ORACLE

Oracle® Database
Advanced Application Developer's Guide

11gRelease 2 (11.2)
E10471-03

September 2009

Oracle Database Advanced Application Developer's Guide, 11g Release 2 (11.2)
E10471-03

Copyright © 1996, 2009, Oracle and/ or its affiliates. All rights reserved.
Primary Author: Sheila Moore

Contributing Authors: D. Adams, L. Ashdown, M. Cowan, J. Melnick, R. Moran, E. Paapanen, J. Russell, R.
Strohm, R. Ward

Contributors: D. Alpern, G. Arora, C. Barclay, D. Bronnikov, T. Chang, L. Chen, B. Cheng, M. Davidson, R.
Day, R. Decker, G. Doherty, D. Elson, A. Ganesh, M. Hartstein, Y. Hu,]. Huang, C. Iyer, N. Jain, R. Jenkins
Jr., S. Kotsovolos, V. Krishnaswamy, S. Kumar, C. Lei, B. Llewellyn, D. Lorentz, V. Moore, K.
Muthukkaruppan, V. Moore,]. Muller, R. Murthy, R. Pang, B. Sinha, S. Vemuri, W. Wang, D. Wong, A.
Yalamanchi, Q. Yu

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Contents

PUrOIACE ...t XXiX
AN S Lo 1= U< J TSRO RRRRRRRN XXiX
Documentation AcCeSSIDILILYcciiiiiiiiiiiiiii e XXiX
Related DOCUITIEIESveeviieeeieeteeceeeeeteeeee ettt et eae et eae e eaeeaeeeaeeeteeesseebeesaseenteesseesnseesaesnseeseas XXX
CONMVEIILIONS ..eiiieiitieeeeeetteee e ettt e e eee e e ee ettt eeeeesaateeeeeesatareeesessaaseessesssaeesesessssasesesssareesessssstaseeesnsnsarees XXX

What's New in Application Development? ..., XXXiii
Oracle Database 11¢ Release 2 (11.2) FEAUTESc.cccoiiriiiciiiiiiiciiiiirccticiceesc e XXXiii
Oracle Database 11g Release 1 (11.1) Features..........cccccceceueuiiiiiiniviniiininiininnninnneccccccaee XXXV

Partl SQL for Application Developers

1 SAQL Processing for Application Developers

Description of SQL Statement Processingcccccoccvviiiiiiiiiiininiiiiniicccccceseeeeens 1-1
Processing Other Types of SQL Statements...............ccccccoviiiiiniiiiiii, 1-4
DDL Statement PTOCESSINGccueueuiiiiiiiiiiiieicicecc e 1-4
Transaction Control Statement Processing...........ccoceuevvieieiiiniciieiiiiceeece e 1-4
Other Processing TYPeS........ccoeurueiiiiiiiiiiicicte e 1-4
Grouping Operations into Transactionsccccooiiiiiiiiiii s 1-4
Deciding How to Group Operations in Transactions...........cccccccceeeuiniiiiieieiniiciceeicieeeeenes 1-5
Improving Transaction Performancecccoorieieiiiiciiiiciceccec e 1-5
Committing TranSactions..........cecoiiriiiiiiiiieecc s 1-6
Managing Commit Red0o ACHONc.ccccuiiiiiiiiiiiiii e 1-6
Rolling Back Transactions..........cciiiiiiiiiiiiiiiiiiiiic e 1-8
Defining Transaction SavePOInts...........cccccviiiiiiiiiiiiiiiiii s 1-8
Ensuring Repeatable Reads with Read-Only Transactionsccccccoovveiiiioiicniniccccene, 1-9
USING CUTSOTS ..ottt 1-10
How Many Cursors Can a Session Have? ..o 1-10
Using a Cursor to Reexecute a Statement............ccccoeoiviiiiiiiiiniiiee 1-10
SCIOIIADIE CUTSOTS .uvvviieiieiiieeieie ettt ete et et e et et e st et e et e seesbesseessesseessesseessanssessasssessesssessesseessensens 1-11
ClOSING @ CUISOT -...oveivcviiiecicie ittt a bbb b bbb a s 1-11
Canceling @ CUISOT.......c.c.iuiuiiiiiiiiie s 1-11
Locking Tables EXPLiCitly ... 1-12
Privileges Required to Acquire Table LOCKSccccccoviiiiiiininiiiiiiiiiiiic 1-13
Choosing a Locking Strategy ..o 1-13

When to Lock with ROW SHARE MODE and ROW EXCLUSIVE MODE 1-14

When to Lock with SHARE MODE.........ccccooiiiiiiiiiiiisiesiceesisese i 1-14

When to Lock with SHARE ROW EXCLUSIVE MODEcccooviiiniiiiiiiicnines 1-15

When to Lock with EXCLUSIVE MODE..........cccooviiiiiiiicnns 1-15

Letting Oracle Database Control Table LOCKing..........ccoouiiiiiiieiiiiiiiccecc, 1-15
Explicitly Acquiring ROW LOCKSc.cccoiiiiiiiiiiiiccrccccccc s 1-16
Examples of Concurrency Under Explicit LOCKINGccoooeuiiiiiiiiiiiiiie e, 1-17
Using Oracle Lock Management Services (User LOcKS)cccccoviiiiiiiiinniiiiicccces 1-23
When to Use USer LOCKSccvviiiiiiiiiiiiiiiccc s 1-23
Viewing and Monitoring LOCKS ... 1-24
Using Serializable Transactions for Concurrency Control.............cccccoevvininiiininiinnnn, 1-24
How Serializable Transactions INteractc.cccocoviiiiiiiiiiiicccs 1-25
Setting the Isolation Level of a Serializable Transaction..........c.cccoooeeiiiiiiciniiicci, 1-27
Referential Integrity and Serializable Transactionsccccooeoeueieiiiiiiiicceccc, 1-27
READ COMMITTED and SERIALIZABLE Isolation ..., 1-29
Transaction Set CONSISTENCYocueviiiuiiiieieiicee s 1-29
Comparison of READ COMMITTED and SERIALIZABLE Transactions....................... 1-30
Choosing an Isolation Level for Transactions...........ccccccccucueccceiecieceeeeceeereneenenens 1-30
Application Tips for Transactions ... 1-31
Autonomous Transactions ... s 1-31
Examples of Autonomous Transactionsccccccccucueeiiciieninicieinreeeeereeseeeseeeseeeeseses s 1-33
Ordering a Product.........oocioiiiiii s 1-34
Withdrawing Money from a Bank Account...........cocoouoiiiiiiiciii 1-34
Defining Autonomous TTanSaCtioNSc.ccccccueueiriiiririrriiircrreee e 1-37
Resuming Execution After Storage Allocation Error ..., 1-38
What Operations Can Be Resumed After an Error Condition?..........c.ccccooiiiiniiiiinininnnn, 1-38
Handling Suspended Storage AILOCAtIONccccceuiuiuiuimiuiuiiiiicicccceeeeeeeieeeee s 1-38

2 Using SQL Data Types in Database Applications

Overview of SQL Data TYPESccccviiiiiiiiiiiiiiiici e 2-2
Representing Character Data ... s 2-2
Overview of Character Data TYPescccooviuiiiiiiiieiiiceecc e, 2-2
Specifying Column Lengths as Bytes or Characterscccocovvvrnnnnnnnnsnnneeeceeeeeaene 2-3
Choosing Between CHAR and VARCHAR2 Data Typescccccouveueieiiiinieiniiceccee, 2-3
Using Character Literals in SQL Statements...........cccccovieeieieiiiiiniiieceeec e 2-4
Representing Numeric Data.............ccccooiiiiiiiiiii e 2-4
Overview of Numeric Data Types.......cccooeiueiiiiriiiiiiic e 2-5
Floating-Point Number FOrmats............cccccccociiiiiiiiiiiiiiccicesese s 2-6
Using a Floating-Point Binary FOrmatcccooooiiiiiiiiiiiiiciccceeccccceecenenes 2-6

Special Values for Native Floating-Point Formats..........c.cccoouoiriiiiiiiiie 2-8
Comparison Operators for Native Floating-Point Data Typescccccoevevviiieiniiiceieinccnnnn, 2-9
Arithmetic Operations with Native Floating-Point Data Typescccccecevurrvrrrrnnnrirenenc. 2-9
Conversion Functions for Native Floating-Point Data Typesc.ccccooeevviniiniicniiiciicnes 2-10
Client Interfaces for Native Floating-Point Data Typescccccoveveiiiiiiiiineeiccccce, 2-10
OCI Native Floating-Point Data Types SQLT_BFLOAT and SQLT_BDOUBLE............ 2-11

Native Floating-Point Data Types Supported in ADTSscccccovviiiiiiiiiiiininn, 2-11
Pro*C/C++ Support for Native Floating-Point Data Types...........cccccoevvvirnniiieriininnes 2-11

vi

Representing Date and Time Data.............cccooiiiiiiiiiiiis 2-11

Overview of Date and Time Data TyPesccccooiiiiiiiiiiiiiicc e 2-11
Displaying Current Date and Time ... 2-12
Changing the Default Date Formatocoooiiiiiiiiiii 2-13
Changing the Default Time FOrmat........ccooooiiiiiiiiiiic e, 2-13
Arithmetic Operations with Date and Time Data TYPesc.cccoevvevrrrnnnnrnrrccrene 2-14
Converting Between Date and Time Types.........cccocoiiiiiiiiiiiciciiici 2-14
Importing and Exporting Date and Time Typescccoeeriirieiiiniciciiccece e 2-15
Representing Specialized Data...............ccccccooooiiiiiiiiiii 2-15
Representing Geographic Datacooeueiiiiiiiiiiiic 2-15
Representing Multimedia Data...........coceueiiiiiiiii 2-15
Representing Large Amounts of Data.......c.cccccceeiiiiiiiinnccreeeereeeeeeeeeees 2-16
Representing Searchable Textccooiiiiiiiiiii 2-17
Representing XMLccoooiiiiiiii s 2-17
Representing Dynamically Typed Data........cccccccociiiiiiiiiniiincrencreee e 2-18
Representing Data with ANSI/ISO, DB2, and SQL/DS Data Types.........cccccevvveriiiiiierennne 2-20
Representing Conditional Expressions as Datacccccocoiiiiiiiiiiiiicas 2-21
Identifying ROWs by Address............cccoviiiiiiiiiiiiiiii s 2-22
Querying the ROWID Psetdocolum ..o 2-23
ROWID Data TYPe.....ceveieieieieieiiiietit s 2-24
Restricted ROWIDcoiiiiiiiiiiiiicc s 2-24
Extended ROWIDccooiiiiiiiiiiiiiiccccce s 2-24
External Binary ROWID.........coooiiiiiii e 2-25
UROWID Data TYPE..ccoviiiuiiiiiiiiiiiiiiiic s 2-25
How Oracle Database Converts Data TYPesccccocovviiiniiiiiiiiiiiiiiiics 2-25
Data Type Conversion During Assignments.............ccocoeeeiieiiiiiiiiiiiiiccc 2-26
Data Type Conversion During Expression Evaluationcccccccevvvvivnnnnnnnincnnene, 2-26
Metadata for SQL Built-In FUNCHONSccoooiiiiiiiiiececececeeeee et v 2-27

3 Using Regular Expressions in Database Applications

Overview of Regular EXPressions............ccccoviiiiiiiiiiiiiniiicii s 3-1
What Are Regular EXPressions?........ccoviniiininiiiiiicicccsssscss e 3-1
How Are Regular Expressions Useful?...........cccccciiiiiiiiiiiiicecceeeeeeceeeieneneenennes 3-2
Oracle Database Implementation of Regular EXpressions..........c.cccccveeeieiiiciiciiiieiennn, 3-2
Oracle Database Support for the POSIX Regular Expression Standard..........ccccooooveieininnnnn. 3-4

Metacharacters in Regular EXpressions ..o 3-4
POSIX Metacharacters in Oracle Database Regular EXpressions............ccococueeiicicieicinieneinnnne, 3-4
Multilingual Extensions to POSIX Regular Expression Standardccccooeveiiiiineennes 3-7
PERL-Influenced Extensions to POSIX Regular Expression Standardc.cccccovveenincnincnnce. 3-8

Using Regular Expressions in SQL Statements: Scenarios.............ccccooovvviiiniiiiniinnnnn, 3-10
Using a Constraint to Enforce a Phone Number Format ... 3-10
Using Back References to Reposition Characters ..o 3-11

4 Using Indexes in Database Applications

Privileges Needed to Create INdexes.............ccooiiiiiniiiiiiiiiiiiiicc e 4-1
Guidelines for Application-Specific Indexesccccoviiiiiiiiiiiinii, 4-1

vii

Which Come First, Data or INA@XES?c.eeeviiiriiiiieieeceeceeetee ettt ettt eve et eve e veeeaaeevean 4-2

Create a Temporary Table Space Before Creating Indexes...........ccccccoovuiiiiiiiiiiiiiiiiiinns 4-2
Index the Correct Tables and COIUMNSc.ccciuiiiiiiiiiiiiiiiceccceceee e 4-3
Limit the Number of Indexes for Each Table...........cccccccoiiiiiiiiiiccce 4-4
Choose Column Order in Composite INdeXes............cccoeueiiiriiiiiiicicic e, 4-4
Gather INAex StatiStICSc.ceueuiuiiiiiiiieiciciciceeecee e 4-5
Drop Unused INAEXES..........coviiiiiiiiiiiiiiiiiiiiiiicccccc s 4-5
Examples of Creating Basic Indexesccccooiiiiiiiiiiiis 4-6
When to Use Domain INAeXesccoceiiiiiiiiiniiiiiiiiiic e 4-7
When to Use Function-Based Indexes................cccccouiuiiiiiiiiiniiiiiiiccccas 4-7
Advantages of Function-Based IndexXes..............coooeiiiiiiiiiiiiiic 4-8
Restrictions on Function-Based INAEXESc.ccccccuiuiuiiiiiiiiiiniiiiiirrccccreceeeee s 4-10
Examples of Function-Based IndeXes.............ccccoveiiiiiiiniiiiiiiiiiiccs 4-11
Function-Based Index for Case-Insensitive Searches............ccccccovvivviininininnnnnn 4-12
Precomputing Arithmetic Expressions with a Function-Based Index............c.c.ccc.c........ 4-12
Function-Based Index for Language-Dependent SOrtingc.cccooeoeueveiiiiiiiincicinne, 4-12

5 Maintaining Data Integrity in Database Applications

viii

Overview of COnStraints ... 5-1
Enforcing Business Rules with Constraints...........cccouoiieioiiiiieiiiccccc 5-2
Enforcing Business Rules with Application LOGICcccovurerreririnnirrnrirrrreeeeeeeseeae 5-2
Creating Indexes for Use with CONStraintscoooeueiiicieiiiiicic 5-2
When to Use NOT NULL CONStraintscccoceeiuiiimiiiiiiiiiiiiiieicciceeeieieeeeeneneneenennes 5-3
When to Use Default Column Values ... 5-4
Setting Default Column Values............cccoiiiiiiiiii e 5-4
Choosing a Primary Key for a Tablecccooiiiii e 5-5
When to Use UNIQUE CONSIIAINES ..cuveovieiierieiieieeieereereete e ereeveeteeeeereeseereesseerseseessenseeseenseessenns 5-5
When to Use Constraints On VIEWS.........ccccovviviiiniiiiiiiic s 5-6

Enforcing Referential Integrity with Constraints..............cccoooiiiiie, 5-6
FOREIGN KEY Constraints and NULL Values...........cccccoviiiiniiniiiicecnes 5-8
Defining Relationships Between Parent and Child Tablesccccccooiiiiiiiiiiiiie, 5-9
Rules for Multiple FOREIGN KEY Constraintscccccovvvvinnvnnnnnniiinnnnnncsenes 5-10
Deferring Constraint Checks ..ot 5-10

Minimizing Space and Time Overhead for Indexes Associated with Constraints 5-12

Guidelines for Indexing Foreign Keys..............cccoooiiiiiiiiiiccccceececenennas 5-12

Referential Integrity in a Distributed Database ..., 5-12

When to Use CHECK Constraints............cccocovviiiiiiiiiiiiiccccs 5-13
Restrictions on CHECK CONSLIaintsccocccvioiiiiiniiciniiiiiriiieeceeeeeeeeeneeene e 5-13
Designing CHECK CONStraints...........ccooviiiiiiiiiniiiiiiiicccccesssenees 5-14
Rules for Multiple CHECK CONSITaintS........ccovuviiiimiiniiiiiiiiiicessscsennns 5-14
Choosing Between CHECK and NOT NULL Constraints..........ccccccceceeiciiinininiicnninininne 5-14

Examples of Defining Constraints..............ccocooiiiiii 5-15
Privileges Needed to Define CONStraints........cccccoviiuviiiiiiiiniiiiiiincecccnes 5-16
Naming CONStIaiNtscccoviiiiiiiiii s 5-16

Enabling and Disabling Constraints ... 5-16
Why Disable CONStraints?.........ccoooeueiiiiiiiiiie 5-17
Creating Enabled Constraints (Default)...........cccccceuiiiiiiiiiiiiiccccccee 5-17

Creating Disabled CONStraints ... 5-18

Enabling Existing CONStraintsccooiiuiieiiiiiicieiicie e 5-18
Disabling Existing CONSIraints.........cccocciiuiiiuiiiiiiiiiceeieceeieeetee e nees 5-19
Guidelines for Enabling and Disabling Key Constraints.........c.c.cococoeeiiiiiiiiicciciccn, 5-19
Fixing Constraint EXCEPHIONSccoiiiiiiiiiiiiiiiiii s 5-19
Modifying ConsStraints ..o 5-20
Renaming CONStraints ... 5-21
Dropping Constraints..............ccocooiiiiiiiiii s 5-22
Managing FOREIGN KEY Constraints ... 5-22
Data Types and Names for Foreign Key Columnscccooociiiiiiiiciiinciecee 5-22
Limit on Columns in Composite Foreign Keysccccooiiiiiiiiii, 5-23
Foreign Key References Primary Key by Default..........ccccccoooiiiiiiiiiiiiiiicceceee 5-23
Privileges Required to Create FOREIGN KEY Constraintscocococeiiiiiceiiiiccicciccnen, 5-23
Choosing How Foreign Keys Enforce Referential Integrityccooooviiiiiiiii, 5-23
Viewing Information About Constraintscccoviiininiiiinie 5-24

Partll PL/SQL for Application Developers

6 Coding PL/SQL Subprograms and Packages

OVerview Of PL/SQL UNIS.........cooiiiiiiiieeiieieecieeee ettt ettt e et e e e eaeestaeeaeebeseabeesaesasesseesssennses 6-1
ANONYMOUS BIOCKS ...t 6-2
Stored PL/SQL UNIES.....ccouiiiiiiiiiicierisicie b s 6-4

