lookup result set should be selected as the lookup result.

Specifying the Row to Select as the Lookup Result
You must select the one row that should be selected from the multiple rows produced
by the lookup operation only if you selected the Select single row option in the
previous section.

Lookup Operator

Data Flow Operators 26-25

For each output group, specify the following information about the row that must be
selected from the multiple rows returned from the lookup operation.

Row Position: Select one of the following options:

■ Any row

Any one row among the result set returned by the Lookup operator is selected as
the lookup result.

■ First row

The first row from the result set returned by the Lookup operator is selected as the
lookup result.

■ Last row

The first row from the result set returned by the Lookup operator is selected as the
lookup result.

■ Nth row

The nth row from the result set returned by the Lookup operator is selected as the
lookup result. Click the list on the Nth Row field to specify the values of n.

Order Result Set By

Use this section to specify how the rows in the result set (containing multiple rows)
should be ordered. Ordering columns is important when you select the first, last, or
nth row from the result set as the lookup result. Ensure that you specify ordering
conditions such that the row you want returned is selected.

The Available section lists the lookup table columns for the output group selected in
the Output Group field. Select the columns that you want to use to order rows in the
lookup result set and use the arrow to move them to the Selected section. In the
Selected section, ensure that the columns are listed in the same order (from top to
bottom) in which you want the result set to be ordered. For example, if you want to
implement an ordering such as ORDER BY attr2, attr3, and then attr1, the attributes
should be listed in the same order in the Selected section. You can use the arrows to
the right of the Selected section to change the position of selected columns.

No-match Rows
Use the No-match Rows page to indicate the action to be taken when there are no rows
that satisfy the lookup condition specified on the Lookup page. You must specify an
action for all the output groups.

Select an output group in the Output Group field and then choose one of the following
options:

■ Return no row

This option does not return any row when no row in the lookup result satisfies the
matching condition.

■ Return a row with the following default values

This option returns a row that contains default values when the lookup condition
is not satisfied by the lookup result. Use the table below this option to specify the
default values for each lookup column.

Pivot Operator

26-26 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Type 2 History Lookup
Use this page only if you selected a Type 2 SCD as the lookup result on the Lookup
page. When the lookup result is a Type 2 SCD, you must specify which version of a
particular record is to be used as a lookup.

For each output group that you bound to a Type 2 SCD, select the group in the Output
Group field and then choose one of the following options:

■ Use the most current record

This option returns the current record that corresponds to the attribute being
looked up using the lookup condition. The current record is the one with the latest
timestamp.

■ Specify the historic date as a constant value

This option returns the record that contains the constant value that is specified
using the Date and Time lists.

■ Choose an input attribute that holds the historic value

This option enables you return records that pertain to a date and time that is
contained in one of the input attributes. Use the Input Attribute list to select the
attribute that contains the historic value.

Pivot Operator
The Pivot operator enables you to transform a single row of attributes into multiple
rows.

Use this operator in a mapping when you want to transform data that is contained
across attributes instead of rows. This situation can arise when you extract data from
non-relational data sources such as data in a crosstab format.

Example: Pivoting Sales Data
The external table SALES_DAT contains data from a flat file. There is a row for each
sales representative and separate columns for each month.

Figure 26–12 displays the flat file SALES_DAT.

Figure 26–12 SALES_DAT

Table 26–2 shows a sample of the data after a pivot operation is performed. The data
that was formerly contained across multiple columns (M1, M2, M3...) is now contained
in a single attribute (Monthly_Sales). A single ID row in SALES_DAT corresponds to 12
rows in pivoted data.

See Also: Oracle Warehouse Builder Sources and Targets Guide for more
information about external tables

Pivot Operator

Data Flow Operators 26-27

To perform the pivot transformation in this example, create a mapping like the one
shown in Figure 26–13.

Figure 26–13 Pivot Operator in a Mapping

In this mapping that performs the pivot transformation, the data is read from the
external table once, pivoted, aggregated, and written it to a target in set-based mode. It
is not necessary to load the data to a target directly after pivoting it. You can use the
Pivot operator in a series of operators before and after directing data into the target
operator. You can place operators such as filter, joiner, and set operation before the
Pivot operator. Since pivoted data is not a row-by-row operation, you can also execute
the mapping in set-based mode.

The Row Locator
In the Pivot operator, the row locator is an output attribute that you create to
correspond to the repeated set of data from the source. When you use the Pivot
operator, a single input attribute is transformed into multiple rows and generates
values for a row locator. In this example, since the source contains attributes for each
month, you can create an output attribute named 'MONTH' and designate it as the row
locator. Each row from SALES_DAT then yields 12 rows of pivoted data in the output.

Table 26–3 shows the data from the first row from SALES_DAT after the data is pivoted
with 'MONTH' as the row indicator.

Table 26–2 Pivoted Data

REP MONTH MONTHLY_SALES REGION

0675 Jan 10.5 4

0675 Feb 11.4 4

0675 Mar 9.5 4

0675 Apr 8.7 4

0675 May 7.4 4

0675 Jun 7.5 4

0675 Jul 7.8 4

0675 Aug 9.7 4

0675 Sep NULL 4

0675 Oct NULL 4

0675 Nov NULL 4

0675 Dec NULL 4

Pivot Operator

26-28 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Using the Pivot Operator
You have the following options for using a Pivot operator:

■ Define a new Pivot operator: Use the Pivot Wizard to add a new Pivot operator to
a mapping. Drag a Pivot operator from the Palette onto the mapping. The
Mapping Editor displays the Pivot Wizard.

■ Edit an existing Pivot operator: Use the Pivot Editor to edit a Pivot operator you
previously created. Right-click the Pivot operator and select Open Details. The
Mapping Editor opens the Pivot Editor.

Whether you are using the Pivot Wizard or the Pivot Editor, complete the following
pages:

■ General

■ Groups

■ Input Connections

■ Input Attributes

■ Output Attributes

■ Pivot Transform

General
Use the General page to specify a name and optional description for the Pivot
operator. By default, the wizard names the operator "Pivot".

Groups
Use the Groups page to specify one input and one output group.

In a Pivot operator, the input group represents the data from the source that is
contained across multiple attributes. The output group represents that data
transformed into rows.

Table 26–3 Data Pivoted By Row Indicator

REP MONTH MONTHLY_SALES REGION

0675 Jan 10.5 4

0675 Feb 11.4 4

0675 Mar 9.5 4

0675 Apr 8.7 4

0675 May 7.4 4

0675 Jun 7.5 4

0675 Jul 7.8 4

0675 Aug 9.7 4

0675 Sep NULL 4

0675 Oct NULL 4

0675 Nov NULL 4

0675 Dec NULL 4

Pivot Operator

Data Flow Operators 26-29

You can rename and add descriptions to the input and output groups. Since each Pivot
operator must have exactly one input and one output group, the wizard prevents you
from adding or removing groups or changing group direction.

Input Connections
Use the Input Connections page to copy and map attributes into the Pivot operator.
The attributes you select become mapped to the pivot input group. The left side of the
page displays a list of all the operators in the mapping.

Figure 26–14 shows a group from the external table SALES_DAT selected as input for
the Pivot operator.

Figure 26–14 Pivot Operator Input Connections Tab

To complete the Input Connections page for a Pivot operator:

1. Select complete groups or individual attributes from the left panel.

To search for a specific attribute or group by name, type the text in Search for and
select Go. To find the next match, select Go again.

Press the Shift key to select multiple attributes. If you want to select attributes
from different groups, you must first combine the groups with a Joiner or Set
operator.

2. Use the right arrow button in the middle of the page to move your selections to
the right side of the wizard page.

Use the left arrow to remove groups or attributes from the input connections list.
Warehouse Builder removes the selection from the input group and removes the
data flow connection between the source operator and the Pivot operator.

Figure 26–15 shows a group from SALES_DAT copied and mapped into the
PIVOTSALES operator.

Pivot Operator

26-30 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Figure 26–15 Attributes Copied and Mapped into Pivot In Group

Input Attributes
Use the Input Attributes page to modify the attributes you selected in the Input
Connections tab or wizard page.

You can perform the following tasks from the Input Attributes page:

■ Add attributes: Enter the attribute name and other attribute details in an empty
row on this page.

■ Change attribute properties: You can change the attribute name, data type, length,
precision, and scale.

■ Add an optional description: Type a description for the input attributes.

■ Designate attribute keys: As an option, use the Key check box to indicate an
attribute that uniquely identifies the input group.

Output Attributes
Use the Output Attributes page to create the output attributes for the Pivot operator. If
you designated any input attributes as keys on the Input Attributes tab or wizard
page, those input attributes are displayed as output attributes that you cannot edit or
delete.

Figure 26–16 displays the output attributes with MONTH selected as the row locator.

Pivot Operator

Data Flow Operators 26-31

Figure 26–16 Pivot Output Attributes Tab

You can perform the following tasks from the pivot Output Attributes Page:

■ Change attribute properties: Except for attributes you designated as keys on the
previous tab or wizard page, you can change the attribute name, data type, length,
precision, and scale.

■ Add an optional description: Type a description for the output attributes.

■ Designate a row locator: Although you are not required to designate a row locator
for the Pivot operator, it is recommended. When you identify the row locator on
the Output Attributes page or tab, it is easier for you to match your output data to
the input data.

In the Pivot operator, the row locator is an output attribute that corresponds to the
repeated set of data from the source. For example, if the source data contains
separate attributes for each month, create an output attribute 'MONTH' and
designate it as the row locator.

Pivot Transform
Use the Pivot Transform page to write expressions for each output attribute.

By default, two rows are displayed. Use Add to specify how many rows of output you
want from a single row in the source. For example, if your source contains an attribute
for each quarter in a year, you can specify 4 rows of output for each row in the source.
If the source data contains an attribute for each month in the year, you can specify 12
rows of output for each row in the source.

Figure 26–17 shows the Pivot Transform tab with the pivot expressions defined for a
source with an attribute for each month.

Post-Mapping Process Operator

26-32 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Figure 26–17 Pivot Transform Tab

Write pivot expressions based on the following types of output:

■ Row locator: Specify a name for each row where the name is a value you want to
load into the table. For example, if the row locator is 'MONTH', type 'Jan' for the
first row.

■ Pivoted output data: Select the appropriate expression from the list box. For
example, for the row you define as 'Jan', select the expression that returns the set of
values for January.

■ Attributes previously specified as keys: Defines the expression for you.

■ Unnecessary data: If the Pivot Transform page contains data that you do not want
as output, use the expression 'NULL'. Warehouse Builder outputs a repeated set of
rows with no data for attributes you define as 'NULL'.

When using the wizard to create a new Pivot operator, click Finish when you want to
close the wizard. The Mapping Editor displays the operator you defined.

When using the Pivot Editor to edit an existing Pivot operator, click OK when you
have finished editing the operator. The Mapping Editor updates the operator with the
changes you made.

Post-Mapping Process Operator
Use a Post-Mapping Process operator to define a procedure to be executed after
running a PL/SQL mapping. For example, you can use a Post-Mapping Process
operator to reenable and build indexes after a mapping completes successfully and
loads data into the target.

The Post-Mapping Process operator calls a function or procedure after the mapping is
executed. The output parameter group provides the connection point for the returned

Pre-Mapping Process Operator

Data Flow Operators 26-33

value (if implemented through a function) and the output parameters of the function
or procedure. There are no restrictions on the connections of these output attributes

The Post-Mapping Process operator contains groups corresponding to the number and
direction of the parameters associated with the selected PL/SQL procedure or
function. This list of groups and attributes can only be modified through
synchronization with workspace objects.

You can map constants, data generators, mapping input parameters, and output from
a Pre-Mapping Process into a Post-Mapping Process operator. The Post-Mapping
Process operator is not valid for an SQL*Loader mapping.

After you add a Post-Mapping Process operator to the Mapping Editor, use the
operator properties dialog box to specify run conditions in which to execute the
process.

To use a Post-Mapping Process operator in a mapping:

1. Drag and drop a Post-Mapping Process operator onto the Mapping Editor canvas.

Warehouse Builder displays the Add Post-Mapping Process dialog box.

2. Use the Add Post-Mapping Process dialog box to select or create a transformation.
For more information about how to use the Add Post-Mapping Process dialog box,
see "Using the Add Operator Dialog Box to Add Operators" on page 5-13.

3. Connect the output attribute of a source operator to the input/output group of the
Post-Mapping Process operator.

4. Set the run conditions for the operator.

To set run conditions for a Post-Mapping Process operator:

1. From the mapping canvas, select a Post-Mapping Process operator.

The Property Inspector displays the properties of the Post-Mapping Process
operator.

2. Click Post-Mapping Process Run Condition and select one of the following run
conditions:

Always: The process runs regardless of errors from the mapping.

On Success: The process runs only if the mapping completes without errors.

On Error: The process runs only if the mapping completes with errors exceeding
the number of allowed errors set for the mapping.

On Warning: The process runs only if the mapping completes with errors that are
less than the number of allowed errors set for the mapping.

If you select On Error or On Warning and the mapping runs in row-based mode,
you must verify the Maximum Number of Errors set for the mapping. To view the
number of allowed errors, right-click the mapping in the Projects Navigator, select
Configure, and expand Runtime Parameters.

Pre-Mapping Process Operator
Use a Pre-Mapping Process operator to define a procedure to be executed before
running a mapping.

For example, you can use a Pre-Mapping Process operator to truncate tables in a
staging area before running a mapping that loads tables to that staging area. You can
also use a Pre-Mapping Process operator to disable indexes before running a mapping

Set Operation Operator

26-34 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

that loads data to a target. You can then use a Post-Mapping Process operator to
reenable and build the indexes after running the mapping that loads data to the target.

The Pre-Mapping Process operator calls a function or procedure whose metadata is
defined prior to executing a mapping. The output attribute group provides the return
value (if implemented as a function) and the output parameters of the function or
procedure. You can connect these attributes to any other operators downstream, and
they do not have the connection restrictions that apply to the Post-Mapping Process
operator.

When you drop a Pre-Mapping Process operator onto the Mapping Editor canvas, a
dialog box opens displaying the available libraries, categories, functions, and
procedures. After you select a function or procedure from the tree, the operator
displays the attributes that correspond to the selected function or procedure.

The Pre-Mapping Process operator contains groups corresponding to the number and
direction of the parameters associated with the selected PL/SQL procedure or
function.

After you add a Pre-Mapping Process operator to the Mapping Editor, use the
Property Inspector to specify the Run condition of the mapping.

To use a Pre-Mapping Process operator in a mapping:

1. Drag and drop a Pre-Mapping Process operator onto the Mapping Editor canvas.

The Add Pre-Mapping Process dialog box is displayed.

2. Use the Add Pre-Mapping Process dialog box to select or create a transformation.
For more information about how to use this dialog box, see "Using the Add
Operator Dialog Box to Add Operators" on page 5-13.

3. Connect the output attribute of the Pre-Mapping Process operator to the input
group of a target operator.

4. Set the run conditions for the operator.

To set run conditions for a mapping with a Pre-Mapping Process operator:

1. In the mapping canvas, select the Pre-Mapping Process operator.

The Property Inspector displays the properties of the Pre-Mapping Process
operator.

2. Click Mapping Run Condition and select one of the following run conditions:

Always: Runs the mapping after the process completes, regardless of the errors.

On Success: Runs the mapping only if the process completes without errors.

On Error: Runs the mapping only if the process completes with errors.

Set Operation Operator
Set operations combine the results of two component queries into a single result.

 While a Joiner operator combines separate rows into one row, Set Operation operators
combine all data rows into one output rowset using one of the various set operation
conditions. In Set Operation operators, although the data is added to one output, the
column lists are not mixed together to form one combined column list.

The Set Operation operator enables you to use following set operations in a mapping:

■ Union (default)

Sorter Operator

Data Flow Operators 26-35

■ Union All

■ Intersect

■ Minus

By default, the Set Operation operator contains two input groups and one output
group. You can add input groups by using the operator editor. The number of
attributes in the output group matches the number of attributes in the input group
containing the most number of attributes.

To use the Set Operation operator, all sets must have the same number of attributes
and the data types of corresponding attributes must match. Corresponding attributes
are determined by the order of the attributes within an input group. For example,
attribute 1 in input group 1 corresponds to attribute 1 in input group 2.

You must apply the set operation in top-down order. The order of the input groups
determines the execution order of the set operation. This order only affects the minus
operation. For example, A minus B is not the same as B minus A. The order of the
attributes within the first input group determines the structure of a set. For example,
{empno, ename} is not the same as {ename, empno}.

To use the Set Operation operator in a mapping:

1. Drag and drop a Set Operation operator onto the Mapping Editor canvas.

2. Connect source attributes to the Set Operation operator groups.

3. Select the Set Operation operator header.

The Property Inspector displays the properties of the Set Operation operator.

4. Click the list on the Set Operation property and select an operation from the list.

5. Connect the Set Operation output group to a target input group.

Synchronizing the Attributes in a Set Operation Operator
The Set Operation operator in the Mapping Editor assists you in matching attributes
between two data streams. To match attributes from two data streams in a mapping,
define the data streams as input groups into the Set Operation operator. On the Input
Attributes tab, click Synchronize from <Input Group Name>. The synchronize
operation rearranges and adds attributes to the target group such that the target group
most closely matches the source group. The synchronize operation uses the following
rules to find or create a match in the target:

1. Looks for an existing attribute in the target that matches name and data type.

2. Looks for an existing attribute in the target whose description matches the source
name, and the data type matches source data type.

3. If (1) and (2) fail, then a new attribute is created with the source name and data
type, and is inserted in the correct matching position. Any unmatched target
group attributes are indicated by UNMATCHED in the attribute description.

To force a target attribute to match a specified source attribute, type the source
group attribute as the target attribute description.

Sorter Operator
You can produce a sorted row set using the Sorter operator.

Sorter Operator

26-36 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

The Sorter operator enables you to specify which input attributes are sorted and
whether the sorting is performed in ascending or descending order. Warehouse
Builder sorts data by placing an ORDER BY clause in the code generated by the
mapping.

The Sorter operator has one input/output group. You can use the Sorter operator to
sort data from any relational database source. You can place any operator after the
Sorter operator.

Order By Clause
The Sorter operator contains the Order By clause. This clause is an ordered list of
attributes in the input/output group to specify that sorting is performed in the same
order as the ordered attribute list. You can set ascending or descending sorting for
each attribute.

Most data in warehouses is loaded in batches. There can be some problems with the
loading routines. For example, a batch of orders might contain a single order number
multiple times with each order line representing a different state of the order. The
order might have gone from status 'CREATED' to 'UPDATED' to 'BOOKED' during the
day.

Because a SQL statement does not guarantee any ordering by default, the inserts and
updates on the target table can take place in the wrong order. If the 'UPDATED' row is
processed last, it becomes the final value for the day although the result should be
status 'BOOKED'. Warehouse Builder enables you to solve this problem by creating an
ordered extraction query using the Sorter operator. The ORDER BY clause can use the
last updated attribute. This will ensure that the records appear in the order in which
they were created.

Figure 26–18 shows a mapping that uses the Sorter operator to sort the records from
the ORACLE_ORDERS table. Use the Order By Clause property of the Sorter operator to
sort the input records on the ORDER_ID and the LAST_UPDATED attributes.

Figure 26–18 Sorter Operator in a Mapping

To use the Sorter operator in a mapping:

1. Drag and drop the Sorter operator onto the Mapping Editor canvas.

2. Connect a source operator group to the Sorter input/output group.

3. Select the Sorter operator header.

The Property Inspector displays the properties of the operator.

4. Click the Ellipsis button in the Order By Clause field.

The Order By Clause dialog box is displayed.

Splitter Operator

Data Flow Operators 26-37

5. Select the attributes you want to sort.

Select an attribute from the Available Attributes list and click the right arrow
button. Or, click the double right arrow button to select all of the Available
Attributes.

6. Apply an ORDER BY clause to the attribute.

Select the attribute in the ORDER BY Attributes list and select ASC (ascending) or
DESC (descending) from the ASC/DESC list.

7. Click OK.

8. Connect the output of the Sorter operator to the target.

Splitter Operator
You can use the Splitter operator to split data from one source to several targets.

The Splitter operator splits a single input row set into several output row sets using a
boolean split condition. Each output row set has a cardinality less than or equal to the
input cardinality. This is useful when you want to move data to different targets based
on a data driven condition. Instead of moving the data through multiple filters, you
can use a splitter.

As an option, you can optimize mappings that split data from one source to multiple
targets for improved performance. For more information, see "Example: Creating
Mappings with Multiple Targets" on page 26-38.

The Splitter operator contains one input group and three output groups. The output
groups are OUTGRP1, OUTGRP2, and REMAINING_ROWS. You can create
additional output groups, if required. You can delete the REMAINING_ROWS output
group, but you cannot edit it.

In most cases, the output group REMAINING_ROWS contains all input rows that are
not included in any output group. However, when the split condition contains an
attribute whose value is null, the corresponding rows are not moved to the
REMAINING_ROWS output group.

The Splitter operator contains the split condition. For code generation, the source
columns are substituted by the input attribute names in the expression template. The
expression is a valid SQL expression that can be used in a WHERE clause.

Figure 26–19 shows the mapping that uses the Splitter operator to split customer data
from the source table CUSTOMERS into two separate tables. One table contains only the
customer addresses and the other table contains the remaining customer details. Use
the Split Condition property of each output group in the Splitter operator to specify
which data should be moved to a particular target table.

Splitter Operator

26-38 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Figure 26–19 Splitter Operator in a Mapping

To use the Splitter operator in a mapping:

1. Drag and drop the Splitter operator onto the Mapping Editor canvas.

2. Connect a group from a source operator to the input group of the Splitter operator.

The output attributes are created with data types matching the corresponding
input data types.

3. Select the output group of the Splitter operator.

The Property Inspector displays the properties of the output group.

4. Click the Ellipsis button to the right of the Split Condition field.

The Expression Builder dialog box is displayed.

5. Define the split condition.

For example, the split condition can be UPPER(INGRP1.OR_CHANNEL) =
'DIRECT'.

6. Define expressions for the split condition of each output group except the
REMAINING ROWS group.

7. Connect the output groups to the targets.

Example: Creating Mappings with Multiple Targets
When you design a mapping with multiple targets, you have the option to optimize
for improved performance. You may decide to not optimize if you require accurate
auditing details for the mapping. If you decide to not optimize, separate insert
statements for each target are generated.

To optimize a multiple target mapping, you must take additional steps to generate a
single insert statement for all targets combined. In this case, a multitable INSERT SQL
statement is generated that takes advantage of parallel query and parallel DML
services available in versions 9i and higher of the Oracle Database server.

To optimize a mapping with multiple targets:

Subquery Filter Operator

Data Flow Operators 26-39

1. Define a mapping in an Oracle target module configured to generate Oracle 9i or
higher SQL.

Right-click the target module on the Projects Navigator and select Configure.
Under Deployment System Type and PL/SQL Generation Mode, select Oracle 9i
or higher.

2. In the Mapping Editor, design a mapping with a single source, a Splitter operator,
and multiple targets.

For the mapping to be optimized, the targets must be tables, not views or
materialized views. Each target table must have less than 999 columns. Between
the Splitter operator and the targets, do not include any operators that change the
cardinality.

For example, you can place a Filter between the Splitter and the targets as shown
in Figure 26–20, but not a Joiner or Aggregator operator. These restrictions only
apply if you choose to optimize the mapping.

Figure 26–20 Example Mapping with Multiple Targets

3. From the Projects Navigator, select the mapping and select Design from the menu
bar, and select Configure. You can also right-click the mapping you want to
configure and select Configure.

Warehouse Builder displays the configuration properties dialog box for a
mapping.

4. Expand Runtime Parameters and set Default Operating Mode to Set based.

5. Expand Code Generation Options and set Optimized Code to True.

When you run this mapping and view the generation results, one total SELECT and
INSERT count for all targets is returned.

Subquery Filter Operator
The Subquery Filter operator enables you to filter rows based on the results of a
subquery. The conditions that you can use to filter rows are EXISTS, NOT EXISTS, IN,
and NOT IN.

For example, the EMP table contains employee data. You can use a subquery to fetch a
set of records from another table and then filter rows from the EMP table by using one
of the conditions EXISTS, NOT EXISTS, IN, or NOT IN.

The Subquery Filter operator contains one input group INGRP1 and one
Input/Output group INOUTGRP1. INGRP1 is mapped from the object that represents
the subquery used to filter source data. The default condition used for filtering data is

Subquery Filter Operator

26-40 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

EXISTS, which is indicated by an "E" displayed to the left of INGRP1. You can change
this condition based on your requirement. The group INOUTGRP1 is mapped from
the source data set that needs to be filtered. The filtered data is available as an output
of this group.

To create a mapping with a Subquery Filter operator:

1. Drag and drop a Subquery Filter operator onto the mapping canvas.

2. Connect the source attributes that you want to filter to the Input/Output group
INOUTGRP1 of the Subquery Filter operator.

3. Connect the required attributes from the object that you want to use as a subquery
to the group INGRP1 of the Subquery Filter operator.

4. Select the Subquery Filter operator header.

The Property Inspector displays the properties of the Subquery Filter operator.

If the Property Inspector is not visible in the Design Center, select Property
Inspector from the View menu.

5. In Subquery Filter Input Role field, select the condition that you want to use to
filter input rows. The available options are: Exists, In, Not Exists, or Not In.

6. If a filter condition is required, click the Ellipsis button on the Subquery Filter
Condition field to display the Expression Builder. Use this interface to specify the
filter condition used to compare the input rowset and the rowset returned by the
subquery.

A filter condition is not required if the input role is IN or NOT IN. For filter roles
EXISTS and NOT EXISTS, you must specify a filter condition that relates the
source query to EXISTS filtering subquery.

7. If the input role is IN or NOT IN, edit the properties of each input attribute and
select the matching attribute from the Input/Output group of the subquery. This
relates an input attribute from the source input query to each subquery group
attribute, thus relating the source query to the filtering subquery.

8. Connect the Input/Output group of the Subquery Filter operator to the target.

Figure 26–21 displays a simple example of a Subquery Filter operator. In this mapping,
orders data relating to customers whose credit limit is above a certain value is loaded
into a target table called CUST_TGT. Order data is stored in the ORDERS and
ORDERS_ITEMS tables. A Joiner operator is used to combine orders data from these
tables. Use a Subquery Filter operator to filter order data based on the results of a
subquery on the CUSTOMERS table.

The attributes, in the CUSTOMERS table, required for comparison are mapped to the
input group of the Subquery Filter operator. The orders data, represented by the result
of the Joiner operator, are mapped to the Input/Output group of the Subquery Filter
operator. The Subquery Filter Condition property of the Subquery Filter operator is set
to represent the condition used compare rows. In this example, the following condition
was specified for the Subquery Filter Condition:

INGRP1.CUSTOMER_ID = INOUTGRP1.CUSTOMER_ID AND INGRP1.CREDIT_LIMIT >= 75000

Table Function Operator

Data Flow Operators 26-41

Figure 26–21 Subquery Filter Operator in a Mapping

Following is the code generated by Warehouse Builder for the Subquery Filter
operator used in the mapping displayed in Figure 26–21.

SELECT
 "ORDERS"."ORDER_ID" "ORDER_ID",
 "ORDERS"."CUSTOMER_ID" "CUSTOMER_ID",
 "ORDERS"."ORDER_DATE" "ORDER_DATE"
FROM
 "OE"."ORDERS"@"ORA11@OE_SRC_LOCATION" "ORDERS"
 JOIN
 "OE"."ORDER_ITEMS"@"ORA11@OE_SRC_LOCATION" "ORDER_ITEMS" ON
 (("ORDERS"."ORDER_ID" = "ORDER_ITEMS"."ORDER_ID"))
WHERE
 (EXISTS
 (SELECT 1
 FROM "OE"."CUSTOMERS"@"ORA11@OE_SRC_LOCATION" "CUSTOMERS"
 WHERE
 ("CUSTOMERS"."CUSTOMER_ID" = "ORDERS"."CUSTOMER_ID") AND
 ("CUSTOMERS"."CREDIT_LIMIT" >= 75000)
)
);

Table Function Operator
Use Table Function operators to represent a table function in a mapping. Table
function operators enable you to manipulate a set of input rows and return another set
of rows of the same or different cardinality.

While a regular function only works on one row at a time, a table function enables you
to apply the same complex PL/SQL logic on a set of rows and increase your
performance. Unlike conventional functions, table functions can return a set of output
rows that can be queried like a physical table.

The execution of the table function can also be parallelized where the returned rows
are streamed directly to the next process without intermediate staging. Rows from a
collection returned by a table function can also be pipelined or output one by one, as
they are produced, instead of being output in a batch after processing of the entire
table function input is completed.

Using table functions can greatly improve performance when loading your data
warehouse.

A Table Function operator contains one input group and one output group.

Table Function Operator

26-42 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

To define a Table Function operator in a mapping:

1. Drag and drop a Table Function operator onto the canvas.

The Add Table Function Operator dialog box is displayed.

2. Use an existing table function to transform data by choosing Select from existing
repository object and bind and then selecting the table function from the tree.

The Table Function operator is added to the canvas. The input group INGRP1
contains the input parameters defined for the table function.

3. Map the operator that contains the input to the used by the table function to the
parameters in the input group.

Typically one or more of the input parameters are collection types. In such cases, if
the source object does not contain collection types, use a Construct Object operator
to create a collection type using the individual source attributes.

4. Map the Return group of the Table Function operator to the operator representing
the transformation target.

Figure 26–22 shows a mapping that uses a Table Function operator to load data into a
table.

Figure 26–22 Table Function Operator in a Mapping

Characteristics of Table Functions
■ They do not support the passing of parameters by name.

■ If the return type is TABLE of PLS Record, the name you select must match the
name of PLS Record field. It is possible to select only one subset of the fields of the
PLS Record in the select list.

■ If the return type is TABLE of T1%ROWTYPE, the name you select must match the
name of the columns of the table T1.

■ If the return type is TABLE of Object Type, the name you select list must match the
name of Object Type attribute.

■ If the return type is TABLE of Scalar (like TABLE of NUMBER), only Select
COLUMN_VALUE can be used to retrieve the scalar values returned by the table
function.

Table Function Operator

Data Flow Operators 26-43

Prerequisites for Using the Table Function Operator
Before you can use the Table Function operator in a mapping, create the table function
in your target schema, external to Warehouse Builder. The table functions in the
database that are supported by the unbound Table Function operator must meet the
following requirements:

Input
■ Ref Cursor returning PLS Record (the fields of the PLS Record) must be supported

scalar data types (0..n).

■ There must be at least one input parameter.

Output
■ PLS Record (the fields of the PLS Record should be scalar data types supported by

Warehouse Builder.

■ Object Type (the attributes of the Object Type should be supported scalar data
types).

■ Supported scalar data types.

■ ROWTYPE

For a Table Function operator in a mapping:

■ You must add one parameter group for each ref cursor type parameter.

■ Multiple scalar parameters can be part of a single scalar type parameter group.

■ The parameter groups and the parameters in a group can be entered in any order.

■ The positioning of the parameters in the Table Function operator must be the same
as the positioning of the parameters in the table function created in your target
warehouse.

Table Function Operator Properties
You access the Table Function operator properties using the Property Inspector. The
Property Inspector displays the properties of the object selected on the canvas. For
example, when you select the input group of the Table Function operator, the Property
Inspector displays the properties of the input parameter group.