Naming SUDPIOGIAINSc.cuiuruiueiiiiiciiiieicie ettt 6-4
Subprogram Parameterscooceuoviiiiiiiiii e 6-5
Creating SUDPTOZIAIMScouiiiiiieieiectc e 6-8
Altering SUDPIOZIamIS.c.c.cuiuiiiiiiiiiiiiecccre e 6-9
Dropping Subprograms and Packages...........c.ccooereiiiiiiiiiic 6-9
External SUDPIrOgrams..........ccouoiiiiiiiiiciciec s 6-10
PL/SQL Function ReSult CaChe......c..cvevuiiieerietieiieereeteeeeete ettt ettt re v eae e e 6-10
PL/SQL PACKAGESvovviiiiiiiciiciccc s 6-10
PL/SQL Object Size LIMits......cccceovuiuiiiiiiiiiiiiiiiiiiiiciiiciciricsse s 6-13
Creating PaCKages..........ccociuiuiiiiiiiiiieccceieeeee e 6-13
Naming Packages and Package Objectscccouiiiiiiiiiiiiii 6-14
Package Invalidations and Session State.............ccocoeeveiceiiiiciinece 6-14
Packages Supplied with Oracle Databaseccccoeeueuruririiiirniiicrccccreeeeeeees 6-15
Overview of Bulk BINAingccoooiiiiiiiiiiiicc s 6-15
When to Use Bulk Bindscccceiciniriiiiniiiiiiccicccseecerese e 6-16
TTIZGOTS oo 6-18

Compiling PL/SQL Subprograms for Native Execution.............ccccocoeiiiiiiiiiiiiiiicns 6-18

CUISOT VAriabIesc.coooviiiiiiiiiiiiiecce ettt ettt 6-19
Declaring and Opening Cursor Variables ... 6-19
Examples of Cursor Variables ... 6-19

Handling PL/SQL Compile-Time EITOTScccccocoviiiiiiiiiiiiiiiiiiiiircnienesess s 6-22

Handling Run-Time PL/SQL EITOTScccccocoiiiiniiiiiiiiiiicce s 6-23
Declaring Exceptions and Exception Handlers ..., 6-24
Unhandled EXCEPHIONSc.couiuiiiiiiiiiiiiiiiciiiciccici s 6-25

Handling Errors in Distributed QUeries..........c.ccooeuiiiiiiiriiiiiiciee 6-25

Handling Errors in Remote SUbPrograms.............ccoceueiiieieiiiiciciecccecce e 6-26
Debugging Stored SUbprograms...............cccccoovviiiiiniiiii 6-26
PL/SCOPE ..t 6-27
PL/SQL Hierarchical Profiler.......c.cocuiiiieoiieiieceeecee ettt et eve e ee v e ereennes 6-27
Oracle JDEVEIOPET ..ottt eeees 6-27
DBMS_OUTPUT Package..........ccccvurviiiiiiiiiiiiiiiicicicieicieeee s 6-27
Privileges for Debugging PL/SQL and Java Stored Subprogramsccccccevevrieieincnnnan. 6-27
Writing Low-Level Debugging Code..........ccoviiiiiiiiiiiiiicececcciceeceeeiee e 6-28
DBMS_DEBUG_JDWP Package........ccccceuvinimiiiiiiiiiiiiiciiesn s 6-29
DBMS_DEBUG PaCKAZE.......c.corimimiiiiiiiiiiiiciiiiisiiesisc st 6-29
Invoking Stored SUbPrograms ... 6-29
Privileges Required to Invoke a Subprogram...........c.ccoieieieiiiiieiiicecc e, 6-30
Invoking a Subprogram Interactively from Oracle TOOISscccoooviciiiiiiriiice, 6-30
Invoking a Subprogram from Another SUbProgram...........ccccceeeieeiiceeeeeeceeeeenenens 6-32
Invoking a Subprogram from a 3GL Applicationcccoevvviiiiviniiiniiiice, 6-33
Invoking Remote Subprograms ..o 6-33
Synonyms for Remote SUDPTOGIams.........c.cccceuiiiiiiiiiiiiiiiicecce s 6-34
Committing Transactions..........cciiiiiiiiiiiii s 6-35
Invoking Stored PL/SQL Functions from SQL Statementsc.ccccoccoiniiinnniiinnncene 6-35
Why Invoke Stored PL/SQL Subprograms from SQL Statements?...........ccccooveeiirecnnne 6-36
Where PL/SQL Functions Can Appear in SQL Statementscccooeviinninnnceiiennnn, 6-36
When PL/SQL Functions Can Appear in SQL EXPressions............cccccoeuevircieiniiccicieieccncnen. 6-37
Controlling Side Effects........cccoiiiiiiiiiiiiicecccceeeee e 6-38
ReSHTICHONSttt s 6-39
Declaring a FUNCHON. ...t 6-39
Parallel Query and Parallel DMLccccccoiiiiiiiiiiiccceecee s 6-40
PRAGMA RESTRICT_REFERENCES for Backward Compatibilityc.cccoceeviverenennnn. 6-41
Returning Large Amounts of Data from a Function...............ccccoooiiiii, 6-45
Coding Your Own Aggregate FUNctions..............cccoiiiiiiii 6-45

7 Using PL/Scope

Specifying Identifier Collection..............cccccooooiiiiiiiiniiiiii s 7-1
PL/Scope Identifier Data for STANDARD and DBMS_STANDARDccccccocevinvvinnenncneennen. 7-2
How Much Space is PL/Scope Data Using?ccccoouvvnniiniininiiinninsec s 7-4
Viewing PL/Scope Data............ccooiiiiiiiiiiiiii e 7-5
Static Data Dictionary VIEWS.......cooiuiiiiiiiieiiici 7-5
UNIQUE KEYS....oiiiiiiiiciic s 7-5
CONLEXE ..ot 7-5
SIGNALULE ..ottt 7-7

DIEIMNO TOOL ...ttt 7-7
SQL DIEVELOPET ...ttt 7-7
Identifier Types that PL/Scope Collects.............ccccoviiiiiiniiiiiiiiiiiiicccceeas 7-7
Usages that PL/Scope RePOrts...........cccccooiviviiiiiiiiiiiiiiiinse s 7-9
Sample PL/SCOPE SESSIONc.oveuiiiiiiciiciieirtcirteeetee ettt st 7-10

8 Using the PL/SQL Hierarchical Profiler

Overview of PL/SQL Hierarchical Profilerccoooiiiiiiiiiiiiiiieeeeeee et 8-1
Collecting Profile Data.............ccccoiiiiiiiiiiiiii e 8-2
Understanding Raw Profiler Output............ccccooviiiiiiiiiiiiii 8-3
Namespaces of Tracked SUbPrograms.............cccoceueioiiiieioiiiicicc e 8-6
Special FUNCHON NAIMESc.ccuiiiiiiiiiiiiiiiececee et 8-6
Analyzing Profile Data............cccocoiiiiiiiiiiiiii 8-6
Creating Hierarchical Profiler Tables.........ccccocooriiiiiiiiice e 8-7
Understanding Hierarchical Profiler Tables ... 8-8
Hierarchical Profiler Database Table Columnscccococoviviiiininnininiiiie, 8-8
Distinguishing Between Overloaded Subprograms.............cccoooiiiiiiiniiice, 8-10
Hierarchical Profiler Tables for Sample PL/SQL Procedure..........ccccccocevvirrrnvnnnencne. 8-10
Examples of Calls to DBMS_HPROF.analyze with Optionscccccoevveiiiiininnnnn 8-11
PIShPIof UtIlity ..o 8-13
PISHPTOL OPHIONS ...t 8-13
HTML Report from a Single Raw Profiler Output Fileccccccoevviiiiiiniiiiine 8-14
First Page of RePOIt ..o 8-14
Function-Level REPOTTSc.cociiiiiiiiiiicceceeeee e 8-15
Module-Level REPOItS.......cciiiiiiiiiiiiiiiiiiiiciitt s 8-16
Namespace-Level REPOIESccuiiiiiiiiiiicecc s 8-16

Parents and Children Report for a FUNCHON.........c.ccccciiiiiiiccccccececeee 8-17

HTML Difference Report from Two Raw Profiler Output Filescccccoviiviiinniinnnnnn, 8-18
Difference Report CONVENtioNS...........cccueueiiiiiciiiiicie s 8-19

First Page of Difference RePOrt........cccocouiuiuiiiiiiiiiiciriniricicicceeeceeeeee s 8-19
Function-Level Difference Reports..........ccoviiimiiiiiiiiiiiiciciciciceeeeenes 8-20
Module-Level Difference RepOItSccouoiiuiiiiiiiiiiiicc e 8-21
Namespace-Level Difference REPOIts.........cccoeuvveeruriririiiririiiiierrcceereeeeeeeeeseeeeeseees 8-22

Parents and Children Difference Report for a Function ... 8-22

9 Developing PL/SQL Web Applications

Overview of PL/SQL Web Applications............cccccooeiiiiiiiiiiiiiiiiiieees 9-1
Implementing PL/SQL Web Applications..............ccccccciiiiiiiiiiiiiiiiiicccceccecs 9-2
PL/SQL GAEWAYoveiiiiieiriceereeeer et 9-2
MOA_PISGLa.ciiiiiiiiiiiii s 9-2
Embedded PL/SQL GateWayccccceuruiiiiiiiiiiiiiiiicicieiicieieeeieeeseteiiseeses s 9-3
PL/SQL WED TOOILKIE ...ccuviitietiieiietiieteeeeete ettt ettt eceeeteeveetteete vt eeveetseeseesseseessesseensenseesseeseensenseensenses 9-3
Using mod_plsql Gateway to Map Client Requests to a PL/SQL Web Application 9-4
Using Embedded PL/SQL GateWayccccoviiiiiiiininininiiiiniiininisincsc s 9-4
How Embedded PL/SQL Gateway Processes Client Requestsccccccccueueucueucrcueniciccnennns 9-5
Installing Embedded PL/SQL GateWayccccooiiuriiiiiieiiiecciecci e 9-6
Configuring Embedded PL/SQL Gatewaycccccceeuiuiiriiiiiiiniiiiiiiieiccicicieeseeeeiieeeieennes 9-6
Configuring Embedded PL/SQL Gateway: OVEIrvIEWcccccccueueuiicuimeueueeeieicneireeeeeeneeeenas 9-6
Configuring User Authentication for Embedded PL/SQL Gateway........c.cccoovveueviirunnenne. 9-8
Invoking PL/SQL Stored Subprograms Through Embedded PL/SQL Gateway................. 9-17
Securing Application Access with Embedded PL/SQL Gatewaycccccceuvueeeuvurrivinecenuene. 9-17
Restrictions in Embedded PL/SQL Gatewayccccoveueiiiiiiiiiiiiiiiieieeeceeeseeeeeenes 9-18

xi

10

Xii

Using Embedded PL/SQL Gateway: SCeNArioccceceueveveirieieiiiiieieiiieiciececeeeeeeeee s 9-18

Generating HTML Output with PL/SQL...........cccocoooiiiiiiiiicce 9-20
Passing Parameters to PL/SQL Web Applications...............ccccccovviiiininiinniiiiic 9-21
Passing List and Dropdown-List Parameters from an HTML Form.........cccccoovoiiiiininnnnnn. 9-21
Passing Option and Check Box Parameters from an HTML Form............cccooeiiiiinieininnnen. 9-22
Passing Entry-Field Parameters from an HTML Form.........c.cccccccceiiiiiiinniiciiccceene 9-22
Passing Hidden Parameters from an HTML Form........ccocoooiiiiiiiiiiiic 9-24
Uploading a File from an HTML FOrm........cccooviiiiiiiiiccce e 9-24
Submitting a Completed HTML FOIm......c.cccccoiiiiiiiiiiiiiiicceececreeseeeeee s 9-24
Handling Missing Input from an HTML FOIrmccccooiiiiiiiiiiicc 9-25
Maintaining State Information Between Web Pagesc.c.ccoooeiiiiiiiiiiic 9-25
Performing Network Operations in PL/SQL Subprograms..............cccccccoviviniiinnniinnnccnnn, 9-25
Sending E-Mail from PL/SQL.......cccccocoiiiiiiiiiiiiiiiii s 9-26
Getting a Host Name or Address from PL/SQL.......cccccccooiiiniiiiiiiiicc 9-27
Using TCP/IP Connections from PL/SQL........ccccviiiininiccicccccece e 9-27
Retrieving HTTP URL Contents from PL/SQL........ccccccooiiiiiiiiiiiiicnn, 9-27
Using Tables, Image Maps, Cookies, and CGI Variables from PL/SQLcccccccevvvnnnn 9-29

Developing PL/SQL Server Pages (PSP)

What Are PL/SQL Server Pages and Why Use Them?cccccccovvniinninininiin 10-1
Prerequisites for Developing and Deploying PL/SQL Server Pages.............ccccovvviiiinininnnnn 10-2
PL/SQL Server Pages and the HTP Package ... 10-3
PL/SQL Server Pages and Other Scripting Solutionsccccocoiiiiiiiiiiiiiiicns 10-3
Developing PL/SQL Server Pages............cccccoiiiiiiniiiiiiiccse s 10-4
Specifying Basic Server Page Characteristics.........ooooiiicieiiiiciiiciicc, 10-5
Specifying the Scripting Language...........coccueuoiiiciiiiiciieeccec e 10-6
Returning Data to the Client BrOWSETc.ccccccuiiiiiiiiiiccccccceeeeceeeeee s 10-6
Handling Script BITOTSoouoviiiiiciiice s 10-7
Accepting User INPUL.......ooiiiiii s 10-8
Naming the PL/SQL Stored Procedure............ccccceucuiiiiiiiniiiiniceceeceeeeeeeeeeeeeeeeeeenes 10-9
Including the Contents of Other Filescccouoiiiiiiiiiiiii 10-9
Declaring Global Variables in a PSP SCIiptcccccoiiiiiiiiiiiiiiciiccccncccces 10-10
Specifying Executable Statements in a PSP SCript.......cccococveiiiiiiiiiiiiiiccerreeecrcene 10-10
Substituting Expression Values in a PSP Script........cccccovvviiiiiniiiniiiii 10-11
Using Quotation Marks and Escaping Strings in a PSP Script........coooovevviriniiiccincne, 10-12
Including Comments in @ PSP SCIiPtcccceueiiiiiiiiiiriiiircccrcrecre s 10-12
Loading PL/SQL Server Pages into the Databasec.ccccccoviiiiiiiniii, 10-13
Querying PL/SQL Server Page Source Code.............cccocoiiiiiiiiiiiiiiiiccccccceeennes 10-14
Running PL/SQL Server Pages Through URLS............ccccccoiiiiiiiiiiiiiiiccces 10-15
Examples of PL/SQL Server Pages............cccooviiiiiiiiiiiiiccnccccnscvn e 10-16
Setup for PL/SQL Server Pages Examples..........cccccccoviiiiinininiiiiinininiiiiinnnscsenenes 10-16
Printing the Sample Table With @ LOOPccococuiiiiiiiiiiiiiiiccccceeeeee s 10-17
Allowing a User Selection..........ccuiuiiiiiiiiiiiiiiiiiiiiic e 10-18
Using an HTML Form to Invoke a PL/SQL Server Page.........ccccocoooviiniviiiinniceieicen, 10-19
Including JavaScript in @ PSP File.......ccooiiiiiiiiiiccccccccecccsee e 10-20
Debugging PL/SQL Server Pages............ccccocoviviiiiiiiiiiiicccscess s 10-21
Putting PL/SQL Server Pages into Production ..., 10-22

1

Using Continuous Query Notification (CQN)
Object Change Notification (OCN) ... 11-2
Query Result Change Notification (QRCN)coouiiiiiiiiiiiiiie 11-2
Guaranteed MOde ..o 11-3
BeSt-EffOrt MOcoviiiiiiii s 11-3
Events that Generate Notifications..............ccooooriiiiiii 11-5
Committed DML Transactions..........cccccceiiiiiiiiininiiiiiice s 11-5
Committed DDL Statementsccccccuiiiiiiiiiiiiniiiii s 11-5
Deregistration ..o s 11-6
GIODAl EVENESovviiiiiiiic s 11-6
Notification CONtENtSccceviiiiiiiiiiiiiiiii s 11-7
Good Candidates fOr CONcooiiiiiiiieeieeieeeee ettt estreesreesteesbeestaeetbeesbeessseebaeesseesseessseeseenseeas 11-7
Creating CON Registrationsccoiiiiiiiiiiii e 11-10
PL/SQL CQON Registration Interfacecccocovvviiiiiiiiiiicccccccccnes 11-10
CON Registration OPtioNS.........ccciiviiiiiiiiiiiii e 11-11
Notification Type Option........cceieiiiiiiiiiiiiiici s 11-11
QRCN Mode (QRCN Notification Type Only)cccoeviviiivinniiniiiiiices 11-11
ROWID OPHON...cciiiiiiiiiiciiii s 11-12
Operations Filter Option (OCN Notification Type Only).......cccceevvveiininninnnnnnns 11-12
Transaction Lag Option (OCN Notification Type Only)ccccoeeviiiiiiiiiiiin 11-13
Notification Grouping OPHiONS.........cccvueeviirirriiiiicc e 11-13
Reliable OPtion......ccoiiiiiiiiiiiiiiiiicciicc s 11-14
Purge-on-Notify and Timeout OPtions ...t 11-14
Prerequisites for Creating CQN Registrations..........c.ccovevevririrnereninnninerreecec e 11-14
Queries that Can Be Registered for Object Change Notification (OCN)cccccevvviinrinnee. 11-15
Queries that Can Be Registered for Query Result Change Notification (QRCN)................ 11-15
Queries that Can Be Registered for QRCN in Guaranteed Mode...........cccccooeiuiuricnnes 11-15
Queries that Can Be Registered for QRCN Only in Best-Effort Mode...........ccccocvuinie. 11-16
Queries that Cannot Be Registered for QRCN in Either Mode........ccccooiiiiiininnnns 11-17
Using PL/SQL to Register Queries for CON ..o 11-18
Creating a PL/SQL Notification Handler ..., 11-18
Creating a CQ_NOTIFICATIONS$_REG_INFO Object........ccccoviiiiiiiiiiiiciiiiccnnes 11-18
Identifying Individual Queries in a Notification ..o 11-22
Adding Queries to an Existing Registrationcccocoevivininiiniis 11-22
Best Practices for CON Registrations...........cccoeuvieuiiiiiiiiciiiiccieccce e 11-22
Troubleshooting CON Registrations..........ccoouvvririiiiiiiiiiiiicccccccceeeenee e 11-23
Querying CON Registrations.............ccccccoviiiiiiiiiiiiiii e 11-24
Interpreting Notifications..............ccooiiiiiiiii e 11-24
Interpreting a CQ_NOTIFICATIONS$_DESCRIPTOR ODbject..........cccovvvvviimrreriiinnieriiinennnn, 11-24
Interpreting a CQ_NOTIFICATIONS$_TABLE ODbjectcccoevviniininiiiiiiiiiicniiieinens 11-25
Interpreting a CQ_NOTIFICATION$_QUERY ODbject.....ccccceuvuviviviviiiiiriiiiiiiirniiicnineene 11-26
Interpreting a CQ_NOTIFICATION$_ROW ODbjectcovvviviririrriiiiiceeccccccennes 11-26
Deleting Registrations.............cccociiiiiiiiiiniii s 11-27
Configuring CQN: SCENATIO..........cccocuiuiiiiiiiiiii e 11-27
Creating a PL/SQL Notification Handler ... 11-27
Registering the QUETIescooiueiiiiiiiii 11-29

xiii

Part Il Advanced Topics for Application Developers

12 Using Oracle Flashback Technology

Xiv

Overview of Oracle Flashback Technology............ccccocoiiiiiiiiiiiiccccas 12-1
Application Development FEatures...........ccccoccuiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee s 12-2
Database Administration Features ... 12-3

Configuring Your Database for Oracle Flashback Technology..............ccccccceiiiiiiiiiiiinnns 12-3
Configuring Your Database for Automatic Undo Management...........c.cccccoeueueucucucueicucncnnnenne. 12-4
Configuring Your Database for Oracle Flashback Transaction Queryc.ccccooceueiinnnen. 12-4
Configuring Your Database for Flashback Transactioncccccocoeeiiiiiiiceiiicciecc, 12-4
Enabling Oracle Flashback Operations on Specific LOB Columns...........cccceceeuvuverrerneruneene. 12-5
Granting Necessary Privilegesccoioiiiiiiiiii 12-5

Using Oracle Flashback Query (SELECT AS OF)..........ccccccooiininiiiiiiiins 12-6
Example of Examining and Restoring Past Data...........cccccceeririiiinniiinnninrreeerceceenes 12-7
Guidelines for Oracle Flashback QUETYcccccviiiiiiiiiii 12-7

Using Oracle Flashback Version QUETYccccoviiiiiiiininiiiiiiiiiinssses 12-8

Using Oracle Flashback Transaction Query.............ccccococoiiiniiiinniiiiicces 12-9

Using Oracle Flashback Transaction Query with Oracle Flashback Version Query 12-10

Using ORA_ROWSCNcoiiiiiiiiii bbb 12-12
Scenario: Packaged Subprogram Might Change ROWcccccccceuviviinnninnnnncrecnes 12-13
ORA_ROWSCN and Tables with Virtual Private Database (VPD)......c.ccoceveveveinincnennne 12-13

Using DBMS_FLASHBACK Packagecccooviiiiiiiiiiiiiccnceciecsscinnes 12-14

Using Flashback Transaction ... 12-15
Dependent Transactions...........ccccceueeviiiiiiiiiiiniii e 12-16
TRANSACTION_BACKOUT Parameters...........cccccovuviiiiiiiniiieiniiiiiiicessessnessessseenons 12-16
TRANSACTION_BACKOUT REPOTILSooveviviiiiiiiiiiiiiciciiiccccc s 12-17

* FLASHBACK_TXN_STATEcoceoviiiiiiiiiniici s 12-17
* FLASHBACK_TXN_REPORTcoooiiiiiiiiiiiiiiicic s 12-17

Using Flashback Data Archive (Oracle Total Recall)cccocooiiiiiiiiiiiiiciiccccccenes 12-18
Creating a Flashback Data Archive..........ccocoiiiiiiiiii 12-18
Altering a Flashback Data ArchivVe.........ccccoviiiiiiiiiiiiiiiccccc e 12-19
Dropping a Flashback Data ArchivVeccooiiiiiiiiiiiiiccccccccccecceccee e 12-20
Specifying the Default Flashback Data Archive ..o, 12-20
Enabling and Disabling Flashback Data Archive..........cccccoociiiiiiiiiiiiiiiicccccnes 12-21
DDL Statements on Tables Enabled for Flashback Data Archive..........cccccocoviiiiiiininnnee. 12-22
Viewing Flashback Data Archive Data ..o, 12-22
Flashback Data Archive SCeNArios........c.ccoureuiiiririeueininieteeinieeeteeere et 12-23

Scenario: Using Flashback Data Archive to Enforce Digital Shredding........................ 12-23
Scenario: Using Flashback Data Archive to Access Historical Data...........cccccovevrinnnnnes 12-23
Scenario: Using Flashback Data Archive to Generate Reportscccccoeevviireriieicnnnn. 12-24
Scenario: Using Flashback Data Archive for Auditingccccooieiiiiiinciiicncenns 12-24
Scenario: Using Flashback Data Archive to Recover Data.........ccocooviiririiiinnicine 12-25
General Guidelines for Oracle Flashback Technologyccccccooiiiiiiiiiiiiiiiiccine. 12-25
Performance Guidelines for Oracle Flashback Technologyccccocooiinniiinniinnns 12-26

13 Choosing a Programming Environment

Overview of Application Architecture..............cccoooiiiiiiiiia 13-2
Client/Server ATChIECEUTEccviirieiieirie ettt ettt st 13-2
Server-Side Programming.........cccccceuoiiiiiiiiiiiicccie e 13-2
Two-Tier and Three-Tier ArchiteCtUre........c.ooerierieiiiieiieeeee et 13-2

Overview of the Program Interface..............ccccocooooiiiniiiiii 13-3
USET INEEITACE ...ttt ettt et et b e b ettt ettt et be b b besae s 13-3
Stateful and Stateless User INterfaces.........coecvevrirrenininieinieinccieesetceneeeerese e 13-3

OVerview Of PL/SQLL.........o ettt ettt ettt e et e e te e sebe e taeetbeesbaessseesbaessseensaesssesnseenseeas 13-4

Overview of Oracle Database Java Support............cccccccooiiiiiiiiiice, 13-4
OVerview Of Oracle JVIMttt sttt sttt et a bbbt besbesae s 13-5
Overview Of Oracle JDBOC ...ttt ettt e e st et sbe s sse s e ssessesaesaesessassassassessessas 13-5

OTaCle JDBEC DIIVETS....ccuiiiiiieieieiieiteieriteitet ettt ettt st se e st st ettt e st ebeebesbesaens 13-6
Sample JDBC 2.0 PrOZIAmc.oviiiiiiecieieie ittt 13-7
Sample Pre-2.0 JDBC Programi........c.ccccccucucuiuciiiimiiimiieicicicicieieieeeieieseie e senesesesenenenens 13-8
Overview of Oracle SQLJco ittt ettt s aes 13-8
Benefits Of SQLJ . .couiouieiieeeeee ettt ettt sttt sttt et et ae bt esnen 13-9
SQLJ Stored Subprograms in the SErver...........cccccccvciiniiiinicccrrecceeeeerreeaes 13-10
Comparing Oracle JDBC and Oracle SQLJ........cccocoviiiiiiiiiiiiiiiaes 13-10
Overview of Oracle JPUDIISNETccooiieieieie et 13-11
Overview of Java Stored SUDPrOgrams..........cccovvveririririnenininiii e 13-11
Overview of Oracle Database Web SErvicescoccvirerenienieniinnenineresiesieseseeeeeeeee e 13-12

Choosing PL/SQL OF JAVAccccoiiiiiiiiiiiiic s 13-13
Similarities of PL/SQL and JAVa.......cceceviriieiriniireieieieeeteeeteesee e ssessesaessesseseeseessessssessessenns 13-13
PL/SQL Advantages OVer JaVa ... s 13-14
Java Advantages Over PL/SQL.......cccccccoviiiiiiniiiiiiiin s 13-14

OVerview Of PreCOMPILErscocooiiiiiriiiriiniercecere ettt 13-14
Overview of the Pro*C/C++ PrecOmpiler..........ccoovvvrrrnnrnnrreese e 13-14
Overview of the Pro*COBOL Precompiler...........cccouoioiiiiiiiiiciceieccceeeci e 13-16

Overview of OCT and OCCT..........ccooiiiririririeeetetetetet ettt sttt se ettt b e b b e 13-18
Advantages of OCIand OCClL.........cccoviiiiiiiiiniii e 13-19
OCT and OCCT FUNCHONSeeviviiiieieieietetetettee e stes e stestetesseseeseeseesessessessessessansensensessesessenss 13-19
Procedural and Nonprocedural Elements of OCI and OCCI Applicationsc.ccccceeeeee. 13-19
Building an OCI or OCCI Application..........ccccouviviiiiiiiniiiiiiiccccscs e 13-20

Choosing a Precompiler or OClL............ccocoiiiiiiiiiiiic e 13-21

Overview of Oracle Data Provider for NET (ODP.NET)ccccceveninininininieieneeeeeneneeeeenee 13-21

Overview of OTAOLEDBcccooiiii ettt ettt b ettt sttt e et 13-22

Overview of Oracle Objects for OLE (OO40)...........ccocooiuiiiiiiiiiiiiicicccicceneneeeieeennes 13-22
O040 AUtOMALION SEIVETeviiiiiiiiiieieietetettee sttt sttt ettt sae st st sae sttt ese b s ae 13-23
0040 Object Model ... 13-24

OTASESSION.. ..ttt ettt ettt ettt e e e et et este et e s st st e sseetesbeente st entesseenseeaeensesneensesaeas 13-25
OTASEIVET ...ttt ettt ettt ettt st bbb et e b et et e st e bt ebesaeebebenee 13-25
OTaDatabase.cc.eeueruiriiieieiete ettt st b e ettt et b et he b b 13-25
OraDynasetccciiiiiiiiiic s 13-26
OFAFIEIA ...ttt ettt bttt b et bttt 13-26
OraMetaData and OraMDAIIDULE........ccceiiiririiiieeeeeeeceeeeese e 13-26
OraParameter and OraParametersccecveeieeeirererieneniesieieteeeeeseesessessessesessessessenens 13-26

XV

OraParamATITaY ..ottt s 13-27

OraSQLSEMEoviieiiiicii bbb 13-27
OTAAQ o 13-27
OFaAQMSE ..ottt s 13-27
OFaAQAZENLt 13-27
Support for Oracle LOB and Object Data TYPESc.ccvvviiiiiiiiiiiiiciccccicenceeecenenes 13-28
OraBLOB and OraCLOBi..........ccccoviiiiiiiiiiii e 13-28
OFaBFILE ... 13-28
Oracle Data CONtIOL ..o 13-29
Oracle Objects for OLE C++ Class Library ... 13-29

14 Developing Applications with Multiple Programming Languages

Overview of Multilanguage Programs..............ccccccciviiiiiiiiniiiiiniiiic s 14-1
What Is an External Procedure?.............cccocoviiiiiininiiiiiiiiniiicns 14-2
Overview of Call Specification for External Procedures..............cccccooveiniincvnirincnnecnenencne 14-3
Loading External Procedures ..o s 14-4
Loading Java Class Methodscoiiiiii 14-4
Loading External C Proceduresccoviiiiiiiiiiiiiiiiiiiiiiicccc s 14-4
Define the C Procedures ..o 14-5

Set Up the ENvironment............cooooiiiiii s 14-6
Identify the DLL......cccoiiiiiiiceeceece et 14-7
Publish the External Procedures............ccooiiiiiiiiiiiiiiiiiiiiicicicicceeeeeeeeee s 14-8
Publishing External Proceduresccooiiiiiiiiiiiiiiiiccce e 14-9
AS LANGUAGE Clause for Java Class Methodsccoceverierierierieieieeeinene et seeseenens 14-10

AS LANGUAGE Clause for External C Procedures.............cccocovvvviviiinininininnninnn 14-10
LIBRARY oot 14-10

INAME oo s 14-10
LANGUAGE ..ot 14-10
CALLING STANDARD ..ot 14-10

WITH CONTEXT ..ottt 14-10
PARAMETERSoiiiiiiiiiiii s 14-11
AGENT IN Lottt 14-11
Publishing Java Class Methods................ccccooiniiiiiiiiie 14-11
Publishing External C Proceduresc.ccccoviiiiiiiiiininiiiiiccccecnnen 14-12
Locations of Call Specifications ... 14-12
Example: Locating a Call Specification in a PL/SQL Package........c.ccccccceuruvueuevrnirerenenennes 14-13
Example: Locating a Call Specification in a PL/SQL Package Body.........c.cccocevvvviiininninne. 14-13
Example: Locating a Call Specification in an ADT Specification............cccccccueuevivvniinnennes 14-13
Example: Locating a Call Specification in an ADT Bodyccccoceveeeiiiiiiiicnciinene 14-13
Example: Java with AUTHIDcccccoiiiiiiiiiiiiiiii s 14-14
Example: C with Optional AUTHIDccccoviiiiiiiiiiiiiiiiicccccna 14-14
Example: Mixing Call Specifications in a Package..........ccccoceeueieinivininnnninrnrccnene 14-14
Passing Parameters to External C Procedures with Call Specifications..............cccccoooiiiii. 14-15
Specifying Data TYPES......ccccvuvuriiiiiiiiiiiiiiiiiiicicnr e 14-16
External Data Type Mappingsccccecvucueiieiriiiiiiiciieiriiceerreeeeieieeeeeieeeess e 14-17
Passing Parameters BY VALUE or BY REFERENCE..........ccccocoviiniine 14-19
Declaring Formal Parameters...........ccccceuiiiiiiiiiiiiiiininiiiiiinninc s 14-19

XVi

Overriding Default Data Type Mapping.......cccccouoirieiniiiieiiiiciceccec e 14-20

Specifying Properties........cococciiieiiiicicieece s 14-20
INDICATOR ..ottt 14-22
LENGTH and MAXLENccooiiiiiiiiiiiscs s s sssssssnns 14-22
CHARSETID and CHARSETFORM.........c.coooiiiiiiiiiiiceeesesne s 14-22
Repositioning Parameters...........ccccoviiiiiiiiiiiiiiic s 14-23
SELF ..ot 14-23
BY REFERENCEcooiiiiiiiiiiiiiiee s 14-25
WITH CONTEXT ..o 14-26
Interlanguage Parameter Mode Mappingscccocoeueieiirieieisiiicieiccceecee s 14-26

Running External Procedures with CALL Statements..............ccccccoooiiiiiiiiiiiiin, 14-26

Preconditions for External Procedures ..., 14-27
Privileges of External Procedures...............coooeuiiiiiiiiiiiiiecc 14-27
Managing PermiSSionsccoeueiiiiiiiiiiiciiiii s 14-28
Creating Synonyms for External Procedures............c.cccccccuiciiiiiniinnicirrccrreeeenes 14-28

CALL Statement SYNTaXccuoviieieiiiiiciece e 14-28

Calling Java Class Methodsc.ouiiiiiiiii e 14-29

Calling External C ProCeAULESccccoueueuiiiiriririiiiinirrircerene et 14-29

Handling Errors and Exceptions in Multilanguage Programscccoovviiiiiiiiiinnns 14-30
Using Service Routines with External C Procedures..............cccccoovivniinnnnnninnnnnn 14-30

OCIEXtProc AlIOCCalIMEMOTYcocueuiiiiiiieiiieieeeireee ettt 14-30

OCIEXtPIOCRAISEEXCP .vvvvviiiiiiiciciiicici s 14-34

OCIExtProcRaiseEXCPWIthIMISGocuiiiiiiciiiicc e 14-35

Doing Callbacks with External C Procedures...............cccccoiiiiininiiininiiiiiccices 14-36

OCIEXtPIOCGELENYoviiiiiiiiicccc e 14-36

Object Support for OCI Callbackscoueiiiiiiiiiiie e 14-38

Restrictions on Callbacks ... 14-38

Debugging External Procedures ..o 14-39

Example: Calling an External Procedure............ocooooiiiiiiiiiiiiic 14-40

Global Variables in External C Procedurescccocouveriiiiiiiniiiniiiniiceceecennn, 14-40

Static Variables in External C Proceduresc.cccoooeiiiiiiniiininiiiiccnns 14-40

Restrictions on External C Procedures..........ccovciinnieiicinniecirneccesrenceseseeeneeeeenenes 14-41

15 Developing Applications with Oracle XA

X/Open Distributed Transaction Processing (DTP).............ccccccovviviviiinninnininiiicices 15-1
DTP TerminolOZccueueueuiuiiiieiiieicieieieicieieieieeie ettt seees 15-2
Required Public INfOrmation ... 15-4

Oracle XA Library SUDPIrOGIamSccoccoiuiuiiiiiiiiiiiiiiiiciiiiicieeiceeeieee s 15-5
Oracle XA Library SUDPIOZIAIMScccccucuimiuiiiiiiiieiieieieieieieieeeeeeeeeee e 15-5
Oracle XA Interface EXtENSIONS..........cocoiiiiiiiiiiiiccc s 15-6

Developing and Installing XA Applicationscccccovviiiiiiiiiiiniiiinncs 15-6
DBA or System Administrator Responsibilitiesc.ccccccceeeiiiinniiiicccerceeeee 15-7
Application Developer Responsibilitiescccccoveiiiniiiiiiiiiiiiccc 15-7
Defining the Xa_open SriNg.........ccccccciiiiiiiiiiiiiic s 15-8

Syntax of the Xa_0Pen SEINE........ccccciiiiiiiiiiceeceee e 15-8
Required Fields for the xa_open String ... 15-8
Optional Fields for the Xa_open String ... 15-9

xvii

Using Oracle XA with PrecoOmpilers ... 15-11

Using Precompilers with the Default Database ... 15-11
Using Precompilers with a Named Database.............ccoceioiiniiiininiiiccccccn, 15-11
Using Oracle XA wWith OCT ... 15-12
Managing Transaction Control with Oracle XA...........cccooiiiiii 15-13
Examples of Precompiler Applications.........ccccucueucucueieicmcueininieicicieeieeieeeeeeeeeeses s 15-13
Migrating Precompiler or OCI Applications to TPM Applications...........ccccceevvrvviiiiivrinnnnes 15-14
Managing Oracle XA Library Thread Safetyccccoooiiiiiiii 15-15
Specifying Threading in the Open String..........cccccccceeeiiicinniirircccreeeerereeaes 15-16
Restrictions on Threading in Oracle XAccooooiiiiiiiiic e 15-16
Using the DBMS_XA Package.........c.courueieiiirieieiicieec it 15-16
Troubleshooting XA Applications ... 15-19
Accessing Oracle XA Trace Files.........coooiiiiiiiiic 15-19
xa_open String DDEFL. ..o 15-20
Trace File LOCAHONSc.cviiuiviiiiiiic s 15-20
Managing In-Doubt or Pending Oracle XA Transactions...........cccocoeeeviiiieieinicciciincnennn. 15-20
Using SYS Account Tables to Monitor Oracle XA Transactions..........c.cccccevvvnnniniinnncnnnes 15-20
Oracle XA Issues and Restrictions ... 15-21
Using Database Links in Oracle XA Applications...........cccoeveiiiiiiiiiiiniine, 15-21
Managing Transaction Branches in Oracle XA Applicationscccccoomieieiicnieieicicnnen. 15-22
Using Oracle XA with Oracle Real Application Clusters (Oracle RAC)........cccccccccueucuennnnne 15-22
GLOBAL_TXN_PROCESSES Initialization Parameterccccooveeeeveeiveeeeereeeeeeeeeeeen. 15-22
Managing Transaction Branches on Oracle RAC............ccooiiiii 15-23
Managing Instance Recovery in Oracle RAC with DTP Services (10.2)ccccccvvruencee 15-24
Global Uniqueness of XIDs in Oracle RAC ..o 15-25
Tight and Loose COUPLINEcovurieiiirieiece s 15-25
SQL-Based Oracle XA ReStIICHONSccicviiueeiireeeecte ettt ettt eteereeeve e evesteeeseereeeseesseneens 15-25
Rollbacks and COMIMILScceviuiiiiiiiiiiiiiiiiicc s 15-25
DDL StateIentscccoivieieiiiniiiiccsetcc s 15-26
SESSI0N SHAtE....ocvvvviicit s 15-26
EXEC SQL ..ot 15-26
Miscellaneous RESEIICHIONS.cucueiririeuiiiiririecieteeeereet ettt 15-26