Table Function Operator Properties
The Table Function operator has the following properties.

Table Function Name: Represents the name of the table function. The name specified
here must match the actual name of the table function.

Table Function is Target: Select this option to indicate that the table function is a
target. By default, this property is selected.

Bound Name: Name of the table function in the repository to which the Table Function
operator is bound.

Input Parameter Properties
■ Parameter Position: The position of the parameter in the table function signature.

This property is only applicable to scalar parameters.

Transformation Operator

26-44 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Output Parameter Group Properties
■ Return Table of Scalar: This property specifies whether the return of the table

function is a TABLE of SCALAR or not. This information is required because the
select list item for TABLE of SCALAR must be Select COLUMN_VALUE while in
the other cases it should be an appropriate name.

Output Parameter
■ Type Attribute Name: The name of the field of the PLS Record, attribute of the

Object Type, or column of the ROWTYPE. This property is not applicable if the
return type is TABLE of SCALAR. This name is used to call the table function.

Transformation Operator
Use the Transformation operator to transform the column value data of rows within a
row set using a PL/SQL function, while preserving the cardinality of the input row
set.

The Transformation operator must be bound to a function or procedure contained by
one of the modules in the workspace. The inputs and outputs of the Transformation
operator correspond to the input and output parameters of the bound workspace
function or procedure. If the Transformation operator is bound to a function, a result
output is added to the operator that corresponds to the result of the function. The
bound function or procedure must be generated and deployed before the mapping can
be deployed, unless the function or procedure already exists in the target system.

Warehouse Builder provides pre-defined PL/SQL library functions in the runtime
schema that can be selected as a bound function when adding a Transformation
operator onto a mapping. In addition, you can choose a function or procedure from
the public Oracle Custom library.

The Transformation operator contains the following properties:

■ Function Call: The text template for the function call that is generated by the code
generator with the attribute names listed as the calling parameters. For the actual
call, the attribute names are replaced with the actual source or target columns that
are connected to the attributes.

■ Function Name: The name of the function or procedure, to which this operator is
bound.

■ Procedure: A boolean value indicating, if true, that the bound transformation is a
procedure rather than a function with no returned value.

■ Data Type: Indicates the data type of the input, output, or result parameter of the
bound function that corresponds to the given attribute. If the output of a mapping
transformation is of CHAR data type, then an RTRIM is applied on the result before
moving the data to a target. This ensures that no extra spaces are contained in the
output result.

■ Default Value: The default value (blank if none) for the given attribute.

■ Optional Input: A boolean value indicating, if true, that the given attribute is
optional. If the attribute is optional, it need not be connected in the mapping.

■ Function Return: A boolean value indicating, if true, that the given output
attribute is the result attribute for the function. The result attribute is a named
result. Use this property if another output is a named result, or if you change the
name of the result output.

Unpivot Operator

Data Flow Operators 26-45

To use a Transformation operator in a mapping:

1. Drag and drop a Transformation operator onto the Mapping Editor canvas.

The Add Mapping Transformation dialog box is displayed.

2. Use the Add Mapping Transformation dialog box to create a new transformation
or select one or more transformations. For more information about these options,
see "Using the Add Operator Dialog Box to Add Operators" on page 5-13.

3. Connect the source attributes to the inputs of the Transformation operator.

4. Select an input attribute. If the Procedure property is set to True, then do not
connect the input parameter.

5. Connect the Transformation operator output attributes to the target attributes.

Unpivot Operator
The Unpivot operator converts multiple input rows into one output row.

The Unpivot operator enables you to extract from a source once and produce one row
from a set of source rows that are grouped by attributes in the source data. Like the
Pivot operator, the Unpivot operator can be placed anywhere in a mapping.

Example: Unpivoting Sales Data
Table 26–4 shows a sample of data from the SALES relational table. In the crosstab
format, the MONTH column has 12 possible character values, one for each month of the
year. All sales figures are contained in one column, MONTHLY_SALES.

Figure 26–23 depicts data from the relational table SALES after unpivoting the table.
The data formerly contained in the MONTH column (Jan, Feb, Mar...) corresponds to12
separate attributes (M1, M2, M3...). The sales figures formerly contained in the
MONTHLY_SALES are now distributed across the 12 attributes for each month.

Table 26–4 Data in a Crosstab Format

REP MONTH MONTHLY_SALES REGION

0675 Jan 10.5 4

0676 Jan 9.5 3

0679 Jan 8.7 3

0675 Feb 11.4 4

0676 Feb 10.5 3

0679 Feb 7.4 3

0675 Mar 9.5 4

0676 Mar 10.3 3

0679 Mar 7.5 3

0675 Apr 8.7 4

0676 Apr 7.6 3

0679 Apr 7.8 3

Unpivot Operator

26-46 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Figure 26–23 Data Unpivoted from Crosstab Format

The Row Locator
When you use the Unpivot operator, multiple input rows are transformed into a single
row based on the row locator. In the Unpivot operator, the row locator is an attribute
that you must select from the source to correspond with a set of output attributes that
you define. A row locator is required in an Unpivot operator. In this example, the row
locator is the MONTH column from the SALES table and it corresponds to attributes M1,
M2, M3... M12 in the unpivoted output.

Using the Unpivot Operator
You have the following options for using an Unpivot operator:

■ Define a new Unpivot operator: Drag an Unpivot operator from the Palette onto
the mapping. The Mapping Editor displays a wizard.

■ Edit an existing Unpivot operator: Right-click the Unpivot operator and select
Open Details. The Mapping Editor opens the Unpivot Editor.

Whether you are using the Unpivot Wizard or the Unpivot Editor, complete the
following pages:

■ General

■ Groups

■ Input Connections

■ Input Attributes

■ Row Locator

■ Output Attributes

■ Unpivot Transform

General
Use the General page to specify a name and optional description for the Unpivot
operator. By default, the wizard names the operator "Unpivot".

Groups
Use the Groups page to specify one input and one output group.

In an Unpivot operator, the input group represents the source data in crosstab format.
The output group represents the target data distributed across multiple attributes.

You can rename and add descriptions to the input and output groups. Since each
Unpivot operator must have exactly one input and one output group, the wizard
prevents you from adding or removing groups or changing group direction.

Unpivot Operator

Data Flow Operators 26-47

Input Connections
Use the Input Connections page to select attributes to copy and map into the Unpivot
operator.

To complete the Input connections page for an Unpivot operator:

1. Select complete groups or individual attributes from the left panel.

To search for a specific attribute or group by name, type the text in Search for and
click Go. To find the next match, click Go again.

Hold the Shift key down to select multiple groups or attributes. If you want to
select attributes from different groups, you must first combine the groups with a
Joiner or Set operator.

2. Use the left to right arrow button in the middle of the page to move your
selections to the right side of the wizard page.

You can use the right to left arrow to move groups or attributes from the input
connections list. Warehouse Builder removes the selection from the input group
and removes the data flow connection between the source operator and the
Unpivot operator.

Input Attributes
Use the Input Attributes page to modify the attributes you selected in the Input
Connections tab or wizard page.

You can perform the following tasks from the Unpivot Input Attributes page:

■ Add attributes: Enter the attribute name and other attribute details in an empty
row on the page.

■ Change attribute properties: You can change the attribute name, data type, length,
precision and scale.

■ Add an optional description: Type a description for the input attributes.

■ Designate key attribute(s): You must designate one or more key attributes for
Unpivot operators. Use the Key check box to indicate the attribute(s) that uniquely
identifies the input group. Input rows with the same value in their key attribute(s)
produce one unpivoted output row.

Row Locator
Use the Row locator page to select a row locator and assign values to the distinct
values contained in the row locator.

Figure 26–24 shows the attribute MONTH selected as the row locator with values such as
'Jan', 'Feb', or 'Mar'.

Unpivot Operator

26-48 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Figure 26–24 Unpivot Row Locator Page

To complete the Unpivot Row Locator page:

1. Select an attribute from the Row locator list box.

In the Unpivot operator, the row locator is the attribute from the source data that
corresponds to a set of output attributes.

2. Use Add to specify the number of distinct values that exist in the row locator.

3. For each row locator value, type in the value as it appears in your source dataset.

For string values, enclose the text in single quotes. For example, if the row locator
is MONTH, there would be a total of 12 distinct values for that attribute. Click Add
to add a row for each distinct value. For row locator values, type values exactly as
they appear in the source dataset. For instance, the row locator values as shown in
Table 26–4 are 'Jan', 'Feb', and 'Mar.'

Output Attributes
Use the Output Attributes tab to create the output attributes for the Unpivot operator.

Figure 26–25 displays the Output Attributes tab.

Unpivot Operator

Data Flow Operators 26-49

Figure 26–25 Unpivot Output Attributes Page

If you designated any input attributes as keys on the Input Attributes tab or wizard
page, those input attributes are displayed as output attributes that you cannot edit or
remove.

You can perform the following tasks from the Unpivot Output Attributes page:

■ Add attributes: To increase the number of output attributes to accommodate the
rows you specified on the Row locator tab or wizard page, enter the attribute
details in an empty cell of the page. If you specified 12 rows, specify 12 output
attributes plus attributes for any other input attributes that you did not designate
as a key.

■ Change attribute properties: Except for attributes you designated as keys on the
Input Attributes tab or wizard page, you can change the attribute name, data type,
length, precision, and scale.

■ Add an optional description: Type a description for the output attributes.

Unpivot Transform
Use the Unpivot Transform tab to write expressions for each output attribute.

Figure 26–26 displays the Unpivot Transform tab.

Unpivot Operator

26-50 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Figure 26–26 Unpivot Transform Page

For attributes you designated as keys, the matching row and expression is defined for
you. Warehouse Builder displays the first row as the match for a key attribute. For all
other output attributes, specify the matching row and the expression.

■ Matching row: Select the appropriate option from the list box. For example, for the
attribute you define as the first month of the year, 'M1', select 'Jan' from the list
box.

■ Expression: Select the appropriate expression from the list box. For all the new
attributes you created to unpivot the data, select the same input attribute that
contains the corresponding data. For example, the unpivot attributes M1, M2,
M3... M12 would all share the same expression, INGRP1.MONTHLY_SALES. For
all other output attributes, select the corresponding attribute from the list of input
attributes.

Activities in Process Flows 27-1

27
Activities in Process Flows

Process flows enable you to interrelate Oracle Warehouse Builder objects and external
activities, such as e-mail, FTP, or operating system commands, and define flow of
control between these different activities. Within a process flow, use Warehouse
Builder activities to represent data objects, external objects, and control constructs.
This enables you to accomplish a certain data warehouse task by create a data flow
between various activities.

Using Activities in Process Flows
Use this section as a reference for all the process flow activities. This section
categorizes activities into the following types:

■ Activities That Represent Objects

■ Utility Activities

■ Control Activities

■ OS Activities

For detailed descriptions of each activity, see the alphabetical listing in the remainder
of this section.

Activities That Represent Objects
Table 27–1 lists the activities that represent objects that you previously created in
Oracle Warehouse Builder. You can specify one or more incoming transitions. For
outgoing transitions, you can use the success, warning, error, and unconditional
transitions once each, and then also define an unlimited number of complex condition
transitions.

Table 27–1 Activities that Represent Objects

Icon Activity Brief Description

Data
Auditor
Monitor

Adds to the process flow an existing data auditor monitor used in data
profiling

Mapping Adds an existing mapping to the process flow

Subprocess Embeds an existing process flow within the process flow

Using Activities in Process Flows

27-2 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Committing Data
When you add activities that represent design objects, the process flow evaluates each
of these activities as a separate transaction. For example, when you add mapping
activities, the process flow commits and rolls back each mapping independently. In
this design, it is not possible to control all the mappings by one commit or roll back
statement.

To collectively commit or rollback multiple mappings, consider designing the process
flow with a SQL*PLUS activity associated with a script that calls each mapping. For
instructions, see "Committing Mappings through the Process Flow Editor" on
page 10-12.

Utility Activities
Table 27–2 lists each utility activity and shows the associated icon.

Transform Adds an existing transformation to the process flow

Web
Service

Adds an existing Web service to the process flow

Table 27–2 Utility Activities

Icon Activity Brief Description

Assign Assigns a value to a variable

Enterprise
Java Bean

Executes an Enterprise JavaBean from within a process flow

Email Sends an e-mail. For example, send an e-mail message about the
status of activities in the process flow

File Exists Use the File Exists activity to check if a file is located on a
specified drive or directory

Java Class Executes a Java class from within a process flow

Manual Halts a process flow and requires manual intervention to resume
the process flow

Notification Sends an e-mail to a user and allows the user to select from a list
of responses that dictates how the process flow proceeds

OMBPlus Represents an OMB*Plus script in a process flow

Set Status Interjects a success, warning, or error status

Wait Delays the progress of the process flow by a specified amount of
time

Table 27–1 (Cont.) Activities that Represent Objects

Icon Activity Brief Description

Using Activities in Process Flows

Activities in Process Flows 27-3

Control Activities
Table 27–3 lists the activities that you use to control the process flow. The table shows
the associated icon. It also lists the number of incoming and outgoing transitions
allowed for each activity.

OS Activities
Table 27–4 lists the Operating System (OS) activities that can be initiated by a process
flow.

Table 27–3 Control Activities

Icon Activity Brief Description
Incoming
Transitions

Outgoing
Transitions

AND Specifies the completion of
all incoming activities
before starting another
activity

Two or more
allowed. The
number of
incoming
transitions must be
less than or equal to
the number of
outgoing
transitions from the
upstream FORK.

Unconditional and
complex
transitions are not
allowed.

End
(successfully)

Designates a path as being
successful

One or more
allowed

Not allowed

End (with
errors)

Designates a path as ending
in errors

One or more
allowed

Not allowed

End (with
warnings)

Designates a path as ending
with warnings

One or more
allowed

Not allowed

End Loop Defines the end of a For
Loop or While Loop

One or more
allowed

One to For Loop or
While Loop only

For Loop Use this activity with an
End Loop to define
constructs that repeat

One from End Loop
required plus more
from other activities

One Loop
condition and one
Exit required

FORK Starts two or more activities
after completing an activity

One or more
allowed

Two or more
unconditional
transitions only

OR Starts an activity after the
completion of any of two or
more specified activities

Two or more
allowed

One unconditional
transition only

Route Defines exclusive OR and
if-then-else scenarios

While Loop Run other activities while a
condition is true

One from End Loop
required plus more
from other activities

One Loop
condition and one
Exit required

Table 27–4 OS Activities

Icon Activity Brief Description

FTP Starts a file transfer protocol command during a process flow.
For example, use the FTP activity to move data files to the
computer where a mapping runs.

Using Activities in Process Flows

27-4 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Because it is not desirable to allow a user have complete control over OS activities,
Warehouse Builder enables you to determine which OS activities can be initiated by a
process flow. This is primarily achieved by constraining the user’s ability to execute
operating system commands either by granting or revoking direct execution or by
mandating that execution be performed through a third party, as described in "Setting
a Security Constraint" on page 27-4. Further access control can be achieved by using a
proxy command and parameters, which can be used to secure all executions.

This security feature is controlled by setting properties in the Runtime.properties
file in the $owb_home/owb/bin/admin directory. This file contains Control Center
property values that run the Control Center service. This file is set to read-only at
Control Center service startup. If you make changes to the file, then you must restart
the Control Center service for the changes to take effect.

Setting a Security Constraint
By default, security_constraint for each of the OS activity commands is set to
DISABLED:

property.RuntimePlatform.0.NativeExecution.FTP.security_constraint = DISABLED
property.RuntimePlatform.0.NativeExecution.Shell.security_constraint = DISABLED
property.RuntimePlatform.0.NativeExecution.SQLPlus.security_constraint = DISABLED

To enable an OS activity, you must set security_constraint to NATIVE_JAVA or
Scheduler.

property.RuntimePlatform.0.NativeExecution.FTP.security_constraint = NATIVE_JAVA
property.RuntimePlatform.0.NativeExecution.Shell.security_constraint = NATIVE_JAVA
property.RuntimePlatform.0.NativeExecution.SQLPlus.security_constraint =
NATIVE_JAVA

NATIVE_JAVA allows direct execution by the Control Center service and SCHEDULER
forces execution through DBMS_SCHEDULER.

Setting a Proxy Command and Parameters
For each activity type, USER DEFINED (Shell), FTP, and SQLPlus, there are two
properties: the proxy_command property and the proxy_parameter_list
property (optional).

If a proxy command is specified, then that command is run instead of the user’s
specified command and parameters. The user-specified command and parameters are
passed as parameters to the proxy command following the proxy parameters. The
proxy command then becomes the context in which the user’s command is run.

The proxy_command property allows the proxy command to be specified.

To set a proxy command for the activities, set the proxy command as well as the proxy
parameter list (optional) using the following command:

property.RuntimePlatform.0.NativeExecution.FTP.proxy_command

SQL*PLUS Runs a SQL*Plus script in a process flow

User Defined Represents an activity that is not predefined and enables you
to incorporate it into a process flow

Table 27–4 (Cont.) OS Activities

Icon Activity Brief Description

AND

Activities in Process Flows 27-5

property.RuntimePlatform.0.NativeExecution.FTP.proxy_parameter_list
property.RuntimePlatform.0.NativeExecution.Shell.proxy_command
property.RuntimePlatform.0.NativeExecution.Shell.proxy_parameter_list
property.RuntimePlatform.0.NativeExecution.SQLPlus.proxy_command
property.RuntimePlatform.0.NativeExecution.SQLPlus.proxy_parameter_list

For example, to set a proxy command for Shell:

 property.RuntimePlatform.0.NativeExecution.Shell.proxy_command = /bin/proxy_sh
 property.RuntimePlatform.0.NativeExecution.Shell.proxy_parameter_list = ?-v?-n?

AND
Use the AND activity to specify the completion of two or more activities before
resuming the process flow.

The AND activity can have two or more incoming transitions. To correctly design
process flows with an AND activity, you must place a FORK activity upstream of the
AND. Also, the number of transitions going into the AND activity must be less than or
equal to the number of outgoing transitions from the upstream FORK. The FORK is
the only activity that enables you to assign multiple unconditional transitions and
therefore ensure the completion of multiple activities as required by the AND activity.

The AND activity enables you to aggregate the outcome of the upstream activities. If
all the upstream activities return SUCCESS, then the AND activity returns SUCESSES.
If any upstream activity returns an ERROR, then the AND activity returns ERROR;
otherwise a WARNING is returned. Any activity that does not have an outcome is
considered to have returned SUCCESS. Use the SET_STATUS activity to force an
outcome. The feature is particularly useful to test if a set of mappings that are running
in parallel have all successfully completed.

Figure 27–1 shows the AND and FORK activities in a process flow. In this example,
AND_ACTIVITY triggers downstream activities based on the completion of MAP1
and MAP2. The process flow is valid because the FORK activity has three outgoing
transitions while AND_ACTIVITY has two incoming transitions. The process flow
would also be valid if the transition and activities associated with MAP3 were deleted.

Figure 27–1 AND Activity in a Process Flow

Note: Ideally, only the Warehouse Builder administrator must have
the rights to modify the Runtime.properties file. The users should
be granted read-only permission.

Assign

27-6 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

For outgoing conditions, the AND activity can have one, two, or three conditional
transitions. This results in three possible paths terminating in success, warning, and
error activities.

Assign
Use the Assign activity to assign a value to a variable. For example, use this activity to
initialize a variable back to zero.

Table 27–5 describes the parameters of the Assign activity.

Data Auditor Monitor
You can design process flows that proceed based on the results of profiling data. For
example, you create logic that runs a mapping only if the quality of data meets a
standard as determined by the threshold parameter.

Table 27–6 describes the parameters of the Data Auditor Monitor activity.

Enterprise Java Bean
Use the Enterprise Java Bean activity type to call Enterprise JavaBeans (EJB) from
within a process flow. EJBs are server-side components (managed by the J2EE
container) that contain business logic and business. They enable you to create
applications that are scalable, available to multiple clients, and support transactional
processing.

Use the Enterprise Java Bean activity type to leverage functionality defined as an EJB
within a process flow. For example, you have a suite of EJBs that implements complex
business logic. You can directly integrate this business logic into a process flow by

Table 27–5 Assign Activity Parameters

Parameter Description

Value Enter the value to assign to the variable.

Variable Select a variable that you previously defined in the editor.

Table 27–6 Data Auditor Monitor Activity Parameters

Parameter Description

AUDIT_LEVEL NONE

STATISTICS

ERROR_DETAILS

COMPLETE

BULK_SIZE 1+

COMMIT_FREQUENCY 1+

MAX_NO_OF_ERRORS Maximum number of errors allowed after which the mapping
terminates

OPERATING_MODE SET_BASED

ROW_BASED

ROW_BASED_TARGET_ONLY

SET_BASED_FAIL_OVER_TO_ROW_BASED

SET_BASED_FAIL_OVER_TO_ROW_BASED_TARGET_ONLY

Enterprise Java Bean

Activities in Process Flows 27-7

using the Enterprise Java Bean activity. Using Enterprise Java Bean activity provides
better scalability, performance, and secure transactions.

Table 27–7 describes the parameters of the Enterprise Java Bean activity.

Example: Using an Enterprise Java Bean Activity to Leverage Existing Business Logic
from EJBs

You have a suite of Enterprise JavaBeans that implement logic for an Order Processing
application. You can leverage this existing functionality in a process flow. The
Enterprise Java Bean activity enables you to directly integrate this functionality in your
process flow.

The Order Processing application contains an EJB that produces a report of all orders
made during any specified day. You want to create a process flow that produces a
report of all orders made during the previous day prior to invoking ETL logic that
loads this orders data into your data warehouse.

Figure 27–2 displays the process flow that provides the required functionality. The
Enterprise Java Bean activity ORDERS_REPORT leverages the functionality provided
as an EJB Order Processing application. LOAD_ORDERS is a mapping that loads
orders data into your warehouse after running the report.

Figure 27–2 EJB Activity in a Process Flow

For the ORDERS_REPORT activity, set the following parameter values:

■ CLASS_NAME: ordersystem.reports

Note: To deploy process flows containing an Enterprise Java Bean
activity, you must create a URI location that represents the J2EE
platform containing the Enterprise JavaBeans.

Table 27–7 Enterprise Java Bean Activity Parameters

Parameter Name Description

CLASS_NAME Name of the class that implements the EJB

METHOD_NAME Name of the method, within the class, that needs to be executed

RETURN_VALUE String representation of the value returned by the method

PARAMETER_LIST List of parameters that you want to pass to the Enterprise Java
Bean

Enterprise Java Bean

27-8 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ METHOD_NAME: printReport

■ PARAMETER_LIST: ReportName, PrintDevice

Create two custom parameters, ReportName and PrintDevice, in the
ORDERS_REPORT activity by selecting the New Process Activity Parameter icon at
the top of the Structure Panel and set their values as specified in Table 27–8.

Ensure that the deployed location for the Enterprise Java Bean activity is set to a URI
location that points to the J2EE instance containing the application that supports the
specified Enterprise Java Bean. For example, the URI location has its URI field set to:

ormi://myhost.example.com:23791/ReportsApp

Example: Using an Enterprise Java Bean Activity to Load Data From one DB2 Table to
Another

Your DB2 database contains two tables: Orders and Orders_tgt. You want to use
Warehouse Builder to load data from Orders to Orders_tgt. You have a J2EE
application that consists of various table utilities, one of which can be used to copy
data from one table to another.

To leverage the table utility that copies data in your process flow, create an Enterprise
Java Bean activity in your process flow. The parameters of the Enterprise Java Bean
activity are set as follows:

■ CLASS_NAME: mydb2.TableHandler

■ METHOD_NAME: copyTable

■ PARAMETER_LIST: SrcDataSource, TgtDataSource, SrcTable, TgtTable

Create the following custom parameters:

■ SrcDatasource: Represents the name of the source data source

■ TgtDataSource: Represents the name of the target data source

■ SrcTable: Represents the source table

■ TgtTable: Represents the target table

Table 27–9 lists the values to set for the custom parameters SrcDataSource,
TgtDataSource, SrcTable, and TgtTable.

Table 27–8 Values for Custom Parameters

ReportName Parameter PrintDevice Parameter

Direction IN IN

Literal True True

Value DailyOrders lpt1

Note: You can use Oracle Warehouse Builder 11g Release 2 to
perform ETL between IBM DB2 tables.

Table 27–9 Custom Parameter Values for an Enterprise Java Bean Activity

SrcDataSource TgtDataTarget SrcTable TgtTable

Direction IN IN IN IN

Email

Activities in Process Flows 27-9

To deploy this process flow, create a URI location that represents the J2EE container of
your table-utilities application and set the Deployed Location of the Enterprise Java
Bean as described in "Example: Using an Enterprise Java Bean Activity to Leverage
Existing Business Logic from EJBs" on page 27-7.

Restrictions on Using an Enterprise Java Bean Activity
■ The parameter types supported are as follows:

– String

– Integer

– Float

– Date

– Boolean

However, arrays of supported types (String, Integer, and so on) are not
supported

■ Custom parameters with the Direction set to OUT are not supported.

■ Any exceptions thrown during the execution of the Enterprise JavaBean are
available only in the Repository Browser.

■ You cannot perform the following actions within an Enterprise Java Bean activity:

– Redirect input, output and error streams

– Create and manage threads

– Stop the Java Virtual Machine (JVM)

– Load a native library

– Listen on, accept connections on, or multicast from a network socket

– Directly read or write a file descriptor

– Create, modify, or delete files in the file system

Email
You can send e-mail notifications after the completion of an activity in a process flow.
You may find this useful, for example, for notifying administrators when activities
such as mappings end in errors or warnings.

Table 27–10 lists the parameters that you set for the email activity.

Literal True True True True

Value OLTP_DataSource Stage_DataSource Orders Orders_tgt

Note: Because the J2EE platform provides better scalability,
performance and security, Oracle recommends that you use EJBs to
integrate functionality provided by Java into your process flows.

Table 27–9 (Cont.) Custom Parameter Values for an Enterprise Java Bean Activity

SrcDataSource TgtDataTarget SrcTable TgtTable

Email

27-10 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

For e-mail addresses, you can enter an e-mail address with or without the display
name. For example, the following entries are correct:

jack.emp@example.com

Jack Emp<jack.emp@example.com>

Jack Emp[jack.emp@example.com]

Jack Emp[jack.emp@example.com],Jill Emp[jill.emp@example.com]

Jack Emp[jack.emp@example.com];Jill Emp[jill.emp@example.com]

To execute a process flow with an Email activity, you may need to access different host
systems and ports. New security measures implemented in Oracle Database 11g
Release 1 restrict access to hosts and ports. You must explicitly grant access to hosts
and ports that the Email activity accesses by using the DBMS_NETWORK_ACL_ADMIN
package.

For example, the user OWBSYS needs to send an e-mail through the mail server
mail.example.com using port 25. The database administrator must perform the
following steps:

1. Create an Access Control List (ACL) for the user OWBSYS by using the following
command:

EXECUTE DBMS_NETWORK_ACL_ADMIN.CREATE_ACL
 (’acl_for_owb_cc.xml’,’ACL for Control Center’,’OWBSYS’,’CONNECT’);

The ACL has no access control effect unless it is assigned to a network target.

Table 27–10 Email Activity Parameters

Parameter Description

SMTP Server The name of that outgoing mail server. The default value is localhost.

Port The port number for the outgoing mail server. The default value is 25.

From_Address The e-mail address from which process flow notifications are sent

Reply_To_Addr
ess

The e-mail address or mailing list to which recipients should respond

To_Address The e-mail addresses or mailing lists that receive the process flow
notification. Use a comma or a semicolon to separate multiple e-mail
addresses.

CC_Address The e-mail addresses or mailing lists that receive a copy of the process
flow notification. Use a comma or a semicolon to separate multiple e-mail
addresses.

BCC_Address The e-mail addresses or mailing lists that receive a blind copy of the
process flow notification. Use a comma or a semicolon to separate
multiple e-mail addresses.

Importance The level of importance for the notification. Select one of the following
options for importance: Normal, High, or Low.

Subject The text that appears in the e-mail subject line

Message_Body The text that appears in the body of the email. To type in or paste text,
select Value at the bottom of the Activity panel. The Process Flow Editor
does not limit you on the amount of text that you can enter.

End

Activities in Process Flows 27-11

2. Assign the Access Control List (ACL) to a network host, and optionally specify a
TCP port range. Use the following command:

EXECUTE DBMS_NETWORK_ACL_ADMIN.ASSIGN_ACL
 (’acl_for_owb_cc.xml’,’mail.example.com’,25)

3. Commit the changes made by using the COMMIT command.

End
Every path in the process flow must terminate in an End activity.

When you first create a process flow, a success type End activity is included by default.
Use end types to indicate the type of logic contained in a path. Because a given activity
such as a mapping has three possible outcomes, the editor includes three ending types,
as shown in Table 27–11. You can use these ending types to design error handling logic
for the process flow.

You can design a process flow to include one, two, or all three types of endings. You
can use each ending type only once, Duplicate ending types are not allowed. Each End
activity can have a single or multiple incoming transitions.

In Figure 27–3, END_SUCCESS has three incoming transitions, each dependent on the
successful completion of upstream activities. END_ERROR has one incoming
transition from an Email activity that runs when any of the upstream mapping
activities completes with errors.

Table 27–11 Types of End Activities

Icon End Type Description

Success Indicates that the path or paths contain logic dependent on the
successful completion of an upstream activity

Warning Indicates that the path or paths contain logic dependent on an
upstream activity completing with warnings

Error Indicates that the path or paths contain logic dependent on an
upstream activity completing with errors

End Loop

27-12 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Figure 27–3 End Activities in a Process Flow

By default, every process flow includes an END_SUCCESS. Although you cannot
change an End activity to another type, you can add different types of End activity.

To add end activities to a process flow:

1. From the palette on the Process Flow Editor, drag and drop the desired End icon
onto the canvas.

Warehouse Builder does not allow you to select ending types already present in
the process flow.

2. Click OK.

Warehouse Builder adds the End activity or activities to the canvas.

End Loop
The editor adds an End Loop for each For Loop and While Loop that you add to the
canvas.

The End Loop activity must have a single unconditional outgoing transition to its For
Loop or While Loop activity. All the flows that are part of the loop must converge on
the End Loop activity to ensure that no parallel flows remain for either the next loop
interaction or the exit of the loop.

File Exists
Use the File Exists activity to verify the existence of a file before running the next
activity. In the Activities panel, enter the name of the file.

The File Exists activity checks only once. If the file exists, then the process flow
proceeds with the success transition. If the file does not exist, then the process flow
proceeds with the warning transition. The File Exists activity triggers the error
transition only in a catastrophic failure such as a Tcl error when using OMB*Plus.

FORK

Activities in Process Flows 27-13

The File Exists activity has one parameter called PATH. Specify a fully qualified file
name, a directory name, or a semicolon-separated list for this parameter. The paths are
normally tested in the same host that is running the Control Center service.

The security constraints of the underlying operating system may disallow access to
one or more files, giving the impression that they do not exist. If all the paths exist,
then the activity returns EXISTS. If none of the paths exist, then the activity returns
MISSING. If some paths exist, then the activity returns SOME_EXIST.

FORK
Use the FORK activity to start multiple, concurrent activities after the completion of an
activity.