16 Developing Applications with the Publish-Subscribe Model

Introduction to the Publish-Subscribe Model..............c.cooovieiiniiiiiiiceececeeeeee e 16-1
Publish-Subscribe ArCRItE@CHUTEcocvveeieiieieeceeeeeee et e ens 16-2
Database EVENLES.....cccccvieiiciieieiiciese ettt et te st et s teesaesteeaesreesae s e esseessessesseessesseessesseessenseas 16-2
Oracle Advanced QUEUINGccceiuiiiiiiiiiiiiiiice s 16-2
CLIENt NOHIICATIONeevievietietiieieteietetet ettt et e et este st esteseeseesaesassessessessessessessesensessensenses 16-2
Publish-Subscribe COncepts ... 16-3
Examples of a Publish-Subscribe Mechanismccccocciiiiiiiiiiiiiiccccccenenas 16-4

17 Using the Identity Code Package

Identity COMCEPLScoouimimiiiiiiiii bbb 17-1
What is the Identity Code Package?cccoviiiiniiiiiiiis 17-5
Using the Identity Code Packagecccocovviiiiiiiiiiiiiiniiiiiccc s 17-6

Storing RFID Tags in Oracle Database Using MGD_ID ADTccccoooeiniiinnniicceiennene, 17-6

xviii

18

Creating a Table with MGD_ID Column Type and Storing EPC Tag Encodings in the
Column 17-6

Constructing MGD_ID Objects to Represent RFID Tags.........cccccooviimieieiiiciciiiicciae 17-7
Inserting an MGD_ID Object into a Database Table...........cccccocovviiiirnninnniicrne 17-9
Querying MGD_ID Column TYPe........cooeueieiiiieieiiicieeeci s 17-10

Building a Function-Based Index Using the Member Functions of the MGD_ID Column Type ..
17-10

Using MGD_ID ADT FUNCHONS........ccoiiiiiiiiiiiiiiccicccs s 17-10
Using the get_component Function with the MGD_ID Object..........cccccceevvviiiiiinininnnne. 17-11
Parsing Tag Data from Standard Representations...........ccccooviriiiiiiciniicc 17-11
Reconstructing Tag Representations from Fields ..o 17-12
Translating Between Tag Representations...........c.cooceieiiieieiiiiniciiiiccecc e 17-13

Defining a Category of Identity Codes and Adding Encoding Schemes to an Existing Category
17-13

Creating a Category of Identity COdesoouiiiiiiiiiiiciicicccccccceeeeeenes 17-13
Adding Two Metadata Schemes to a Newly Created Categoryccccocevvvieieiinnnnen. 17-13
Identity Code Package TYPes ... 17-18
DBMS_MGD_ID_UTL PacCKage...........ccccecevviimiiiiiiiiiiiniiiieieiiesseie s ssnis 17-18
Identity Code Metadata Tables and VieWs............ccccooiiiiiiiiiiiiiininiiiiees 17-19
Electronic Product Code (EPC) CONCEPLS..........cocorvimimimimiiiiiiiiiiiiiiciicciciiec e 17-21
RFID Technology and EPC v1.1 Coding SChemescccccoevriverevnnirnnninnnccccececees 17-21
Product Code Concepts and Their Current Use...........cccocevviiiininiiiniinninnes 17-22
Electronic Product Code (EPC)ccoeiriineinieinieineinerietrreeereesieee et 17-22

Global Trade Identification Number (GTIN) and Serializable Global Trade Identification
Number (SGTIN) 17-24

Serial Shipping Container Code (SSCC)........ccccovviiiiiiiiiiiiicces 17-24
Global Location Number (GLN) and Serializable Global Location Number (SGLN). 17-24
Global Returnable Asset Identifier (GRAI)ccccocveieiriiniirieiserereeeeeeee e 17-24
Global Individual Asset Identifier (GIAIL)ccecivueireirieirieieeee et 17-24
RFID EPC NEtWOTK.....cocoiiiiiiiiiiiiiiiiiiiiiiiiii s 17-24
Oracle Database Tag Data Translation Schema..............c.ccoooiiin 17-24
Schema Object Dependency
Overview of Schema Object Dependencies...............ccccccoviviiiiiininiiiiinie 18-1
Querying Object Dependencies ... 18-4
ODbject StatUusc.coiiii s 18-4
Invalidation of Dependent Objects..............ccoiiiiiiiiiiiiiiiiii 18-5
Session State and Referenced Packages ..o 18-8
Security AUthOTIZationccccoiuiiiiiiiiiiiiiiic s 18-8
Guidelines for Reducing Invalidation...............cccooiiiin, 18-8
Add Items t0 ENd of PaCKageccveviuriiiiiicicic 18-8
Reference Each Table Through a VIEW ... 18-9
Object Revalidationccooiiiiiiiiiiiiii s 18-9
Name Resolution in Schema Scope. ... 18-10
Local Dependency Managementcccciiiiiiiiiiiiiiieccie e sesesenenenan 18-11
Remote Dependency Management..............ccccooviiiiiiiiiiiiiiiic e 18-11
Dependencies Among Local and Remote Database Proceduresccccooviriiiiiinnnnne. 18-11

Xix

Dependencies Among Other Remote Objects...........cccovviiiiiiiiiiiiccnes 18-11

Dependencies of APPLiCatioNs..........ccuicueiiiicicieiiiccicie e 18-12
Remote Procedure Call (RPC) Dependency Management..............cccccccvvuiiinniiiiininincccnnnas 18-12
Time-Stamp Dependency Mode ... 18-12
RPC-Signature Dependency Mode...........ccociiiiiiiiiiiiciccii s 18-13
Changing Names and Default Values of Parameters............cccccocovvvnnrnnnncnnnncnccnes 18-15
Changing Specification of Parameter Mode IN..........c.cccooooiiiiii 18-15
Changing Subprogram Body............ccoiiii 18-15
Changing Data Type Classes 0f Parametersc.coceveurirereecinininineicciccceceeenenes 18-15
Changing Packaged TYPescccocueuiiririeiiicic s 18-17
Controlling Dependency Mode...........cccuoiiiiiiiiiiccc s 18-17
Dependency ReSOIULIONc.c.ceuriiiiiiiiiiiriiicicrccccee s 18-18
Suggestions for Managing Dependenciesccccooirieieiiiicieiicccc 18-19

Shared SQL Dependency Management...............ccccooriiiiiiiiiiiiiiiiccceeeeseenennas 18-19

19 Edition-Based Redefinition

EIHIONS. ... 19-2
Editioned and Noneditioned ODbJects..........ccccccuiiiiiiiiiiiiiiiiiecccceeeeeeeeeeeeee s 19-2
Editionable and Noneditionable Schema Object Types..........cccccoevvvviiiiiinnninin 19-3
Rules for Editioned ObJectsccccoiiiiiiiiiiiiiiiiiiiiciiinns 19-3
Enabling Editions fOr @ USETccccocuiiiiiiiiiiiiiicciccceeeceeeeee e 19-4
Creating an Edition ..o 19-5
Inherited and Actual ODbJects...........ccciiiiiiiiiiiiiii s 19-5
Dropping Inherited ODJEctS.......ccceuiuiuiiiiiuiiiiiiiiiicceieeeieeee e 19-7
Actualizing Referenced ODbjJectsccoooiiiiiiiiiiiiiiiiiiiiiciicc s 19-9
Making an Edition Available to Some USersccccccouiiiviiiniiiniiiiiicis 19-10
Making an Edition Available to All USETS..........ccccceuiiiiiiiiiininiiiccrceeeeeeereeeeeese s 19-10
Current Edition and Session Edition..........cccccoiiiiiiiiiiiicccna 19-10
Your Initial Session Edition and Current EAition ..o, 19-10
Changing Your Session Edition and Current EAitionc.ccoecveniiiiiinciiicncnes 19-11
Displaying the Names of the Current and Session Editionsccccceevviiiiiiiniinennns 19-11
When the Current Edition Might Differ from the Session Edition............ccccccvnueneene. 19-11
Retiring an EdItIONc.ccovuiiiiiiiiriiiiircccrrccr e 19-13
Dropping an Edition ... 19-13
Editioning VIEWSccooiiiiiiiii e 19-14
Creating an Editioning VIEWcccceviiiiiiiiiiiiicrrrrr e 19-15
Partition-Extended Editioning View Names.............cccooviiiiiniiiiiicccccncncvenes 19-16
Changing the 'Write-ability' of an Editioning View..........cccccoviiiiiiiiiiiiiiccnne. 19-16
Replacing an EAIIONING VIEWcooiiiiiiiiicicccc e 19-16
Dropping or Renaming the Base Table..........c.cccooiiiiii 19-16
Adding Indexes and Constraints to the Base Tablecccccccccevviiiiniiiinniiiine, 19-16
SQL Optimizer Index HINtS........ccccceiiiiiiiiiiiiiiccrccrrrce e 19-17
Crossedition THIGGeTS. ... 19-17
Forward Crossedition TIig@erscccccviiiiviiiiiiiiininiiiiiiiinn e 19-18
Reverse Crossedition TTIZZETScccovuvuriiiiirirriiiriiirre e 19-18
Crossedition Trigger Interaction with Editions..........cccocoviiiiiiccn 19-18
Which Triggers Are Visible ... 19-18

XX

What Kind of Triggers Can Fire..........ccoiiiiniiiiiiiiiicecccees 19-18

FATING OTAET ..ot 19-20
Crossedition Trigger EXeCUtIONc.cccceuiuiiiiiiiiririiiiiinrecerre s 19-21
Creating a Crossedition TriggeT.........ccouruiiiiiiiieiiiciee 19-21
Coding the Forward Crossedition Trigger Bodycccoooiiiiiiiiii 19-22

Coding the Reverse Crossedition Trigger Bodycccccovvvrniirinnvnninrncerrecnes 19-24
Transforming Data from Pre- to Post-Upgrade Representationcccocoeeveireieiinnennne. 19-24
Dropping the Crossedition Triggersocoeuririoiiieiiiiicieeccec e 19-25
Displaying Information About Editions, Editioning Views, and Crossedition Triggers 19-26
Using Edition-Based Redefinition to Upgrade an Applicationcccoooeiiiiiiinninne 19-27
Preparing Your Application to Use Editioning VIewsccccooeoiiiiiiiiirnicciiccccce, 19-28
Procedure for Edition-Based Redefinition Using Only Editionsccccccevuvervvnrncnncnne. 19-29
Procedure for Edition-Based Redefinition Using Editioning Viewsc.cccccooeiiniinnnnen. 19-31
Procedure for Edition-Based Redefinition Using Crossedition Triggers..........cccccoevrunnnnee. 19-32
Rolling Back the Application Upgrade............cccceeiuiiiiiiiiiiiiiiceeeeeeeeeeereeeeeeeeeeeenes 19-33
Reclaiming Space Occupied by Unused Table Columnsc.ccoooeiiiiiiniiciiiiccie, 19-34
Example: Using Edition-Based Redefinition to Upgrade an Applicationc...cccouc...... 19-34
Existing APPLCAtiONc.c.ceuiiiiiiiiiiiiiiciciierceerrc e 19-34
Preparing the Application to Use Editioning VieWsccccccevviiiiiniininniinn, 19-36

Using Edition-Based Redefinition to Upgrade the Applicationcccccooveieieinnne. 19-36

A Multithreaded extproc Agent

Why Use the Multithreaded extproc Agent?.............cccccovviiiiiiii A-1
The Challenge of Dedicated Agent ArchiteCturecoocovvevviiirinnvnnircccereeeeeeees A-1
The Advantage of Multithreading...........coooeviiiii e A-1

Multithreaded extproc Agent Architecture ... A-2
MONItOr TRIAdovviiiiiiiii s A-3
Dispatcher Threads ... A-4
Task Threads.......cccooiiiiiiiiiiiiiiii s A-4

Administering the Multithreaded extproc Agent..............ccooiiiiniiniie A-4
Agent Control Utility (agtctl) Commands...........ooeueioiiiiiioiiiiiic e A-5
Using agtctl in Single-Line Command Mode...........cccccceiiiiiiiiiiiiiiiiiiccccceeeees A-5

Setting Configuration Parameters for a Multithreaded extproc Agent..........cccceevvuvuenene. A-6
Starting a Multithreaded extproc Agent...........cc.cooiveiiiiiiiiiii e, A-6
Shutting Down a Multithreaded extproc Agentccoovviiiiiiiiiiie, A-6
Examining the Value of Configuration Parameters............cccccocovevvrirrrnnrnrrnsrreenes A-7
Resetting a Configuration Parameter to Its Default Valuec...ccccooeiiiiiiiininnnnnn. A-7
Deleting an Entry for a Specific SID from the Control File..........ccccccccoeviiiiiinnnnnnn A-7
Requesting Helpc.coiiiiiiiccecc e A-7
Using Shell Mode Commands...........cccueueiiuiieiiiiiiciecie i A-8
Example: Setting a Configuration Parameter ... A-8
Example: Starting a Multithreaded extproc Agentccccoevvvvviinvnninnrecereene A-8
Configuration Parameters for Multithreaded extproc Agent Control..........ccccccoevvreiiriinines A-8
Index

XXi

XXii

List of Examples

1-1 LOCK TABLE with SHARE MODE..........ccooiiiiiiniiniinincce e 1-14
12 How the Pro*COBOL Precompiler Uses LOCKS.........ccooeriiiiiiircieiicceccc 1-23
1-3 Marking a Packaged Subprogram as AUtonomousS............cccceueueiirieiiiiicicie e 1-37
1-4 Resumable Storage AIlOCAtioNccceueiiiuiiiiiiiciec e 1-39
2-1 Displaying Current Date and Time with AD or BC Qualifier..........coooooiiiinininn 2-13
2-2 Changing the Default Date Format...........ccoooouoiiiii e 2-13
2-3 Changing the Default Time Formatcccooouoiiiiiiii 2-14
2-4 Accessing Information in a SYS.ANYDATA Column.......cooooiiiiiiiiniiniecccee 2-18
2-5 Querying the ROWID PseudocOlUmNccoooiiuiiiiiiiiiiic e 2-23
3-1 Enforcing a Phone Number Format with Regular Expressions..........ccccccooceuiiniiriennnes 3-10
3-2 Inserting Phone Numbers in Correct and Incorrect Formats..........cccccocevvviiiviniiinininnnnn, 3-11
3-3 Using Back References to Reposition Characters.............cccocoeueueioiiiiiiciinceicccecce 3-11
4-1 VENDOR_PARTS TabIecoovuiiiriiiiiiciicicieci it 4-4
4-2 Creating INAeXeSc.cooouiiiiii e 4-6
4-3 Function-Based Index Allows Optimizer to Perform Range Scan..........cccccovverieinirnnnnn. 4-8
4-4 Function-Based INAeXeSccoouiiiiiiiiiii s 4-10
5-1 Inserting NULL Values into Columns with NOT NULL Constraintsccccceueveruruenne. 5-3
5-2 Deferring Constraint Checks...........coooeiiiiiiiiiiiii 5-10
5-3 Defining Constraints with the CREATE TABLE Statementc.cccccooooiiiiiiriinne. 5-15
5-4 Defining Constraints with the ALTER TABLE Statementcccccooooiiiiiininnnne 5-15
5-5 Creating Enabled CONStraintsccocooioiiiiiiiiiiiiic e 5-17
5-6 Creating Disabled CONStraintscccocoooioiiiiiiiiii 5-18
5-7 Enabling Existing CONStraints.........cccccooiiiiieiiiiiiicce s 5-18
5-8 Disabling Existing CONStraints..........ccooeuoiiiieiiiiiicieceeec s 5-19
5-9 Modifying CONSIAINtScccooeiuiieiiiicie s 5-20
5-10 Renaming a ConStraiNt........cccooiiiiiiiiiiiiiiicccc s 5-21
5-11 Dropping CONStraints........ccccoeeiiiiiiiiieiiiiiiicic s 5-22
5-12 Viewing Information About Constraints............ccooeeioiieiioiiiiiic e 5-24
6-1 ANONYMOUS BLOCK......cuiiiiiiii e 6-2
6-2 Anonymous Block with Exception Handler for Predefined Errorcccccooveriininn 6-3
6-3 Anonymous Block with Exception Handler for User-Defined Exception...............c......... 6-3
6-4 Stored Procedure with Parameters...........occooooiiiiiiiiiicc e 6-5
6-5 %TYPE and %ROWTYPE Attributesccoooueioiiiiiiiiicc e 6-7
6-6 Creating PL/SQL Package and Invoking Packaged Subprogram..............cccccoeeerniiin. 6-11
6-7 Raising ORA-04068ccooimiiiiiiiiiiice e 6-15
6-8 Trapping ORA-04068...........ccceiiiiiiiiiiiiicc s 6-15
6-9 DML Statements that Reference Collections...........cccceuevireieieiniinininiceececes 6-16
6-10 SELECT Statements that Reference Collectionsccoeeueveiiiiiiiiicnieiiceccce 6-17
6-11 FOR Loops that Reference Collections and Return DMLcccccooiiniiniininiccnen 6-18
6-12 Fetching Data with Cursor Variable ... 6-20
6-13 Cursor Variable with Discriminator............cccccoiiiiiiiiiiiiiicccccccceccceeas 6-21
6-14 Compile-Time EITOTS.......ccccoiiiiiiiiiiiii e 6-22
6-15 Invoking a Subprogram Interactively with SQL*PIUS.........ccccooeiviiiiiiiiiiices 6-30
6-16 Creating and Using a Session Variable with SQL*PIUS.........cccoooeviiiiininiiiiccees 6-31
6-17 Invoking a Subprogram from Within Another Subprogramcccceevvnnnnnnncnnes 6-32
6-18 PL/SQL Function in SQL Expression (Follows Rules)...........ccccoeiiiiiiiiiiniiiicnnnes 6-37
6-19 PL/SQL Function in SQL Expression (Exception to Rule)ccceviiiiiiiiiiiinnns 6-38
6-20 PRAGMA RESTRICT_REFERENCES...........ccccoiiiiiiiiiiiincc s 6-42
621 PRAGMA RESTRICT REFERENCES with TRUST on Invokee.........cccccoovruiiiinicnninnnes 6-43
622 PRAGMA RESTRICT REFERENCES with TRUST on Invokerccccooeeuniiinicniennnes 6-44
6-23 Overloaded Packaged Function with PRAGMA RESTRICT_REFERENCES................. 6-45
7-1 Is STANDARD and DBMS_STANDARD PL/Scope Identifier Data Available?.............. 7-2
7-2 How Much Space is PL/Scope Data Using?..........c.cocoeovueniniieininicieicceeccecnee 7-4
7-3 USAGE_CONTEXT_ID and USAGE_ID.......ccccoooviiiiiiiiiiceie s 7-6

xXiii

XXiv

N
[R e R
N

QOQOQOQOQOQOQOQO(IOQOQOCDCDCXJCXJCDCXJ
= 2 OO NODOOAWON—=-000P~,WN =

= O
o |
| —
- N =0

10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9
10-10
10-11
10-12
10-13
11-1
11-2
11-3
11-4
11-5
11-6
11-7
121
12-2
12-3
13-1
13-2
151
15-2
15-3
154
15-5
18-1
18-2
18-3
18-4
18-5
18-6