You can assign multiple incoming transitions to a FORK activity. The FORK activity is
the only activity that enables you to assign multiple unconditional outgoing
transitions for parallel process.

For example, in Figure 27–4, the process flow carry out the activities named FTP, FDS,
and EMAIL in parallel after completing MAP1.

Figure 27–4 FORK Activity Ensures Parallel Process

Figure 27–5 shows the same activities without the FORK activity. In this case, only one
of the activities runs based on the completion state of MAP1.

Figure 27–5 Absence of FORK Activity Results in Conditional Process

The Process Flow Editor does not limit the number of outgoing transitions or
concurrent activities that you can assign from a FORK. When you are designing for
concurrent execution, design the FORK based on limitations imposed by the workflow
engine or server that you use to run the process flow.

For Loop

27-14 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

The outgoing FORK activity transition cannot have complex expressions.

For Loop
Use the For Loop to repeatedly run activities that you include in the loop and then exit
and resume the process flow.

When you add a For Loop activity, the editor also adds an End Loop activity and a
transition to the End Loop. For outgoing transitions, define one with a loop condition
and one with an exit condition. Select an outgoing transition and click Condition in the
object details.

Table 27–12 describes the parameters of the For Loop activity.

 FTP
Use the FTP activity to transfer files from one file location to another based on a script
of FTP commands that you provide. The FTP activity is a specialization of the User
Defined activity. The difference between these two is that the FTP activity should be
configured with the remote file location.

For the process flow to be valid, the FTP commands must involve transferring data
either from or to the server with the Control Center Service installed. To move data
between two computers, neither of which hosts the Control Center Service, first
transfer the data to the Control Center Service host computer and then transfer the
data to the second computer.

Before you design a process flow with an FTP activity, ensure that the sources and
destinations have defined locations.

The FTP activity relies on a script of FTP commands that you provide. You have a
choice of either writing that script within Warehouse Builder or directing Warehouse
Builder to a file containing the script. Choose one of the following methods:

■ Writing a Script Within Warehouse Builder

■ Calling a Script Outside of Warehouse Builder

Writing a Script Within Warehouse Builder
Choose this method when you want to maintain the script of FTP commands in
Warehouse Builder or when password security to servers is a requirement.

For this method, in the COMMAND parameter of the FTP activity, enter the path to
the FTP executable. The parameters for the FTP parameter are displayed in the
Structure tab of the Design Center. Also, for file transfer protocols other than UNIX,
enter additional parameters for the protocol in the PARAMETER_LIST parameter.
Enter a script in the VALUE property of the SCRIPT parameter.

Table 27–12 For Loop Activity Parameters

Parameter Description

Condition An expression which when evaluated to true runs the loop transition;
otherwise it runs the exit transition

Variable Bound to a variable or parameter, its value is incremented every iteration.

Initial_Value The initial value of the variable on entering the loop. By default, you must
enter an expression.

Next_Value The next value of the variable. By default, you must enter an expression.

FTP

Activities in Process Flows 27-15

Table 27–13 lists the parameters that you set for the FTP activity when writing the
script within Warehouse Builder.

The following is an example script that is entered in the Value property of the SCRIPT
parameter in an FTP activity.

open ${Remote.Host}
${Remote.User}

Table 27–13 FTP Activity Parameters for a Script in Warehouse Builder

Parameter Description

COMMAND Enter the path to the file transfer protocol command such as
c:\WINNT\System32\ftp.exe for Windows operating systems.

PARAMETER_LIST This is a list of parameters that will be passed to the command.
Parameters are separated from one another by a token. The token is
taken as the first character on the parameter list string, and the
string must also end in that token. Warehouse Builder recommends
the '?' character, but any character can be used. For example, to pass
'abc,' 'def,' and 'ghi' you can use the following equivalent:

?abc?def?ghi?

or

!abc!def!ghi!

or

|abc|def|ghi|

If the token character or '\' needs to be included as part of the
parameter, then it must be preceded with '\'. For example '\\'. If '\'
is the token character, then '/' becomes the escape character.

Enter any additional parameters necessary for the file transfer
protocol.

For Windows, enter ?"-s:${Task.Input}"? The ${Task.Input} token
prompts Warehouse Builder to store the script in a temporary file
and replaces the token with the name of the temporary file. The
script is therefore not passed on as standard input.

Note: The -s parameter is set for the Windows FTP command
because it cannot be used with standard input except from a file.

For UNIX, you should leave this value blank. In general, UNIX
FTPs read from standard input and therefore do not require any
other parameters.

RESULT_CODE An integer output of the activity type that indicates if the activity
completed successfully.

SUCCESS_THRESHOLD Designates the FTP command completion status.Enter the highest
return value from the operating system that indicates a successful
completion. When the operating system returns a higher value, it
indicates that the command failed.

The default value is 0.

SCRIPT You can type the required script for FTP in this parameter.

To enter or paste text, select the SCRIPT parameter in the Structure
tab and, in the Property Inspector, click the arrow on the property
Value. The Edit Property dialog box is displayed, in which you
enter the script. The Process Flow Editor does not limit the amount
of text you can enter.

Each carriage return in the script is equivalent to pressing the Enter
key. The script should end with bye or quit followed by a carriage
return to ensure that the FTP command is terminated.

FTP

27-16 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

${Remote.Password}
lcd ${Working.RootPath}
cd ${Remote.RootPath}
get salesdata.txt
quit

Notice that the example script includes ${Remote.User} and ${Remote.Password}.
These are substitution variables. See "Using Substitution Variables" on page 27-16 for
more details.

Using Substitution Variables
Substitution variables are available only when you write and store the FTP script in
Warehouse Builder.

Use substitution variables to prevent having to update FTP activities when server files,
accounts, and passwords change. For example, consider that you create 10 process
flows that utilize FTP activities to access a file on salessrv1 under a specific directory. If
the file is moved, without the use of substitution variables, you must update each FTP
activity individually. With the use of substitution variables, you need only update the
location information.

Substitution variables are also important for maintaining password security. When an
FTP activity is run with substitution variables for the server passwords, it resolves the
variable to the secure password that you entered for the associated location.

Table 27–14 lists the substitute variables that you can enter for the FTP activity. Working
refers to the computer hosting the Control Center Service, the local computer in this
case study. Remote refers to the other server involved in the data transfer. You
designate which server is remote and local, when you configure the FTP activity, as
described in "Configuring Process Flows Reference" on page 24-13.

All custom parameters are imported into the command's environment space. For
example, by defining a custom parameter called PATH it is possible to change the
search path used to locate operating system executables (some JAVA VMs may prevent
this).

Table 27–14 Substitute Variables for the FTP Activity

Variable Value

${Working.RootPath} The root path value for the location of the Control Center Service
host

${Remote.Host} The host value for the location involved in transferring data to or
from the Control Center Service host

${Remote.User} The user value for the location involved in transferring data to or
from the Control Center Service host

${Remote.Password} The password value for the location involved in transferring data to
or from the Control Center Service host

${Remote.RootPath} The root path value for the location involved in transferring data to
or from the Control Center Service host

${Task.Input} The Working and Remote location are set for the FTP activity when
configuring a Process Flow.

${parameter_name} The values of custom parameters can be substituted into the script
and parameter using ${parameter_name} syntax.

Java Class

Activities in Process Flows 27-17

Calling a Script Outside of Warehouse Builder
If password security is not an issue, you can direct Warehouse Builder to a file
containing a script including the FTP commands and the user name and password.

To call a file on the file system, enter the appropriate command in
PARAMETERS_LIST to direct Warehouse Builder to the file. For a Windows operating
system, enter the following:

?"-s:<file path\file name>"?

For example, to call a file named move.ftp located in a temp directory on the C drive,
enter the following:

?"-s:c:\temp\move.ftp"?

Leave the SCRIPT parameter blank for this method.

Table 27–15 lists the parameters that you set for the FTP activity when the FTP script
resides in a file on your system.

Java Class
Use the Java Class activity type to represent a Java class or a Java Bean within a
process flow. Java Beans are reusable software components that you can manipulate
visually in a builder tool.

The Java Class activity enables you to leverage functionality that was defined using
Java Beans or as a Java class.

Table 27–16 describes the parameters for the Java Class activity.

Table 27–15 FTP Activity Parameters for Script Outside of Warehouse Builder

Parameter Description

Command Leave this parameter blank.

Parameter List Enter the path and name of the file for the FTP script. The Process Flow
Editor interprets the first character that you type to be the separator. For
example, the Process Flow Editor interprets the following entry as two
parameters, /c and dir:

?/c?dir?

Use the backslash as the escape character. For example, the Process Flow
Editor interprets the following entry as three parameters: -l and -s and
/.

/-l/-s/\//

RESULT_CODE An integer output of the activity type that indicates if the activity
completed successfully.

Success
Threshold

Designates the FTP command completion status.Enter the highest return
value from the operating system that indicates a successful completion.
When the operating system returns a higher value, it indicates that the
command failed.

The default value is 0.

Script Leave this parameter blank.

Table 27–16 Java Class Activity Parameters

Parameter Name Description

CLASSPATH Represents the classpath that will be specified while
executing the Java Class activity.

Java Class

27-18 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

You do not need a special location to deploy process flows that contain a Java Class
activity.

Example of Using a Java Class Activity in a Process Flow
The reporting functionality described in "Example: Using an Enterprise Java Bean
Activity to Leverage Existing Business Logic from EJBs" on page 27-7 can be
implemented by a Java Class rather than by an EJB. In this case, you add a Java Class
activity and set the following values for its parameters:

■ CLASSPATH: home/reports/reports.jar

■ CLASS_NAME: ordersystem.reports

■ JAVA_OPTIONS: Xmx768M -DDIR=d:\\temp\\

■ PARAMETER_LIST: ReportName,PrintDevice

■ RUN_DIRECTORY: /home/work

ReportName and PrintDevice are custom parameters that you create with the
following properties:

■ Direction is set to IN for both parameters.

■ Literal is set to True for both parameters.

■ The value for the parameter ReportName is set to DailyOrders.

■ The value for the parameter PrintDevice is lpt1.

Example of Customizing the Java Class Activity Executable
By default, a Java Class activity is executed by an operating system process that
invokes the Java executable from the Control Center Service path. You can override
this by setting the following property:
property.RuntimePlatform.0.NativeExecution.JavaOSProcess.executa
ble

CLASS_NAME Name of the class that you want to invoke from the process flow.

JAVA_OPTIONS Represents any options to be passed to the JVM.

PARAMETER_LIST Represents the parameters that you want to pass to the Java class
or Java Bean.

RESULT_CODE Represents the value returned by the exit code for this Java class.

RUN_DIRECTORY Represents the name of the working directory when the Java
Virtual Machine (JVM) is invoked.

Note: Due to the following reasons, it is recommended not to use the
Java Class activity type:

■ A single Java Virtual Machine (JVM) is used to execute each
activity.

■ There could be security issues with passwords because
Warehouse Builder does not provide a secure way to pass
parameters to activities.

Table 27–16 (Cont.) Java Class Activity Parameters

Parameter Name Description

Mapping

Activities in Process Flows 27-19

Set this property in the file
OWB_ORACLE_HOME/bin/admin/Runtime.properties.

For example, use the following steps to execute the Java activities by a specific JDK.

1. In the OWB_ORACLE_HOME/owb directory, create my_java.sh to contain the
following:

#!/bin/sh
echo $* >> /tmp/out.log
/usr/local/packages/jdk14/jre/java $*

2. To the OWB_ORACLE_HOME/bin/admin/Runtime.properties file, add the
following:

property.RuntimePlatform.0.NativeExecution.JavaOSProcess.exec
utable=/oracle/owb/my_java.sh

3. Make my_java.sh executable by the oracle user.

Manual
Use the Manual activity to halt a process flow.

Once the process flow halts, a user must intervene via the Control Center or
Repository Browser to resume the process flow.

Consider using this activity to enable you to design a process to restart or recover ETL
processes.

The Manual activity is similar to the Notification activity except that it does not
require you to implement Oracle Workflow and therefore does not send an email. To
achieve the same results as the Notification activity without interacting with Oracle
Workflow, consider using the Email activity followed by a Manual activity.

Table 27–17 describes the parameters of the Manual activity.

Mapping
Use the Mapping activity to add an existing mapping that you defined and configured
in the Mapping Editor.

You can assign multiple incoming transitions to a Mapping activity. For outgoing
transitions, assign one unconditional transition or up to one of each of the
unconditional transitions.

When you add a mapping to a process flow, you can view its configuration properties
in the Activities panel. The Mapping activity in the Process Flow Editor inherits its
properties from the mapping in the Mapping Editor. In the Process Flow Editor, you
cannot change a property data type or direction.

Table 27–17 Manual Activity Parameters

Parameter Description

Performer The name of the person or group that can resume the process flow

Subject Enter the subject of the activity

Text_body Enter special instructions to be performed before resuming the process flow

Priority Set a priority. The options are: 1= high, 50=medium, and 99=low.

Notification

27-20 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

You can, however, assign new values that affect the process flow only and do not
change the settings for the mapping in the Mapping Editor. For example, if you change
the operating mode from set-based to row-based in the Process Flow Editor, the
process flow runs in row-based mode. The original mapping retains set-based mode as
its operating mode. To change the properties for the underlying mapping, see
"Configuring Mappings Reference" on page 24-1.

If a mapping contains a Mapping Input Parameter operator, specify a value according
to its data type. The Process Flow Editor expects to receive a PL/SQL expression when
you add a Mapping Input Parameter operator to a mapping. If the Mapping Input
Parameter is a string, enclose the string in double quotation marks.

If you want to update a process flow with changes that you made to a mapping in the
Mapping Editor, delete the Mapping activity from the process flow and add the
Mapping activity again.

Table 27–18 and Table 27–19 list the different mapping parameters in PL/SQL and
SQL*Loader.

Table 27–18 lists the PL/SQL mapping parameters.

Table 27–19 lists the SQL*Loader mapping parameters.

Notification
The Notification activity enables you to design a process to restart or recover ETL
processes. This activity works in conjunction with Oracle Workflow. To implement
notifications, you must also implement Workflow notifications in Oracle Workflow.

Table 27–18 Mapping parameters for PL/SQL

Parameter Valid Values

AUDIT_LEVEL NONE

STATISTICS

ERROR_DETAILS

COMPLETE

BLUK_SIZE 1+

COMMIT_FREQUENCY 1+

MAX_NO_OF_ERRORS Maximum number of errors allowed after which the mappings
will terminate with an error

OPERATING_MODE SET_BASED

ROW_BASED

ROW_BASED_TARGET_ONLY

SET_BASED_FAIL_OVER_TO_ROW_BASED

SET_BASED_FAIL_OVER_TO_ROW_BASED_TARGET_ONLY

Table 27–19 Mapping parameters for SQL*Loader

Parameter Description

BAD_FILE_NAME The name of the SQL*Loader "BAD" file

DATA_FILE_NAME The name of the SQL*Loader "DATA" file

DISCARD_FILE_NAME The name of the SQL*Loader "DISCARD"file

Notification

Activities in Process Flows 27-21

Alternatively, you could use an Email activity followed by a Manual activity. Oracle
Workflow subsystem decides how the message is sent.

To use the Notification activity, first define the parameters listed in Table 27–20. Define
a conditional outgoing transition based on each response that you define. For example,
if the value of response_type is yes, no and default_response is yes, define two
outgoing transitions. Right-click each transition and select Condition to view a list of
conditions. In this example, you create one outgoing transition with condition set to
yes and another set to no.

Notification Message Substitution
Custom parameters can be added to the Notification activity to pass and retrieve data
from the user through the notification. IN parameters can be substituted into the
message using SQL and appropriate syntax. For example, for a custom parameter
called NAME, the text &NAME will be replaced with the parameter's value. You will
also be prompted to enter values for the OUT parameters.

Table 27–20 Parameters for the Notification Activity

Parameter Description

Performer Enter the name of a role defined by the Oracle Workflow
administrator.

Subject Enter the subject of the e-mail.

Text_body Enter instructions for the performer. Explain how their response
affects the process flow and perhaps explain the default action if
they do not respond.

Html_body Use html in addition to or instead of text. Content that you enter in
html_body is appended to text_body.

Response_type Enter a comma-separated list of values from which the performer
selects a response. Each entry corresponds to one outgoing
transition from the activity.

Default_response Enter the default response.

Priority Set a priority for the e-mail of either 1 (high), 50 (medium), or 99
(low).

Timeout The number of seconds to wait for response. If this is set, a
#TIMEOUT transition is required.

Response_processor Oracle Workflow notification response processor function. For more
information, see the Oracle Workflow documentation.

Expand_roles Used for notification voting. Set this value to TRUE or FALSE.
When set to TRUE, a notification is sent to each member of a group
rather then a single shared message to the group. For more
information, see the Oracle Workflow documentation.

Note: Due to an Oracle Workflow restriction, only the performer,
priority, timeout, and customer parameter values can be changed at
runtime.

OMBPlus

27-22 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

OMBPlus
Use the OMBPlus activity to represent an OMB*Plus script in a process flow. This
enables you to invoke OMB*Plus while running a process flow, to perform an OMB
function or invoke an expert.

This is particularly useful when you use mappings within a process flow. You no
longer need to deploy maps before you start a process flow. You can now deploy them
using the OMBPlus activity as part of the process flow.

For example, you create a process flow that runs two mappings, each of which loads a
target table. You can now deploy the mappings as part of the process flow.

Figure 27–6 displays a mapping that provides this functionality.

Figure 27–6 OMBPlus Activity in a Mapping

Table 27–21 describes the parameters of the OMBPlus activity.

You can enter an OMB*Plus script to execute or point to an existing script on the file
system. To enter a script, expand the activity node in the Structure panel and select
Script. In the Value field of the Property Inspector, click the Ellipsis button, enter the
script in the Edit Property dialog box, and click OK. To point to an existing script on a

Table 27–21 OMBPlus Activity Parameters

Parameter Name Description

PARAMETER_LIST Defines a list of parameters, separated by a repetition of the first
character.

For example, /VALUE1/VALUE2/VALUE3/, where the "/"
character is used as a separator. The separator must appear at
the end of the list as well as at the front.

RESULT_CODE An integer output of the activity types that indicates if the
activity completed successfully.

SCRIPT Represents the OMB*Plus script to be executed.

This parameter can only be used to enter the script body that is
to be executed. If you want to refer to an existing script, specify
the script in the PARAMETER_LIST. For example,
/my_script.tcl/value1/value2/.

SUCCESS_THRESHOLD Designates the OMB*Plus script completion status.Enter the
highest return value from the script execution that indicates a
successful completion. When a higher value is returned, it
indicates that the command failed. The default value is 0.

Route

Activities in Process Flows 27-23

file system, go to the parameter_list parameter and enter the at sign, @, followed by
the full path.

Execution Mode for a Process Flow Containing an OMBPlus Activity
The OMBPlus activity can be run in one of several modes:

■ Control Center internal (NATIVE JAVA)

■ Database (Scheduler)

■ Disabled

The property setting
"property.RuntimePlatform.0.NativeExecution.OMBPlus.security_constraint" which is
set in owb/bin/admin/Runtime.properties controls this behavior.

 OR
Use the OR activity to start an activity based on the completion of one or multiple
number of upstream activities. You can assign multiple incoming transitions and only
one unconditional outgoing transition to an OR activity.

The OR activity has similar semantics to the AND activity, except that the OR activity
propagates the SUCCESS, WARNING, or ERROR outcome of the first upstream
activity that is completed.

An OR activity in a process flow ensures that downstream activities are triggered only
once for each run of a process flow.

Figure 27–7 displays the process flow containing an OR activity.

Figure 27–7 The OR activity in a Process Flow

The Process Flow Editor enables you to omit the OR activity and assign transitions
from each of the three Mapping activities to Subprocess activity SUBPROC1. However,
this logic would start SUBPROC1 three times within the same run of a process flow.
Avoid this by using an OR activity.

Route
Use the Route activity to route the outcome of an activity to specific results based on a
condition that you define. This enables you to define exclusive OR and if-the-else
scenarios.

A Route activity has no operation and therefore can be used to place a bend in a
transition. Like any other activity, you can add outgoing complex condition transitions
to the Route activity. But because the activity has no operation, the condition may only
refer to the process flow's parameters and variables.

Set Status

27-24 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

The inclusion of a Route activity can affect the outcome of an AND or OR activity.
Because the Route activity has no outcome of its own, it will be considered to have
completed as SUCCESS.

This activity does not have any parameters.

Set Status
Use the Set Status activity to interject a success, warning, or error status.

You can use the Set Status activity as a means of overriding the behavior of the AND
activity. Recall that if any of the activities immediately preceding an AND return an
error, the AND activity resolves to an error. If you want the AND to resolve to success
regardless of the result of a preceding activity, insert between that activity and the
AND activity a Set Status activity.

SQL*PLUS
Use a SQL*PLUS activity to introduce a script into the process flow.

To paste or type in a script, select the activity on the canvas. In the Structure panel,
expand the process flow node, then the Activities node, then the SQL*PLUS node, and
select SCRIPT. The Property Inspector displays the properties of the Script parameter.
In the Value field of the Property Inspector, paste or enter the script. Or, to point to an
existing script on a file system, go to parameter_list and type the at sign, @, followed
by the full path.

Although you can use this activity to accomplish a broad range of goals, one example
is to use a SQL*PLUS activity to control how multiple mappings are committed in a
process flow as described in "Committing Mappings through the Process Flow Editor"
on page 10-12.

Using SQL*PLUS Activities in Process Flows
The process flow in SQL*PLUS activity is performed by the configuration item in the
Deployed Location.

To set the location that will run the SQL*PLUS activity:

1. In the Projects Navigator, expand the Process Flow module.

2. Right-click the process flow and select Configure.

The Configuration tab for the process flow is displayed.

3. In the Configuration tab, expand the SQL*PLUS Activities node.

4. Select SQLPLUS.

5. Under Path Settings, set the Deployed Location option to the location that will run
the SQL*PLUS activity.

The SQL*PLUS activity is similar to the User Defined activity with the following
differences:

■ The COMMAND parameter cannot be specified as it is automatically derived.

■ If the ${Task.Input} substitution variable is used then the temporary file that is
created will end in .sql.

■ It has a different set of substitution variables. The activity should be configured
with a Deployed database location.

SQL*PLUS

Activities in Process Flows 27-25

Using Substitution Variables
The substitution variables are similar to FTP. It uses the following location instead of
the remote location as it is connecting to an Oracle Database and not a FTP server:

■ Working location as the local location

■ Deployed location as the target location

If the PARAMTER_LIST is empty then one of the following parameter list is used
depending on the Deployed location parameters:

■ ?${Target.User}/${Target.Password}@${Target.TNS}?@${Task.Input}?

■ ?${Target.User}/${Target.Password}@${Target. URL}?@${Task.Input}?

■ ?${Target. Schema}/${Target.Password}@${Target.TNS}?@${Task.Input}?

■ ?${Target. Schema}/${Target.Password}@${Target. URL}?@${Task.Input}?

SQL *Plus Command
The SQL*Plus command cannot be entered directly to the FTP User Defined activities.
It is either loaded from the home directory or its location is predefined by the
workspace administrator.

The Sql*Plus execution location is determined from the following platform properties
in the following order:

1. property.RuntimePlatform.0.NativeExecution.SQLPlus.sqlplus_exe_10g

2. property.RuntimePlatform.0.NativeExecution.SQLPlus.sqlplus_exe_9i

3. property.RuntimePlatform.0.NativeExecution.SQLPlus.sqlplus_exe_8i

Table 27–22 SQL*PLUS Activity Parameters

Parameter Description

Parameter_List Type @ followed by the full path of the location of the file
containing the script.

Script As an alternative to typing the path in parameter_list, type or
paste in a script.

Table 27–23 SQL*PLUS Substitution Variables

Substitution Variable Description

${Working.RootPath} The local working directory

${Task.Input} A temporary file create from the SCRIPT parameter

${Target.Host} The target location's host name

${Target.Port} The target location's post number

${Target.Service} The target location's service name

${Target.TNS} The target location's TNS address

${Target.Schema} The target location's schema name

${Target.User} The target location's user name

${Target.Password} The target location's user password

${Target.URL} The target location's connection descriptor

Start

27-26 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

4. property.RuntimePlatform.0.NativeExecution.SQLPlus.sqlplus_exe_default

The Oracle home is determined in a similar way from the following platform
properties:

1. property.RuntimePlatform.0.NativeExecution.SQLPlus.oracle_home_10g

2. property.RuntimePlatform.0.NativeExecution.SQLPlus.oracle_home_9i

3. property.RuntimePlatform.0.NativeExecution.SQLPlus.oracle_home_8i

4. property.RuntimePlatform.0.NativeExecution.SQLPlus.oracle_home_default

 Start
By default, each process flow includes one Start activity. You can set input parameters
for the Start activity that become the input parameters for the complete process flow.

To add parameters to a Start activity:

1. In the Projects Navigator, double-click the Process Flow to open the Process Flow
Editor.

2. In the Structure panel, expand the Activities node.

If the Structure tab is not displayed, select Structure from the View menu.

3. Select the Start activity and click the New Process Activity Parameter icon (the tiny
green "Plus" button at the top) on the Structure tab.

A new parameter is added under the Start activity.

4. Select the new parameter and, in the Property Inspector, set the properties for this
parameter.

Change the parameter name and data type as necessary. You cannot alter its
direction. The direction is IN, indicating that the parameter is an input parameter
only. For value, type the parameter value. You can overwrite this value at runtime.

5. You can now use the parameter as input to other activities in the process flow.

 Subprocess
Use a Subprocess activity to start a previously created process flow. From one process
flow, you can start any other process flow that is contained within the same or any
other process flow package.

Once you add a Subprocess activity to a process flow, use it in your design in a way
similar to any other activity. You can assign multiple incoming transitions. For
outgoing transitions, assign either one unconditional outgoing transition or up to three
outgoing conditional transitions.

The END activities within the subprocess apply to the Subprocess activity only and do
not function as a termination point in the process flow.

An important difference between a Subprocess activity and other activities is that you
can view the contents of a subprocess, but you cannot edit its contents in the parent
process flow. To edit a subprocess, open its underlying process flow from the Projects
Navigator. With the exception of renaming a process flow, the Process Flow Editor
propagates changes from child process flows to its parent process flows.

User Defined

Activities in Process Flows 27-27

To add Subprocess activity to a process flow:

1. From the palette in the Process Flow Editor, drag and drop the Subprocess activity
icon onto the canvas.

Warehouse Builder displays a dialog box to select and add a process flow as a
subprocess.

2. Expand the process flow module and select a process flow from the same process
flow package as the parent process flow.

Warehouse Builder displays the process flow as a Subprocess activity on the
parent process flow.

3. To view the contents of the subprocess, right-click the subprocess and select
Expand Node.

The Process Flow Editor displays the graph for the subprocess surrounded by a
blue border.

 Transform
When a function transform is dropped onto the canvas, the return parameter is created
as a new parameter with the same name as the transform. When you add
transformations from the transformation library to a process flow using the Transform
activity, the Process Flow Editor displays the parameters for the transformation in the
Activity panel.

You can specify one or more incoming transitions to start a Transform activity. For
outgoing transitions, you can either specify one unconditional transition or one of each
of the three conditional transitions.

If you specify conditional outgoing transitions, you can configure the activity to base
its status on its return value. For more information about Use Return as Status, see
"Configuring Process Flows Reference" on page 24-13.

To update a process flow with changes that you made to a transformation, delete the
Transform activity from the process flow and add the Transform activity again.

For transforms that are not deployed, such as the public transformations, the activity
must be configured with a Deployed location value.

User Defined
The User Defined activity enables you to incorporate into a process flow an activity
that is not defined within Warehouse Builder.

You can specify one or more incoming transitions to start a User Defined process
activity. For outgoing transitions, you can either specify one unconditional transition
or one of each of the three conditional transitions.

Note: Use caution when renaming process flows. If you rename a
process flow referenced by another process flow, the parent process
flow becomes invalid. You must delete the invalid subprocess and
add a new subprocess associated with the new name for the child
process flow.

User Defined

27-28 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

If you specify conditional outgoing transitions, you can configure the activity to base
its status on its return value. For more information about Use Return as Status, see
"Configuring Process Flows Reference" on page 24-13.

Table 27–24 lists the parameters you set for the User Defined activity.

Table 27–25 lists the substitute variables you can enter for the FTP activity.

Table 27–24 User Defined Activity Parameters

Parameter Description

Command The command to perform the user defined process that you defined. Enter
the path and file name such as c:\winnt\system32\cmd.exe.

Parameter List The list of parameters to be passed to the user defined process. Enter the
path and file name such as ?/c?c:\\temp\\run.bat.

The Process Flow Editor interprets the first character you type to be the
separator. For example, the Process Flow Editor interprets the following
entry as /c and dir.

?/c?dir?

Use the backslash as the escape character. For example, the Process Flow
Editor interprets the following entry as -l and -s and /.

/-l/-s/\//

You can also enter the substitution variables listed in Table 27–25.

Success
Threshold

Designates the completion status.Enter the highest return value from the
operating system that indicates a successful completion. When the operating
system returns a higher value, it indicates that the command failed. The
default value is 0.

Script You can enter a script here or enter a file name for a script. If you enter a file
name, use the ${Task.Input} variable in the parameter list to pass the file
name.

To enter or paste text, select Value at the bottom of the Activity panel. The
Process Flow Editor does not limit the amount of text you can enter.

Each carriage return in the script is equivalent to pressing the Enter key.
Therefore, end the script with a carriage return to ensure that the last line is
sent.

Table 27–25 Substitute Variables for the User Defined Process Activity

Variable Value

${Working.Host} The host value for the location of the Control Center Service host

${Working.User} The user value for the location of the Control Center Service host

${Working.Password} The password value for the location of the Control Center Service
host

${Working.RootPath} The local working directory

${Task.Input} A temporary file created from the SCRIPT parameter

Enter the Task.Input variable to direct Warehouse Builder to the
script that you write in the SCRIPT parameter.

For Windows, enter into Parameter_List ?"-s:${Task.Input}"?

and for UNIX, enter into Parameter_List ?"${Task.Input}"?

where the question mark as the separator.

Web Service

Activities in Process Flows 27-29

Wait
Use the Wait activity to interject a delay in the process flow.

Table 27–26 describes the parameters of the Wait activity.

While Loop
Use the While Loop to run one or more activities only when a condition that you
define evaluates to true.

Typically, you associate a While Loop with Assign activities that enable you to define
the while condition. At least one Assign activity initializes the data and at least one
Assign activity increments or modifies the data again to the end of a loop iteration.

When you add a While Loop activity, the editor also adds an End Loop activity and a
transition to the End Loop. Create transitions from the While Loop activity to each
activity you want to include in the loop. For each outgoing transition that you add,
apply either an EXIT or LOOP condition to the transition by selecting the transition
and clicking on Condition in the object details.

To define the while condition that governs whether or not to run the loop, in the
Structure panel, expand the process flow node, then the Activities node, then the
WHILE_LOOP node, and select Condition. The Property Inspector displays the
parameters for the Condition.

Table 27–27 describes the parameters of the While Loop activity.

Web Service
Use the Web Service activity to add an existing Web service to a process flow. The Web
services must be defined under the Application Servers node of the Projects Navigator
or the Public application Server node of the Globals Navigator.