Program Unit with Two Identifiers Named p ..o 7-7

Profiling a PL/SQL Procedure...........cccocovuiviiiiiiiiiiiieiiiiiiicicccccsc s 8-3
Invoking DBMS_HPROF.QNALYZe.......cocoiiiiiiiiiiiciii s 8-8
DBMSHP_RUNS Table for Sample PL/SQL Procedure...........cccccovviiiiiininiiinnnncncnn. 8-10
DBMSHP_FUNCTION_INFO Table for Sample PL/SQL Procedure.cccceuuueeee. 8-11
DBMSHP_PARENT_CHILD_INFO Table for Sample PL/SQL Procedure.................... 8-11
Invoking DBMS_HPROF.analyze with Options ... 8-11
Creating and Configuring DADS............ccooiiiiiiiii s 9-11
Authorizing DADs to be Created or Changed Later............ccoooooiiiiiiiii, 9-12
Determining the Authentication Mode for a DADccccooiiiiiiiiii, 9-13
Showing the Authentication Mode for ALl DADS..........cccooviiiiiiiiiieceee 9-14
Showing DAD Authorizations that Are Not in Effect............ccoooi 9-14
epgstat.sql Script Output for Example 9—1.........cccccoviiiiiiiiiiiiccccs 9-15
Using HTP Functions to Generate HTML Tagsc..cccoooveieiimeiiiniiciccccee 9-20
Using HTP.PRINT to Generate HTML Tags.........ccccouoiiiiiiiiiiieeiicccc 9-20
HTML Drop-DOwWn LiSt ..ottt 9-22
Passing Entry-Field Parameters from an HTML Formcccoooiiiiiiiiciinc 9-23
Sending E-Mail from PL/SQLc.cccooviiiiiiiiiiiiiice s 9-26
Retrieving HTTP URL Contents from PL/SQL.........ccccccoovvviiiniiiiiiins 9-27
SIMPLE.PSP vttt s 10-1
Sample Returned HTML Pagecoooueiiiiiiiiiicic s 10-6
SIMPleWithUSErINPUL. PSP ...cvoviviiiiiiiiciicicc s 10-8
Sample Comments in @ PSP File ... 10-13
Loading PL/SQL Server Pagescococcueiiiiiiioiiiciceci s 10-13
Querying PL/SQL Server Page Source Codecooouemiiiininiiiniciiicieeces 10-14
Show_prod_simple.psp ..o 10-17
Show_catalog_Taw . PSP ... 10-17
show_catalog_pretty.PsSp ... 10-18
show_product_partial. psp........cccceviiiiiiiniiiii e 10-18
show_product_highlighed.pspc.cccccoviiiiiiiiiiii 10-19
PrOAUCE_fOIMUPSP «eoviiiiiiiiici s 10-20
show_product_javascript.pspccoceeeiiiiiiiiiii 10-20
Query to be Registered for Change Notification............ccooeueiiiiiiniinii 11-2
Query Too Complex for QRCN in Guaranteed Modecccoeeiiiiiiiiiiiiiiininnen, 11-3
Query Whose Simplified Version Invalidates Objectsccccveeiiiiiiiiiiiiieiiennen, 11-4
Creating a CQ_NOTIFICATIONS$_REG_INFO Object.........ccoevvuviniminiiniiiiiiiniiiiinns 11-21
Adding a Query to an Existing Registration.........c.c.ccoooeeiiiiiiiiicc 11-22
Creating Server-Side PL/SQL Notification Handler ..o, 11-28
Registering @ QUETYccooeieiiiiiiieiccie e 11-29
Retrieving a Lost Row with Oracle Flashback Query.........c.cccooeeiiiiiiniiiiiiici 12-7
Restoring a Lost Row After Oracle Flashback Query ..o, 12-7
Function that Can Return Row SCN from Table that has VPDccccocoeiiiiiininnne. 12-14
Pro*C/Ca+ APPLCation......ccviiiiiiiiiccieic s 13-15
Pro*COBOL APPLCAtiON.......ccoiiiiiiieieiiiciciicicccce s 13-17
XA_OPEIL SN ..ttt 15-8
Sample Open String Configuration.........c.cooeueveieiiiiiciiiiicc s 15-11
Transaction Started by an Application Server ... 15-14
Transaction Started by an Application Client..........cccocovviviviinnines 15-14
Using the DBMS_XA Package..........cccovorurieiiiieieiiicici s 15-16
Displaying Dependent and Referenced Object Types.......cccocvviiiiiiiininiiiniiiniins 18-1
Schema Object Change that Invalidates Some Dependentscccccceevviiiiiiiiiiniinnnnnn 18-3
View that Depends on Multiple Objects..........cccccoouviiniiiiininiiies 18-4
Changing Body of Procedure get_hire_date.........c.ccccocooormniriiiriiiiic 18-15
Changing Data Type Class of get_hire_date Parameterccccoovvvvviniiiiniinininns 18-16
Changing Names of Fields in Packaged Record Typeccccccoouvriiriniininicinicncne 18-17

19-1
19-2
19-3
194
19-5
19-6
19-7
19-8
19-9
19-10
19-11
19-12
19-13
19-14
A1

Inherited and Actual Objects..........covviiiiiiiiiiiiiii s 19-5

Dropping an Inherited Objectccooiiiiiiiiiiiiicc 19-7
Creating an Object with the Name of a Dropped Inherited Object..........ccccceevevivnrnnnnnnn. 19-8
Current Edition Differs from Session Edition............cccoceuvvviviiinnnnne, 19-12
Crossedition Trigger that Handles Data Transformation Collisionsccccccveuuies 19-23
Edition-Based Redefinition of Very Simple Procedure............cccooviiiiiiiiiiiinnnnns 19-30
Creating the Existing Applicationcccccoeeiiiiiiiiiiiiiiic 19-34
Viewing Data in Existing Tableccooiiiiiiiiiiiiccccs 19-35
Creating an Editioning View for the Existing Table...........ccccccoconniniinnninn 19-36
Creating Edition in Which to Upgrade the Application ..o, 19-36
Changing the Table and Replacing the Editioning View ..o 19-37
Creating and Enabling the Crossedition Triggers..........cccoeevniiurieiiiinicieiicicicci 19-37
Applying the Transforms...........ccocuiiiiiiiiiiii s 19-40
Viewing Data in Changed Table...........cccccooviiniiiiices 19-40
Setting Configuration Parameters and Starting agtctl............ocooveviiiiiiii, A-4

XXV

List of Figures

XXVi

|
N=0NO0OOH~WN-=

OO0l = = =
|

17-2

Time Line for Two Transactions............cccceiiiiiiiiiiiiiiiicc s 1-26
Referential Integrity Check..........coouiiiiiiii 1-28
Transaction Control FIOW ... 1-31
Possible Sequences of Autonomous Transactionsceceeueieiiicieeicicceecce s 1-33
Example: A Buy Order ..o 1-34
Bank Withdrawal—Sufficient Funds ..o, 1-35
Bank Withdrawal—Insufficient Funds with Overdraft Protection ..o 1-36
Bank Withdrawal—Insufficient Funds Without Overdraft Protection.............ccccc........ 1-37
Table with a UNIQUE CONSIIAINEcceeciiieieiiciiciiciieieeteeieeeete ettt eve v e e ae e rseae e 5-6
Tables with FOREIGN KEY CONStraintsccccccoeiiiiiiiiiiiiiiiiiiiiciciecseeeeeenns 5-8
Exceptions and User-Defined Errors............cooceiiiiiiiiiiiicciecec e 6-25
PL/SQL Web APPLCAtiONooueiiiiecicieice et 9-2
Processing Client Requests with Embedded PL/SQL Gateway.......ccccccoovrriiiiirnnenennee. 9-5
Middle-Tier CaChingccceuoiiiieieiiiciec s 11-8
Basic Process of Continuous Query Notification (CQN)cccccoceiiiiiiiiiiiiiiienen, 11-9
The OCI or OCCI Development Processcooerueueiiiicieieiiiicesiccie s 13-20
SOFtWAre Layers......ccocuriiiiicieieece s 13-23
Objects and Their Relations ..o 13-24
Supported Oracle Database Data Types........ccoceueioiririiiiiiiiceccc e 13-28
Oracle Database and External Procedurescoociuiiiiiiiiiiicciccccecee 14-27
Possible DTP MoOdel........ccccooiiiiiiiiiiiiiiiiiiiiii s 15-2
Oracle Publish-Subscribe Functionality..........coccoooiiiiiiii 16-2
RFID Code Categories and Their Schemescccooiiiii 17-2
Oracle Database Tag Data Translation Markup Language Schema............ccccooooeeiinn 17-4
Multithreaded extproc Agent Architecture ..o, A-3

List of Tables

U U N O
—

NN S O o s R L N N RN

APON—LOOOPAON =

- = = O © O O©O000Oo oo
TTT '
N = =

11-3
11-4
11-5
11-6
11-7
121
12-2
12-3
131
141

COMMIIT Statement OPtioNsccueviveieieiiiiiiiiie s 1-6
Use of COMMIT, SAVEPOINT, and ROLLBACKcccccooiiiiiice 1-8
Examples of Concurrency Under Explicit LOCKING........ccooueviiiiiiiiiiii, 1-17
Ways to Display Locking INformation............cooeeueiiiiiinioiiiciicc e 1-24
Summary of ANSI Isolation Levels..........c.ccoiiiiiiiii e 1-25
ANSI Isolation Levels and Oracle Databasecccooviiiiiiiiiiiicnes 1-25
Read Committed and Serializable Transactions..........c.cccoceevvviiiiinininininiinnes 1-30
Possible Transaction OUtCOMEScccovviiiiiiiiiiii e 1-34
Components of the Binary Format for Floating-Point Numbers...........ccccccoooviiiinnnan. 2-6
Summary of Binary Format Parameters.........c.cocooououoiiiiiiiiiicic 2-7
Summary of Binary Format Storage Parameters............cccooviriiiiiiciciiccce 2-7
Range and Precision of IEEE 754 formats...........cccoooeueiiiirieiiiinieeecccce e 2-7
Special Values for Native Floating-Point Formats.............ccoooeininiiiiiiiiicccen, 2-8
Values Resulting from EXCEPHiONS..........covoiiuiiiiiiiiicicc s 2-10
Large Object Data TYPes........ooiiueiiiiiieieiecci s 2-16
ANSI Data Type Conversions to Oracle Database Data Types........ccccccevverieieiiinnnnnn 2-20
SQL/DS, DB2 Data Type Conversions to Oracle Database Data Types........................ 2-21
Data Type FAmMIliescoooiiiiiiiic 2-28
Display Types of SQL Built-In FUNCHONSccueviiiiiriiiici e, 2-28
SQL Regular Expression Functions and Conditions............ccccoeeeiiiriiiiniiceiiincee 3-3
POSIX Metacharacters in Oracle Database Regular EXpressionscccccoeeveiiicieieiinnne. 3-5
POSIX and Multilingual Operator Relationships..........c.ccceeeniiiniiiciien, 3-8
PERL-Influenced Extensions in Oracle Database Regular Expressions............cccccccuevueuee. 3-9
Pattern Matching MOdifiers ..o, 3-10
Explanation of the Regular Expression Elements in Example 3—1cccocvvviiinnnnnnnn. 3-11
Explanation of the Regular Expression Elements in Example 3-3cccoevviiiinnnnnnn. 3-12
Attributes of Subprogram Parameters. ... 6-5
Parameter MOdeSccovviiiiiiiiiiiiiiiciec s 6-6
Identifier Types that PL/Scope Collects...........cccovieiiiiiieininiiiiiiiiiiiicccns 7-8
Usages that PL/Scope REPOILScccouiiiiiiiiiiiiiiiiiiiciciciceec s 7-9
Raw Profiler Output File INdicators..........cccccevvvieiiiiieiiiiiiiiiicccccce 8-4
Function Names of Operations that the PL/SQL Hierarchical Profiler Tracks................ 8-6
PL/SQL Hierarchical Profiler Database Tables..........cccccceevieeiieiiieeieeieeciieeceeeeiee e 8-7
DBMSHDP_RUNS Table COIUITINSooiovvieieiie ettt et s et s eaeeessaeessneessnnnes 8-8
DBMSHP_FUNCTION_INFO Table COIUMNS.......coooviiiiieeeie et e 8-9
DBMSHP_PARENT_CHILD_INFO Table Columns..........cccccooerieiiininnieiicie e, 8-10
Commonly Used Packages in the PL/SQL Web ToolKitc.cccooorriiiiiieiiiicice 9-3
Mapping Between mod_plsql and Embedded PL/SQL Gateway DAD Attributes........ 9-7
Mapping Between mod_plsql and Embedded PL/SQL Gateway Global Attributes 9-8
Authentication Possibilities for a DAD..........c.ccocoiiiiiiiiiin 9-11
PSP ELOMENES ...ttt 10-4
Continuous Query Notification Registration Optionsccceeveirciiiiiiciiiiiicnen, 11-11
Attributes of CQ_NOTIFICATIONS$_REG_INFO.......ccocoviiiiiiiiicccee, 11-19
Quality-0f-Service FIags.......cccoiiiiiiiiiciiccic 11-21
Attributes of CQ_NOTIFICATIONS$_DESCRIPTOR.........ccccevimiriiniieirieiieieeieieiees 11-25
Attributes of CQ_NOTIFICATIONS$_TABLEcccooovoiiiiiiiccee e, 11-26
Attributes of CQ_NOTIFICATIONS$_QUERYcocovoiiiiiieiieiieiiecee e 11-26
Attributes of CQ_NOTIFICATIONS_ROWcccoriiiiiiiiiiiiiieiceee e 11-27
Oracle Flashback Version Query Row Data Pseudocolumns ..o, 12-8
Flashback TRANSACTION_BACKOUT Options.......c.ccccceeiviriruciinniiiiiiniicicnenceeaes 12-17
Static Data Dictionary Views for Flashback Data Archive Files............cccccooveiinnnnne. 12-23
PL/SQL Packages and Their Java Equivalents...........ccccocooiiiiiiiiiiiiiiins 13-13
Parameter Data Type Mappings.........ccccoeveeieieiiiiiniiiiiniieccev e 14-16

XXVii

XXViii

14-2
14-3
15-1
15-2
15-3
154
15-5
15-6
15-7
15-8
15-9
171
17-2
17-3
17-4
17-5
17-6
177
17-8
18-1
18-2
18-3
19-1
19-2
A1

A-2

External Data Type Mappingsccccceceeveieiiiniiiiiniiieiinineecsese s 14-17

Properties and Data TYPesccccocvuviiviiiininiiiiiii e 14-20
Required XA Features Published by Oracle Databasec.ccooeueiiiieieiiiicice, 15-4
XA Library SUDPIOgIams.........ccocoviviiiiiiiiiniiiiiii s 15-5
Oracle XA Interface EXtENSIONScccoeuiviiiiiiiiiiciiiiiiiiicccc 15-6
Required Fields of Xa_open String.........ccccccceeieiiiiiiiiiiiiccc e, 15-9
Optional Fields in the Xa_open String.........cccccoiiiiiiiiiiiiicc 15-9
TX Interface FUNCHONScouiviviiiiiiiiiiiiiccccc s 15-13
TPM Replacement Statementsccooeueiiiiiiiiiiiicicic s 15-15
Sample Trace File CONtENtSc.cueveiiiiiiiiiiciccc s 15-19
Tightly and Loosely Coupled Transaction Branches..............ccoooeoiiiiiin 15-22
General Structure of EPC ENCOAINGScucviviiiiiiiiiiiciecci e 17-2
Identity Code Package ADTS ... 17-18
MGD_ID ADT SUbPIOGIamS.......ccvvvviviiiiiiiiiiiiiiiiiciiicic e 17-18
DBMS_MGD_ID_UTL Package Utility Subprograms............ccccovvvivnniniinninnnininenen. 17-18
Definition and Description of the MGD_ID_CATEGORY Metadata View 17-20
Definition and Description of the USER_MGD_ID_CATEGORY Metadata View..... 17-20
Definition and Description of the MGD_ID_SCHEME Metadata View....................... 17-21
Definition and Description of the USER_MGD_ID_SCHEME Metadata View 17-21
Database Object STatus ... 18-4
Operations that Cause Fine-Grained Invalidation...........ccocovvviinnnnne, 18-5
Data TYpe Classesccviuiiiiiiiiiiiiiieieieiccees s 18-16
*_ Dictionary Views with Edition Information............cccocevvnnne, 19-26
*_ Dictionary Views with Editioning View Information.........c.cccooooeeveiiiniiininnncnnne. 19-27
Agent Control Utility (agtctl) Commands..........cooueveviiiiiiiiiiec e A-5
Configuration Parameters for agtctl...........ooooviiiiiiiii e A-8

Audience

Preface

Oracle Database Advanced Application Developer’s Guide explains topics that experienced
application developers reference repeatedly. Information in this guide applies to
features that work the same on all supported platforms, and does not include
system-specific information.

Preface topics:

= Audience

= Documentation Accessibility
= Related Documents

s Conventions

Oracle Database Advanced Application Developer’s Guide is intended for application
developers who are either developing applications or converting applications to run in
the Oracle Database environment. This guide is also valuable to anyone who is
interested in the development of database applications, such as systems analysts and
project managers.

To use this document effectively, you need a working knowledge of:
= Application programming
s Structured Query Language (SQL)

= Object-oriented programming

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http: //www.oracle.com/accessibility/.

XXiX

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Deaf/Hard of Hearing Access to Oracle Support Services

To reach Oracle Support Services, use a telecommunications relay service (TRS) to call
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle
technical issues and provide customer support according to the Oracle service request
process. Information about TRS is available at
http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone
numbers is available at http: //www. fcc.gov/cgb/dro/trsphonebk.html.

Related Documents

For more information, see these documents in the Oracle Database 11g Release 1 (11.1)
documentation set:

» Oracle Database PL/SQL Language Reference

» Oracle Call Interface Programmer’s Guide

» Oracle Database Security Guide

» Pro*C/C++ Programmer’s Guide

» Oracle Database SQL Language Reference

s Oracle Database Administrator’s Guide

» Oracle Database Concepts

» Oracle XML Developer’’s Kit Programmer’s Guide
» Oracle XML DB Developer’s Guide

» Oracle Database Globalization Support Guide

» Oracle Database Sample Schemas

See also:

» Oracle PL/SQL Tips and Technigues by Joseph C. Trezzo. Oracle Press, 1999.

» Oracle PL/SQL Programming by Steven Feuerstein. 3rd Edition. O'Reilly &
Associates, 2002.

» Oracle PL/SQL Developer's Workbook by Steven Feuerstein. O'Reilly & Associates,
2000.

» Oracle PL/SQL Best Practices by Steven Feuerstein. O'Reilly & Associates, 2001.

Conventions

XXX

This document uses these text conventions:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Also:

» *_viewmeans all static data dictionary views whose names end with view. For
example, *_ ERRORS means ALL_ERRORS, DBA_ERRORS, and USER_ERRORS. For
more information about any static data dictionary view, or about static dictionary
views in general, see Oracle Database Reference.

= Table names not qualified with schema names are in the sample schema HR. For
information about the sample schemas, see Oracle Database Sample Schemas.

XXXi

XXXii

What's New in Application Development?

This topic briefly describes the new Oracle Database features that this book documents
and provides links to more information.

Topics:
» Oracle Database 11g Release 2 (11.2) Features
» Oracle Database 11g Release 1 (11.1) Features

Oracle Database 11g Release 2 (11.2) Features
The Oracle Database features for 11g Release 2 (11.2) are:
» Flashback Transaction Foreign Key Dependency Tracking
s Fine-Grained Invalidation for Triggers
» Edition-Based Redefinition
s APPLYING_CROSSEDITION_TRIGGER Function
= IGNORE_ROW_ON_DUPKEY_INDEX Hint
» CHANGE_DUPKEY_ERROR_INDEX Hint
= DBMS_PARALLEL_EXECUTE Package

= Internet Protocol version 6 (IPv6) Support

Flashback Transaction Foreign Key Dependency Tracking

Flashback Transaction (the DBMS_FLASHBACK.TRANSACTION_BACKOUT procedure)
with the CASCADE option rolls back a transaction and its dependent transactions while
the database remains online.

Before Release 11.2, Flashback Transaction did not track foreign key dependencies.
Therefore, if you tried to use Flashback Transaction with the CASCADE option to roll
back a transaction that had foreign key dependencies, you could get a foreign key
violation error. The workaround was to include the foreign-key-dependent
transactions in the list of transactions to roll back.

As of Release 11.2, when using Flashback Transaction with the CASCADE option, you
do not have to include any dependent transactions in the list of transactions to be
rolled back.

Foreign key dependency tracking for Flashback Transaction requires that you enable
foreign key supplemental logging. For instructions, see "Configuring Your Database
for Flashback Transaction" on page 12-4. For information about Flashback Transaction,
see "Using Flashback Transaction" on page 12-15.

XXXxiii

XXXiV

Fine-Grained Invalidation for Triggers
The 11.1 feature "Fine-Grained Invalidation" on page x1 has been extended to triggers.

Edition-Based Redefinition

Edition-based redefinition enables you to upgrade the database component of an
application while it is in use, thereby minimizing or eliminating down time.

To upgrade an application while it is in use, you copy the database objects that
comprise the application and redefine the copied objects in isolation. Your changes do
not affect users of the application—they continue to run the unchanged application.
When you are sure that your changes are correct, you make the upgraded application
available to all users.

Using edition-based redefinition means using one or more of its component features.
The features you use, and the down time, depend on these factors:

= What kind of database objects you redefine
= How available the database objects must be to users while you are redefining them

s Whether you make the upgraded application available to some users while others
continue to use the older version of the application

You always use the edition feature to copy the database objects and redefine the
copied objects in isolation.

If you change the structure of one or more tables, you also use the feature editioning
views.

If other users must be able to change data in the tables while you are changing their
structure, you also use crossedition triggers. Crossedition triggers are
temporary—you drop them after you have made the upgraded application available
to all users.

For more information, see Chapter 19, "Edition-Based Redefinition."

APPLYING_CROSSEDITION_TRIGGER Function

The body of a forward crossedition trigger must handle data transformation collisions.
If your collision-handling strategy depends on why the trigger is running, you can
determine the reason with the function APPLYING_CROSSEDITION_TRIGGER, which
is defined in the package DBMS_ STANDARD.

For more information, see "Handling Data Transformation Collisions" on page 19-22.

IGNORE_ROW_ON_DUPKEY_INDEX Hint

When a statement of the form INSERT INTO target subguery runs, a unique key
for some rows to be inserted might collide with existing rows. Suppose that you want
your application to ignore such collisions and insert the rows that do not collide with
existing rows.

Before Release 11.2, you had to write a PL/SQL program which, in a block with a
NULL handler for the DUP_VAL_ON_INDEX exception, selected the source rows and
then inserted them, one at a time, into the target.

As of Release 11.2, you do not have to write a PL/SQL program. You can use the
IGNORE_ROW_ON_DUPKEY_INDEX hintin an INSERT statement, which is easier to
write and runs much faster. This hint is especially helpful when implementing
crossedition triggers.

For more information, see "Handling Data Transformation Collisions" on page 19-22.

CHANGE_DUPKEY_ERROR_INDEX Hint

When an INSERT or UPDATE statement runs, a unique key might collide with existing
rows.

Before Release 11.2, the collision caused error ORA-00001. You could tell that a
collision had occurred, but you could not tell where.

As of Release 11.2, you can use the CHANGE_DUPKEY_ERROR_INDEX hint in an
INSERT or UPDATE statement, specifying that when a unique key violation occurs for
a specified index or set of columns, ORA-38911 is reported instead of ORA-00001. This
hint is especially helpful when implementing crossedition triggers.

For more information, see "Handling Data Transformation Collisions" on page 19-22.

DBMS_PARALLEL_EXECUTE Package

The DBMS_PARALLEL_EXECUTE package enables you to incrementally update the
data in a large table in parallel, in two high-level steps:

1. Group sets of rows in the table into smaller chunks.

2. Apply the desired UPDATE statement to the chunks in parallel, committing each
time you have finished processing a chunk.

This technique improves performance, reduces rollback space consumption, and
reduces the number of row locks held. The DBMS_PARALLEL_EXECUTE package is
recommended whenever you are updating a lot of data; for example, when you are
applying forward crossedition triggers.

For more information, see "Transforming Data from Pre- to Post-Upgrade
Representation” on page 19-24.

Internet Protocol version 6 (IPv6) Support

Internet Protocol version 6 (IPv6) supports a much larger address space than IPv4
does. An IPv6 address has 128 bits, while an IPv4 address has only 32 bits.

Applications that use network addresses might need small changes, and
recompilation, to accommodate IPv6 addresses. For more information, see "Performing
Network Operations in PL/SQL Subprograms" on page 9-25.

The agent control utility, agtct1, which starts a multithreaded extproc agent, now
accepts IPv6 addresses. For more information, see "Configuration Parameters for
Multithreaded extproc Agent Control” on page A-8.

See Also: Oracle Database Net Services Administrator’s Guide for
detailed information about IPv6 support in Oracle Database

Oracle Database 11g Release 1 (11.1) Features
The application development features for Release 11.1 are:
= WAIT Option for Data Definition Language (DDL) Statements
= Binary XML Support for Oracle XML Database
s Metadata for SQL Built-In Functions
= Enhancements to Regular Expression Built-in Functions
= Invisible Indexes

s PL/SQL Function Result Cache

XXXV

XXXVi

= Sequences in PL/SQL Expressions

s PL/Scope

s PL/SQL Hierarchical Profiler

= Query Result Change Notification

» Flashback Transaction

» Flashback Data Archive (Oracle Total Recall)
= XA API Available Within PL/SQL

= Support for XA/]JTA in Oracle Real Application Clusters (Oracle RAC)
Environment

s Identity Code Package

= Enhanced Online Index Creation and Rebuilding

s Embedded PL/SQL Gateway

s Oracle Database Spawns Multithreaded extproc Agent Directly by Default

s Fine-Grained Invalidation

WAIT Option for Data Definition Language (DDL) Statements

DDL statements require exclusive locks on internal structures. If these locks are
unavailable when a DDL statement is issued, the DDL statement fails, though it might
have succeeded if it had been issued subseconds later. The WAIT option of the SQL
statement LOCK TABLE enables a DDL statement to wait for its locks for a specified
period before failing.

For more information, see "Choosing a Locking Strategy" on page 1-13.

Binary XML Support for Oracle XML Database

Binary XML is a third way to represent an XML document. Binary XML complements,
rather than replaces, the existing object-relational storage and CLOB storage
representations. Binary XML has two significant benefits:

» XML operations can be significantly optimized, with or without an XML schema is
available.

s The internal representation of XML is the same on disk, in memory, and on wire.

As with other storage mechanisms, the details of binary XML storage are transparent
to you. You continue to use XMLType and its associated methods and operators.

For more information, see "Representing XML" on page 2-17.

See Also: Oracle XML DB Developer’s Guide

Metadata for SQL Built-In Functions

Metadata for SQL built-in functions is accessible through dynamic performance (V$)
views. Third-party tools can leverage built-in SQL functions without maintaining their
metadata in the application layer.

For more information, see "Metadata for SQL Built-In Functions" on page 2-27.

Enhancements to Regular Expression Built-in Functions

The regular expression built-in functions REGEXP_INSTR and REGEXP_SUBSTR have
increased functionality. A new regular expression built-in function, REGEXP_COUNT,

returns the number of times a pattern appears in a string. These functions act the same
in SQL and PL/SQL.

For more information, see "Oracle Database Implementation of Regular Expressions"
on page 3-2.

See Also: Oracle Database SQL Language Reference

Invisible Indexes

An invisible index is maintained by Oracle Database for every data manipulation
language (DML) statement, but is ignored by the optimizer unless you explicitly set
the parameter OPTIMIZER_USE_INVISIBLE_INDEXES to TRUE on a session or
system level.

Making an index invisible is an alternative to making it unusable or dropping it. Using
invisible indexes, you can:

s Test the removal of an index before dropping it

» Create invisible indexes temporarily for specialized, nonstandard operations, such
as online application upgrades, without affecting the behavior of existing
applications

For more information, see "Drop Unused Indexes" on page 4-5.

PL/SQL Function Result Cache

Before Release 11.1, if you wanted your PL/SQL application to cache the results of a
function, you had to design and code the cache and cache-management subprograms.
If multiple sessions ran your application, each session had to have its own copy of the
cache and cache-management subprograms. Sometimes each session had to perform
the same expensive computations.

As of Release 11.1, PL/SQL provides a function result cache. Because the function
result cache is stored in a shared global area (SGA), it is available to any session that
runs your application.

For more information, see "PL/SQL Function Result Cache" on page 6-10.

See Also: Oracle Database PL/SQL Language Reference

Sequences in PL/SQL Expressions

The pseudocolumns CURRVAL and NEXTVAL make writing PL/SQL source code easier
for you and improve run-time performance and scalability. You can use sequence_
name.CURRVAL and sequence_name NEXTVAL wherever you can use a NUMBER
expression.

See Example 6-6 on page 6-11.

See Also: Oracle Database PL/SQL Language Reference

PL/Scope

PL/Scope is a compiler-driven tool that collects and organizes data about user-defined
identifiers from PL/SQL source code. Because PL/Scope is a compiler-driven tool, you
use it through interactive development environments (such as SQL Developer and
JDeveloper), rather than directly.

PL/Scope enables the development of powerful and effective PL/Scope source code
browsers that increase PL/SQL developer productivity by minimizing time spent
browsing and understanding source code.

XXXVii

XXXViii

For a detailed description of PL/Scope, see Chapter 7, "Using PL/Scope."

PL/SQL Hierarchical Profiler

Nonhierarchical (flat) profilers record the time that a program spends within each
subprogram—the function time or self time of each subprogram. Function time is
helpful, but often inadequate. For example, it is helpful to know that a program
spends 40% of its time in the subprogram INSERT_ORDER, but it is more helpful to
know which subprograms call INSERT_ORDER often and the total time the program
spends under INSERT_ORDER (including its descendent subprograms). Hierarchical
profilers provide such information.

The PL/SQL hierarchical profiler does this:

= Reports the dynamic execution profile of your PL/SQL program, organized by
subprogram calls

= Accounts for SQL and PL/SQL execution times separately
= Requires no special source or compile-time preparation

= Stores results in database tables (hierarchical profiler tables) for custom report
generation by integrated development environment (IDE) tools (such as SQL
Developer and third-party tools)

To generate simple HTML reports from raw profiler output, you can use the
plshprof command-line utility.

Each subprogram-level summary in the dynamic execution profile includes
information such as:

= Number of calls to the subprogram
= Time spent in the subprogram itself (function time or self time)

= Time spent in the subprogram itself and in its descendent subprograms (subtree
time)

s Detailed parent-children information, for example:
- All callers of a given subprogram (parents)
— All subprograms that a given subprogram called (children)
- How much time was spent in subprogram x when called from y
- How many calls to subprogram x were from y

You can browse the generated HTML reports in any browser. The browser's
navigational capabilities, combined with well chosen links, provide a powerful way to
analyze performance of large applications, improve application performance, and
lower development costs.

For a detailed description of PL/SQL hierarchical profiler, see Chapter 8, "Using the
PL/SQL Hierarchical Profiler."

Query Result Change Notification

Before Release 11.1, Continuous Query Notification (CQN) published only object
change notifications, which result from DML or DDL changes to the objects associated
with registered the queries.

As of Release 11.1, CQN can also publish query result change notifications, which
result from DML or DDL changes to the result set associated with the registered
queries. New static data dictionary views enable you to see which queries are

registered for result-set-change notifications (see "Querying CON Registrations" on
page 11-24).

For more information, see Chapter 11, "Using Continuous Query Notification (CQN)."

Flashback Transaction

The DBMS_FLASHBACK.TRANSACTION_BACKOUT procedure rolls back a transaction
and its dependent transactions while the database remains online. This recovery
operation uses undo data to create and run the compensating transactions that return
the affected data to its original state.

For more information, see "Using Flashback Transaction" on page 12-15.

Flashback Data Archive (Oracle Total Recall)

A Flashback Data Archive provides the ability to store and track transactional changes
to a record over its lifetime. It is no longer necessary to build this intelligence into the
application. A Flashback Data Archive is useful for compliance with record stage
policies and audit reports.

For more information, see "Using Flashback Data Archive (Oracle Total Recall)" on
page 12-18.

XA API Available Within PL/SQL

The XA interface functionality that supports transactions involving multiple resource
managers, such as databases and queues, is now available within PL/SQL. You can
use PL/SQL to switch and share transactions across SQL*Plus sessions and across
processes.

For more information, see "Using the DBMS_XA Package" on page 15-16.

Support for XA/JTA in Oracle Real Application Clusters (Oracle RAC)
Environment

An XA transaction now spans Oracle RAC instances by default, enabling any
application that uses XA to take full advantage of the Oracle RAC environment,
enhancing the availability and scalability of the application.

For more information, see "Using Oracle XA with Oracle Real Application Clusters
(Oracle RAC)" on page 15-22.

Identity Code Package

The Identity Code Package provides tools to store, retrieve, encode, decode, and
translate between various product or identity codes, including Electronic Product
Code (EPC), in Oracle Database. The Identity Code Package provides new data types,
metadata tables and views, and PL/SQL packages for storing EPC standard RFID tags
or new types of RFID tags in a user table.

The Identity Code Package enables Oracle Database to recognize EPC coding schemes,
to support efficient storage and component-level retrieval of EPC data, and to meet the
EPCglobal Tag Data Translation 1.0 (TDT) standard that defines how to decode,
encode, and translate between various EPC RFID tag representations.

The Identity Code Package also provides an extensible framework that enables you to
use pre-existing coding schemes with applications that are not included in the EPC
standard and adapt Oracle Database both to these older systems and to evolving
identity codes that might become part of a future EPC standard.

XXXiX

xl

The Identity Code Package also lets you create your own identity codes by first
registering the new encoding category, registering the new encoding type, and then
registering the new components associated with each new encoding type.

For more information, see Chapter 17, "Using the Identity Code Package."

Enhanced Online Index Creation and Rebuilding
Online index creation and rebuilding no longer requires a DML-blocking lock.

Before Release 11.1, online index creation and rebuilding required a very short-term
DML-blocking lock at the end of the rebuilding. The DML-blocking lock could cause a
spike in the number of waiting DML operations, and therefore a short drop and spike
of system usage. This system usage anomaly could trigger operating system alarm
levels.

Embedded PL/SQL Gateway

The PL/SQL gateway enables a user-written PL/SQL subprogram to be invoked in
response to a URL with parameters derived from an HTTP request. mod_plsgl isa
form of the gateway that exists as a plug-in to the Oracle HTTP Server. Now the
PL/SQL gateway is also embedded in the database itself. The embedded PL/SQL
gateway uses the internal Oracle XML Database Listener and does not depend on the
Oracle HTTP Server. You configure the embedded version of the gateway with the
DBMS_EPG package.

For more information, see "Using Embedded PL/SQL Gateway" on page 9-4.

Oracle Database Spawns Multithreaded extproc Agent Directly by Default
When an application calls an external C procedure, either Oracle Database or Oracle
Listener starts the external procedure agent, extproc.

Before Release 11.1, Oracle Listener spawned the multithreaded extproc agent, and
you defined environment variables for extproc in the file 1istener.ora.

As of Release 11.1, by default, Oracle Database spawns extproc directly, eliminating
the risk that Oracle Listener might spawn extproc unexpectedly. This default
configuration is recommended for maximum security. If you use it, you define
environment variables for extproc in the file extproc.ora.