The Web Service activity enables you use the operations defined in the Web service in
your process flow. Since a Web service can contain multiple operations, when you add
a Web Service activity to a process flow, you are prompted to select the operation to be
used.

The parameters for a Web Service activity depend on the type of operations performed
by the Web service. Thus, different operations can have different parameters.
Table 27–28 describes the parameters of the runCCJob operation of the default Web
service AgentWebService.

Table 27–26 Wait Activity Parameters

Parameter Description

Minimum_Del
ay

Enter the minimum time to wait. Specify the time in units of seconds.

Until_Date Specify the date to wait until in the default format for your local region.

Table 27–27 While Loop Activity Parameters

Parameter Description

Condition Define with a LOOP or EXIT condition.

Web Service

27-30 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

To use a Web Service activity in a process flow:

1. Open the process flow in which you want to add Web Service activity by
double-clicking the process flow in the Projects Navigator.

The process flow is displayed in the editor.

2. From the Projects Navigator, drag and drop the Web service you want to add.

The Web Service Operation dialog box is displayed.

3. If the Web service selected in the previous step contains more than one operation,
select the operation within the Web service that you want to add to the process
flow and click OK.

The Web service operation is added to the process flow.

4. Set the parameters for the Web Service activity.

Table 27–28 Parameters for Web Service Activities

Parameter Description

Username The name of the workspace user executing the process flow

Password The password of the user specified in the username field

Workspace The name of the workspace in which the Web service execution
job should be run.

If the user executing the Web service is not the workspace
owner, then prefix the workspace name with the user name. For
example, test_user.my_workspace.

Location The physical name of the location to which the operation is
deployed

Task_type The type of operation. Use one of the following values: PLSQL,
SQL_LOADER, PROCESS, SAP, or DATA_AUDITOR.

Task_name The physical name of the process flow. Qualify the process flow
name with the name of the process flow package to which it
belongs. For example, MY_PROCESS_FLOW_PACK.
MY_PROCESS_FLOW.

Connection_string The connection information of the system that runs the Control
Center Manager

System_params The values of the mapping execution parameters, if any, such as
Bulk Size, Audit Level, or Operating Mode.

Custom_params The values for the input parameters for the mapping on which
the Web service is based

28

Warehouse Builder Transformations Reference 28-1

28

Warehouse Builder Transformations
Reference

This chapter describes the predefined transformations provided by Warehouse Builder
to transform data.

Predefined Transformations in the Public Oracle Predefined Library
Predefined transformations in the public Oracle Predefined library are categorized as
follows:

■ Administrative Transformations

■ Character Transformations

■ Control Center Transformations

■ Conversion Transformations

■ Date Transformations

■ Number Transformations

■ OLAP Transformations

■ Other Transformations

■ Spatial Transformations

■ Streams Transformations

■ XML Transformations

Administrative Transformations
Administrative transformations provide prebuilt functionality to perform actions that
are regularly performed in ETL processes. The main focus of these transformations is
in the DBA related areas or to improve performance. For example, it is common to
disable constraints when loading tables and then to reenable them after loading has
completed.

The administrative transformations in Warehouse Builder are custom functions. The
Administrative transformation that Warehouse Builder provides are:

■ WB_ABORT on page 28-2

■ WB_COMPILE_PLSQL on page 28-2

■ WB_DISABLE_ALL_CONSTRAINTS on page 28-3

Predefined Transformations in the Public Oracle Predefined Library

28-2 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ WB_DISABLE_ALL_TRIGGERS on page 28-3

■ WB_DISABLE_CONSTRAINT on page 28-4

■ WB_DISABLE_TRIGGER on page 28-5

■ WB_ENABLE_ALL_CONSTRAINTS on page 28-6

■ WB_ENABLE_ALL_TRIGGERS on page 28-6

■ WB_ENABLE_CONSTRAINT on page 28-7

■ WB_ENABLE_TRIGGER on page 28-8

■ WB_TRUNCATE_TABLE on page 28-9

WB_ABORT

Syntax
WB_ABORT(p_code, p_message)

where p_code is the abort code, and must be between -20000 and -29999; and p_
message is an abort message you specify.

Purpose
WB_ABORT enables you to terminate the application from a Warehouse Builder
component. You can run it from a post-mapping process or as a transformation within
a mapping.

Example
Use this administration function to terminate an application. You can use this function
in a post-mapping process to terminate deployment if there is an error in the mapping.

WB_COMPILE_PLSQL

Syntax
WB_COMPILE_PLSQL(p_name, p_type)

where p_name is the name of the object that is to be compiled; p_type is the type of
object to be compiled. The legal types are:

'PACKAGE'
'PACKAGE BODY'
'PROCEDURE'
'FUNCTION'
'TRIGGER'

Purpose
This program unit compiles a stored object in the database.

Example
The following hypothetical example compiles the procedure called add_employee_
proc:

EXECUTE WB_COMPILE_PLSQL('ADD_EMPLOYEE_PROC', 'PROCEDURE');

Predefined Transformations in the Public Oracle Predefined Library

Warehouse Builder Transformations Reference 28-3

WB_DISABLE_ALL_CONSTRAINTS

Syntax
WB_DISABLE_ALL_CONSTRAINTS(p_name)

where p_name is the name of the table on which constraints are disabled.

Purpose
This program unit disables all constraints that are owned by the table as stated in the
call to the program.

For faster loading of data sets, you can disable constraints on a table. The data is now
loaded without validation. This is mainly done on relatively clean data sets.

Example
The following example shows the disabling of the constraints on the table
OE.CUSTOMERS:

SELECT constraint_name
, DECODE(constraint_type,'C','Check','P','Primary') Type
, status
FROM user_constraints
WHERE table_name = 'CUSTOMERS';

CONSTRAINT_NAME TYPE STATUS
------------------------------ ------- --------
CUST_FNAME_NN Check ENABLED
CUST_LNAME_NN Check ENABLED
CUSTOMER_CREDIT_LIMIT_MAX Check ENABLED
CUSTOMER_ID_MIN Check ENABLED
CUSTOMERS_PK Primary ENABLED

Perform the following in SQL*Plus or Warehouse Builder to disable all constraints:

EXECUTE WB_DISABLE_ALL_CONSTRAINTS('CUSTOMERS');

CONSTRAINT_NAME TYPE STATUS
------------------------------ ------- --------
CUST_FNAME_NN Check DISABLED
CUST_LNAME_NN Check DISABLED
CUSTOMER_CREDIT_LIMIT_MAX Check DISABLED
CUSTOMER_ID_MIN Check DISABLED
CUSTOMERS_PK Primary DISABLED

WB_DISABLE_ALL_TRIGGERS

Syntax
WB_DISABLE_ALL_TRIGGERS(p_name)

where p_name is the table name on which the triggers are disabled.

Note: This statement uses a cascade option to allow dependencies
to be broken by disabling the keys.

Predefined Transformations in the Public Oracle Predefined Library

28-4 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Purpose
This program unit disables all triggers owned by the table as stated in the call to the
program. The owner of the table must be the current user (in variable USER). This
action stops triggers and improves performance.

Example
The following example shows the disabling of all triggers on the table OE.OC_
ORDERS:

SELECT trigger_name
, status
FROM user_triggers
WHERE table_name = 'OC_ORDERS';

TRIGGER_NAME STATUS
------------------------------ --------
ORDERS_TRG ENABLED
ORDERS_ITEMS_TRG ENABLED

Perform the following in SQL*Plus or Warehouse Builder to disable all triggers on the
table OC_ORDERS.

EXECUTE WB_DISABLE_ALL_TRIGGERS ('OC_ORDERS');

TRIGGER_NAME STATUS
------------------------------ --------
ORDERS_TRG DISABLED
ORDERS_ITEMS_TRG DISABLED

WB_DISABLE_CONSTRAINT

Syntax
WB_DISABLE_CONSTRAINT(p_constraintname, p_tablename)

where p_constraintname is the constraint name to be disabled; p_tablename is
the table name on which the specified constraint is defined.

Purpose
This program unit disables the specified constraint that is owned by the table as stated
in the call to the program. The user is the current user (in variable USER).

For faster loading of data sets, you can disable constraints on a table. The data is then
loaded without validation. This reduces overhead and is mainly done on relatively
clean data sets.

Example
The following example shows the disabling of the specified constraint on the table
OE.CUSTOMERS:

SELECT constraint_name
, DECODE(constraint_type
, 'C', 'Check'
, 'P', 'Primary'
) Type
, status
FROM user_constraints
WHERE table_name = 'CUSTOMERS';

Predefined Transformations in the Public Oracle Predefined Library

Warehouse Builder Transformations Reference 28-5

CONSTRAINT_NAME TYPE STATUS
------------------------------ ------- --------
CUST_FNAME_NN Check ENABLED
CUST_LNAME_NN Check ENABLED
CUSTOMER_CREDIT_LIMIT_MAX Check ENABLED
CUSTOMER_ID_MIN Check ENABLED
CUSTOMERS_PK Primary ENABLED

Perform the following in SQL*Plus or Warehouse Builder to disable the specified
constraint.

EXECUTE WB_DISABLE_CONSTRAINT('CUSTOMERS_PK','CUSTOMERS');

CONSTRAINT_NAME TYPE STATUS
------------------------------ ------- --------
CUST_FNAME_NN Check ENABLED
CUST_LNAME_NN Check ENABLED
CUSTOMER_CREDIT_LIMIT_MAX Check ENABLED
CUSTOMER_ID_MIN Check ENABLED
CUSTOMERS_PK Primary DISABLED

WB_DISABLE_TRIGGER

Syntax
WB_DISABLE_TRIGGER(p_name)

where p_name is the trigger name to be disabled.

Purpose
This program unit disables the specified trigger. The owner of the trigger must be the
current user (in variable USER).

Example
The following example shows the disabling of a trigger on the table OE.OC_ORDERS:

SELECT trigger_name, status
FROM user_triggers
WHERE table_name = 'OC_ORDERS';

TRIGGER_NAME STATUS
------------------------------ --------
ORDERS_TRG ENABLED
ORDERS_ITEMS_TRG ENABLED

Perform the following in SQL*Plus or Warehouse Builder to disable the specified
constraint.

ECECUTE WB_DISABLE_TRIGGER ('ORDERS_TRG');

TRIGGER_NAME STATUS
------------------------------ --------

Note: This statement uses a cascade option to allow dependencies to
be broken by disabling the keys.

Predefined Transformations in the Public Oracle Predefined Library

28-6 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

ORDERS_TRG DISABLED
ORDERS_ITEMS_TRG ENABLED

WB_ENABLE_ALL_CONSTRAINTS

Syntax
WB_ENABLE_ALL_CONSTRAINTS(p_name)

where p_name is the name of the table for which all constraints should be enabled.

Purpose
This program unit enables all constraints that are owned by the table as stated in the
call to the program.

For faster loading of data sets, you can disable constraints on a table. After the data is
loaded, you must enable these constraints again using this program unit.

Example
The following example shows the enabling of the constraints on the table
OE.CUSTOMERS:

SELECT constraint_name
, DECODE(constraint_type
, 'C', 'Check'
, 'P', 'Primary)
Type
, status
FROM user_constraints
WHERE table_name = 'CUSTOMERS';

CONSTRAINT_NAME TYPE STATUS
------------------------------ ------- --------
CUST_FNAME_NN Check DISABLED
CUST_LNAME_NN Check DISABLED
CUSTOMER_CREDIT_LIMIT_MAX Check DISABLED
CUSTOMER_ID_MIN Check DISABLED
CUSTOMERS_PK Primary DISABLED

Perform the following in SQL*Plus or Warehouse Builder to enable all constraints.

EXECUTE WB_ENABLE_ALL_CONSTRAINTS('CUSTOMERS');

CONSTRAINT_NAME TYPE STATUS
------------------------------ ------- --------
CUST_FNAME_NN Check ENABLED
CUST_LNAME_NN Check ENABLED
CUSTOMER_CREDIT_LIMIT_MAX Check ENABLED
CUSTOMER_ID_MIN Check ENABLED
CUSTOMERS_PK Primary ENABLED

WB_ENABLE_ALL_TRIGGERS

Syntax
WB_ENABLE_ALL_TRIGGERS(p_name)

Predefined Transformations in the Public Oracle Predefined Library

Warehouse Builder Transformations Reference 28-7

where p_name is the table name on which the triggers are enabled.

Purpose
This program unit enables all triggers owned by the table as stated in the call to the
program. The owner of the table must be the current user (in variable USER).

Example
The following example shows the enabling of all triggers on the table OE.OC_ORDERS:

SELECT trigger_name
, status
FROM user_triggers
WHERE table_name = 'OC_ORDERS';

TRIGGER_NAME STATUS
------------------------------ --------
ORDERS_TRG DISABLED
ORDERS_ITEMS_TRG DISABLED

Perform the following in SQL*Plus or Warehouse Builder to enable all triggers defined
on the table OE.OC_ORDERS.

EXECUTE WB_ENABLE_ALL_TRIGGERS ('OC_ORDERS');

TRIGGER_NAME STATUS
------------------------------ --------
ORDERS_TRG ENABLED
ORDERS_ITEMS_TRG ENABLED

WB_ENABLE_CONSTRAINT

Syntax
WB_ENABLE_CONSTRAINT(p_constraintname, p_tablename)

where p_constraintname is the constraint name to be disabled and p_tablename
is the table name on which the specified constraint is defined.

Purpose
This program unit enables the specified constraint that is owned by the table as stated
in the call to the program. The user is the current user (in variable USER). For faster
loading of data sets, you can disable constraints on a table. After the loading is
complete, you must reenable these constraints. This program unit shows you how to
enable the constraints one at a time.

Example
The following example shows the enabling of the specified constraint on the table
OE.CUSTOMERS:

SELECT constraint_name
, DECODE(constraint_type
 , 'C', 'Check'
 , 'P', 'Primary'
) Type
, status
FROM user_constraints
WHERE table_name = 'CUSTOMERS';

Predefined Transformations in the Public Oracle Predefined Library

28-8 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

CONSTRAINT_NAME TYPE STATUS
------------------------------ ------- --------
CUST_FNAME_NN Check DISABLED
CUST_LNAME_NN Check DISABLED
CUSTOMER_CREDIT_LIMIT_MAX Check DISABLED
CUSTOMER_ID_MIN Check DISABLED
CUSTOMERS_PK Primary DISABLED

Perform the following in SQL*Plus or Warehouse Builder to enable the specified
constraint.

EXECUTE WB_ENABLE_CONSTRAINT('CUSTOMERS_PK', 'CUSTOMERS');

CONSTRAINT_NAME TYPE STATUS
------------------------------ ------- --------
CUST_FNAME_NN Check DISABLED
CUST_LNAME_NN Check DISABLED
CUSTOMER_CREDIT_LIMIT_MAX Check DISABLED
CUSTOMER_ID_MIN Check DISABLED
CUSTOMERS_PK Primary ENABLED

WB_ENABLE_TRIGGER

Syntax
WB_ENABLE_TRIGGER(p_name)

where p_name is the trigger name to be enabled.

Purpose
This program unit enables the specified trigger. The owner of the trigger must be the
current user (in variable USER).

Example
The following example shows the enabling of a trigger on the table OE.OC_ORDERS:

SELECT trigger_name
, status
FROM user_triggers
WHERE table_name = 'OC_ORDERS';

TRIGGER_NAME STATUS
------------------------------ --------
ORDERS_TRG DISABLED
ORDERS_ITEMS_TRG ENABLED

Perform the following in SQL*Plus or Warehouse Builder to enable the specified
constraint.

EXECUTE WB_ENABLE_TRIGGER ('ORDERS_TRG');

TRIGGER_NAME STATUS
------------------------------ --------
ORDERS_TRG ENABLED
ORDERS_ITEMS_TRG ENABLED

Predefined Transformations in the Public Oracle Predefined Library

Warehouse Builder Transformations Reference 28-9

WB_TRUNCATE_TABLE

Syntax
WB_TRUNCATE_TABLE(p_name)

where p_name is the table name to be truncated.

Purpose
This program unit truncates the table specified in the command call. The owner of the
trigger must be the current user (in variable USER). The command disables and
reenables all referencing constraints to enable the truncate table command. Use this
command in a pre-mapping process to explicitly truncate a staging table and ensure
that all data in this staging table is newly loaded data.

Example
The following example shows the truncation of the table OE.OC_ORDERS:

SELECT COUNT(*) FROM oc_orders;

 COUNT(*)

 105

Perform the following in SQL*Plus or Warehouse Builder to enable the specified
constraint.

EXECUTE WB_TRUNCATE_TABLE ('OC_ORDERS');

 COUNT(*)

 0

Character Transformations
Character transformations enable Warehouse Builder users to perform
transformations on Character objects. The custom functions provided with Warehouse
Builder are prefixed with WB_.

The character transformations available in Warehouse Builder are listed below. Most
of them are implementations of basic SQL functions or procedures. No descriptions
are provided for such transformations.

Table 28–1 lists the character transformations that are based on Database SQL
functions. The transformations are listed in a columnar table that reads down the
columns from left to right to conserve space.

Table 28–1 Character Transformations Based on SQL character functions

Character Transformation
Name

Character Transformation
Name (Contd.)

Character Transformation
Name (Contd.)

■ ASCII ■ CHR ■ CONCAT

■ INITCAP ■ INSTR ■ INSTR2

■ INSTR4 ■ INSTRB ■ INSTRC

■ LENGTH ■ LENGTH2 ■ LENGTH4

■ LENGTHB ■ LENGTHC ■ LOWER

Predefined Transformations in the Public Oracle Predefined Library

28-10 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

For descriptions and examples of these functions, refer to section "Character
Functions" in the Oracle Database SQL Language Reference.

Following is the list of custom character transformations.

■ WB_LOOKUP_CHAR (number) on page 28-10

■ WB_LOOKUP_CHAR (varchar2) on page 28-11

■ WB_IS_SPACE on page 28-11

WB_LOOKUP_CHAR (number)

Syntax
WB.LOOKUP_CHAR (table_name
, column_name
, key_column_name
, key_value
)

where table_name is the name of the table to perform the lookup on and column_
name is the name of the VARCHAR2 column that will be returned. For example, the
result of the lookup key_column_name is the name of the NUMBER column used as
the key to match on in the lookup table, key_value is the value of the key column
mapped into the key_column_name with which the match will be done.

Purpose
To perform a key lookup on a number that returns a VARCHAR2 value from a database
table using a NUMBER column as the matching key.

Example
Consider the following table as a lookup table LKP1:

KEY_COLUMN TYPE COLOR
10 Car Red
20 Bike Green

Using this package with the following call:

WB.LOOKUP_CHAR ('LKP1'
, 'TYPE'
, 'KEYCOLUMN'
, 20

■ LPAD ■ LTRIM ■ NLSSORT

■ NLS_INITCAP ■ NLS_LOWER ■ NLS_UPPER

■ REPLACE ■ REGEXP_INSTR ■ REGEXP_REPLACE

■ REGEXP_SUBSTR ■ RPAD ■ RTRIM

■ SOUNDEX ■ SUBSTR ■ SUBSTR2

■ SUBSTR4 ■ SUBSTRB ■ SUBSTRC

■ TRANSLATE ■ TRIM ■ UPPER

Table 28–1 (Cont.) Character Transformations Based on SQL character functions

Character Transformation
Name

Character Transformation
Name (Contd.)

Character Transformation
Name (Contd.)

Predefined Transformations in the Public Oracle Predefined Library

Warehouse Builder Transformations Reference 28-11

)

returns the value of 'Bike' as output of this transform. This output would then be
processed in the mapping as the result of an inline function call.

WB_LOOKUP_CHAR (varchar2)

Syntax
WB.LOOKUP_CHAR (table_name
, column_name
, key_column_name
, key_value
)

where table_name is the name of the table to perform the lookup on; column_name
is the name of the VARCHAR2 column that will be returned, for instance, the result of
the lookup; key_column_name is the name of the VARCHAR2 column used as the key
to match on in the lookup table; key_value is the value of the key column, for
instance, the value mapped into the key_column_name with which the match will be
done.

Purpose
To perform a key lookup on a VARCHAR2 character that returns a VARCHAR2 value
from a database table using a VARCHAR2 column as the matching key.

Example
Consider the following table as a lookup table LKP1:

KEYCOLUMN TYPE COLOR
ACV Car Red
ACP Bike Green

Using this package with the following call:

WB.LOOKUP_CHAR ('LKP1'
, 'TYPE'
, 'KEYCOLUMN'
, 'ACP'
)

returns the value of 'Bike' as output of this transformation. This output is then
processed in the mapping as the result of an inline function call.

WB_IS_SPACE

Syntax
WB_IS_SPACE(attibute)

Note: This function is a row-based key lookup. Set-based lookups
are supported when you use the Lookup operator.

Note: This function is a row-based key lookup. Set-based lookups
are supported when you use the Lookup operator.

Predefined Transformations in the Public Oracle Predefined Library

28-12 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Purpose
Checks whether a string value only contains spaces. This function returns a Boolean
value. In mainframe sources, some fields contain many spaces to make a file adhere to
the fixed length format. This function provides a way to check for these spaces.

Example
WB_IS_SPACE returns TRUE if attribute contains only spaces.

Control Center Transformations
Control Center transformations are used in a process flow or in custom
transformations to enable you to access information about the Control Center at
execution time. For example, you can use a Control Center transformation in the
expression on a transition to help control the flow through a process flow at execution
time. You can also use Control Center transformations within custom functions. These
custom functions can in turn be used in the design of your process flow.

All Control Center transformations require an audit ID that provides a handle to the
audit data stored in the Control Center workspace. The audit ID is a key into the
public view ALL_RT_AUDIT_EXECUTIONS. The transformations can be used to obtain
data specific to that audit ID at execution time. When run in the context of a process
flow, you can obtain the audit ID at execution time using the pseudo variable audit_
id in a process flow expression. This variable is evaluated as the audit ID of the
currently executing job. For example, for a map input parameter, this represents the
map execution and for a transition this represents the job at the source of the
transition.

The Control Center transformations are:

■ WB_RT_GET_ELAPSED_TIME on page 28-12

■ WB_RT_GET_JOB_METRICS on page 28-13

■ WB_RT_GET_LAST_EXECUTION_TIME on page 28-14

■ WB_RT_GET_MAP_RUN_AUDIT on page 28-14

■ WB_RT_GET_NUMBER_OF_ERRORS on page 28-15

■ WB_RT_GET_NUMBER_OF_WARNINGS on page 28-15

■ WB_RT_GET_PARENT_AUDIT_ID on page 28-16

■ WB_RT_GET_RETURN_CODE on page 28-16

■ WB_RT_GET_START_TIME on page 28-17

WB_RT_GET_ELAPSED_TIME

Syntax
WB_RT_GET_ELAPSED_TIME(audit_id)

Purpose
This function returns the elapsed time, in seconds, for the job execution given by the
specified audit_id. It returns null if the specified audit ID does not exist. For
example, you can use this function on a transition if you want to make a choice
dependent on the time taken by the previous activity.

Predefined Transformations in the Public Oracle Predefined Library

Warehouse Builder Transformations Reference 28-13

Example
The following example returns the time elapsed since the activity represented by
audit_id was started:

declare
 audit_id NUMBER := 1812;
 l_time NUMBER;
begin
 l_time:= WB_RT_GET_ELAPSED_TIME(audit_id);
end;

WB_RT_GET_JOB_METRICS

Syntax
WB_RT_GET_JOB_METRICS(audit_id, no_selected, no_deleted, no_updated, no_inserted,
no_discarded, no_merged, no_corrected)

where no_selected represents the number of rows selected, no_deleted
represents the number of rows deleted, no_updated represents the number of rows
updated, no_inserted represents the number of rows inserted, no_discarded
represents the number of rows discarded, no_merged represents the number of rows
merged, and no_corrected represents the number of rows corrected during the job
execution.

Purpose
This procedure returns the metrics of the job execution represented by the specified
audit_id. The metrics include the number of rows selected, deleted, updated,
inserted, discarded, merged, and corrected.

Example
The following example retrieves the job metrics for the audit ID represented by
audit_id.

declare
 audit_id NUMBER := 16547;
 l_nselected NUMBER;
 l_ndeleted NUMBER;
 l_nupdated NUMBER;
 l_ninserted NUMBER;
 l_ndiscarded NUMBER;
 l_nmerged NUMBER;
 l_ncorrected NUMBER;
begin
 WB_RT_GET_JOB_METRICS(audit_id, l_nselected, l_ndeleted, l_nupdated,
 l_ninserted, l_ndiscarded, l_nmerged, l_ncorrected);
 dbms_output.put_line('sel=' || l_nselected || ', del=' l_ndeleted ||
 ', upd=' || l_nupdated);
 dbms_output.put_line('ins='|| l_ninserted || ' , dis=' || l_ndiscarded);
 dbms_output.put_line('mer=' || l_nmerged || ', cor=' ||l_ncorrected);
 end;

Predefined Transformations in the Public Oracle Predefined Library

28-14 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

WB_RT_GET_LAST_EXECUTION_TIME

Syntax
WB_RT_GET_LAST_EXECUTION_TIME(objectName, objectType, objectLocationName)

where objectName represents the name of the object, objectType represents the
type of the object (for example MAPPING, DATA_AUDITOR, PROCESS_FLOW,
SCHEDULABLE), and objectLocationName represents the location to which the
object is deployed.

Purpose
This transformation gives you access to time-based data. Typically, you can use this in
a Process Flow to model some design aspect that is relevant to "time". For example you
can design a path that may execute different maps if the time since the last execution is
more than 1 day.

You can also use this transformation to determine time-synchronization across process
flows that are running concurrently. For example, you can choose a path in a process
flow according to whether another Process Flow has completed.

Example
The following example retrieves the time when the mapping TIMES_MAP was last
executed and the if condition determines whether this time was within 1 day of the
current time. Based on this time, it can perform different actions.

declare
 last_exec_time DATE;
begin
 last_exec_time:=WB_RT_GET_LAST_EXECUTION_TIME('TIMES_MAP','MAPPING','WH_
LOCATION');
 if last_exec_time < sysdate - 1 then
-- last-execution was more than one day ago
-- provide details of action here
 NULL;
 Else
-- provide details of action here
 NULL;
 end if;
end;

WB_RT_GET_MAP_RUN_AUDIT

Syntax
WB_RT_GET_MAP_RUN_AUDIT(audit_id)

Purpose
This function returns the map run ID for a job execution that represents a map activity.
It returns null if audit_id does not represent the job execution for a map. For
example, you can use the returned ID as a key to access the ALL_RT_MAP_RUN_
<name> views for more information.

Predefined Transformations in the Public Oracle Predefined Library

Warehouse Builder Transformations Reference 28-15

Example
The following example retrieves the map run ID for a job execution whose audit ID is
67265. It then uses this map run ID to obtain the name of the source from the ALL_RT_
MAP_RUN_EXECUTIONS public view.

declare
 audit_id NUMBER := 67265;
 l_sources VARCHAR2(256);
 l_run_id NUMBER;
begin
 l_run_id := WB_RT_GET_MAP_RUN_AUDIT_ID(audit_id);
 SELECT source_name INTO l_sources FROM all_rt_map_run_sources
 WHERE map_run_id = l_run_id;
end;

WB_RT_GET_NUMBER_OF_ERRORS

Syntax
WB_RT_GET_NUMBER_OF_ERRORS(audit_id)

Purpose
This function returns the number of errors recorded for the job execution given by the
specified audit_id. It returns null if the specific audit_id is not found.

Example
The following example retrieves the number of errors generated by the job execution
whose audit ID is 8769. You can then perform different actions based on the number of
errors.

declare
 audit_id NUMBER := 8769;
 l_errors NUMBER;
begin
 l_errors := WB_RT_GET_NUMBER_OF_ERRORS(audit_id);
 if l_errors < 5 then

 else

 end if;
end;

WB_RT_GET_NUMBER_OF_WARNINGS

Syntax
WB_RT_GET_NUMBER_OF_WARNINGS(audit_id)

Purpose
This function returns the number of warnings recorded for the job executions
represented by audit_id. It returns null if audit_id does not exist.

Predefined Transformations in the Public Oracle Predefined Library

28-16 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Example
The following example returns the number of warnings generated by the job execution
whose audit ID is 54632. You can then perform different actions based on the number
of warnings.

declare
 audit_is NUMBER := 54632;
 l_warnings NUMBER;
begin
 l_ warnings:= WB_RT_GET_NUMBER_OF_WARNINGS (audit_id);
 if l_warnings < 5 then

 else

 end if;
end;

WB_RT_GET_PARENT_AUDIT_ID

Syntax
WB_RT_GET_PARENT_AUDIT_ID(audit_id)

Purpose
This function returns the audit id for the process that owns the job execution
represented by audit_id. It returns null if audit_id does not exist. You can then use the
returned audit id as a key into other public views such as ALL_RT_AUDIT_
EXECUTIONS, or other Control Center transformations if further information is
required.

Example
The following example retrieves the parent audit ID for a job execution whose audit ID
is 76859. It then uses this audit ID to determine the elapsed time for the parent activity.
You can perform different actions based on the elapsed time of the parent activity.

declare
 audit_id NUMBER := 76859;
 l_elapsed_time NUMBER;
 l_parent_id NUMBER;
begin
 l_parent_id := WB_RT_GET_PARENT_AUDIT_ID(audit_id);
 l_elapsed_time := WB_RT_GET_ELAPSED_TIME(l_parent_id);
 if l_elpased_time < 100 then

 else

 end if;
end;

WB_RT_GET_RETURN_CODE

Syntax
WB_RT_GET_RETURN_CODE(audit_id)

Predefined Transformations in the Public Oracle Predefined Library

Warehouse Builder Transformations Reference 28-17

Purpose
This function returns the return code recorded for the job execution represented by
audit_id. It returns null if audit_id does not exist. For a successful job execution,
the return code is greater than or equal to 0. A return code of less than 0 signifies that
the job execution has failed.

Example
The following example retrieves the return code for the job execution whose audit ID
is represented by audit_id.

declare
 audit_id NUMBER:=69;
 l_code NUMBER;
begin
 l_code:= WB_RT_GET_RETURN_CODE(audit_id);
end;

WB_RT_GET_START_TIME

Syntax
WB_RT_GET_START_TIME(audit_id)

Purpose
This function returns the start time for the job execution represented by audit_id. It
returns null if audit_id does not exist. For example, you can use this in a transition if
you wanted to make a choice dependent on when the previous activity started.

Example
The following example determines the start time of the job execution whose audit ID is
354.

declare
 audit_id NUMBER:=354;
 l_date TIMESTAMP WITH TIME ZONE;
begin
 l_date := WB_RT_GET_START_TIME(audit_id);
end;

Conversion Transformations
The conversion transformations enable Warehouse Builder users to perform functions
that allow conditional conversion of values. These functions achieve "if -then"
constructions within SQL.

The conversion transformations that Warehouse Builder implements from the SQL
conversion functions are as follows:

■ ASCIISTR

■ COMPOSE

■ CONVERT

■ HEXTORAW

■ NUMTODSINTERVAL

Predefined Transformations in the Public Oracle Predefined Library

28-18 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ NUMTOYMINTERVAL

■ RAWTOHEX

■ RAWTONHEX

■ SCN_TO_TIMESTAMP

■ TIMESTAMP_TO_SCN

■ TO_BINARY_DOUBLE

■ TO_BINARY_FLOAT

■ TO_CHAR (character), TO_CHAR (datetime), TO_CHAR (number)

■ TO_CLOB

■ TO_DATE

■ TO_DSINTERVAL

■ TO_MULTIBYTE

■ TO_NCHAR (character), TO_NCHAR (datetime), TO_NCHAR (number)

■ TO_NCLOB

■ TO_NUMBER

■ TO_SINGLE_BYTE

■ TO_TIMESTAMP

■ TO_TIMESTAMP_TZ

■ TO_YMINTERVAL

■ UNISTR

For descriptions and examples of these transformations, see "Conversion Functions" in
the Oracle Database SQL Language Reference.

Date Transformations
Date transformations provide Warehouse Builder users with functionality to perform
transformations on date attributes. These transformations include SQL functions that
are implemented by Warehouse Builder and custom functions provided with
Warehouse Builder. The custom function are in the format WB_<function name>.

Following are the date transformations that are implementations of Database SQL
functions:

■ ADD_MONTHS

■ CURRENT_DATE

■ DBTIMEZONE

■ FROM_TZ

■ LAST_DAY

■ MONTHS_BETWEEN

■ NEW_TIME

■ NEXT_DAY

■ ROUND

Predefined Transformations in the Public Oracle Predefined Library

Warehouse Builder Transformations Reference 28-19

■ SESSIONTIMEZONE

■ SYSDATE

■ SYSTIMESTAMP

■ SYS_EXTRACT_UTC

■ TRUNC

For descriptions and examples of these transformations, refer to the section "Datetime
Functions" in the Oracle Database SQL Language Reference.

The custom Date transformations are:

■ WB_CAL_MONTH_NAME on page 28-19

■ WB_CAL_MONTH_OF_YEAR on page 28-20

■ WB_CAL_MONTH_SHORT_NAME on page 28-20

■ WB_CAL_QTR on page 28-21

■ WB_CAL_WEEK_OF_YEAR on page 28-21

■ WB_CAL_YEAR on page 28-22

■ WB_CAL_YEAR_NAME on page 28-22

■ WB_DATE_FROM_JULIAN on page 28-23

■ WB_DAY_NAME on page 28-23

■ WB_DAY_OF_MONTH on page 28-24

■ WB_DAY_OF_WEEK on page 28-24

■ WB_DAY_OF_YEAR on page 28-25

■ WB_DAY_SHORT_NAME on page 28-25

■ WB_DECADE on page 28-26

■ WB_HOUR12 on page 28-26

■ WB_HOUR12MI_SS on page 28-27

■ WB_HOUR24 on page 28-27

■ WB_HOUR24MI_SS on page 28-28

■ WB_IS_DATE on page 28-28

■ WB_JULIAN_FROM_DATE on page 28-29

■ WB_MI_SS on page 28-29

■ WB_WEEK_OF_MONTH on page 28-30

WB_CAL_MONTH_NAME

Syntax
WB_CAL_MONTH_NAME(attribute)

Purpose
The function call returns the full-length name of the month for the date specified in
attribute.

Predefined Transformations in the Public Oracle Predefined Library

28-20 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Example
The following example shows the return value on the sysdate and on a specified
date string:

SELECT WB_CAL_MONTH_NAME(sysdate)
 FROM DUAL;

WB_CAL_MONTH_NAME(SYSDATE)

March

SELECT WB_CAL_MONTH_NAME('26-MAR-2002')
 FROM DUAL;

WB_CAL_MONTH_NAME('26-MAR-2002')

March

WB_CAL_MONTH_OF_YEAR

Syntax
WB_CAL_MONTH_OF_YEAR(attribute)

Purpose
WB_CAL_MONTH_OF_YEAR returns the month (1 to 12) of the year for date in
attribute.

Example
The following example shows the return value on the sysdate and on a specified
date string:

SELECT WB_CAL_MONTH_OF_YEAR(sysdate) month
 FROM DUAL;

 MONTH

 3

SELECT WB_CAL_MONTH_OF_YEAR('26-MAR-2002') month
FROM DUAL;

 MONTH

 3

WB_CAL_MONTH_SHORT_NAME

Syntax
WB_CAL_MONTH_SHORT_NAME(attribute)

Purpose
WB_CAL_MONTH_SHORT_NAME returns the short name of the month (for example 'Jan')
for date in attribute.

Predefined Transformations in the Public Oracle Predefined Library

Warehouse Builder Transformations Reference 28-21

Example
The following example shows the return value on the sysdate and on a specified
date string:

SELECT WB_CAL_MONTH_SHORT_NAME (sysdate) month
FROM DUAL;

MONTH

Mar

SELECT WB_CAL_MONTH_SHORT_NAME ('26-MAR-2002') month
FROM DUAL;

MONTH

Mar

WB_CAL_QTR

Syntax
WB_CAL_QTR(attribute)

Purpose
WB_CAL_QTR returns the quarter of the Gregorian calendar year (for example Jan -
March = 1) for the date in attribute.

Example
The following example shows the return value on the sysdate and on a specified
date string:

SELECT WB_CAL_QTR (sysdate) quarter
FROM DUAL;

 QUARTER

 1

SELECT WB_CAL_QTR ('26-MAR-2002') quarter
FROM DUAL;

 QUARTER

 1

WB_CAL_WEEK_OF_YEAR

Syntax
WB_CAL_WEEK_OF_YEAR(attribute)

Purpose
WB_CAL_WEEK_OF_YEAR returns the week of the year (1 to 53) for the date in
attribute.

Predefined Transformations in the Public Oracle Predefined Library

28-22 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Example
The following example shows the return value on the sysdate and on a specified
date string:

SELECT WB_CAL_WEEK_OF_YEAR (sysdate) w_of_y
FROM DUAL;

 W_OF_Y

 13

SELECT WB_CAL_WEEK_OF_YEAR ('26-MAR-2002') w_of_y
FROM DUAL;

 W_OF_Y

 13

WB_CAL_YEAR

Syntax
WB_CAL_YEAR(attribute)

Purpose
WB_CAL_YEAR returns the numerical year component for the date in attribute.

Example
The following example shows the return value on the sysdate and on a specified
date string:

SELECT WB_CAL_YEAR (sysdate) year
FROM DUAL;

 YEAR

 2002

SELECT WB_CAL_YEAR ('26-MAR-2002') w_of_y
FROM DUAL;

 YEAR

 2002

WB_CAL_YEAR_NAME

Syntax
WH_CAL_YEAR_NAME(attribute)

Purpose
WB_CAL_YEAR_NAME returns the spelled out name of the year for the date in
attribute.

Predefined Transformations in the Public Oracle Predefined Library

Warehouse Builder Transformations Reference 28-23

Example
The following example shows the return value on the sysdate and on a specified
date string:

select WB_CAL_YEAR_NAME (sysdate) name
from dual;

NAME
--
Two Thousand Two

select WB_CAL_YEAR_NAME ('26-MAR-2001') name
from dual;

NAME
--
Two Thousand One

WB_DATE_FROM_JULIAN

Syntax
WB_DATE_FROM_JULIAN(attribute)

Purpose
WB_DATE_FROM_JULIAN converts Julian date attribute to a regular date.

Example
The following example shows the return value on a specified Julian date:

select to_char(WB_DATE_FROM_JULIAN(3217345),'dd-mon-yyyy') JDate
from dual;

JDATE

08-sep-4096

WB_DAY_NAME

Syntax
WB_DAY_NAME(attribute)

Purpose
WB_DAY_NAME returns the full name of the day for the date in attribute.

Example
The following example shows the return value on the sysdate and on a specified
date string:

select WB_DAY_NAME (sysdate) name
from dual;

NAME
--
Thursday

select WB_DAY_NAME ('26-MAR-2002') name

Predefined Transformations in the Public Oracle Predefined Library

28-24 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

from dual;

NAME
--
Tuesday

WB_DAY_OF_MONTH

Syntax
WB_DAY_OF_MONTH(attribute)

Purpose
WB_DAY_OF_MONTH returns the day number within the month for the date in
attribute.

Example
The following example shows the return value on the sysdate and on a specified
date string:

select WB_DAY_OF_MONTH (sysdate) num
from dual;

 NUM

 28

select WB_DAY_OF_MONTH ('26-MAR-2002') num
from dual

 NUM

 26

WB_DAY_OF_WEEK

Syntax
WB_DAY_OF_WEEK(attribute)

Purpose
WB_DAY_OF_WEEK returns the day number within the week for date attribute
based on the database calendar.

Example
The following example shows the return value on the sysdate and on a specified
date string:

select WB_DAY_OF_WEEK (sysdate) num
from dual;

 NUM

 5

select WB_DAY_OF_WEEK ('26-MAR-2002') num

Predefined Transformations in the Public Oracle Predefined Library

Warehouse Builder Transformations Reference 28-25

from dual;

 NUM

 3

WB_DAY_OF_YEAR

Syntax
WB_DAY_OF_YEAR(attribute)

Purpose
WB_DAY_OF_YEAR returns the day number within the year for the date attribute.

Example
The following example shows the return value on the sysdate and on a specified
date string:

select WB_DAY_OF_YEAR (sysdate) num
from dual;

 NUM

 87

select WB_DAY_OF_YEAR ('26-MAR-2002') num
from dual;

 NUM

 85

WB_DAY_SHORT_NAME

Syntax
WB_DAY_SHORT_NAME(attribute)

Purpose
WB_DAY_SHORT_NAME returns the three letter abbreviation or name for the date
attribute.

Example
The following example shows the return value on the sysdate and on a specified
date string:

select WB_DAY_SHORT_NAME (sysdate) abbr
from dual;

ABBR

Thu

select WB_DAY_SHORT_NAME ('26-MAR-2002') abbr

Predefined Transformations in the Public Oracle Predefined Library

28-26 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

from dual;

NUM

Tue

WB_DECADE

Syntax
WB_DECADE(attribute)

Purpose
WB_DECADE returns the decade number within the century for the date attribute.

Example
The following example shows the return value on the sysdate and on a specified
date string:

select WB_DECADE (sysdate) dcd
from dual;

 DCD

 2

select WB_DECADE ('26-MAR-2002') DCD
from dual;

 DCD

 2

WB_HOUR12

Syntax
WB_HOUR12(attribute)

Purpose
WB_HOUR12 returns the hour (in a 12-hour setting) component of the date
corresponding to attribute.

Example
The following example shows the return value on the sysdate and on a specified
date string:

select WB_HOUR12 (sysdate) h12
from dual;

 H12

 9

select WB_HOUR12 ('26-MAR-2002') h12
from dual;

Predefined Transformations in the Public Oracle Predefined Library

Warehouse Builder Transformations Reference 28-27

 H12

 12

WB_HOUR12MI_SS

Syntax
WB_HOUR12MI_SS(attribute)

Purpose
WB_HOUR12MI_SS returns the timestamp in attribute formatted to HH12:MI:SS.

Example
The following example shows the return value on the sysdate and on a specified
date string:

select WB_HOUR12MI_SS (sysdate) h12miss
from dual;

H12MISS

09:08:52

select WB_HOUR12MI_SS ('26-MAR-2002') h12miss
from dual;

H12MISS

12:00:00

WB_HOUR24

Syntax
WB_HOUR24(attribute)

Purpose
WB_HOUR24 returns the hour (in a 24-hour setting) component of date corresponding
to attribute.

Example
The following example shows the return value on the sysdate and on a specified
date string:

Note: For a date not including the timestamp (in the second
example), Oracle uses the 12:00 (midnight) timestamp and therefore
returns 12 in this case.

Note: For a date not including the timestamp (in the second
example), Oracle uses the 12:00 (midnight) timestamp and therefore
returns 12 in this case.

Predefined Transformations in the Public Oracle Predefined Library

28-28 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

select WB_HOUR24 (sysdate) h24
from dual;

 H24

 9

select WB_HOUR24 ('26-MAR-2002') h24
from dual;

 H24

 0

WB_HOUR24MI_SS

Syntax
WB_HOUR24MI_SS(attribute)

Purpose
WB_HOUR24MI_SS returns the timestamp in attribute formatted to HH24:MI:SS.

Example
The following example shows the return value on the sysdate and on a specified
date string:

select WB_HOUR24MI_SS (sysdate) h24miss
from dual;

H24MISS

09:11:42

select WB_HOUR24MI_SS ('26-MAR-2002') h24miss
from dual;

H24MISS

00:00:00

WB_IS_DATE

Syntax
WB_IS_DATE(attribute, fmt)

Note: For a date not including the timestamp (in the second
example), Oracle uses the 00:00:00 timestamp and therefore returns
the timestamp in this case.

Note: For a date not including the timestamp (in the second
example), Oracle uses the 00:00:00 timestamp and therefore returns
the timestamp in this case.

Predefined Transformations in the Public Oracle Predefined Library

Warehouse Builder Transformations Reference 28-29

Purpose
To check whether attribute contains a valid date. The function returns a Boolean
value which is set to true if attribute contains a valid date. Fmt is an optional date
format. If fmt is omitted, the date format of your database session is used.

You can use this function when you validate your data before loading it into a table.
This way the value can be transformed before it reaches the table and causes an error.

Example
WB_IS_DATE returns true in PL/SQL if attribute contains a valid date.

WB_JULIAN_FROM_DATE

Syntax
WB_JULIAN_FROM_DATE(attribute)

Purpose
WB_JULIAN_FROM_DATE returns the Julian date of date corresponding to
attribute.

Example
The following example shows the return value on the sysdate and on a specified
date string:

select WB_JULIAN_FROM_DATE (sysdate) jdate
from dual;

 JDATE

 2452362

select WB_JULIAN_FROM_DATE ('26-MAR-2002') jdate
from dual;

 JDATE

 2452360

WB_MI_SS

Syntax
WB_MI_SS(attribute)

Purpose
WB_MI_SS returns the minutes and seconds of the time component in the date
corresponding to attribute.

Example
The following example shows the return value on the sysdate and on a specified
date string:

select WB_MI_SS (sysdate) mi_ss
from dual;

Predefined Transformations in the Public Oracle Predefined Library

28-30 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

MI_SS

33:23

select WB_MI_SS ('26-MAR-2002') mi_ss
from dual;

MI_SS

00:00

WB_WEEK_OF_MONTH

Syntax
WB_WEEK_OF_MONTH(attribute)

Purpose
WB_WEEK_OF_MONTH returns the week number within the calendar month for the date
corresponding to attribute.

Example
The following example shows the return value on the sysdate and on a specified
date string:

select WB_WEEK_OF_MONTH (sysdate) w_of_m
from dual;

 W_OF_M

 4

select WB_WEEK_OF_MONTH ('26-MAR-2002') w_of_m
from dual;

 W_OF_M

 4

Number Transformations
Number transformations provide Warehouse Builder users with functionality to
perform transformations on numeric values. These include Database SQL functions
that are implemented by Warehouse Builder and custom functions defined by
Warehouse Builder. The custom functions are prefixed with WB_.

Table 28–2 lists the number transformations that are based on Database SQL numeric
functions. The transformations are listed in a columnar table that reads down the
columns from left to right to conserve space.

Note: For a date not including the timestamp (in the second
example), Oracle uses the 00:00:00 timestamp and therefore returns
the timestamp in this case.

Predefined Transformations in the Public Oracle Predefined Library

Warehouse Builder Transformations Reference 28-31

For descriptions and examples of these transformations, refer to the section titled
"Numeric Functions" in the Oracle Database SQL Language Reference.

The custom numeric transformations are:

■ WB_LOOKUP_NUM (on a number) on page 28-31

■ WB_LOOKUP_NUM (on a varchar2) on page 28-32

■ WB_IS_NUMBER on page 28-33

WB_LOOKUP_NUM (on a number)

Syntax
 WB_LOOKUP_NUM (table_name
, column_name
, key_column_name
, key_value
)

where table_name is the name of the table to perform the lookup on; column_name
is the name of the NUMBER column that will be returned, for instance, the result of the
lookup; key_column_name is the name of the NUMBER column used as the key to
match on in the lookup table; key_value is the value of the key column, for example,
the value mapped into the key_column_name with which the match will be done.

Purpose
To perform a key look up that returns a NUMBER value from a database table using a
NUMBER column as the matching key.

Example
Consider the following table as a lookup table LKP1:

KEYCOLUMN TYPE_NO TYPE
10 100123 Car
20 100124 Bike

Using this package with the following call:

WB_LOOKUP_CHAR('LKP1'

Table 28–2 List of Number Transformations Based on Database SQL Functions

Number Transformation
Name

Number Transformation
Name (Contd.)

Number Transformation
Name (Contd.)

■ ABS ■ ACOS ■ ASIN

■ ATAN ■ ATAN2 ■ BITAND

■ CEIL ■ COS ■ COSH

■ EXP ■ FLOOR ■ LN

■ LOG ■ MOD ■ NANVL

■ POWER ■ REMAINDER ■ ROUND (number)

■ SIGN ■ SIN ■ SINH

■ SQRT ■ TAN ■ TANH

■ TRUNC (number) ■ WIDTH_BUCKET ■

Predefined Transformations in the Public Oracle Predefined Library

28-32 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

, 'TYPE_NO'
, 'KEYCOLUMN'
, 20
)

returns the value of 100124 as output of this transformation. This output is then
processed in the mapping as the result of an inline function call.

WB_LOOKUP_NUM (on a varchar2)

Syntax:
WB_LOOKUP_CHAR(table_name
, column_name
, key_column_name
, key_value
)

where table_name is the name of the table to perform the lookup on; column_name
is the name of the NUMBER column that will be returned (such as the result of the
lookup); key_column_name is the name of the NUMBER column used as the key to
match on in the lookup table; key_value is the value of the key column, such as the
value mapped into the key_column_name with which the match will be done.

Purpose:
To perform a key lookup which returns a NUMBER value from a database table using a
VARCHAR2 column as the matching key.

Example
Consider the following table as a lookup table LKP1:

KEYCOLUMN TYPE_NO TYPE
ACV 100123 Car
ACP 100124 Bike

Using this package with the following call:

WB_LOOKUP_CHAR ('LKP1'
, 'TYPE'
, 'KEYCOLUMN'
, 'ACP'
)

returns the value of 100124 as output of this transformation. This output is then
processed in the mapping as the result of an inline function call.

Note: This function is a row-based key lookup. Set-based lookups
are supported when you use the Lookup operator.

Note: This function is a row-based key lookup. Set-based lookups
are supported when you use the Lookup operator described in
"Lookup Operator" on page 26-20.

Predefined Transformations in the Public Oracle Predefined Library

Warehouse Builder Transformations Reference 28-33

WB_IS_NUMBER

Syntax
 WB_IS_NUMBER(attibute, fmt)

Purpose
To check whether attribute contains a valid number. The function returns a Boolean
value, which is set to true if attribute contains a valid number. Fmt is an optional
number format. If fmt is omitted, the number format of your session is used.

You can use this function when you validate the data before loading it into a table.
This way the value can be transformed before it reaches the table and causes an error.

 Example
 WB_IS_NUMBER returns true in PL/SQL if attribute contains a valid number.

OLAP Transformations
OLAP transformations enable Warehouse Builder users to load data stored in
relational dimensions and cubes into an analytic workspace.

The OLAP transformations provided by Warehouse Builder are:

■ WB_OLAP_AW_PRECOMPUTE on page 28-34

■ WB_OLAP_LOAD_CUBE on page 28-34

■ WB_OLAP_LOAD_DIMENSION on page 28-35

■ WB_OLAP_LOAD_DIMENSION_GENUK on page 28-35

The WB_OLAP_LOAD_CUBE, WB_OLAP_LOAD_DIMENSION, and WB_OLAP_LOAD_
DIMENSION_GENUK transformations are used for cube cloning in Warehouse Builder.
Use these OLAP transformations only if your database version is Oracle Database 9i or
Oracle Database 10g Release 1. Starting with Oracle 10g Release 2, you can directly
deploy dimensions and cubes into an analytic workspace.

The WB_OLAP_AW_PRECOMPUTE only works with the Oracle Warehouse Builder 10g
Release 2.

The examples used to explain these OLAP transformations are based on the scenario
depicted in Figure 28–1.

Figure 28–1 Example of OLAP Transformations

Predefined Transformations in the Public Oracle Predefined Library

28-34 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

The relational dimension TIME_DIM and the relational cube SALES_CUBE are stored
in the schema WH_TGT. The analytic workspace AW_WH, into which the dimension and
cube are loaded, is also created in the WH_TGT schema.

WB_OLAP_AW_PRECOMPUTE

Syntax
WB_OLAP_AW_PRECOMPUTE(p_aw_name, p_cube_name, p_measure_name, p_allow_parallel_
solve, p_max_job_queues_allocated)

where p_aw_name is the name of the AW where cube is deployed, p_cube_name is
the name of the cube to solve, p_measure_name is the optional name of a specific
measure to solve (if no measure is specified, then all measures will be solved), p_
allow_parallel_solve is the boolean to indicate parallelization of solve based on
partitioning (performance related parameter), p_max_job_queues_allocated is
the number of DBMS jobs to execute in parallel (default value is 0). If 5 is defined and
there are 20 partitions then a pool of 5 DBMS jobs will be used to perform the data
load.

There is a subtle different between parallel and non-parallel solving. With non-parallel
solve, the solve happens synchronously, so when the API call is completed the solve is
complete. Parallel solve executes asynchronously, the API call will return with a job id
of the job started. The job will control parallel solving using the max job queues
parameter to control its processing. The user may then use the job id to query the all_
scheduler_* views to check on the status of the activity.

Purpose
WB_OLAP_AW_PRECOMPUTE is used for solving a non-compressed cube
(compressed cubes are auto-solved). The load and solve steps can be done
independently. By default, the cube map loads data, then solves (precomputes) the
cube. You can load data using the map, then perform the solve at a different point of
time (since the solve/build time is the costliest operation).

Example
The following example loads data from the relational cubes MART and SALES_CUBE
into a cube called SALES and performs a simple solve execution working serially. This
example has parameters for parallel solve and max number of job queues. If parallel
solve is performed then an ASYNCHRONOUS solve job is started and the master job
ID is returned via the return function.

declare
 rslt varchar2(4000);
begin
…
 rslt :=wb_olap_aw_precompute('MART','SALES_CUBE','SALES');
…
end;
/

WB_OLAP_LOAD_CUBE

Syntax
wb_olap_load_cube::=WB_OLAP_LOAD_CUBE(olap_aw_owner, olap_aw_name, olap_cube_
owner, olap_cube_name, olap_tgt_cube_name)

Predefined Transformations in the Public Oracle Predefined Library

Warehouse Builder Transformations Reference 28-35

where olap_aw_owner is the name of the database schema that owns the analytic
workspace; olap_aw_name is the name of the analytic workspace that stores the cube
data; olap_cube_owner is the name of the database schema that owns the related
relational cube; olap_cube_name is the name of the relational cube; olap_tgt_
cube_name is the name of the cube in the analytic workspace.

Purpose
WB_OLAP_LOAD_CUBE loads data from the relational cube into the analytic
workspace. This allows further analysis of the cube data. This is for loading data in an
AW cube from a relational cube which it was cloned from. This is a wrapper around
some of the procedures in the DBMS_AWM package for loading a cube.

Example
The following example loads data from the relational cube SALES_CUBE into a cube
called AW_SALES in the AW_WH analytic workspace:

WB_OLAP_LOAD_CUBE('WH_TGT', 'AW_WH', 'WH_TGT', 'SALES_CUBE', 'AW_SALES')

WB_OLAP_LOAD_DIMENSION

Syntax
wb_olap_load_dimension::=WB_OLAP_LOAD_DIMENSION(olap_aw_owner, olap_aw_name, olap_
dimension_owner, olap_dimension_name, olap_tgt_dimension_name)

where olap_aw_owner is the name of the database schema that owns the analytic
workspace; olap_aw_name is the name of the analytic workspace that stores the
dimension data; olap_dimension_owner is the name of the database schema in
which the related relational dimension is stored; olap_dimension_name is the name
of the relational dimension; olap_tgt_dimension_name is the name of the
dimension in the analytic workspace.

Purpose
WB_OLAP_LOAD_DIMENSION loads data from the relational dimension into the
analytic workspace. This allows further analysis of the dimension data. This is for
loading data in an AW dimension from a relational dimension which it was cloned
from. This is a wrapper around some of the procedures in the DBMS_AWM package
for loading a dimension.

Example
The following example loads the data from the relational dimension TIME_DIM into a
dimension called AW_TIME in the analytic workspace AW_WH:

WB_OLAP_LOAD_DIMENSION('WH_TGT', 'AW_WH', 'WH_TGT', 'TIME_DIM', 'AW_TIME')

WB_OLAP_LOAD_DIMENSION_GENUK

Syntax
wb_olap_load_dimension_genuk::=WB_OLAP_LOAD_DIMENSION_GENUK(olap_aw_owner, olap_
aw_name, olap_dimension_owner, olap_dimension_name, olap_tgt_dimension_name)

Predefined Transformations in the Public Oracle Predefined Library

28-36 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

where olap_aw_owner is the name of the database schema that owns the analytic
workspace; olap_aw_name is the name of the analytic workspace that stores the
dimension data; olap_dimension_owner is the name of the database schema in
which the related relational dimension is stored; olap_dimension_name is the name
of the relational dimension; olap_tgt_dimension_name is the name of the
dimension in the analytic workspace.

Purpose
WB_OLAP_LOAD_DIMENSION_GENUK loads data from the relational dimension into
the analytic workspace. Unique dimension identifiers will be generated across all
levels. This is for loading data in an AW dimension from a relational dimension which
it was cloned from. This is a wrapper around some of the procedures in the DBMS_
AWM package for loading a dimension.

If a cube has been cloned and if you select YES for the Generate Surrogate Keys for
Dimensions option, then when you want to reload the dimensions, you should use the
WB_OLAP_LOAD_DIMENSION_GENUK procedure. This procedure generates surrogate
identifiers for all levels in the AW, because the AW requires all level identifiers to be
unique across all levels of a dimension.

Example
Consider an example in which the dimension TIME_DIM has been deployed to the
OLAP server by cloning the cube. The parameter generate surrogate keys for
Dimension was set to true. To now reload data from the relational dimension TIME_
DIM into the dimension AW_TIME in the analytic workspace AW_WH, use the following
syntax.

WB_OLAP_LOAD_CUBE('WH_TGT', 'AW_WH', 'WH_TGT', 'TIME_DIM', 'AW_TIME')

Other Transformations
Other transformations included with Warehouse Builder enable you to perform
various functions which are not restricted to certain data types. This section describes
those types.

Other transformations provided by Warehouse Builder are:

■ DEPTH

■ DUMP

■ EMPTY_BLOB

■ EMPTY_CLOB

■ NLS_CHARSET_DECL_LEN

■ NLS_CHARSET_ID

■ NLS_CHARSET_NAME

■ NULLIF

■ NVL

■ NVL2

■ ORA_HASH

■ PATH

■ SYS_CONTEXT

Predefined Transformations in the Public Oracle Predefined Library

Warehouse Builder Transformations Reference 28-37

■ SYS_GUID

■ SYS_TYPEID

■ UID

■ USER

■ USERENV

■ VSIZE

For descriptions and examples of these transformations, see Oracle Database SQL
Language Reference.

Spatial Transformations
Spatial Transformation is an integrated set of functions and procedures that enables
spatial data to be stored, accessed, and analyzed quickly and efficiently in an Oracle
Database.

Spatial transformations included with Warehouse Builder are:

■ SDO_AGGR_CENTROID

■ SDO_AGGR_CONVEXHULL

■ SDO_AGGR_MBR

■ SDO_AGGR_UNION

For descriptions and examples of these transformations, refer to the Oracle Spatial
Developer's Guide.

Streams Transformations
The Streams transformations category contains one transformation called REPLICATE.
The following section describes this transformation.

REPLICATE

Syntax
REPLICATE(lcr, conflict_resolution)

where lcr stands for Logical Change Record and encapsulates the DML change. Its
data type is SYS.LCR$_ROW_RECORD. conflict_resolution is a Boolean
variable. If its value is TRUE, any conflict resolution defined for the table will be used
to resolve conflicts resulting from the execution of the LCR. For more information
about conflict resolution, see Oracle Streams Replication Administrator's Guide.

Purpose
REPLICATE is used to replicate a DML change (INSERT, UPDATE, or DELETE) that
has occurred on a table in the source system on an identical table in the target system.
The table in the target system should be identical to the table in the source system in
the following respects:.

■ The name of the schema that contains the target table should be the same as the
name of the schema that contains the source table.

■ The name of the target table should the same as the name of the source table.

Predefined Transformations in the Public Oracle Predefined Library

28-38 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ The structure of the target table should be the same as that of the source table. The
structure includes the number, name, and data type of the columns in the table.

Example
Consider a table T1(c1 varchar2(10), c2 number primary key) in schema S on the
source system and an identical table in the target system. Consider the following insert
operation on the table T1 on the source system

insert into T1 values ('abcde', 10)

An LCR representing the change following the above insert of a row on the table T1 in
the source system will have the following details

LCR.GET_OBJECT_OWNER will be 'S'
LCR.GET_OBJECT_NAME will be 'T1'
LCR.GET_COMMAND_TYPE will be 'INSERT'
LCR.GET_VALUE('c1', 'new') will have the value for the column 'c1' - i.e. 'abcde'
LCR.GET_VALUE('c2', 'new') will have the value for the column 'c2' - i.e. 10

Such an LCR will be created and enqueued by a Streams Capture Process on the
source system that captures changes on table S.T1

REPLICATE(lcr, true) - will result in a row ('abcde', 10) being inserted into the
table T1 on the target system.

XML Transformations
XML transformations provide Warehouse Builder users with functionality to perform
transformations on XML objects. These transformations enable Warehouse Builder
users to load and transform XML documents and Oracle AQs.

To enable loading of XML sources, Warehouse Builder provides access to the database
XML functionality by implementing database XML functions and by defining custom
functions.

Following are the XML transformations that are implemented based on database XML
functions:

■ EXISTSNODE

■ EXTRACT

■ EXTRACTVALUE

■ SYS_XMLAGG

■ SYS_XMLGEN

■ XMLCONCAT

■ XMLSEQUENCE

■ XMLTRANSFORM

Note: Using this approach will not provide lineage information. If
lineage is important, then do not use this function. Use the more direct
approach of using an LCR Cast operator bound to the source table and
a Table operator bound to the target table and connecting the
attributes of these two operators with the same name ('Match by
name'). Further information about LCR (Logical Change Record) is
available in Oracle Database 10g Documentation.

Predefined Transformations in the Public Oracle Predefined Library

Warehouse Builder Transformations Reference 28-39

The custom XML transformations are:

■ WB_XML_LOAD on page 28-39

■ WB_XML_LOAD_F on page 28-39

WB_XML_LOAD

Syntax:
WB_XML_LOAD(control_file)

Purpose
This program unit extracts and loads data from XML documents into database targets.
The control_file, an XML document, specifies the source of the XML documents,
the targets, and any runtime controls. After the transformation has been defined, a
mapping in Warehouse Builder calls the transformation as a pre-map or post-map
trigger.