For more information, including situations in which you cannot use the default
configuration, see "Loading External Procedures" on page 14-4.

Fine-Grained Invalidation

Before Release 11.1, a DDL statement that changed a referenced object invalidated all
of its dependents.

As of Release 11.1, a DDL statement that changes a referenced object invalidates only
the dependents for which either of these statements is true:

= The dependent relies on the attribute of the referenced object that the DDL
statement changed.

s The compiled metadata of the dependent is no longer correct for the changed
referenced object.

For example, if view v selects columns c1 and c2 from table t, a DDL statement that
changes only column c3 of t does not invalidate v.

For more information, see "Invalidation of Dependent Objects" on page 18-5.

Part |

SQL for Application Developers

This part presents information that application developers need about Structured
Query Language (SQL), which is used to manage information in an Oracle Database.

Chapters:

» Chapter 1, "SQL Processing for Application Developers"

s Chapter 2, "Using SQL Data Types in Database Applications"

s Chapter 3, "Using Regular Expressions in Database Applications"
» Chapter 4, "Using Indexes in Database Applications"

s Chapter 5, "Maintaining Data Integrity in Database Applications"

See Also: Oracle Database SQL Language Reference for a complete
description of SQL

1

SQL Processing for Application Developers

This chapter explains what application developers must know about how Oracle
Database processes SQL statements. Before reading this chapter, read the basic
information about SQL processing in Oracle Database Concepts.

Topics:

» Description of SQL Statement Processing

» Processing Other Types of SQL Statements

= Grouping Operations into Transactions

» Ensuring Repeatable Reads with Read-Only Transactions
s Using Cursors

s Locking Tables Explicitly

s Using Oracle Lock Management Services (User Locks)

= Using Serializable Transactions for Concurrency Control
s Autonomous Transactions

= Resuming Execution After Storage Allocation Error

Description of SQL Statement Processing

This topic provides an example of what happens during the execution of a SQL
statement in each stage of processing. While this example specifically processes a data
manipulation language (DML) statement, you can generalize it for other types of SQL
statements. For information about how execution of other types of SQL statements
might differ from this description, see "Processing Other Types of SQL Statements" on
page 1-4.

Assume that you are using a Pro*C program to increase the salary for all employees in
a department. The program you are using has connected to Oracle Database and you
are connected to the proper schema to update the employees table. You can embed
this SQL statement in your program:

EXEC SQL UPDATE employees SET salary = 1.10 * salary
WHERE department_id = :department_id;

Department_id is a program variable containing a value for department number.
When the SQL statement is run, the value of department_1id is used, as provided by
the application program.

SQL Processing for Application Developers 1-1

Description of SQL Statement Processing

Stages of SQL Statement Processing

These are the stages necessary for each type of statement processing. (For a flowchart
of this process, see Oracle Database Concepts.

1.

Open or create a cursor.

A program interface call opens or creates a cursor. The cursor is created
independent of any SQL statement: it is created in expectation of a SQL statement.
In most applications, cursor creation is automatic. However, in precompiler
programs, cursor creation can either occur implicitly or be explicitly declared.

Parse the statement.

During parsing, the SQL statement is passed from the user process to Oracle
Database, and a parsed representation of the SQL statement is loaded into a shared
SQL area. Many errors can be caught during this stage of statement processing.

See Also: Oracle Database Concepts for more information about
parsing

Determine if the statement is a query.

This stage determines if the SQL statement starts with a query.

See Also:
» Oracle Database Concepts for information about parsing

"Shared SQL Areas" on page 1-3

If the statement is a query, describe its results.

This stage is necessary only if the characteristics of a query's result are not known;
for example, when a query is entered interactively by a user. In this case, the
describe stage determines the characteristics (data types, lengths, and names) of a
query's result.

If the statement is a query, define its output.

In this stage, you specify the location, size, and data type of variables defined to
receive each fetched value. These variables are called define variables. Oracle
Database performs data type conversion if necessary:.)

See Also: Oracle Database Concepts for information about the
DEFINE stage

Bind any variables.

At this point, Oracle Database knows the meaning of the SQL statement but still
does not have enough information to run the statement. Oracle Database needs
values for any variables listed in the statement; in the example, Oracle Database
needs a value for department_id. The process of obtaining these values is called
binding variables.

A program must specify the location (memory address) where the value can be
found. End users of applications may be unaware that they are specifying bind
variables, because the Oracle Database utility can simply prompt them for a value.

Because you specify the location (binding by reference), you need not rebind the
variable before reexecution. You can change its value and Oracle Database looks
up the value on each execution, using the memory address.

1-2 Oracle Database Advanced Application Developer's Guide

Description of SQL Statement Processing

You must also specify a data type and length for each value (unless they are
implied or defaulted) if Oracle Database must perform data type conversion.

See Also: For more information about specifying a data type and
length for a value:

» Oracle Call Interface Programmer’s Guide

» Pro*C/C++ Programmer’s Guide

7. (Optional) Parallelize the statement.

Oracle Database can parallelize queries and some data definition language (DDL)
operations such as index creation, creating a table with a subquery, and operations
on partitions. Parallelization causes multiple server processes to perform the work
of the SQL statement so it can complete faster.

8. Run the statement.

At this point, Oracle Database has all necessary information and resources, so the
statement is run. If the statement is a query or an INSERT statement, no rows must
be locked because no data is being changed. If the statement is an UPDATE or
DELETE statement, however, all rows that the statement affects are locked until the
next COMMIT, ROLLBACK, or SAVEPOINT for the transaction. This ensures data
integrity.

For some statements you can specify multiple executions to be performed. This is
called array processing. Given n number of executions, the bind and define
locations are assumed to be the beginning of an array of size n.

9. If the statement is a query, fetch its rows.

In the fetch stage, rows are selected and ordered (if requested by the query), and
each successive fetch retrieves another row of the result until the last row has been
fetched.

10. Close the cursor.

The final stage of processing a SQL statement is closing the cursor.

Shared SQL Areas

Oracle Database automatically notices when applications send similar SQL statements
to the database. The SQL area used to process the first occurrence of the statement is
shared—that is, used for processing subsequent occurrences of that same statement.
Therefore, only one shared SQL area exists for a unique statement. Because shared
SQL areas are shared memory areas, any Oracle Database process can use a shared
SQL area. The sharing of SQL areas reduces memory use on the database server,
thereby increasing system throughput.

In evaluating whether statements are similar or identical, Oracle Database considers
both SQL statements issued directly by users and applications and recursive SQL
statements issued internally by a DDL statement.

See Also: For more information about shared SQL.:
» Oracle Database Advanced Application Developer’s Guide

» Oracle Database Performance Tuning Guide

SQL Processing for Application Developers 1-3

Processing Other Types of SQL Statements

Processing Other Types of SQL Statements

These topics discuss how DDL, Transaction Control, and other SQL statements can
differ from the process just described in "Description of SQL Statement Processing" on
page 1-1:

s DDL Statement Processing
s Transaction Control Statement Processing

» Other Processing Types

DDL Statement Processing

The execution of DDL statements differs from the execution of DML statements and
queries, because the success of a DDL statement requires write access to the data
dictionary. For these statements, parsing (Stage 2) actually includes parsing, data
dictionary lookup, and execution.

Transaction Control Statement Processing

In general, only application designers using the programming interfaces to Oracle
Database are concerned with the types of actions that are grouped as one transaction.
Transactions must be defined so that work is accomplished in logical units and data is
kept consistent. A transaction consists of all of the necessary parts for one logical unit
of work, no more and no less.

s Data in all referenced tables should be in a consistent state before the transaction
begins and after it ends.

» Transactions should consist of only the SQL statements that make one consistent
change to the data.

For example, a transfer of funds between two accounts (the transaction or logical unit
of work) should include the debit to one account (one SQL statement) and the credit to
another account (one SQL statement). Both actions should either fail or succeed as a
unit of work; the credit should not be committed without the debit. Other unrelated
actions, such as a deposit to one account, should not be included in the transfer of
funds transaction.

Other Processing Types

Transaction management, session management, and system management SQL
statements are processed using the parse and run stages. To rerun them, simply
perform another EXECUTE.

Grouping Operations into Transactions
Topics:
s Deciding How to Group Operations in Transactions
s Improving Transaction Performance
s Committing Transactions
s Managing Commit Redo Action
= Rolling Back Transactions

s Defining Transaction Savepoints

1-4 Oracle Database Advanced Application Developer's Guide

Grouping Operations into Transactions

Deciding How to Group Operations in Transactions

In general, deciding how to group operations in transactions is the concern of
application designers who use the programming interfaces to Oracle Database. When
deciding how to group transactions:

= Define transactions such that work is accomplished in logical units and data
remains consistent.

s Ensure that data in all referenced tables is in a consistent state before the
transaction begins and after it ends.

= Ensure that each transaction consists only of the SQL statements or PL/SQL blocks
that comprise one consistent change to the data.

For example, suppose that you write a Web application that enables users to transfer
funds between accounts. The transaction must include the debit to one account, which
is executed by one SQL statement, and the credit to another account, which is executed
by a second SQL statement. Both statements must fail or succeed as a unit of work; the
credit must not be committed without the debit. Other unrelated actions, such as a
deposit to one account, must not be included in the same transaction.

Improving Transaction Performance

As an application developer, you must consider whether you can improve
performance. Consider these performance enhancements when designing and writing
your application:

= Use the SET TRANSACTION statement with the USE ROLLBACK SEGMENT clause to
explicitly assign a transaction to a rollback segment. This technique can eliminate
the need to allocate additional extents dynamically, which can reduce system
performance. This clause is valid only if you use rollback segments for undo. If
you use automatic undo management, then Oracle Database ignores this clause.

= Establish standards for writing SQL statements so that you can take advantage of
shared SQL areas. Oracle Database recognizes identical SQL statements and
enables them to share memory areas. This reduces memory usage on the database
server and increases system throughput.

s Collect statistics that can be used by Oracle Database to implement a cost-based
approach to SQL statement optimization. You can supply additional "hints" to the
optimizer as needed.

For the collection of most statistics, use the DBMS_STATS package, which lets you
collect statistics in parallel, collect global statistics for partitioned objects, and fine
tune your statistics collection in other ways. For more information about this
package, see Oracle Database PL/SQL Packages and Types Reference.

For statistics collection not related to the cost-based optimizer (such as collecting
information about free list blocks), use the SQL statement ANALYZE. For more
information about this statement, see Oracle Database SQL Language Reference.

s Invoke the DBMS_APPLICATION_INFO.SET_ACTION procedure before beginning
a transaction to register and name a transaction for later use when measuring
performance across an application. Specify which type of activity a transaction
performs so that the system tuners can later see which transactions are taking up
the most system resources.

= Increase user productivity and query efficiency by including user-written PL/SQL
functions in SQL expressions as described in "Invoking Stored PL/SQL Functions
from SQL Statements" on page 6-35.

SQL Processing for Application Developers 1-5

Grouping Operations into Transactions

s Create explicit cursors when writing a PL/SQL application.

= Reduce frequency of parsing and improve performance in precompiler programs
by increasing the number of cursors with MAX_OPEN_CURSORS.

s Use the SET TRANSACTION statement with the ISOLATION LEVEL set to
SERIALIZABLE to get ANSI/ISO serializable transactions.

See Also:
= "How Serializable Transactions Interact” on page 1-25
s "Using Cursors" on page 1-10

» Oracle Database Concepts for more information about transaction
management

Committing Transactions

To commit a transaction, use the COMMIT statement. These two statements are
equivalent and commit the current transaction:

COMMIT WORK;
COMMIT;

The COMMIT statements lets you include the COMMENT parameter along with a
comment that provides information about the transaction being committed. This
option is useful for including information about the origin of the transaction when you
commit distributed transactions:

COMMIT COMMENT 'Dallas/Accts_pay/Trans_type 10B';

Managing Commit Redo Action

When a transaction updates the database, it generates a corresponding redo entry.
Oracle Database buffers this redo entry to the redo log until the transaction completes.
When the transaction commits, the log writer process (LGWR) writes redo records for
the commit, with the accumulated redo entries of all changes in the transaction, to
disk. By default, Oracle Database writes the redo entries to disk before the call returns
to the client. This action introduces a latency in the commit because the application
must wait for the redo entries to be persistent on disk.

Oracle Database lets you change the handling of commit redo depending on the needs
of your application. If your application requires very high transaction throughput and
you are willing to trade commit durability for lower commit latency, you can change
the default COMMIT options so that the application need not wait for the database to
write data to the online redo logs.

Table 1-1 describes the COMMIT options.

Table 1-1 COMMIT Statement Options

Option Effect

WAIT Ensures that the commit returns only after the corresponding redo information is

(default) persistent in the online redo log. When the client receives a successful return
from this COMMIT statement, the transaction has been committed to durable
media.

A failure that occurs after a successful write to the log might prevent the success
message from returning to the client, in which case the client cannot tell whether
the transaction committed.

1-6 Oracle Database Advanced Application Developer's Guide

Grouping Operations into Transactions

Table 1-1 (Cont.) COMMIT Statement Options
Option Effect

NOWAIT The commit returns to the client regardless of whether the write to the redo log
has completed. This behavior can increase transaction throughput.

BATCH Buffers the redo information to the redo log, along with other concurrently
running transactions. After collecting sufficient redo information, initiates a disk
write to the redo log. This behavior is called group commit, because it writes
redo information for multiple transactions to the log in a single I/O operation.

IMMEDIATE LGWR writes the transaction redo information to the log. Because this operation
(default) option forces a disk I/0O, it can reduce transaction throughput.

Caution: With the NOWAIT option of COMMIT, a failure that occurs
after the commit message is received, but before the redo log record(s)
are written, can falsely indicate to a transaction that its changes are
persistent.

To change the COMMIT options, use either the COMMIT statement or the appropriate
initialization parameter. For more information, see Oracle Database SQL Language
Reference.

Note: You cannot change the default IMMEDIATE and WAIT action
for distributed transactions.

If your application uses OCI, then you can modify redo action by setting these flags in
the OCITransCommit function within your application:

s OCI_TRANS_WRITEBATCH
s OCI_TRANS_WRITENOWAIT
s OCI_TRANS_WRITEIMMED

m OCI_TRANS_WRITEWAIT

Caution: There is a potential for silent transaction loss when you use
OCI_TRANS_WRITENOWAIT. Transaction loss occurs silently with
shutdown termination, startup force, and any instance or node failure.
On a RAC system asynchronously committed changes might not be
immediately available to read on other instances.

The specification of the NOWAIT and BATCH options has a small window of
vulnerability in which Oracle Database can roll back a transaction that your
application view as committed. Your application must be able to tolerate these
scenarios:

s The database host fails, which causes the database to lose redo that was buffered
but not yet written to the online redo logs.

= AfileI/O problem prevents log writer from writing buffered redo to disk. If the
redo logs are not multiplexed, then the commit is lost.

SQL Processing for Application Developers 1-7

Grouping Operations into Transactions

See Also:

» Oracle Database SQL Language Reference for information about the
COMMIT statement

» Oracle Call Interface Programmer’s Guide for information about the
OCITransCommit function

» Oracle Database Reference for information about initialization
parameters

Rolling Back Transactions

To roll back an entire transaction, or to roll back part of a transaction to a savepoint,
use the ROLLBACK statement. For example, either of these statements rolls back the
entire current transaction:

ROLLBACK WORK;
ROLLBACK;
The WORK option of the ROLLBACK statement has no function.

To roll back to a savepoint defined in the current transaction, use the TO option of the
ROLLBACK statement. For example, either of these statements rolls back the current
transaction to the savepoint named POINT1:

SAVEPOINT Pointl;

ROLLBACK TO SAVEPOINT Pointl;
ROLLBACK TO Pointl;

Defining Transaction Savepoints

To define a savepoint in a transaction, use the SAVEPOINT statement. This statement
creates the savepoint named ADD_EMP1 in the current transaction:

SAVEPOINT Add_empl;
If you create a second savepoint with the same identifier as an earlier savepoint, the

earlier savepoint is erased. After creating a savepoint, you can roll back to the
savepoint.

There is no limit on the number of active savepoints for each session. An active
savepoint is one that was specified since the last commit or rollback.

Table 1-2 shows a series of SQL statements that illustrates the use of COMMIT,
SAVEPOINT, and ROLLBACK statements within a transaction.

Table 1-2 Use of COMMIT, SAVEPOINT, and ROLLBACK

SQL Statement Results

SAVEPOINT a; First savepoint of this transaction
DELETE...; First DML statement of this transaction
SAVEPOINT b; Second savepoint of this transaction
INSERT INTO...; Second DML statement of this transaction
SAVEPOINT c; Third savepoint of this transaction
UPDATE...; Third DML statement of this transaction.

ROLLBACK TO c; UPDATE statement is rolled back, savepoint C remains defined

1-8 Oracle Database Advanced Application Developer's Guide

Ensuring Repeatable Reads with Read-Only Transactions

Table 1-2 (Cont.) Use of COMMIT, SAVEPOINT, and ROLLBACK
SQL Statement Results

ROLLBACK TO b; INSERT statement is rolled back, savepoint C is lost, savepoint B remains
defined

ROLLBACK TO c; ORA-01086
INSERT INTO...; New DML statement in this transaction

COMMIT; Commits all actions performed by the first DML statement (the DELETE
statement) and the last DML statement (the second INSERT statement)

All other statements (the second and the third statements) of the
transaction were rolled back before the COMMIT. The savepoint A is no
longer active.

Ensuring Repeatable Reads with Read-Only Transactions

By default, Oracle Database guarantees statement-level read consistency, but not
transaction-level read consistency. With statement-level read consistency, queries in a
statement produce consistent data for the duration of the statement, not reflecting
changes by other statements. With transaction-level read consistency (repeatable
reads), queries in the transaction produce consistent data for the duration of the
transaction, not reflecting changes by other transactions.

To ensure transaction-level read consistency for a transaction that does not include
DML statements, specify that the transaction is read-only. The queries in a read-only
transaction see only changes committed before the transaction began, so query results
are consistent for the duration of the transaction.

A read-only transaction provides transaction-level read consistency without acquiring
additional data locks. Therefore, while the read-only transaction is querying data,
other transactions can query and update the same data.

A read-only transaction begins with this statement:

SET TRANSACTION READ ONLY [NAME string |;

Only DDL statements can precede the SET TRANSACTION READ ONLY statement. After
the SET TRANSACTION READ ONLY statement successfully runs, the transaction can
include only SELECT (without FOR UPDATE), COMMIT, ROLLBACK, or non-DML
statements (such as SET ROLE, ALTER SYSTEM, and LOCK TABLE). A COMMIT,
ROLLBACK, or DDL statement ends the read-only transaction.