Example
The following example illustrates a script that can be used to implement a Warehouse
Builder transformation that extracts data from an XML document stored in the file
products.xml and loads it into the target table called books:

begin
wb_xml_load('<OWBXMLRuntime>'
||
'<XMLSource>'
||
' <file>\ora817\GCCAPPS\products.xml</file>'
||
'</XMLSource>'
||
'<targets>'
||
' <target XSLFile="\ora817\XMLstyle\GCC.xsl">books</target>'
||
'</targets>'
||
'</OWBXMLRuntime>'
);
end;

For more information about control files, see the Oracle Warehouse Builder User's Guide.

WB_XML_LOAD_F

Syntax
WB_XML_LOAD_F(control_file)

See Also:

■ Oracle Database SQL Language Reference for descriptions for these
transformations

■ Oracle Spatial Developer's Guide for examples on using these
transformations

Predefined Transformations in the Public Oracle Predefined Library

28-40 Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

Purpose
WB_XML_LOAD_F extracts and loads data from XML documents into database targets.
The function returns the number of XML documents read during the load. The
control_file, itself an XML document, specifies the source of the XML documents,
the targets, and any runtime controls. After the transformation has been defined, a
mapping in Warehouse Builder calls the transformation as a pre-map or post-map
trigger.

Example
The following example illustrates a script that can be used to implement a Warehouse
Builder transformation that extracts data from an XML document stored in the file
products.xml and loads it into the target table books:

begin
wb_xml_load_f('<OWBXMLRuntime>'
||
'<XMLSource>'
||
' <file>\ora817\GCCAPPS\products.xml</file>'
||
'</XMLSource>'
||
'<targets>'
||
' <target XSLFile="\ora817\XMLstyle\GCC.xsl">books</target>'
||
'</targets>'
||
'</OWBXMLRuntime>'
);
end;

For more information about the types handled and detailed information about
control_files, see the Oracle Warehouse Builder Installation and Administration Guide
for Windows and UNIX.

Index-1

Index

A
about

consuming web services, 16-3
public web services, 16-4
publishing web services, 16-3

accessing
transformation libraries, 4-9

ACTIVE_DATE attribute
about, 6-12
in cubes, 6-12

activities
AND, 27-5
assign, 27-6
control, 27-3
data auditor monitor, 27-6
email, 27-9
Enterprise Java Beans, 27-6
file exists, 27-12
For Loop, 27-14
FORK, 27-13
ftp, 27-14
in process flows, 8-8
Java Class, 27-17
manual, 27-19
mapping, 27-19
OMBPlus, 27-22
OR, 27-23
OWB-specific, 27-1
route, 27-23
Set Status, 27-24
sqlplus, 27-24
start, 27-26
user-defined, 27-27
utility, 27-2
wait, 27-29
web service, 27-29
While Loop, 27-29

activity templates, 8-11
adding

groups to mappings, 26-2
mapping operators, 5-12

adding operators
Add Operator dialog box, 5-13

addresses, cleansing, 22-1
administrative transformations, 28-1

advanced queues
about, 2-43
configuring, 2-55
defining, 2-44
editing, 2-44

advantages
web services, 16-2

Aggregate function, 26-7
aggregating data, 26-5
Aggregator operator, 26-5

ALL, 26-8
DISTINCT, 26-8

analytic workspace, 3-13
AND activity, 27-5
Anydata Cast operator, 26-9
applying

data rules, 19-7
assign activity, 27-6
attribute properties, setting, 25-7
attribute sets, 2-33

about, 2-33
creating, 2-34
editing, 2-34
tables, 2-13

attributes
connecting, 5-16
defining, 2-13

audit details, removing, 13-23
auditing

CT mappings, 7-31
CT mappings, prerequisites, 7-32
deployments, 13-1 to 13-24
executions, 13-1 to 13-24

auto binding
dimensional objects, 3-10
rules, 3-29
steps, 3-10

auto solving
MOLAP cubes, 3-52

B
best practices

naming data objects, 2-8
BINARY_DOUBLE data type, 2-3
BINARY_FLOAT data type, 2-3

Index-2

binding
about, 3-10
auto binding, 3-10
auto binding, rules, 3-29
auto binding, steps, 3-10
manual binding, 3-11
manual binding, steps, 3-11
unbinding, 3-12
when to perform, 3-10

BLOB data type, 2-3
building expressions, 26-3

C
calculated measures

about, 3-39
Calculated Measures Wizard

about, 3-50
CASS reporting, 22-5
CCA

starting, 7-23
stopping, 7-23

change data capture
commands, 7-33
performing using CT mappings, 7-32

changes
rolling out to the target schema, 12-12

CHAR data type, 2-4, 26-44
character transformations, 28-9
check key constraints, 2-21
chunking, 25-27
cleansing

addresses, 22-1
names, 22-1

CLOB data type, 2-4
code generation

configuring target directories, 2-46
options, 24-5

code template mappings
See CT mappings

code templates
prebuilt, 7-13

commit strategies
committing multiple mappings, 10-10
committing to multiple targets, 10-7

comparing process runs, 13-21
composite partitions about, 2-30
configuration parameters

ABAP extension, 2-47
ABAP run parameter file, 2-47
ABAP spool directory, 2-47
advanced queues, 2-55
archive directory, 2-48
base tables, 2-51
buffer cache, 2-50, 2-52
build, 2-51
data profiles, 18-8
data segment compression, 2-50, 2-52
DDL directory, 2-47
DDL extension, 2-47

DDL spool directory, 2-47
default index tablespace, 2-48
default object tablespace, 2-48
default rollback segment, 2-51
deployable, 2-53, 3-37, 3-55
deployment options, 3-55
dimension, 3-37
end of line, 2-47
error table name, 2-49, 2-53
error table only, 2-50, 2-53
for update, 2-51
hash partition tablespace list, 2-53
input directory, 2-48
invalid directory, 2-48
lib directory, 2-47
lib extension, 2-47
lib spool directory, 2-47
loader directory, 2-47
loader extension, 2-47
loader run parameter file, 2-47
local rollback segment, 2-51
location, 2-48
log directory, 2-48
logging mode, 2-50, 2-52
master rollback segment, 2-51
materialized view index tablespace, 3-55
materialized view tablespace, 3-55
next date, 2-51
overflow tablespace list, 2-50
parallel access mode, 2-50, 2-53
parallel degree, 2-50, 2-53
partition tablespace list, 2-50
PL/SQL directory, 2-47
PL/SQL extension, 2-47
PL/SQL Generation Mode, 2-46
PL/SQL run parameter file, 2-47
PL/SQL spool directory, 2-47
query rewrite, 2-51
queue propagations, 2-56
queue tables, 2-55
receive directory, 2-48
refresh, 2-52
refresh on, 2-52
row movement, 2-50
row-level dependency, 2-50
sequences, 2-54
sort directory, 2-48
SQLPlus directory, 2-47
SQLPlus extension, 2-47
SQLPlus run parameter file, 2-47
staging file directory, 2-48
start with, 2-52
statistics collection, 2-50
tablespace, 2-49, 2-50, 2-53
Tcl Directory, 2-48
using constraints, 2-52
work directory, 2-48

configuring
advanced queues, 2-55
cubes, 3-54

Index-3

data auditors, 20-4
data objects, 1-4
data profiles, 18-7
dimensions, 3-37
flat file operators, 24-10
mapping sources and targets, 26-39
mappings, 5-25
master-detail mappings, 10-17
master-detail mappings, direct path load, 10-20
materialized views, 2-51
Name and Address server, 22-23
PL/SQL mappings, 10-1
queue propagations, 2-56
queue tables, 2-55
runtime parameters, 2-46
runtime parameters, SAP files, 7-6
SAP, loading type parameter, 7-5
sequences, 2-54
tables, 2-48
target modules, 2-46
transportable modules, 17-12
views, 2-54

connecting
attributes, 5-16
groups, 5-15
operators, 5-14

connecting groups
connection options, 5-18
Mapping Connection Dialog box, 5-16

connecting operators
connection options, 5-18
Mapping Connection Dialog box, 5-16

connections, updating, 13-24
Constant operator, 25-9
constants, defining, 25-7
constraints

about, 2-21
check constraints, creating, 2-23
check key, about, 2-21
editing, 2-24
foreign key, about, 2-21
foreign key, creating, 2-22
primary key, about, 2-21
primary key, creating, 2-22
types, 2-21
unique key, about, 2-21
unique key, creating, 2-23

Construct Object operator, 25-9
control activities, 27-3
Control Center Agent

starting, 7-23
stopping, 7-23

Control Center reports, 13-12
control center transformations, 28-12
Control CTs

in CT mappings, 7-39
control rows

about, 3-30
conventional path loading

for master-detail relationships, 10-15

master-detail flat files, 10-16
conversion transformations, 28-17
correlated commit, design considerations, 10-8
Create Cube Wizard

default values, 3-45
Create Dimension wizard

defaults used, 3-20
creating

attribute sets, 2-34
constraints, check constraints, 2-23
constraints, foreign key constraints, 2-22
constraints, unique key constraints, 2-23
CT mapping modules, 7-18
CT mappings, 7-12
cubes, using Cube Editor, 3-45
cubes, using wizard, 3-42
data auditors, 20-3
data profiles, 18-6
data rules, 19-5
dimensions, using Dimension Editor, 3-22
dimensions, using wizard, 3-15
display sets, 5-22
expressions, 26-3
indexes, 2-24
mappings, 5-1
physical objects, 2-46
PL/SQL types, 9-7, 9-9
pluggable mapping folders, 5-39
pluggable mappings, 5-37
primary key constraints, 2-22
process flows, 8-8
time dimensions, using the Time Dimension

Wizard, 3-57
type 2 SCDs, 3-19
type 3 SCDs, 3-19
web service packages, 16-6
web services, based on URL, 16-10
web services, based on Warehouse Builder

objects, 16-6
CT mapping modules

creating, 7-18
CT mappings, 5-3

about, 7-12
auditing, 7-31
auditing, prerequisites, 7-32
creating, 7-12
deploying, 7-26
executing, 7-27
generated scripts, 7-24
generating, 7-23
moving data from heterogeneous databases, 7-44
performing change data capture, 7-32
performing ETL, 7-17
sample generated code, 7-24
types, 7-13
usage, 5-3, 7-12
using Control CTs, 7-39
using Oracle Target CTs, 7-42
validating, 7-23
viewing execution results, 7-27

Index-4

Cube operator, 25-10
cubes

about, 3-7
ACTIVE_DATE attribute, 6-12
auto solving, MOLAP cubes, 3-52
calculated measures, 3-39
Calculated Measures Wizard, 3-50
calculated measures, types, 3-39
compression, defining, 3-48
configuring, 3-54
creating, using Cube Editor, 3-45
creating, using wizard, 3-42
deployment options, 3-13
deployment options, Deploy Data Object

Only, 3-13
deployment options, Deploy to Catalog

Only, 3-13
dimensionality, 3-44
editing, 3-54
example, 3-42
loading data into, 6-13
loading, using type 2 slowly changing

dimensions, 6-13
measures, creating, 3-44
orphan management policy, 3-51
parallel solving, 3-54
partitioning, along dimension, 3-49
performing ETL, 6-12
physical bindings, 3-51
ragged data, 3-52
solving cube measures, 3-53
solving, independent of loading, 3-53
sparsity, defining, 3-48
sparsity, guidelines, 3-48
storing, 3-42

custom transformations
about, 4-7
defining, 9-2
editing, 9-11

D
data

aggregating, 26-5
cleansing, 22-1
test, 5-49
viewing, 2-9

data auditor monitor activities, 27-6
data auditors

configuring, 20-4
creating, 20-3
granting privileges on error tables, 20-9
using, 20-6
viewing error tables, 13-23, 20-8

data flow operators, 26-1
Data Generator operator, 25-12
data objects

about, 2-2
advanced queues, 2-41
best practices for naming, 2-8

data type for columns, 2-3
defining, 2-1 to 2-54
dimensional objects, implementing, 3-9
generating, 1-6
identifying deployment location, 13-22
list, 2-2
monitoring data quality, 20-2
naming conventions, 2-8
overview, 2-1
sequences, 2-35
SQL Server and IBM DB2, 2-57
used in map run, 13-22
validating, 1-4
viewing, 2-9
viewing data, 2-9

data objects, generating, saving scripts, 1-7
data profile

adding objects, 18-22
Data Profile Editor

components, 18-3
data profiles

adding data objects, 18-22
configuration parameters, 18-8
configuring, 18-7
creating, 18-6

data profiling
generating corrections, 21-2
performance tuning, 18-22
performing, 18-4
steps, 18-6
viewing corrections, 21-7
viewing results, 18-11

data quality
Match Merge operator, 23-1

data rules, 2-13
about, 19-1
applying, 19-7
creating, 19-5
deriving, 19-4
editing, 19-6
types, 19-2
using, 19-3

data transformation
about, 4-1

data types
list of supported, 2-3

Data Viewer, 2-9
Data Watch and Repair for MDM, performing, 18-24
DATE data type, 2-4
date transformations, 28-18
DB2

extracting data using CT mappings, 7-45
debugging

map runs, 13-21
mappings, 5-47
processes, 13-20
starting point, 5-52

Deduplicator operator, 26-10
DISTINCT, 26-10

default deployment time setting, 13-22

Index-5

defining
advanced queues, 2-44
constants, 25-7
cube sparsity, 3-48
data objects, 2-1 to 2-54
dimensional objects, 3-1 to 3-63
error tables, 2-9
ETL process for SAP objects, 7-4
execution units, 7-19
hash by quantity partitions, 2-28
hash partitions, 2-28
indexes, 2-13
list partitions, 2-28
mappings, 5-1
materialized views, 2-18
process flows, 8-5
queue propagations, 2-45
queue tables, 2-42
range partitions, 2-26
schedules, 11-2
sequences, 2-35
SQL Server and IBM DB2 data objects, 2-57
tables, 2-10
test data, 5-49
type 2 SCDs, 3-32
type 3 SCDs, 3-35
views, 2-15, 2-17

defining indexes, 2-13
defining tables, 2-10
definitions

transportable modules, 17-11
deleting

groups from mappings, 26-2
Deploy All, 3-13
deploying

about, 12-1
CT mappings, 7-26
data objects, 12-6
deployment actions, 12-2
deployment errors, 15-1
deployment results, 12-8
deployment status, 12-3
process flows, 8-2
reporting on, 13-12, 13-13
tables in transportable modules, 17-12
transportable module, 17-15
web services, 16-9
web services, prerequisites, 16-9

deployment actions, 12-2
deployment and execution

steps, 12-5
deployment options

Deploy All, 3-13
Deploy to Catalog Only, 3-13

deployment reports, 13-12, 13-13
deployment time settings, 13-22
deployments

auditing, 13-1 to 13-24
identifying, 13-21

deriving

data rules, 19-4
Design Center

in Repository Browser, 13-7
designing

process flows, 8-1
target schemas, 1-1
target schemas, dimensional, 1-3
target schemas, relational, 1-2

diagrams
impact analysis, 14-3 to 14-6
lineage, 14-3 to 14-6

Dimension operator, 25-14
dimensional object

deployment options, Deploy All, 3-13
dimensional objects

about, 3-1
binding, 3-10
creating, about, 3-1
defining, 3-1 to 3-63
deployment options, Data Objects Only, 3-13
deployment options, Deploy to Catalog

Only, 3-13
implementing, about, 3-9
orphan management policy, 3-7
unbinding, 3-12

dimensions
about, 3-2
binding, 3-29
configuring, 3-37
control rows, 3-30
creating, using Dimension Editor, 3-22
creating, using wizard, 3-15
default settings, using wizard, 3-20
deployment options, 3-13
deployment options, Deploy Data Object

Only, 3-13
deployment options, Deploy to Catalog

Only, 3-13
determining number of rows, 3-31
dimension attributes

creating, 3-17
editing, 3-36
error tables, 3-8
example, 3-14
extracting data from, 6-8
hierarchies, creating, 3-18, 3-26
level attributes, creating, 3-18
levels, creating, 3-18
linking to fact data, 3-30
loading data, 6-1

orphan row management, 3-8
loading, example, 6-2
orphan management policy, specifying, 3-28
performing ETL, 6-1
removing data, 6-10

orphan row management, 3-8
removing data, example, 6-11
ROLAP dimension limitations, 3-30
specifying default parent, 3-28
storing, 3-15

Index-6

surrogate identifiers, 3-3
direct path loading

for master-detail relationships, 10-18
master-detail flat files, 10-20

display sets
creating, 5-22
defined, 5-22

DISTINCT
in the Aggregator operator, 26-8
in the Deduplicator operator, 26-10

DML error logging
about, 15-4
enabling, 15-5
in ETL, 15-5
limitations, 15-6

dynamic population
time dimensions, 3-64

dynamically populating, 3-64

E
editing

advanced queues, 2-44
attribute sets, 2-34
constraints, 2-24
cubes, 3-54
data rules, 19-6
dimensions, 3-36
invalid objects, 1-6
materialized views, 2-20
PL/SQL types, 9-12
queue propagations, 2-46
queue tables, 2-43
schedules, 11-3
sequences, 2-35
table definitions, 2-13
time dimensions, 3-60
transformation properties, 9-11
transportable modules, 17-17
views, 2-17

effective date
about, 3-4
mapping source attributes, 6-4

email activity, 27-9
enabling

DML error logging, 15-5
hierarchy versioning, 3-6

Enterprise Java Beans activity, 27-6
error logs

interpreting error logs, 15-1
error tables, 3-8

about, 2-9, 15-4
columns, 2-10
defining, 2-9
granting privileges, 20-9

ETL
improving runtime performance, 10-1

ETL objects
scheduling, 11-1

example

cubes, 3-42
dimensions, 3-14
type 2 slowly changing dimension, 3-4
type 3 slowly changing dimension, 3-6

examples
checking data constraints using CT

mappings, 7-40
consuming web services in process flows, 16-22
extracting data from IBM DB2 using CT

mappings, 7-45
integrating web services with Oracle BPEL Process

Manager, 16-23
loading data into Type 2 SCDs, 6-6
loading data into Type 3 SCDs, 6-6
loading dimensions, 6-2
loading transaction data, 5-31
performing change data capture using CT

mappings, 7-32
publishing mappings as web services, 16-21
removing data from dimensions, 6-11
using Oracle Target CTs, 7-42

executing
CT mappings, 7-27
mappings from SQL*Plus, 10-11
reports, 13-12, 13-16
web services, using browser, 16-12
web services, using Control Center

Manager, 16-11
execution

about, 12-4
auditing, 13-1 to 13-24
errors, 15-1

execution reports, 13-12, 13-16
execution units

adding operators, 7-20
creating default execution units, 7-21
default code templates, 7-22
defining, 7-19
removing, 7-21
removing operators, 7-21

execution view
mapping editor, 5-5
menu, 7-19
toolbar, 7-19

Expand Object operator, 25-18
expiration date

about, 3-4
Expression Builder

about, 26-3
opening, 26-3

Expression operator, 26-10
expressions, creating, 26-3
External Table operator, 25-19
extracting

data from DB2 into Oracle Database, 7-45
dimension data, 6-8
type 2 slowly changing dimension data, 6-8
type 3 slowly changing dimension data, 6-9

extracting from master-detail flat files, 10-13, 10-15

Index-7

F
fast refresh, 2-53
File Exists activity, 27-12
file transfer

in process flows, 8-22
Filter operator, 26-12
filters, with a transform, 9-13
first class objects

about, 2-7
Flat File operator, 25-32
flat files

configuration, 24-10
configuring master-detail mappings, 10-20
extracting master and detail records, 10-15
importing master-detail flat files, 10-15
mapping, 7-1
master-detail mappings, post-update scripts for

direct path loads, 10-20
master-detail, example, 10-14
master-detail, extracting from, 10-13
master-detail, operations after initial load, 10-18
variable names, in process flows, 8-18

FLOAT data type, 2-4
For Loop activity, 27-14
foreign key constraints, 2-21
foreign keys, ensuring referential integrity, 10-13
FORK activity, 27-13
FTP

using in process flows, 8-22
ftp activity, 27-14
full outer joins, 26-17
functions

Aggregate, 26-7
as transformations, 4-7
defining, 9-2
editing, 9-11

G
generating

data objects, 1-6
transportable module, 17-15
web services, 16-8

generating corrections, 21-2
generation

errors, 15-1
saving scripts, 1-7
viewing results, 1-7
viewing scripts, 1-7

Group By clause, 26-6
groups

adding to mappings, 26-2
connecting, 5-15
in LIA diagrams, 14-5
removing from mappings, 26-2

H
hash by quantity partitions

about, 2-28

defining, 2-28
hash partitions

about, 2-27
defining, 2-28

Having clause, 26-7
hierarchies

creating, 3-18, 3-26
hierarchy versioning

about, 3-5
enabling, 3-6

householding, 23-1, 23-25

I
IBM DB2 data objects

naming rules, 2-57
impact analysis

rolling out changes to target schema, 12-12
impact analysis diagrams, 14-3 to 14-6
implementation

dimensional objects, MOLAP, 3-13
dimensional objects, relational, 3-9
dimensional objects, ROLAP, 3-12
dimensional objects, ROLAP with MVs, 3-12

implementing
dimensional objects, 3-9
reporting on, 13-11

importing
master-detail flat files, 10-15
transformations, 9-13

improving runtime performance, 10-1
index partitioning, 2-24, 2-32

local index, 2-32
index partitions

about, 2-32
indexes

about, 2-24
creating, 2-24
defining, 2-13
types, 2-24

input signature, 5-38
installation

errors, 15-1
INTEGER data type, 2-4
INTERVAL DAY TO SECOND data type, 2-4
INTERVAL YEAR TO MONTH data type, 2-4

J
Java Class activity, 27-17
Joiner operator, 26-13, 26-17
joining multiple row sets, 26-13
joins, full outer, 26-16, 26-17

K
Key Lookup operator, 26-20

L
Language parameter

Index-8

SAP, 7-6
LCR Cast operator, 26-19
LCR Splitter operator, 26-20
limitations

prebuilt code templates, 7-16
lineage diagrams, 14-3 to 14-6
list partitions

about, 2-28
defining, 2-28
example, 2-29

loading
conventional path for master-detail targets, 10-16
cubes, 6-13
cubes, using type 2 slowly changing

dimensions, 6-13
data from materialized view, 25-22
dimension data, 6-1
dimension data, example, 6-2
direct path for master-detail targets, 10-20
master and detail records, 10-15
master-detail relationships, 10-15, 10-18
master-detail relationships, direct path, 10-18
transaction data, 5-31
type 2 slowly changing dimensions, 6-3
type 2 slowly changing dimensions, example, 6-6
type 3 slowly changing dimensions, 6-5
type 3 slowly changing dimensions, example, 6-6

loading types, 25-3
for SAP, 7-5

locations
data objects deployed to, 13-22
of transportable modules, 17-7
unregistering, 13-24
updating connection details, 13-24

logs
interpreting error logs, 15-1

LONG data type, 2-4
LONG RAW data type, 2-4
Lookup operator, 26-20

M
main procedure, 10-11
management reports, 13-13, 13-19
manual activity, 27-19
manual binding

dimensional objects, 3-11
steps, 3-11

map runs, 13-21, 13-22
mapping activity, 27-19
mapping debugger

restrictions, 5-47
mapping editor

execution view, 5-5
logical view, 5-5

mapping operators
about, 4-2
adding, 5-12
Aggregator operator, 26-5
Anydata Cast, 26-9

connecting, 5-14
Constant, 25-9
Construct Object, 25-9
Cube, 25-10
Data Generator, 25-12
Deduplicator, 26-10
Dimension, 25-14
editing, 5-20
Expand Object, 25-18
Expression, 26-10
External Table, 25-19
Filter, 26-12
Flat File, 25-32
Joiner, 26-13
LCR Cast, 26-19
LCR Splitter, 26-20
Lookup, 26-20
Mapping Output Parameter, 25-21
Match Merge, 23-1
Materialized View, 25-22
Name and Address, 22-1
Pivot, 26-26
Post-Mapping Process, 26-32
Pre-Mapping Process, 26-33
Queue, 25-23
Sequence, 25-25
Set Operation, 26-34
Sorter, 26-35
Splitter operator, 26-37
Subquery Filter, 26-39
Table, 25-26
Table Function, 26-41
Transformation, 26-44
types of, 4-3
Unpivot, 26-45
Varray Iterator, 25-29
View, 25-30

Mapping Output Parameter operator, 25-21
mapping output parameters, 25-21
mappings

about, 4-2, 5-1
accessing data via transportable modules, 17-17
adding self joins, 26-13
configuring, 5-25, 10-1
configuring master-detail, 10-17
creating, 5-1
debugging, 5-47
defining, 5-1
executing from SQL*Plus, 10-11
for flat files, 7-1
for PEL, 10-22
groups, 26-2
loading targets, order in which, 5-24
master-detail mappings, 10-13
naming conventions, 5-10, 8-11
operators, 4-2
performing ETL, 5-8
PL/SQL mappings, 10-1
PL/SQL mappings, example, 5-6
runtime parameters, 24-1

Index-9

searching, attributes, 5-44
searching, groups, 5-44
searching, operators, 5-44
sources and targets, configuring, 26-39
spotlighting operators, 5-43
target load order, 5-24
types, 5-2
types. SAP ABAP mappings, 5-3
types, CT mappings, 5-3
types, PL/SQL mappings, 5-3
types, SQL*Loader, 5-3
ungrouping operators, 5-43
using web services, 16-17

master-detail flat files
as sources, about, 10-13
configuring mappings, 10-17
configuring mappings, direct path load, 10-20
example of a master-detail flat file, 10-14
extracting from, 10-15
extracting from, using conventional path

load, 10-15
extracting from, using direct path load, 10-18
importing and sampling, 10-15
operations after initial load, 10-18
performance, 10-15, 10-18
post-update scripts for direct path loads, 10-20
RECNUM, 10-19
sample mapping, conventional path

loading, 10-16
sample mapping, direct path loading, 10-20

Match Merge operator, 23-1
Match rules

multiple match rules, 23-9
transitive match rules, 23-10

match rules
address match rules, 23-16
conditional match rules, 23-5
custom match rules, 23-18
firm match rules, 23-14
person match rules, 23-12
weight match rules, 23-10

matching
transitive, 23-10

Match-Merge operator
custom rules, 23-21
design considerations, 23-24
example, 23-8
match rules, 23-5
merge rules, 23-19
restrictions, 23-24
using, 23-22

Materialized View operator, 25-22
materialized views

about, 2-18
attribute sets, adding, 2-20
attribute sets, deleting, 2-20
attribute sets, editing, 2-20
columns, adding, 2-20
columns, deleting, 2-20
columns, editing, 2-20

configuring, 2-51
constraints, adding, 2-20
constraints, deleting, 2-20
constraints, editing, 2-20
defining, 2-18
defining attribute sets, 2-20
defining columns, 2-19
defining constraints, 2-19
defining data rules, 2-20
defining indexes, 2-19
defining partitions, 2-20
defining query, 2-19
editing, 2-20
fast refresh, 2-53
loading data from, 25-22
loading data into, 25-22
renaming, 2-20
update definitions, 2-20

MDSYS.SDO_DIM_ARRAY data type, 2-4
MDSYS.SDO_DIM_ELEMENT data type, 2-4
MDSYS.SDO_ELEM_INFO_ARRAY data type, 2-4
MDSYS.SDO_GEOMETRY data type, 2-4
MDSYS.SDO_ORDINATE_ARRAY data type, 2-4
MDSYS.SDO_POINT_TYPE data type, 2-4
MDSYS.SDOAGGRTYPE data type, 2-4
Merge rules, 23-21
metadata

dependencies, 14-1 to 14-8
import and export errors, 15-1

metadata dependencies, diagrams of, 14-1
Metadata Dependency Manager, 14-1
minus, in the Set Operation operator, 26-35
modules

configuring target modules, 2-46
process flows, 8-2, 8-6

MOLAP implementation
about, 3-13
dimensional objects, 3-13

monitoring
data objects, using auditors, 20-6
data quality, 20-2

monitoring process runs, 13-22
moving data from heterogeneous databases

using CT mappings, 7-44
multiple-record-type flat files

master-detail structure, 10-13
master-detail structure, example of, 10-14

multitable INSERT, 26-38

N
Name and Address

country postal certifications, Australia, 22-5
country postal certifications, Canada, 22-5
country postal certifications, United States, 22-5
operator, 22-1
purchasing license, 22-1

Name and Address operator, 22-1
best practices, 22-18
CASS reporting, 22-5

Index-10

enabling, 22-1
input roles, 22-6
output components, 22-8

Name and Address server, 22-23
configuring, 22-23
errors, 15-1
starting, 22-24
stopping, 22-24

names
cleansing, 22-1
flat files with variable names in process

flows, 8-18
names and addresses, processing libraries, 22-23
naming conventions

data objects, 2-8
naming rules

IBM DB2 data objects, 2-57
SQL Server data objects, 2-58

navigating
Repository Browser, 13-7

NCHAR data type, 2-5
NCLOB data type, 2-5
nested tables

creating, 2-40
editing, 2-41
overview, 2-40

NUMBER data type, 2-5
number transformations, 28-30
NVARCHAR2 data type, 2-5

O
object class definition

about, 2-7
object properties, report, 13-8
object types

creating, 2-37
editing, 2-38
overview, 2-36

objects
invalid objects, editing, 1-6
reports, 13-9

OLAP transformations, 28-33
OMBPlus activity, 27-22
opening

Expression Builder, 26-3
Repository Browser, 13-5

operating modes
row-based, 10-5
row-based (target only), 10-6
selecting a default mode, 10-4
set-based, 10-5

operator attributes, 5-16
operator editor

Input tab, 26-2
Input/Output tab, 26-2
Output tab, 26-2

Operator wizard, 26-2
operators

about, 4-1, 4-2

Aggregator, 26-5
Anydata Cast, 26-9
connecting, 5-14
Constant, 25-9
Construct Object, 25-9
Cube, 25-10
data flow, 26-1
Data Generator, 25-12
Deduplicator, 26-10
Dimension, 25-14
editing, 5-20
Expand Object, 25-18
Expression, 26-10
External Table, 25-19
Filter, 26-12
Flat File, 25-32
flat file, 24-10
Joiner, 26-13
LCR Cast, 26-19
LCR Splitter, 26-20
Lookup, 26-20
Mapping Output Parameter, 25-21
Match Merge, 23-1
Materialized View, 25-22
Name and Address, 22-1
Pivot, 26-26
pluggable mapping, 4-6
Post-Mapping Process, 26-32
Pre-Mapping Process, 26-33
pre/post processing, 4-5
Queue, 25-23
Sequence, 25-25
Set Operation, 26-34
Sorter, 26-35
source, 25-1
Splitter operator, 26-37
Subquery Filter, 26-39
Table, 25-26
Table Function, 26-41
target, 25-1
Transformation, 26-44
transformation, 4-4
Unpivot, 26-45
Varray Iterator, 25-29
View, 25-30

operators, mapping
adding, 5-12
connecting, 5-14
editing, 5-20
types of, 4-3

OR activity, 27-23
Oracle Target CTs

using in CT mappings, 7-42
ORDER BY

in the Sorter operator, 26-36
ordering

multiple targets, 10-13
orphan management policy, 3-7

cubes, 3-51
dimensions, 3-28

Index-11

other (non-SQL) transformations, 28-36
output components

Name and Address operator, 22-8
output signature, 5-38

P
packages

as transformations, 4-8
defining, 9-2
editing, 9-11
process flows, 8-2, 8-7

parallel solving
cubes, 3-54

parameters
mapping output, 25-21

Partition Exchange Loading (PEL), 10-21
about, 10-22
configuring targets for, 10-25
mappings for, 10-22
performance considerations, 10-24
restrictions on, 10-25, 10-26

partitioning, index, 2-24, 2-32
partitions

about, 2-25
composite, 2-30
defining, 2-13
defining, hash by quantity partitions, 2-28
defining, list partitions, 2-28
defining, range partitions, 2-26
hash by quantity, 2-28
hash partitions, 2-27
index, 2-32
list, 2-28
subpartitions, creating, 2-31
types, 2-25

performing
Data Watch and Repair for MDM, 18-24

performing ETL
steps, 5-8
using cubes, 6-12
using dimensions, 6-1
using mappings, 5-8

Pivot operator, 26-26
editing, 26-28
example, 26-26
expressions for, 26-31
groups, 26-28
input attributes, 26-30
output attributes, 26-30
row locators, 26-27, 26-31
using, 26-28

PL/SQL mappings, 5-3, 10-1
example, 5-6

PL/SQL types
about, 9-7
as transformations, 4-8
creating, 9-7, 9-9
editing, 9-12

pluggable mapping folders

creating, 5-39
pluggable mapping operators, 4-6
pluggable mappings

about, 5-36
creating, 5-37
embedded, 5-36
reusable, 5-36
spotlighting operators, 5-43
ungrouping operators, 5-43

Post-Mapping Process operator, 26-32
prebuilt code templates, 7-13

limitations, 7-16
predefined transformations, 4-6
Pre-Mapping Process operator, 26-33
pre/post processing operators, 4-5
primary key constraints, 2-21
procedures

as transformations, 4-7
defining, 9-2
editing, 9-11

process flows
about, 8-1
activities in, 8-8
adding transformations to, 27-27
complex conditions in, 8-17
creating, 8-8
debugging, 13-20
defining, 8-5
deploying, 8-2
designing, 8-1
halting, 27-19
handling flat files with variable names, 8-18
modules, 8-2, 8-6
packages, 8-2, 8-7
scripting in, 27-24
starting, 27-26
subprocesses, 27-26
transferring remote files with FTP, 8-22
transitions, 8-13
using Enterprise Java Beans, 27-6
using Java classes, 27-17
using OMB*Plus, 27-22
using web services, 16-16

process runs
comparing, 13-21
debugging, 13-20
identifying recent, 13-20
monitoring, 13-22
rerunning, 13-22
terminating, 13-23

processes
debugging, 13-20
identifying recent, 13-20
running, 13-22

properties
for source operators, 25-2
for target operators, 25-2
object, 13-8

proxy settings
creating web services based on external

Index-12

URL, 16-10
public Oracle Custom library, 4-8
public Oracle Predefined library, 4-8
publishing objects

as web services, 16-4

Q
Queue operator, 25-23
queue propagations

about, 2-45
configuring, 2-56
defining, 2-45
editing, 2-46

queue tables
about, 2-42
configuring, 2-55
defining, 2-42
editing, 2-43
payload type, 2-42

R
RAC, managing service nodes, 13-19
range partitions

defining, 2-26
example, 2-27

RAW data type, 2-5
RECNUM attribute, 10-19
RECNUM columns, 10-19
records

extracting and loading master and detail
records, 10-15

relationships between masters and details in flat
files, 10-14

referential integrity, ensuring in mappings, 10-13
relating master and detail records, 10-14
relational implementation

about, 3-9
dimensional objects, 3-9

REMAINING_ROWS output group
in the Splitter operator, 26-37

remote files
transferring, 8-22

removing data
from dimensions, 6-10
from dimensions, example, 6-11
from slowly changing dimensions, 6-10

renaming
materialized views, 2-20
sequences, 2-36
tables, 2-14
views, 2-17

reordering table columns, 2-15
repeating schedules, 11-4
REPLICATE, 28-37
reporting

Control Center, 13-12
execution, 13-12, 13-16
implementation, 13-11

management, 13-13, 13-19
object properties, 13-8
on deployment, 13-12, 13-13
on objects, 13-9

reports
Control Center, 13-12
deployment, 13-12, 13-13
execution, 13-12, 13-16
implementation, 13-11
management, 13-13, 13-19
object, 13-9
object properties, 13-8

Repository Browser
about, 13-2
Control Center, 13-12
Design Center, 13-7
implementation reports, 13-11
logging in, 13-6
navigating, 13-7
object reports, 13-9
opening, 13-5
starting, 13-5
stopping, 13-5

Repository navigator, 13-7
restrictions

mapping debugger, 5-47
ROLAP implementation

about, 3-12
dimensional objects, 3-12

ROLAP with MVs implementation
about, 3-12

route activity, 27-23
row locators

in the Pivot operator, 26-27, 26-31
in the Unpivot operator, 26-46, 26-47

row-based, 10-5
row-based (target only), 10-6
row-based versus set-based

loading transaction data, 5-31
rows, filtering out, 26-12
RTRIM function

in the Transformation operator, 26-44
running

processes, 13-22
runtime parameters

SAP, 7-6
runtime parameters, configuring, 24-1
runtime performance, improving, 10-1

S
sampling

master-detail flat files, 10-15
SAP

defining ETL process for SAP objects, 7-4
Language parameter, setting, 7-6
runtime parameters, setting, 7-6

SAP ABAP mappings, 5-3
SAP file physical properties

Data File Name, 7-6

Index-13

File Delimiter for Staging File, 7-6
Nested Loop, 7-7
SAP System Version, 7-7
SQL Join Collapsing, 7-6
Staging File Directory, 7-7
Use Single Select, 7-7

SAP parameters
Language, 7-6
loading type, 7-5
runtime, 7-6

schedules
creating, 11-2
defining, 11-2
duration, 11-4
editing, 11-3
example, 11-8
repeating, 11-4
using, 11-2

scheduling
about, 11-1
ETL jobs, 12-11
ETL objects, 11-1

scripting
in process flows, 27-24

scripts
for FTP commands, 27-14, 27-17

searching
groups, in mappings, 5-44
operators, in mappings, 5-44

second class objects
about, 2-7

self joins, 26-13
Sequence operator, 25-25
sequences

configuring, 2-54
Create Sequence Wizard, 2-35
defining, 2-35
editing, 2-35
renaming, 2-36

service nodes, managing, 13-19
set based update, 10-5
Set Operation operator, 26-34

intersect, 26-35
minus, 26-35
union, 26-34
union all, 26-35

Set Status activity, 27-24
set-based mode, 10-5
set-based versus row-based

loading transaction data, 5-31
set-based versus row-based modes, 10-4
setting

a starting point, 5-52
attribute properties, 25-7

signatures
input, 5-38
output, 5-38

slowly changing dimensions
about, 3-3
additional attributes, 3-3

effective date, 3-4
expiration date, 3-4
hierarchy versioning, about, 3-5
hierarchy versioning, enabling, 3-6
previous attribute, about, 3-4
removing data, 6-10
triggering attributes, 3-3
type 2, 3-19
type 2, defining, 3-32
type 2, example, 3-4
type 2, requirements, 3-4
type 2, updating, 3-33
type 3, 3-19
type 3, defining, 3-35
type 3, example, 3-6
type 3, requirements, 3-6

solving
cube measures, 3-53

solving cubes
independent of loading, 3-53

Sorter operator, 26-35, 26-36
source operators, 25-1
sources

master-detail flat file sources, 10-13
master-detail flat files, 10-13
master-detail flat files, example, 10-14

Spatial Transformations, 28-37
specifying

orphan management policy, dimensions, 3-28
Splitter operator, 26-37
spotlighting operators

mappings, 5-43
pluggable mappings, 5-43

SQL expressions, 26-10
SQL Server data objects

naming rules, 2-58
SQL*Loader mappings, 5-3
sqlplus activity, 27-24
Start activity, 27-26
starting

CCA, 7-23
Control Center Agent, 7-23
Name and Address server, 22-24
Repository Browser, 13-5

starting point, setting, 5-52
stopping

CCA, 7-23
Control Center Agent, 7-23
Name and Address server, 22-24
Repository Browser, 13-5

streams transformations, 28-37
subpartitions

creating, 2-31
subprocesses, to start process flows, 27-26
Subquery Filter operator, 26-39
substitution variables, 27-16
summarizing

data with a transformation, 26-5
surrogate identifiers

about, 3-3

Index-14

usage, 3-3
surrogate keys

in the Key Lookup operator, 26-20
synchronization

mapping objects, advanced options, 5-30
synchronizing

operators, 5-26
operators, matching strategies, 5-30
web services, 16-17
workspace objects, 5-26

SYS.ANYDATA data type, 2-5
SYS.LCR$_ROW_RECORD data type, 2-6

T
table definitions

creating, 2-10
editing, 2-13

Table Function operator, 26-41
prerequisites, 26-43
using, 26-42

table functions
as transformations, 4-7

Table operator, 25-26
tables, 2-13

attribute sets, 2-33
attribute sets, adding, 2-14
attribute sets, defining, 2-13
attribute sets, deleting, 2-14
attribute sets, editing, 2-14
chunking, 25-27
columns, adding, 2-14
columns, defining, 2-12
columns, deleting, 2-14
columns, editing, 2-14
configuring, 2-48
constraints, adding, 2-14
constraints, defining, 2-12
constraints, deleting, 2-14
constraints, editing, 2-14
data rules, 2-13
defining, 2-10
defining partitions, 2-13
naming, 2-11
renaming, 2-14
reordering columns, 2-15

tables (defined), 2-10
target load ordering, 10-13
target modules

configuring, 2-46
target operators, 25-1

loading types, 25-3
properties for, 25-2

target schemas
designing, 1-1
designing, dimensional, 1-3
designing, relational, 1-2
rolling out changes, 12-12

targets
defining load orders, 10-13

multiple targets in a mapping, 10-7
multiple targets in mappings, 26-37, 26-38

templates
activity, 8-11

test data, defining, 5-49
Time Dimension Wizard

defaults, 3-60
time dimensions, 3-64

creating, using the Time Dimension Wizard, 3-57
data range, 3-58
editing, 3-60
levels, creating, 3-58
overlapping data population, 3-64
populating, 3-63
storing, 3-57

time settings, 13-22
TIMESTAMP data type, 2-6
TIMESTAMP WITH LOCAL TIMEZONE data

type, 2-6
TIMESTAMP WITH TIMEZONE data type, 2-6
LIA See lineage and impact analysis
lineage and impact analysis See also impact analysis
lineage and impact analysis See also lineage
UK See constraints

unique key
transaction data

loading, 5-31
transferring

remote files, 8-22
transformation filter data, 9-13
transformation libraries

about, 4-8
accessing, 4-9
public Oracle Custom library, 4-8
public Oracle Predefined library, 4-8
types, 4-8

Transformation operator, 26-44
CHAR, 26-44
CHAR result RTRIM, 26-44
data type, 26-44
RTRIM function, 26-44

transformation operators, 4-4
about, 4-1

transformation properties, 9-11
transformations

about, 4-6
adding to process flows, 27-27
administrative, 28-1
character, 28-9
control center, 28-12
conversion, 28-17
custom, 4-7
custom example, 9-13
date, 28-18
group by operation, 26-5
importing, 9-13
introduction to, 9-1 to 9-14
number, 28-30
OLAP, 28-33
other (non-SQL), 28-36

Index-15

predefined, 4-6
streams, 28-37
types, 4-6
XML, 28-38

transforming data
about, 4-1

transition conditions, 8-17
Transition Editor, 8-17
transitions

conditions of, 8-17
in process flows, 8-13

transportable modules
about, 17-4
configuring, 17-12
definitions, 17-11
deploying, 17-15
editing, 17-17
generating, 17-15
locations for, 17-7
mapping, 17-17
using, 17-5

tree walking, 26-13
triggering attributes

about, 3-3
tuning

data profiling performance, 18-22
type 2 slowly changing dimensions

creating, using the Dimension Wizard, 3-19
effective date, mapping source attributes, 6-4
extracting data from, 6-8
loading data, 6-3
loading data, example, 6-6
updating, 3-33

type 3 slowly changing dimensions
creating, using the Dimension Wizard, 3-19
extracting data from, 6-9
loading data, 6-5
loading data, example, 6-6

types
calculated measures, 3-39
mappings, 5-2
transformations, 4-6

types of
transformation libraries, 4-8

U
unbinding

dimensional objects, 3-12
ungrouping operators

mappings, 5-43
pluggable mappings, 5-43

UNION ALL set operation, 26-35
UNION set operation, 26-34
unique

key constraints, 2-21
Unpivot operator, 26-45

editing, 26-46
example, 26-45
expressions for, 26-49

groups, 26-46
input attributes, 26-47
input connections, 26-47
output attributes, 26-48
row locators, 26-46, 26-47
using, 26-46

updating
target schema, 12-12

UROWID data type, 2-6
user-defined activities, 27-27
user-defined types

overview, 2-36
using

transportable modules, 17-5
utilities

activities, 27-2

V
validating

about, 1-4
data objects, 1-5
editing invalid objects, 1-6
web services, 16-8

validation
about, 1-4
editing invalid objects, 1-6
errors, 15-1
viewing results, 1-5

VARCHAR data type, 2-6
VARCHAR2 data type, 2-7
variables

substitution, 27-16
Varray Iterator operator, 25-29
Varrays

creating, 2-39
editing, 2-40
overview, 2-39

View operator, 25-30
viewing

data, 2-9
data auditor error tables, 13-23
data objects, 2-9
data stored in data objects, 2-9
generation results, 1-7
generation scripts, 1-7
validation results, 1-5

views
about, 2-15
attribute sets, adding, 2-18
attribute sets, deleting, 2-18
attribute sets, editing, 2-18
columns, adding, 2-17
columns, defining, 2-16
columns, deleting, 2-17
columns, editing, 2-17
configuring, 2-54
constraints, adding, 2-18
constraints, deleting, 2-18
constraints, editing, 2-18

Index-16

defining, 2-15
editing, 2-17
materialized, 25-22
renaming, 2-17

W
wait activity, 27-29
WB_ABORT function, 28-2
WB_CAL_MONTH_NAME function, 28-19
WB_CAL_MONTH_OF_YEAR function, 28-20
WB_CAL_MONTH_SHORT_NAME function, 28-20
WB_CAL_QTR function, 28-21
WB_CAL_WEEK_OF_YEAR function, 28-21
WB_CAL_YEAR function, 28-22
WB_CAL_YEAR_NAME function, 28-22
WB_COMPILE_PLSQL transformation, 28-2
WB_DATE_FROM_JULIAN function, 28-23
WB_DAY_NAME function, 28-23
WB_DAY_OF_MONTH function, 28-24
WB_DAY_OF_WEEK function, 28-24
WB_DAY_OF_YEAR function, 28-25
WB_DAY_SHORT_NAME function, 28-25
WB_DECADE function, 28-26
WB_DISABLE_ALL_CONSTRAINTS, 28-3
WB_DISABLE_ALL_TRIGGERS, 28-3
WB_DISABLE_CONSTRAINT, 28-4
WB_DISABLE_TRIGGER, 28-5
WB_ENABLE_ALL_CONSTRAINTS, 28-6
WB_ENABLE_ALL_TRIGGERS, 28-6
WB_ENABLE_CONSTRAINT, 28-7
WB_ENABLE_TRIGGER, 28-8
WB_HOUR12 function, 28-26
WB_HOUR12MI_SS function, 28-27
WB_HOUR24 function, 28-27
WB_HOUR24MI_SS function, 28-28
WB_IS_DATE function, 28-28
WB_IS_NUMBER function, 28-33
WB_IS_SPACE function, 28-11
WB_JULIAN_FROM_DATE function, 28-29
WB_LOOKUP_CHAR function, 28-10, 28-11
WB_LOOKUP_NUM function, 28-31, 28-32
WB_MI_SS function, 28-29
WB_OLAP_AW_PRECOMPUTE, 28-34
WB_OLAP_LOAD_CUBE, 28-34
WB_OLAP_LOAD_DIMENSION, 28-35
WB_OLAP_LOAD_DIMENSION_GENUK, 28-35
WB_RT_GET_ELAPSED_TIME function, 28-12
WB_RT_GET_JOB_METRICS function, 28-13
WB_RT_GET_LAST_EXECUTION_TIME, 28-14
WB_RT_GET_MAP_RUN_AUDIT function, 28-14
WB_RT_GET_NUMBER_OF_ERRORS

function, 28-15
WB_RT_GET_NUMBER_OF_WARNINGS

function, 28-15
WB_RT_GET_PARENT_AUDIT_ID function, 28-16
WB_RT_GET_RETURN_CODE function, 28-16
WB_RT_GET_START_TIME function, 28-17
WB_TRUNCATE_TABLE, 28-9
WB_WEEK_OF_MONTH function, 28-30

WB_XML_LOAD, 28-39
WB_XML_LOAD_F, 28-39
web service packages

creating, 16-6
web services

about, 16-1
accessing securely, 16-19
advantages, 16-2
consuming, about, 16-3
creating, based on URL, 16-10
creating, based on Warehouse Builder

objects, 16-6
deploying, 16-9
deployment locations, 16-9
executing, using browser, 16-12
executing, using Control Center Manager, 16-11
generating, 16-8
prerequisites for deploying, 16-9
public web services, about, 16-4
publishing, about, 16-3
setting up secure access to external servers, 16-19
synchronizing, 16-17
using in mappings, 16-17
using in process flows, 16-16
validating, 16-8

web services based on external URL
proxy settings, 16-10

WHERE (in the Filter operator), 26-12
While Loop activity, 27-29
wizards

Create Cube Wizard, 3-42
Create Data Auditor Wizard, 20-3
Create Data Rule Folder Wizard, 19-4
Create Data Rule Wizard, 19-5
Create Dimension Wizard, 3-15
Create Sequence Wizard, 2-35
Operator, 26-2
Pivot Wizard, 26-28
Time Dimension Wizard, 3-57
Unpivot Wizard, 26-46

writing SQL expressions, 26-10

X
XML Transformations, 28-38
XMLFORMAT data type, 2-7
XMLTYPE data type, 2-7

	Contents
	Preface
	Audience
	Documentation Accessibility
	Conventions
	Getting Help
	Related Documents

	Part I Data Modeling
	1 Designing Source and Target Schemas
	Designing Target Schemas
	Creating Target Modules
	Designing Relational Target Schemas
	Designing Dimensional Target Schemas

	Configuring Data Objects
	Validating Data Objects
	Viewing Validation Results
	Editing Invalid Objects

	Generating Data Objects
	Viewing Generation Results and Generated Scripts
	Saving Generated Scripts to a File

	2 Creating Relational Data Objects
	Overview of Data Objects
	Supported Data Types
	About Object Class Definition
	About First Class Objects (FCOs)
	About Second Class Objects (SCOs)
	About Third Class and Fourth Class Objects

	Naming Conventions for Data Objects
	Using the Data Viewer to View Data Stored in Data Objects
	About Error Tables
	Defining Error Tables for Data Objects
	Error Table Columns

	Defining Tables
	Creating Table Definitions
	Name Tab
	Columns Tab
	Keys Tab
	Indexes Tab
	Partitions Tab
	Attribute Sets Tab
	Data Rules Tab

	Editing Table Definitions
	Renaming Tables
	Adding, Modifying, and Deleting Table Columns
	Adding, Modifying, and Deleting Table Constraints
	Adding, Modifying, and Deleting Attribute Sets
	Reordering Columns in a Table

	Defining Views
	Creating View Definitions
	Name Tab
	Columns Tab
	Query Tab
	Keys Tab
	Attribute Sets Tab
	Data Rules Tab

	Editing View Definitions
	Renaming Views
	Adding, Modifying, and Deleting View Columns
	Adding, Modifying, and Deleting View Constraints
	Adding, Modifying, and Deleting Attribute Sets

	Defining Materialized Views
	Creating Materialized View Definitions
	Columns Tab
	Query Tab
	Keys Tab
	Indexes Tab
	Partitions Tab
	Attribute Sets Tab
	Data Rules Tab

	Editing Materialized View Definitions
	Renaming Materialized Views
	Adding, Modifying, and Deleting Materialized View Columns
	Adding, Modifying, and Deleting Materialized View Constraints
	Adding, Modifying, and Deleting Attribute Sets

	Defining Constraints
	About Constraints
	Creating Constraints
	Defining Primary Key Constraints
	Defining Foreign Key Constraints
	Defining Unique Key Constraints
	Defining Check Constraints

	Editing Constraints

	Defining Indexes
	Creating Indexes

	Defining Partitions
	Range Partitioning
	Example of Range Partitioning

	Hash Partitioning
	Hash by Quantity Partitioning
	List Partitioning
	Composite Partitioning
	About the Subpartition Template
	Creating Custom Subpartitions

	Index Partitioning
	Index Performance Considerations

	Configuring Partitions

	Defining Attribute Sets
	Creating Attribute Sets
	Editing Attribute Sets

	Defining Sequences
	About Sequences
	Creating Sequence Definitions
	Editing Sequence Definitions
	Name Tab
	Columns Tab

	Defining User-Defined Types
	About Object Types
	Defining Object Types
	Name Tab
	Columns Tab

	Editing Object Types
	About Varrays
	Defining Varrays
	Name Tab
	Details Tab

	Editing Varrays
	About Nested Tables
	Defining Nested Tables
	Name Tab
	Details Tab

	Editing Nested Tables

	Defining Queues
	Creating Queue Table Definitions
	Defining the Payload Type of Queue Tables

	Editing Queue Tables
	Creating Advanced Queue Definitions
	Specifying the Queue Table on which the AQ is Based

	Editing Advanced Queue Definitions
	Creating Queue Propagations
	Selecting a Target Queue for Propagation

	Editing Queue Propagations

	Configuring Relational Data Objects
	Configuring Target Modules
	Deployment System Type
	Generation Preferences
	Generation Target Directories
	Identification
	Run Time Directories
	Tablespace Defaults

	Configuring Tables
	Error Table
	Foreign Keys
	Identification
	Parallel
	Performance Parameters
	Partition Parameters
	Storage Space
	Change Data Capture

	Configuring Materialized Views
	Materialized View Parameters
	Materialized View Log Parameters
	Fast Refresh for Materialized Views

	Configuring Views
	Configuring Sequences
	Configuring Advanced Queues
	Configuring Queue Tables
	Configuring Queue Propagations

	Creating Relational Data Objects in Microsoft SQL Server and IBM DB2 UDB
	Rules for Naming Objects in IBM DB2 UDB
	Rules for Naming Objects in Microsoft SQL Server

	3 Defining Dimensional Objects
	Overview of Dimensional Objects
	Overview of Dimensions
	Overview of Surrogate Identifiers

	Overview of Slowly Changing Dimensions
	Overview of Defining Type 2 Slowly Changing Dimensions
	Overview of Hierarchy Versioning
	Overview of Defining Type 3 Slowly Changing Dimensions (SCDs)

	Overview of Cubes
	Orphan Management for Dimensional Objects
	Orphan Management While Loading Data Into Dimensional Objects
	Orphan Management While Removing Data From Dimensional Objects
	Error Tables

	Overview of Implementing Dimensional Objects
	Relational Implementation of Dimensional Objects
	Binding
	Auto Binding
	Manual Binding
	Unbinding

	ROLAP Implementation of Dimensional Objects
	MOLAP Implementation of Dimensional Objects
	Analytic Workspace

	Deployment Options for Dimensional Objects

	Creating Dimensions
	Dimension Example
	Creating Dimensions Using the Create Dimension Wizard
	Name and Description Page
	Storage Type Page
	Dimension Attributes Page
	Levels Page
	Level Attributes Page
	Slowly Changing Dimension Page
	Pre Create Settings Page
	Dimension Creation Progress Page
	Summary Page

	Defaults Used By the Create Dimension Wizard
	Storage
	Dimension Attributes
	Hierarchies
	Level Attributes
	Slowly Changing Dimensions
	Orphan Management Policy
	Implementation Objects

	Creating Dimensions Using the Dimension Editor
	Name Tab
	Storage Tab
	Attributes Tab
	Levels Tab
	Hierarchies Tab
	SCD Tab
	Orphan Tab
	Specifying the Default Parent for Orphan Rows
	Physical Bindings Tab

	Limitations of Deploying Dimensions to the OLAP Catalog
	Using Control Rows
	Determining the Number of Rows in a Dimension

	Creating Slowly Changing Dimensions
	Creating Type 2 Slowly Changing Dimensions Using the Dimension Editor
	Type 2 Slowly Changing Dimension Dialog Box

	Updating Type 2 Slowly Changing Dimensions
	Creating Type 3 Slowly Changing Dimensions Using the Dimension Editor
	Type 3 Slowly Changing Dimension Dialog Box

	Editing Dimension Definitions
	Configuring Dimensions
	Specifying How Dimensions are Deployed

	Creating Cubes
	About Calculated Measures in Cubes
	Standard Calculation
	Custom Expression

	Cube Example
	Using the Create Cube Wizard to Create Cubes
	Name and Description Page
	Storage Type Page
	Dimensions Page
	Measures Page
	Summary Page

	Defaults Used by the Create Cube Wizard
	Using the Cube Editor to Create Cubes
	Name Tab
	Storage Tab
	Dimensions Tab
	Advanced Dialog Box

	Measures Tab
	Calculated Measure Wizard
	Define Calculated Measure Details
	Reviewing the Summary Information

	Aggregation Tab
	Precomputing ROLAP Cubes

	Orphan Tab
	Physical Bindings Tab

	Cubes Stored in Analytic Workspaces
	Ragged Cube Data
	Defining Aggregations
	Auto Solving MOLAP Cubes
	Solving Cube Measures
	Solving Cubes Independent of Loading
	Parallel Solving of Cubes
	Output of a MOLAP Cube Mapping

	Editing Cube Definitions
	Configuring Cubes
	Specifying How Cubes are Deployed

	Creating Time Dimensions
	Creating a Time Dimension Using the Time Dimension Wizard
	Name and Description Page
	Storage Page
	Data Generation Page
	Levels Page (Calendar Time Dimension Only)
	Levels Page (Fiscal Time Dimension Only)
	Pre Create Settings Page
	Time Dimension Progress Page
	Summary Page

	Defaults Used by the Time Dimension Wizard
	Editing Time Dimension Definitions
	Name Tab
	Storage Tab
	Attributes Tab
	Levels Tab
	Hierarchies Tab

	Modifying the Implementation of Time Dimensions

	Populating Time Dimensions
	Dynamically Populating Time Dimensions
	Overlapping Data Populations

	Part II Performing ETL
	4 Overview of Transforming Data
	About Data Transformation in Oracle Warehouse Builder
	About Mappings
	About Operators
	Types of Operators
	Source and Target Operators
	Transformation Operators
	Pre/Post Processing Operators
	Pluggable Mapping Operators
	Real-time Data Warehousing Operators

	About Transformations
	Types of Transformations
	Predefined Transformations
	Custom Transformations

	About Transformation Libraries
	Types of Transformation Libraries
	Accessing Transformation Libraries

	5 Creating PL/SQL Mappings
	Overview of Oracle Warehouse Builder Mappings
	Types of Mappings
	PL/SQL Mappings
	SQL*Loader Mappings
	SAP ABAP Mappings
	Code Template (CT) Mappings

	Overview of the Mapping Editor
	Mapping Editor Canvas
	Logical View
	Execution View
	Execution View Menu and Toolbars
	Mapping Editor Display Options

	Example: Defining a Simple PL/SQL Mapping
	Steps to Perform Extraction, Transformation, and Loading (ETL) Using Mappings
	Defining Mappings
	Rules for Naming Mappings

	Adding Operators to Mappings
	Using the Add Operator Dialog Box to Add Operators
	Create Unbound Operator with No Attributes
	Select from Existing Repository Object and Bind

	Using Pseudocolumns ROWID and ROWNUM in Mappings

	Connecting Operators, Groups, and Attributes
	Connecting Operators
	Connecting Groups
	Connecting Attributes
	Using the Mapping Connection Dialog Box
	Attribute Group to Connect
	Connection Options
	Messages
	Connections

	Editing Operators
	Name Tab
	Groups Tab
	Input and Output Tabs
	Using Display Sets
	Defining Display Sets
	Selecting a Display Set

	Setting Mapping Properties
	Specifying the Order in Which Target Objects in a Mapping Are Loaded
	Reset to Default

	Configuring Mappings
	Steps to Configure Mappings

	Synchronizing Operators and Workspace Objects
	Synchronizing a Mapping Operator with its Associated Workspace Object
	Synchronizing All Operators in a Mapping

	Synchronizing a Workspace Object with a Mapping Operator
	Steps to Synchronize a Workspace Object with a Mapping Operator

	Advanced Options for Synchronizing
	Matching Strategies
	Match by Object Identifier
	Match by Bound Name
	Match by Position

	Example: Using a Mapping to Load Transaction Data
	Example: Using the Mapping Editor to Create Staging Area Tables
	Using Pluggable Mappings
	Creating Pluggable Mappings
	Creating Standalone Pluggable Mappings
	Signature Groups
	Input Signature
	Output Signature
	Creating Pluggable Mapping Folders
	Creating User Folders Within Pluggable Mapping Libraries

	Copying Operators Across Mappings and Pluggable Mappings
	Limitations of Copying Operators, Groups, and Attributes

	Grouping Operators in Mappings and Pluggable Mappings
	Steps to Group Operators in Mappings and Pluggable Mappings
	Viewing the Contents of a Folder

	Steps to Ungroup Operators in Mappings and Pluggable Mappings
	Spotlighting Selected Operators

	Locating Operators, Groups, and Attributes in Mappings and Pluggable Mappings
	Steps to Perform a Regular Search
	Steps to Perform an Advanced Search
	Advanced Find Dialog Box

	Debugging Mappings
	General Restrictions in the Mapping Debugger
	Starting a Debug Session
	Debug Panels of the Design Center
	Info Panel
	Data Panel

	Defining Test Data
	Creating New Tables to Use as Test Data
	Editing the Test Data
	Cleaning Up Debug Objects in the Runtime Schema

	Setting Breakpoints
	Setting Watches
	Running the Mapping
	Selecting the First Source and Path to Debug
	Debugging Mappings with Correlated Commit
	Setting a Starting Point
	Debugging Pluggable Submap Operators

	ReInitializing a Debug Session
	Scalability

	6 Performing ETL Using Dimensional Objects
	Performing ETL by Using Dimensions
	Loading Data Into Dimensions
	Loading Data into Type 1 Dimensions
	Loading Data into Type 2 Slowly Changing Dimensions (SCDs)
	Loading Data into Type 3 Slowly Changing Dimensions (SCDs)

	Example: Loading Data Into Type 2 Slowly Changing Dimensions
	Extracting Data Stored in Dimensions
	Extracting Data from Dimensions
	Extracting Data from Type 2 Slowly Changing Dimensions (SCDs)
	Extracting Data from Type 3 Slowly Changing Dimensions (SCDs)

	Removing Data from Dimensions
	Example: Removing Data from Dimensions

	Performing ETL by Using Cubes
	Loading Data Into Cubes

	7 Creating SQL*Loader, SAP, and Code Template Mappings
	Creating SQL*Loader Mappings to Extract Data from Flat Files
	Extracting Data from Flat Files
	Loading Data into a Flat File
	Creating a New Flat File Target

	Creating SAP Extraction Mappings
	Defining an SAP Extraction Mapping
	Adding SAP Tables to the Mapping
	Setting the Loading Type
	Setting Configuration Properties for the Mapping
	Setting the Join Rank

	Retrieving Data from the SAP System
	Automated System
	Semiautomated System
	Manual System

	Creating Code Template (CT) Mappings
	About Prebuilt Code Templates Shipped with Warehouse Builder
	Limitations of Using Certain Prebuilt Code Templates

	Mapping Operators that are Only Supported Directly in Oracle Target CT Mappings
	Steps to Perform ETL Using Code Template Mappings
	Creating Template Mapping Modules
	Creating Mappings Using Code Templates
	Defining Execution Units
	Execution View Menu and Toolbars
	Creating Execution Units
	Adding Operators to an Execution Unit
	Adding Operators to Multiple Execution Units
	Removing Operators from an Execution Unit
	Removing Execution Units
	Creating Default Execution Units
	Default Code Template for An Execution Unit
	How Warehouse Builder Displays Code Templates that Can be Associated with Execution Units

	Starting the Control Center Agent (CCA)
	Validating Code Template Mappings
	Generating Code Template Mappings
	Sample Code Generated for CT Mappings

	Deploying Code Template Mappings
	Executing Code Template Mappings
	Viewing Execution Results for Code Template Mappings
	Viewing Execution Results by Using the Results Tab
	Viewing Execution Results by Using the Audit Information Panel

	Setting Options for Code Templates in Code Template Mappings
	Setting Properties for Bound Operators in CT Mappings

	Auditing the Execution of Code Template Mappings
	Steps to Audit the Execution of Code Template Mappings

	Using Code Template Mappings to Perform Change Data Capture (CDC)
	Types of Change Data Capture (CDC)
	Change Data Capture Commands
	Example: Performing Change Data Capture Using Code Templates
	Steps to Perform Change Data Capture Using CDC CTs
	Selecting the Objects for Change Data Capture
	Creating the Mapping that Loads Changes
	Deploying the Change Data Capture Solution
	Starting the Change Data Capture Process
	Adding a Subscriber to the Change Data Capture Process
	Testing the Change Data Capture Process
	Performing Change Data Capture Actions in Warehouse Builder

	Using Control Code Templates
	Example: Checking Data Constraints Using Control CTs
	Steps to Log Constraint Violations While Loading Data Into a Target Table
	Creating the Source Module and Importing Source Objects
	Creating the Code Template Mapping that Extracts Data, Checks Data Integrity, and Loads Data into an Oracle Target

	Using Oracle Target CTs in Code Template Mappings
	Example: Using Oracle Target Code Templates
	Creating the Source Module and Importing Source Objects
	Creating the Target Module and Target Table
	Creating the CT Mapping that Transforms Source Data Using Oracle Target CTs

	Moving Data from Heterogeneous Databases to Oracle Database
	Example: Moving Data from IBM DB2 to Oracle Database Using Integration CTs and Load CTs
	Steps to Extract Data from IBM DB2, Transform Data, and Load it into an Oracle Database
	Create the Source Module
	Create the Target Module and Target Table
	Create the CT Mapping that Extracts, Transforms, and Loads Data

	8 Designing Process Flows
	Overview of Process Flows
	About Process Flow Modules and Packages

	Example: Creating a Basic Process Flow
	Steps for Defining Process Flows
	Creating Oracle Workflow Locations
	Creating Process Flow Modules
	Creating User Folders Within a Process Flow Module

	Creating Process Flow Packages
	Creating Process Flows

	Adding Activities to Process Flows
	About Activities
	Adding Activities
	Parameters for Activities

	Creating and Using Activity Templates
	Name and Description Page
	Parameters Page
	Using Activity Templates

	About Transitions
	Rules for Valid Transitions
	Connecting Activities
	Configuring Activities
	Using Parameters and Variables
	Using a Namespace
	Using Bindings

	About Expressions
	Global Expression Values

	Defining Transition Conditions
	Example: Using Process Flows to Access Flat Files with Variable Names
	Creating the Process Flow
	Setting Parameters for the User Defined Activity
	Method 1: Write a script Within Warehouse Builder
	Method 2: Call a script maintained outside of Warehouse Builder

	Configuring the User Defined Activity
	Designing the Mapping
	Deploying and Executing
	Subsequent Steps

	Example: Using Process Flows to Transfer Remote Files
	Defining Locations
	Creating the Process Flow
	Setting Parameters for the FTP Activity
	Example: Writing a Script in Warehouse Builder for the FTP Activity
	Using Substitution Variables

	Configuring the FTP Activity
	Registering the Process Flow for Deployment

	9 Defining Custom Transformations
	About Transforming Data Using Warehouse Builder
	Benefits of Using Warehouse Builder for Transforming Data

	Defining Custom Transformations
	Defining Functions and Procedures
	Naming the Custom Transformation
	Defining the Parameters
	Specifying the Implementation

	Defining Table Functions
	Naming the Table Function
	Specifying the Return Type
	Specifying Table Function Input and Output Parameters
	Specifying Parallelism Options
	Specifying Data Streaming Options
	Specifying the Table Function Implementation

	Defining PL/SQL Types
	About PL/SQL Types
	Usage Scenario for PL/SQL Types
	Creating PL/SQL Types
	Name and Description Page
	Attributes Page
	Return Type Page
	Summary Page

	Editing Custom Transformations
	Editing Function or Procedure Definitions
	Editing PL/SQL Types
	Name Tab
	Attributes Tab
	Return Type Tab

	Editing Table Functions

	Importing Transformations
	Restrictions on Using Imported PL/SQL

	Example: Reusing Existing PL/SQL Code
	Using Functions In Non-Oracle Platforms
	Creating IBM DB2 and SQL Server Functions
	Defining IBM DB2 and SQL Server Functions
	Importing a Function
	Predefined Generic Heterogeneous Functions
	Using the Functions in Mappings

	Configuring Functions
	Configuring Oracle Functions
	AUTHID
	Deterministic
	Parallel Enable
	Pragma Autonomous Transaction

	10 Understanding Performance and Advanced ETL Concepts
	Best Practices for Designing PL/SQL Mappings
	Set-Based Versus Row-Based Operating Modes
	Set-Based Mode
	Row-Based Mode
	Row-Based (Target Only) Mode

	About Committing Data in Warehouse Builder
	Committing Data Based on Mapping Design
	Committing Data from a Single Source to Multiple Targets
	Automatic Commit versus Automatic Correlated Commit
	Embedding Commit Logic into the Mapping

	Committing Data Independently of Mapping Design
	Running Multiple Mappings Before Committing Data
	Committing Data at Runtime
	Committing Mappings through the Process Flow Editor

	Ensuring Referential Integrity in PL/SQL Mappings

	Best Practices for Designing SQL*Loader Mappings
	Using Conventional Loading to Ensure Referential Integrity in SQL*Loader Mappings
	Maintaining Relationships Between Master and Detail Records
	Extracting and Loading Master-Detail Records
	Error Handling Suggestions
	Subsequent Operations

	Using Direct Path Loading to Ensure Referential Integrity in SQL*Loader Mappings

	Improved Performance through Partition Exchange Loading
	About Partition Exchange Loading
	Configuring a Mapping for PEL
	Direct and Indirect PEL
	Using Indirect PEL
	Example: Using Direct PEL to Publish Fact Tables

	Using PEL Effectively
	Configuring Targets in a Mapping
	Step 1: Create All Partitions
	Step 2: Create All Indexes Using the LOCAL Option
	Step 3: Primary/Unique Keys Use "USING INDEX" Option

	Restrictions for Using PEL in Warehouse Builder

	High Performance Data Extraction from Remote Sources

	11 Scheduling ETL Jobs
	Overview of Schedules
	Defining Schedules
	Editing Schedules
	Start and End Dates and Times
	Defining Schedules To Repeat
	By Month
	By Week Number
	By Year Day
	By Month Day
	By Day
	By Hour
	By Minute
	By Second
	By Set Position

	Example Schedules

	Applying Schedules to ETL Objects
	Scheduling ETL Jobs in Oracle Enterprise Manager
	The SQLPLUS_EXEC_TEMPLATE SQL Script
	The WB_RT_API_EXEC.RUN_TASK Function

	12 Deploying to Target Schemas and Executing ETL Logic
	Overview of Deployment and Execution in Warehouse Builder
	About Deployment
	About Deployment Actions
	About Deployment Status
	About Deploying Dimensional Objects
	About Deploying Mappings and Process Flows
	About Deploying Code Template (CT) Mappings and Web Services
	About Deploying Schedules

	About Execution
	About Configurations
	About Viewing and Setting Configuration Properties for Different Configurations

	Steps in the Deployment and Execution Process
	Deploying Objects
	Deploying Objects Using the Control Center Manager
	Deploying Objects Using the Projects Navigator
	Deploying Target Systems to a Remote System
	Reviewing Deployment Results

	Starting ETL Jobs
	Viewing Execution Results for ETL Jobs
	Viewing the Data
	Scheduling ETL Jobs

	Starting ETL Jobs in SQL*Plus
	Managing Jobs Using SQL Scripts

	Example: Updating a Target Schema

	13 Auditing Deployments and Executions
	About Auditing Deployment and Executions
	About the Repository Browser
	About the Heterogeneous Repository Browser (HRAB)
	Differences Between Repository Browser and Heterogeneous Repository Browser
	Installing the Heterogeneous Repository Browser on Heterogeneous Databases and OC4J Servers
	Creating Data Stores

	Types of Auditing
	List of Heterogeneous Repository Browser Reports
	Viewing Audit Reports

	Opening the Repository Browser
	Managing the Repository Browser Listener
	Accessing the Repository Browser
	Logging in to a Workspace
	Connecting to an Oracle Database
	Connecting to a Heterogeneous Database or OC4J Server

	Design Reports
	Repository Navigator
	Object Properties
	Object Reports
	Summary Reports
	Detailed Reports
	Implementation Reports
	Impact Analysis Reports

	Object Lineage
	Object Impact

	Control Center Reports
	Deployment Reports
	Deployment Schedule Report
	Locations Report
	Object Summary Report
	Location Object Summary Report
	Deployment Report
	Deployment Error Detail Report

	Execution Reports
	Execution Schedule Report
	Execution Summary Report
	Execution Report
	Error Table Execution Report
	Execution Job Report
	Trace Report
	Job File Report
	Job Start Report
	Job Error Diagnostic Report

	Management Reports
	Service Node Report
	Location Validation Report

	Common Repository Browser Tasks
	Identifying Recently-Run Processes
	Identifying Why a Process Run Failed
	Comparing Process Runs
	Discovering Why a Map Run Gave Unexpected Results
	Identifying Recently-Made Deployments
	Identifying the Data Objects That Are Deployed to a Specific Location
	Identifying the Map Runs that Use a Specific Deployed Data Object
	Discovering the Default DeploymentTime Settings of a Deployed Process
	Rerunning a Process
	Monitoring a Process Run
	Terminating a Process Run
	Removing the Execution Audit Details for a Process
	Removing Old Deployment Audit details
	Viewing Error Tables Created as a Result of Data Auditor Execution
	Unregistering a Location
	Updating Location Connection Details for a Changed Database Environment
	Updating Service Node Details in a Changing RAC Environment

	14 Managing Metadata Dependencies
	About the Metadata Dependency Manager
	Example: Lineage and Impact Analysis (LIA)
	About Lineage and Impact Analysis and Metadata Dependency Diagrams

	Opening an LIA Diagram
	Managing and Exploring Objects in an LIA Diagram
	Exploring Object Lineage and Impact in an LIA Diagram
	Using Find to Search for Objects in an LIA Diagram
	Using Groups in an LIA Diagram
	Managing Groups in an LIA Diagram

	Displaying an Object's Attributes
	Exporting and Printing LIA Diagrams

	Making Changes to Design Metadata Using Automatic Change Propagation
	Automated Change Propagation in the Dependency Manager

	15 Troubleshooting and Error Handling for ETL Designs
	Inspecting Error Logs in Oracle Warehouse Builder
	Troubleshooting Validation Errors
	Troubleshooting Generation Errors
	Troubleshooting Deployment and Execution Errors
	Determining the Operators that Caused Errors in Mappings

	Troubleshooting Name and Address Server Errors

	Using DML Error Logging
	About DML Error Tables
	Enabling DML Error Logging
	DML Error Logging and ETL

	DML Error Logging Limitations

	Troubleshooting the ETL Process
	ORA-04063 While Running Hybrid Maps
	Agent Log Files
	Error Starting the Control Center Agent (CCA)
	Error Executing Web Services from the Secure Web Site
	REP-01012 While Deploying Mappings to a Target Schema
	Unable to Delete a Location

	16 Creating and Consuming Web Services in Warehouse Builder
	Introduction to Web Services
	Advantages of Web Services
	About Web Services in Oracle Warehouse Builder
	About Defining Web Services
	About Publishing Web Services
	About Consuming Web Services

	About Public Web Services

	Publishing Warehouse Builder Objects as Web Services
	Creating Web Service Packages
	Creating Web Services Based on Warehouse Builder Objects
	Naming the Web Service
	Defining the Web Service Implementation

	Validating Web Services
	Generating Web Services
	Deploying Web Services
	Deploying Web Services Using the Control Center Manager
	Deploying Web Services Using the Design Center

	Creating Web Services Based on a URL
	Naming and Describing a Public Web Service

	Executing Web Services
	Using the Control Center Manager to Execute Web Services
	Using a Browser to Execute Web Services
	Performing Operations on Web Services Using a Browser
	Determining If a Web Service or Application Was Deployed to an OC4J Server
	Executing a Control Center Job
	Terminating an Execution Job
	Running Deployed Applications

	Using Web Services as Activities in Process Flows
	Rules for Using Web Services in Process Flows
	Steps to Use Web Services in Process Flows
	Synchronizing Web Service Activities with Their Referenced Web Services

	Using Web Services in Mappings
	Using Secure Sockets Layer (SSL) to Access Web Services Securely
	J2EE Roles for Control Center Agent Security
	Setting Up Secure Access on External OC4J Servers
	Updating the Key Store Password

	Case Study: Using Web Services for Data Integration
	Example: Publishing Mappings as Web Services
	Example: Consuming Web Services in Process Flows
	Modify the LOAD_TOT_SALES_CT_MAP Code Template (CT) Mapping
	Import the Currency Converter Web Service
	Create a Process Flow That Consumes the Currency Converter Web Service

	Example: Integrating Warehouse Builder Web Services with Oracle BPEL Process Manager

	17 Moving Large Volumes of Data Using Transportable Modules
	About Transportable Modules
	About Transportable Modules and Oracle Database Technology

	Benefits of Using Transportable Modules
	Instructions for Using Transportable Modules
	Verifying the Requirements for Using Transportable Modules
	Specifying Locations for Transportable Modules
	Transportable Module Source Location Information

	Creating a Transportable Module
	Describing the Transportable Module
	Selecting the Source Location
	Selecting the Target Location
	Selecting Tablespaces and Schema Objects to Import
	Available Database Objects
	Finding Objects in the Available Database Object List:
	Filtering the Available Database Objects List:
	Objects Not Available for Inclusion in Transportable Modules

	Reviewing the Transportable Module Definitions

	Configuring a Transportable Module
	Transportable Module Configuration Properties
	Schema Configuration Properties
	Target DataFile Configuration Properties
	Tablespace Configuration Properties

	Generating and Deploying a Transportable Module
	Designing Mappings that Access Data through Transportable Modules

	Editing Transportable Modules
	Name
	Source Location
	Tablespaces
	Target Locations
	Viewing Tablespace Properties
	Reimporting Metadata into a Transportable Module

	Part III Data Profiling and Data Quality
	18 Performing Data Profiling
	Overview of Data Profiling
	Sources Supported by Warehouse Builder for Data Profiling
	Using Warehouse Builder Data Profiling with Warehouse Builder ETL
	Using Warehouse Builder Data Profiling with Other ETL Solutions
	About the Data Profile Editor

	Performing Data Profiling
	Data Profiling Restrictions
	Prerequisites for Data Profiling
	Steps to Perform Data Profiling
	Creating Data Profiles
	Configuring Data Profiles
	Steps to Configure Data Profiles
	Load Configuration Parameters
	Aggregation Configuration Parameters
	Pattern Discovery Configuration Parameters
	Domain Discovery Configuration Parameters
	Relationship Attribute Count Configuration Parameters
	Unique Key Discovery Configuration Parameters
	Functional Dependency Discovery Configuration Parameters
	Row Relationship Discovery Configuration Parameters
	Redundant Column Discovery Configuration Parameters
	Performance Configuration
	Data Rule Profiling Configuration Parameters

	Profiling Data
	Steps to Profile Data

	Viewing Profile Results
	Data Profile
	Profile Object
	Aggregation
	Data Type
	Domain
	Pattern
	Unique Key
	Functional Dependency
	Referential
	Data Rule

	Using Attribute Sets to Profile a Subset of Columns from a Data Object
	Defining Attribute Sets
	Creating a Data Profile That Contains the Attribute Set

	Editing Data Profiles
	Adding Data Objects to a Data Profile

	Tuning the Data Profiling Process for Better Profiling Performance
	Tuning the Data Profile for Better Data Profiling Performance
	Tuning the Oracle Database for Better Data Profiling Performance
	Multiple Processors
	Memory
	I/O System

	Performing Data Watch and Repair (DWR) for Oracle Master Data Management (MDM)
	Overview of Data Watch and Repair (DWR) for MDM
	Predefined Data Rules for MDM

	Prerequisites for Performing Data Watch and Repair (DWR)
	Steps to Perform Data Watch and Repair (DWR) Using Warehouse Builder
	Importing MDM Data Rules
	Writing Corrected Data and Metadata to the MDM Application

	19 Designing and Deriving Data Rules
	Overview of Data Rules
	Types of Data Rules
	Data Rules as Objects and Binding Data Rules

	Using Data Rules
	Managing Data Rules in Folders
	Deriving Data Rules From Data Profiling Results
	Steps to Derive Data Rules

	Creating Data Rules Using the Create Data Rule Wizard
	Defining the Data Rule

	Editing Data Rules
	Applying Data Rules to Data Objects

	20 Monitoring Quality with Data Auditors and Data Rules
	Overview of Data Auditors
	Monitoring Data Quality Using Data Auditors
	Creating Data Auditors
	Specifying Actions for Data That Violates Defined Data Rules
	Editing Data Auditors

	Configuring Data Auditors
	Run Time Parameters
	Data Auditor Parameters
	Code Generation Options

	Auditing Data Objects Using Data Auditors
	Manually Running Data Auditors
	Scheduling a Data Auditor to Run
	Data Auditor Execution Results

	Viewing Data Auditor Error Tables
	Granting Privileges on Error Tables

	21 Data Cleansing and Correction with Data Rules
	Overview of Automatic Data Correction and Data Rules
	Generating Corrections Based on Data Profiling Results
	Prerequisites for Creating Corrections
	Steps to Create Correction Objects
	Selecting the Data Rules and Data Types for Corrected Schema Objects
	Selecting the Objects to Be Corrected
	Choosing Data Correction and Cleansing Actions
	Choosing Data Correction Actions
	Specifying the Cleansing Strategy

	Viewing the Correction Tables and Mappings

	Cleansing and Transforming Source Data Based on Data Profiling Results
	Deploying Schema Corrections
	Deploying Correction Mappings

	22 Name and Address Cleansing
	About Name and Address Cleansing in Warehouse Builder
	Types of Name and Address Cleansing Available in Warehouse Builder
	Example: Correcting Address Information
	Example Input
	Example Steps
	Example Output

	About Postal Reporting
	United States Postal Service CASS Certification
	Canada Post SERP Certification
	Australia Post AMAS Certification

	Input Role Descriptions
	Descriptions of Output Components
	Pass Through
	Name
	Address
	Extra Vendor
	Error Status
	Country-Specific

	Handling Errors in Name and Address Data

	Using the Name and Address Operator to Cleanse and Correct Name and Address Data
	Creating a Mapping with a Name and Address Operator
	Specifying Source Data Details and Setting Parsing Type
	Parsing Type
	Primary Country
	Dual Address Assignment

	Specifying Postal Report Details

	Managing the Name and Address Server
	Configuring the Name and Address Server
	Starting and Stopping the Name and Address Server

	23 Matching, Merging, and Deduplication
	About Matching and Merging in Warehouse Builder
	Example: A Basic Mapping with a Match Merge Operator
	Overview of the Matching and Merging Process
	Elements of Matching and Merging Records
	Process for Matching and Merging Records
	Constructing Match Bins
	Constructing Match Record Sets
	Constructing Merge Records

	Match Rules
	Conditional Match Rules
	Comparison Algorithms
	Creating Conditional Match Rules

	Match Rules: Basic Example
	Example: Matching and Merging Customer Data
	Example: How Multiple Match Rules Combine
	Example of Transitive Matching

	Weight Match Rules
	Example of Weight Match Rules
	Creating Weight Match Rules

	Person Match Rules
	Person Roles
	Person Details
	Creating Person Match Rules

	Firm Match Rules
	Firm Roles
	Firm Details
	Creating Firm Match Rules

	Address Match Rules
	Address Roles
	Address Details
	Creating Address Match Rules

	Custom Match Rules
	Creating Custom Match Rules

	Merge Rules
	Match ID Merge Rule
	Rank and Rank Record Merge Rules
	Sequence Merge Rule
	Min Max and Min Max Record Merge Rules
	Copy Merge Rule
	Custom and Custom Record Merge Rules

	Using the Match Merge Operator to Eliminate Duplicate Source Records
	Steps to Use a Match Merge Operator
	Considerations When Designing Mappings Containing Match Merge Operators
	Restrictions on Using the Match Merge Operator

	Example: Using Two Match Merge Operators for Householding

	Part IV Reference
	24 Mappings and Process Flows Reference
	Configuring ETL Objects
	Configuring Mappings Reference
	Runtime Parameters
	Analyze Table Sample Percentage
	Bulk Size
	Chunk Size
	Chunking Column
	Chunking Method for Parallel Chunking
	Chunking Strategy
	Chunking Table
	Chunking Table Owner
	Commit Frequency
	Default Audit Level
	Default Operating Mode
	Default Purge Group
	Maximum Number of Errors
	Number of Threads to Process Chunks

	Code Generation Options
	ANSI SQL Syntax
	Commit Control
	Analyze Table Statements
	Enable Parallel DML
	Optimized Code
	Authid
	Use Target Load Ordering
	ERROR TRIGGER
	Bulk Processing Code
	Generation Mode

	Sources and Targets Reference
	Use LCR APIs
	Database Link
	Location
	Conflict Resolution
	Schema
	Partition Exchange Loading
	Hints
	Constraint Management
	SQL*Loader Parameters

	Configuring Flat File Operators
	Flat File Operators as a Target
	Flat File Operator as a Source

	Configuring Process Flows Reference

	25 Source and Target Operators
	List of Source and Target Operators
	Using Oracle Source and Target Operators
	Setting Properties for Oracle Source and Target Operators
	Capture Consistency
	Change Data Capture Filter
	Enabled
	Trigger Based Capture
	Primary Source
	Loading Types for Oracle Target Operators
	Loading Types for Flat File Targets
	Target Load Order
	Target Filter for Update
	Target Filter for Delete
	Match By Constraint
	Reverting Constraints to Default Values
	Bound Name
	Key Name
	Key Columns
	Key Type
	Referenced Keys
	Error Table Name
	Roll up Errors
	Select Only Errors from this Operator

	Setting Attribute Properties
	Bound Name
	Data Type
	Precision
	Scale
	Length
	Fractional Seconds Precision
	Load Column When Inserting Row
	Load Column When Updating Row
	Match Column When Updating Row
	Update: Operation
	Match Column When Deleting Row
	Chunking Number Column

	Constant Operator
	Construct Object Operator
	Cube Operator
	Cube Operator Properties
	Cube Attribute Properties

	Data Generator Operator
	Setting a Column to the Data File Record Number
	Setting a Column to the Current Date
	Setting a Column to a Unique Sequence Number

	Dimension Operator
	Dimension Operator Properties
	AW Properties
	Dimension Properties
	Error Table
	History Logging Properties
	Orphan Management Policies

	Expand Object Operator
	External Table Operator
	Mapping Input Parameter Operator
	Mapping Output Parameter Operator
	Materialized View Operator
	Queue Operator
	Using a Queue Operator
	Selecting the Queue
	Selecting the Source Type for a Queue Operator
	Selecting the User-Defined or Primary Type for a Queue Operator
	Selecting the Source Object
	Specifying the Source Changes to Process

	Sequence Operator
	Table Operator
	Merge Optimization for Table Operators
	Chunking for Table Operators
	Creating Temporary Tables While Performing ETL
	Is Temp Stage Table
	Extra DDL Clauses
	Temp Stage Table ID

	DML Error Logging
	Data Rules and Loading Tables

	Varray Iterator Operator
	View Operator
	Using the View Operator for Inline Views

	Using Remote and non-Oracle Source and Target Operators
	Limitations of Using Non-Oracle or Remote Targets
	Warehouse Builder Workarounds for Non-Oracle and Remote Targets

	Using Flat File Source and Target Operators
	Flat File Operator
	Flat File Source Operators
	Flat File Target Operators
	Setting Properties for Flat File Source and Target Operators
	Loading Types for Flat Files
	Field Names in the First Row

	26 Data Flow Operators
	List of Data Flow Operators
	About Operator Wizards
	Operator Wizard General Page
	Operator Wizard Groups Page
	Operator Wizard Input and Output Pages
	Operator Wizard Input Connections

	About the Expression Builder
	Opening the Expression Builder
	The Expression Builder User Interface

	Aggregator Operator
	Group By Clause
	Having Clause
	Aggregate Function Expression

	Anydata Cast Operator
	Deduplicator Operator
	Expression Operator
	Filter Operator
	Adding Self Joins in a Mapping

	Joiner Operator
	Joiner Input Roles
	Steps to Use a Joiner Operator in a Mapping
	Joiner Restrictions
	Specifying a Full Outer Join

	Creating Full Outer Join Conditions
	Grouping Join Conditions

	LCR Cast Operator
	LCR Splitter Operator
	Lookup Operator
	Using the Lookup Operator
	Name
	Groups
	Lookup Tables
	Input Attributes
	Output Attributes
	Lookup Conditions
	Multiple Match Rows
	No-match Rows
	Type 2 History Lookup

	Pivot Operator
	Example: Pivoting Sales Data
	The Row Locator
	Using the Pivot Operator
	General
	Groups
	Input Connections
	Input Attributes
	Output Attributes
	Pivot Transform

	Post-Mapping Process Operator
	Pre-Mapping Process Operator
	Set Operation Operator
	Synchronizing the Attributes in a Set Operation Operator

	Sorter Operator
	Order By Clause

	Splitter Operator
	Example: Creating Mappings with Multiple Targets

	Subquery Filter Operator
	Table Function Operator
	Prerequisites for Using the Table Function Operator
	Input
	Output

	Table Function Operator Properties
	Table Function Operator Properties
	Input Parameter Properties
	Output Parameter Group Properties
	Output Parameter

	Transformation Operator
	Unpivot Operator
	Example: Unpivoting Sales Data
	The Row Locator
	Using the Unpivot Operator
	General
	Groups
	Input Connections
	Input Attributes
	Row Locator
	Output Attributes
	Unpivot Transform

	27 Activities in Process Flows
	Using Activities in Process Flows
	Activities That Represent Objects
	Utility Activities
	Control Activities
	OS Activities
	Setting a Security Constraint
	Setting a Proxy Command and Parameters

	AND
	Assign
	Data Auditor Monitor
	Enterprise Java Bean
	Example: Using an Enterprise Java Bean Activity to Leverage Existing Business Logic from EJBs
	Example: Using an Enterprise Java Bean Activity to Load Data From one DB2 Table to Another
	Restrictions on Using an Enterprise Java Bean Activity

	Email
	End
	End Loop
	File Exists
	FORK
	For Loop
	FTP
	Writing a Script Within Warehouse Builder
	Using Substitution Variables
	Calling a Script Outside of Warehouse Builder

	Java Class
	Example of Using a Java Class Activity in a Process Flow
	Example of Customizing the Java Class Activity Executable

	Manual
	Mapping
	Notification
	Notification Message Substitution

	OMBPlus
	OR
	Route
	Set Status
	SQL*PLUS
	Using SQL*PLUS Activities in Process Flows
	Using Substitution Variables
	SQL *Plus Command

	Start
	Subprocess
	Transform
	User Defined
	Wait
	While Loop
	Web Service

	28 Warehouse Builder Transformations Reference
	Predefined Transformations in the Public Oracle Predefined Library
	Administrative Transformations
	WB_ABORT
	WB_COMPILE_PLSQL
	WB_DISABLE_ALL_CONSTRAINTS
	WB_DISABLE_ALL_TRIGGERS
	WB_DISABLE_CONSTRAINT
	WB_DISABLE_TRIGGER
	WB_ENABLE_ALL_CONSTRAINTS
	WB_ENABLE_ALL_TRIGGERS
	WB_ENABLE_CONSTRAINT
	WB_ENABLE_TRIGGER
	WB_TRUNCATE_TABLE

	Character Transformations
	WB_LOOKUP_CHAR (number)
	WB_LOOKUP_CHAR (varchar2)
	WB_IS_SPACE

	Control Center Transformations
	WB_RT_GET_ELAPSED_TIME
	WB_RT_GET_JOB_METRICS
	WB_RT_GET_LAST_EXECUTION_TIME
	WB_RT_GET_MAP_RUN_AUDIT
	WB_RT_GET_NUMBER_OF_ERRORS
	WB_RT_GET_NUMBER_OF_WARNINGS
	WB_RT_GET_PARENT_AUDIT_ID
	WB_RT_GET_RETURN_CODE
	WB_RT_GET_START_TIME

	Conversion Transformations
	Date Transformations
	WB_CAL_MONTH_NAME
	WB_CAL_MONTH_OF_YEAR
	WB_CAL_MONTH_SHORT_NAME
	WB_CAL_QTR
	WB_CAL_WEEK_OF_YEAR
	WB_CAL_YEAR
	WB_CAL_YEAR_NAME
	WB_DATE_FROM_JULIAN
	WB_DAY_NAME
	WB_DAY_OF_MONTH
	WB_DAY_OF_WEEK
	WB_DAY_OF_YEAR
	WB_DAY_SHORT_NAME
	WB_DECADE
	WB_HOUR12
	WB_HOUR12MI_SS
	WB_HOUR24
	WB_HOUR24MI_SS
	WB_IS_DATE
	WB_JULIAN_FROM_DATE
	WB_MI_SS
	WB_WEEK_OF_MONTH

	Number Transformations
	WB_LOOKUP_NUM (on a number)
	WB_LOOKUP_NUM (on a varchar2)
	WB_IS_NUMBER

	OLAP Transformations
	WB_OLAP_AW_PRECOMPUTE
	WB_OLAP_LOAD_CUBE
	WB_OLAP_LOAD_DIMENSION
	WB_OLAP_LOAD_DIMENSION_GENUK

	Other Transformations
	Spatial Transformations
	Streams Transformations
	REPLICATE

	XML Transformations
	WB_XML_LOAD
	WB_XML_LOAD_F

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