See Also: Oracle Database SQL Language Reference for more
information about the SET TRANSACTION statement

Long-running queries sometimes fail because undo information required for consistent
read (CR) operations is no longer available. This happens when committed undo
blocks are overwritten by active transactions. Automatic undo management provides a
way to explicitly control when undo space can be reused; that is, how long undo
information is retained. Your database administrator can specify a retention period by
using the parameter UNDO_RETENTION.

See Also: Oracle Database Administrator’s Guide for information
about long-running queries and resumable space allocation

For example, if UNDO_RETENTION is set to 30 minutes, then all committed undo
information in the system is retained for at least 30 minutes. This ensures that all

SQL Processing for Application Developers 1-9

Using Cursors

queries running for 30 minutes or less, under usual circumstances, do not encounter
the OER error "snapshot too old."

Using Cursors

PL/SQL implicitly declares a cursor for all SQL data manipulation statements,
including queries that return only one row. For queries that return multiple rows, you
can explicitly declare a cursor to process the rows individually.

A cursor is a handle to a specific private SQL area. In other words, a cursor can be
thought of as a name for a specific private SQL area. A PL/SQL cursor variable
enables the retrieval of multiple rows from a stored subprogram. Cursor variables
enable you to pass cursors as parameters in your 3GL application. Cursor variables are
described in Oracle Database PL/SQL Language Reference.

Although most Oracle Database users rely on the automatic cursor handling of the
database utilities, the programmatic interfaces offer application designers more control
over cursors. In application development, a cursor is a named resource available to a
program, which can be specifically used for parsing SQL statements embedded within
the application.

Topics:

s How Many Cursors Can a Session Have?
s Using a Cursor to Reexecute a Statement
= Scrollable Cursors

s Closing a Cursor

= Canceling a Cursor

How Many Cursors Can a Session Have?

There is no absolute limit to the total number of cursors one session can have open
simultaneously, subject to two constraints:

= Each cursor requires virtual memory, so a session's total number of cursors is
limited by the memory available to that process.

= A systemwide limit of cursors for each session is set by the initialization parameter
named OPEN_CURSORS found in the parameter file (such as INIT.ORA).

See Also: Oracle Database Reference for more information about
OPEN_CURSORS

Explicitly creating cursors for precompiler programs has advantages in tuning those
applications. For example, increasing the number of cursors can reduce the frequency
of parsing and improve performance. If you know how many cursors might be
required at a given time, you can open that many cursors simultaneously.

Using a Cursor to Reexecute a Statement

After each stage of execution, the cursor retains enough information about the SQL
statement to reexecute the statement without starting over, if no other SQL statement
was associated with that cursor. The statement can be reexecuted without including
the parse stage.

1-10 Oracle Database Advanced Application Developer's Guide

Using Cursors

By opening several cursors, the parsed representation of several SQL statements can
be saved. Repeated execution of the same SQL statements can thus begin at the
describe, define, bind, or run step, saving the repeated cost of opening cursors and
parsing.

To understand the performance characteristics of a cursor, a DBA can retrieve the text
of the query represented by the cursor using the V$SQL dynamic performance view.
Because the results of EXPLAIN PLAN on the original query might differ from the way
the query is actually processed, a DBA can get more precise information by examining
these dynamic performance views:

View Description

V$SQL_PLAN Execution plan information for each child cursor loaded in the
library cache.

V$SQL_STATISTICS Execution statistics at the row source level for each child cursor.

V$SQL_STATISTICS_ALL Memory usage statistics for row sources that use SQL memory
(sort or hash-join). This view concatenates information in
V$SQL_PLAN with execution statistics from V$SQL_PLAN
STATISTICS and V$SQL_WORKAREA.

See Also: Oracle Database Reference for details of the preceding
dynamic performance views

Scrollable Cursors

Execution of a cursor puts the results of the query into a set of rows called the result
set, which can be fetched sequentially or nonsequentially. Scrollable cursors are
cursors in which fetches and DML statements need not be forward sequential only.
Interfaces exist to fetch previously fetched rows, to fetch the nth row in the result set,
and to fetch the nth row from the current position in the result set.

See Also: Oracle Call Interface Programmer’s Guide for more
information about using scrollable cursors in OCI

Closing a Cursor

Closing a cursor means that the information in the associated private area is lost and
its memory is deallocated. Once a cursor is opened, it is not closed until one of these
events occurs:

= The user program terminates its connection to the server.

= If the user program is an OCI program or precompiler application, then it
explicitly closes any open cursor during the execution of that program. (However,
when this program terminates, any cursors remaining open are implicitly closed.)

Canceling a Cursor

Canceling a cursor frees resources from the current fetch.The information in the
associated private area is lost but the cursor remains open, parsed, and associated with
its bind variables.

Note: You cannot cancel cursors using Pro*C/C++ or PL/SQL.

SQL Processing for Application Developers 1-11

Locking Tables Explicitly

See Also: Oracle Call Interface Programmer’s Guide for information
about canceling a cursor with the OCIStmtFetch2 statement

Locking Tables Explicitly

Oracle Database has default locking mechanisms that ensure data concurrency, data
integrity, and statement-level read consistency. However, you can override these
mechanisms by locking tables explicitly. Locking tables explicitly is useful in situations
such as these:

= A transaction in your application needs exclusive access to a resource, so that the
transaction does not have to wait for other transactions to complete.

= Your application needs transaction-level read consistency (repeatable reads).

For other ways to ensure transaction-level read consistency, see "Ensuring
Repeatable Reads with Read-Only Transactions" on page 1-9) and "Using
Serializable Transactions for Concurrency Control" on page 1-24.

To override default locking at the transaction level, use any of these SQL statements:
= LOCK TABLE (described in Oracle Database SQL Language Reference)

= SELECT with the FOR UPDATE clause (described in Oracle Database SQL Language
Reference)

m SET TRANSACTION with the READ ONLY or ISOLATION LEVEL SERIALIZABLE
option (described in Oracle Database SQL Language Reference)

Locks acquired by these statements are released after the transaction is committed or
rolled back.

See Also: Oracle Database SQL Language Reference for information
about the ISOLATION_LEVEL parameter of the ALTER SESSION
statement

The initialization parameter DML_LOCKS (described in Oracle Database Reference)
determines the maximum number of DML locks. Although its default value is usually
enough, you might need to increase it if you use explicit locks.

Caution: If you override the default locking of Oracle Database at
any level, ensure that data integrity is guaranteed, data concurrency is
acceptable, and deadlocks are either impossible or appropriately
handled.

Topics:

= Privileges Required to Acquire Table Locks

s Choosing a Locking Strategy

= Letting Oracle Database Control Table Locking
= Explicitly Acquiring Row Locks

= Examples of Concurrency Under Explicit Locking

1-12 Oracle Database Advanced Application Developer's Guide

Locking Tables Explicitly

Privileges Required to Acquire Table Locks

No special privileges are required to acquire any type of table lock on a table in your
own schema. To acquire a table lock on a table in another schema, you must have
either the LOCK ANY TABLE system privilege or any object privilege (for example,
SELECT or UPDATE) for the table.

Choosing a Locking Strategy

A transaction explicitly acquires the specified table locks when a LOCK TABLE
statement is executed. A LOCK TABLE statement explicitly overrides default locking.
When a LOCK TABLE statement is issued on a view, the underlying base tables are
locked. This statement acquires exclusive table locks for the employees and
departments tables on behalf of the containing transaction:

LOCK TABLE employees, departments
IN EXCLUSIVE MODE NOWAIT;

You can specify several tables or views to lock in the same mode; however, only a
single lock mode can be specified for each LOCK TABLE statement.

Note: When a table is locked, all rows of the table are locked. No
other user can modify the table. For information about locking
individual rows, see "Explicitly Acquiring Row Locks" on page 1-16.

In the LOCK TABLE statement, you can also indicate how long you want to wait for the
table lock:

= If you do not want to wait, specify either NOWAIT or WAIT O.

You acquire the table lock only if it is immediately available; otherwise, an error
notifies you that the lock is not available now.

= To wait up to n seconds to acquire the table lock, specify WAIT n, where n is
greater than 0 and less than or equal to 100000.

If the table lock is still unavailable after n seconds, an error notifies you that the
lock is not available now.

s To wait indefinitely to acquire the lock, specify neither NOWAIT nor WAIT.

The database waits indefinitely until the table is available, locks it, and returns
control to you. When the database is running DDL statements concurrently with
DML statements, a timeout or deadlock can sometimes result. The database
detects such timeouts and deadlocks and returns an error.

Topics:

s When to Lock with ROW SHARE MODE and ROW EXCLUSIVE MODE
= When to Lock with SHARE MODE

s When to Lock with SHARE ROW EXCLUSIVE MODE

s When to Lock with EXCLUSIVE MODE

See Also: Oracle Database SQL Language Reference for LOCK TABLE
statement syntax

SQL Processing for Application Developers 1-13

Locking Tables Explicitly

When to Lock with ROW SHARE MODE and ROW EXCLUSIVE MODE
ROW SHARE MODE and ROW EXCLUSIVE MODE table locks offer the highest degree of
concurrency. You might use these locks if:

= Your transaction must prevent another transaction from acquiring an intervening
share, share row, or exclusive table lock for a table before your transaction can
update that table.

If another transaction acquires an intervening share, share row, or exclusive table
lock, no other transactions can update the table until the locking transaction
commits or rolls back.

= Your transaction must prevent a table from being altered or dropped before your
transaction can modify that table.

When to Lock with SHARE MODE
SHARE MODE table locks are rather restrictive data locks. You might use these locks if:

= Your transaction only queries the table, and requires a consistent set of the table
data for the duration of the transaction.

= You can hold up other transactions that try to update the locked table, until all
transactions that hold SHARE MODE locks on the table either commit or roll back.

s Other transactions might acquire concurrent SHARE MODE table locks on the same
table, also giving them the option of transaction-level read consistency.

Caution: Your transaction might not update the table later in the
same transaction. However, if multiple transactions concurrently hold
share table locks for the same table, no transaction can update the
table (even if row locks are held as the result of a SELECT FOR
UPDATE statement). Therefore, if concurrent share table locks on the
same table are common, updates cannot proceed and deadlocks are
common. In this case, use share row exclusive or exclusive table locks
instead.

Scenario: Tables employees and budget_tab require a consistent set of data in a
third table, departments. For a given department number, you want to update the
information in employees and budget_ tab, and ensure that no members are added
to the department between these two transactions.

Solution: Lock the departments table in SHARE MODE, as shown in Example 1-1.
Because the departments table is rarely updated, locking it probably does not cause
many other transactions to wait long.

Example 1-1 LOCK TABLE with SHARE MODE
-- Create and populate table:

DROP TABLE budget_tab;
CREATE TABLE budget_tab (
sal NUMBER (8,2),

deptno NUMBER (4)
)i

INSERT INTO budget_tab (sal, deptno)

SELECT salary, department_id
FROM employees;

1-14 Oracle Database Advanced Application Developer's Guide

Locking Tables Explicitly

-- Lock departments and update employees and budget_tab:
LOCK TABLE departments IN SHARE MODE;

UPDATE employees
SET salary = salary * 1.1
WHERE department_id IN
(SELECT department_id FROM departments WHERE location_id = 1700);

UPDATE budget_tab
SET sal = sal * 1.1
WHERE deptno IN
(SELECT department_id FROM departments WHERE location_id = 1700);

COMMIT; -- COMMIT releases lock

When to Lock with SHARE ROW EXCLUSIVE MODE
You might use a SHARE ROW EXCLUSIVE MODE table lock if:

= Your transaction requires both transaction-level read consistency for the specified
table and the ability to update the locked table.

= You do not care if other transactions acquire explicit row locks (using SELECT FOR
UPDATE), which might make UPDATE and INSERT statements in the locking
transaction wait and might cause deadlocks.

= You only want a single transaction to have this action.

When to Lock with EXCLUSIVE MODE
You might use an EXCLUSIVE MODE table if:

= Your transaction requires immediate update access to the locked table. When your
transaction holds an exclusive table lock, other transactions cannot lock specific
rows in the locked table.

= Your transaction also ensures transaction-level read consistency for the locked
table until the transaction is committed or rolled back.

= You are not concerned about low levels of data concurrency, making transactions
that request exclusive table locks wait in line to update the table sequentially.

Letting Oracle Database Control Table Locking

If you let Oracle Database control table locking, your application needs less
programming logic, but also has less control than if you manage the table locks
yourself.

Issuing the statement SET TRANSACTION ISOLATION LEVEL SERIALIZABLE Or
ALTER SESSION ISOLATION LEVEL SERIALIZABLE preserves ANSI serializability
without changing the underlying locking protocol. This technique gives concurrent
access to the table while providing ANSI serializability. Getting table locks greatly
reduces concurrency.

SQL Processing for Application Developers 1-15

Locking Tables Explicitly

See Also:

» Oracle Database SQL Language Reference for information about the
SET TRANSACTION statement

» Oracle Database SQL Language Reference for information about the
ALTER SESSION statements

Change the settings for these parameters only when an instance is shut down. If
multiple instances are accessing a single database, then all instances must use the same
setting for these parameters.

Explicitly Acquiring Row Locks

You can override default locking with a SELECT statement that includes the FOR
UPDATE clause. This statement acquires exclusive row locks for selected rows (as an
UPDATE statement does), in anticipation of updating the selected rows in a subsequent
statement.

You can use a SELECT FOR UPDATE statement to lock a row without actually changing
it. For example, several triggers in Oracle Database PL/SQL Language Reference show
how to implement referential integrity. In the EMP_DEPT_CHECK trigger, the row that
contains the referenced parent key value is locked to guarantee that it remains for the
duration of the transaction; if the parent key is updated or deleted, referential integrity
is violated.

SELECT FOR UPDATE statements are often used by interactive programs that enable a
user to modify fields of one or more specific rows (which might take some time); row
locks are acquired so that only a single interactive program user is updating the rows
at any given time.

If a SELECT FOR UPDATE statement is used when defining a cursor, the rows in the
return set are locked when the cursor is opened (before the first fetch) rather than
being locked as they are fetched from the cursor. Locks are only released when the
transaction that opened the cursor is committed or rolled back, not when the cursor is
closed.

Each row in the return set of a SELECT FOR UPDATE statement is locked individually;
the SELECT FOR UPDATE statement waits until the other transaction releases the
conflicting row lock. If a SELECT FOR UPDATE statement locks many rows in a table,
and if the table experiences a lot of update activity, it might be faster to acquire an
EXCLUSIVE table lock instead.

Note: The return set for a SELECT FOR UPDATE might change while
the query is running; for example, if columns selected by the query are
updated or rows are deleted after the query started. When this
happens, SELECT FOR UPDATE acquires locks on the rows that did not
change, gets a read-consistent snapshot of the table using these locks,
and then restarts the query to acquire the remaining locks.

This can cause a deadlock between sessions querying the table
concurrently with DML statements when rows are locked in a
nonsequential order. To prevent such deadlocks, design your
application so that concurrent DML statements on the table do not
affect the return set of the query. If this is not feasible, you might want
to serialize queries in your application.

1-16 Oracle Database Advanced Application Developer's Guide

Locking Tables Explicitly

By default, the SELECT FOR UPDATE statement waits until the requested row lock is
acquired. To change this behavior, use the NOWAIT, WAIT, or SKIP LOCKED clause of
the SELECT FOR UPDATE statement. For information about these clauses, see Oracle
Database SQL Language Reference.

Examples of Concurrency Under Explicit Locking

Table 1-3 shows how Oracle Database maintains data concurrency, integrity, and
consistency when the LOCK TABLE statement and the SELECT statement with the FOR
UPDATE clause are used. For brevity, the message text for ORA-00054 ("resource busy
and acquire with NOWAIT specified") is not included. User-entered text is bold.

Table 1-3 Examples of Concurrency Under Explicit Locking

Time
Transaction 1 Point Transaction 2
LOCK TABLE hr.departments 1
IN ROW SHARE MODE;
Statement processed.
2 DROP TABLE hr.departments;
DROP TABLE hr.departments
*
ORA-00054
(Exclusive DDL lock not possible because
Transaction 1 has table locked.)
3 LOCK TABLE hr.departments
IN EXCLUSIVE MODE
NOWAIT;
ORA-00054
4 SELECT location_id

FROM hr.departments
WHERE department_id = 20
FOR UPDATE OF location id;

LOCATION_ID

DALLAS

1 row selected.

UPDATE hr.departments 5
SET location_id = 'NEW YORK'
WHERE department_id = 20;

(Waits because Transaction 2 locked same

rows.)
6 ROLLBACK;
(Releases row locks.)
1 row processed. 7
ROLLBACK;

SQL Processing for Application Developers 1-17

Locking Tables Explicitly

Table 1-3 (Cont.) Examples of Concurrency Under Explicit Locking

Time
Transaction 1 Point Transaction 2
LOCK TABLE hr.departments 8
IN ROW EXCLUSIVE MODE;
Statement processed.
9 LOCK TABLE hr.departments
IN EXCLUSIVE MODE
NOWAIT;
ORA-00054
10 LOCK TABLE hr.departments
IN SHARE ROW EXCLUSIVE MODE
NOWAIT;
ORA-00054
11 LOCK TABLE hr.departments
IN SHARE ROW EXCLUSIVE MODE
NOWAIT;
ORA-00054

12 UPDATE hr.departments
SET location_id = 'NEW YORK'
WHERE department_id = 20;
1 row processed.

13 ROLLBACK;

SELECT location_id 14
FROM hr.departments

WHERE department_id = 20

FOR UPDATE OF location_id;

LOCATION_ID

DALLAS

1 row selected.

15 UPDATE hr.departments
SET location_id = 'NEW YORK'
WHERE department_id = 20;

1 row processed.

(Waits because Transaction 1 locked same
TOWS.)
ROLLBACK; 16

17 1 row processed.

(Conflicting locks were released.)

ROLLBACK;

1-18 Oracle Database Advanced Application Developer's Guide

Locking Tables Explicitly

Table 1-3 (Cont.) Examples of Concurrency Under Explicit Locking

Time
Transaction 1 Point Transaction 2

LOCK TABLE hr.departments 18
IN ROW SHARE MODE
Statement processed.

19 LOCK TABLE hr.departments
IN EXCLUSIVE MODE
NOWAIT;

ORA-00054

20 LOCK TABLE hr.departments
IN SHARE ROW EXCLUSIVE MODE
NOWAIT;

ORA-00054

21 LOCK TABLE hr.departments
IN SHARE MODE;
Statement processed.

22 SELECT location_id
FROM hr.departments
WHERE department_id = 20;

LOCATION_ID

DALLAS

1 row selected.

23 SELECT location_id
FROM hr.departments
WHERE department_id = 20
FOR UPDATE OF location id;

LOCATION_ID

DALLAS

1 row selected.

24 UPDATE hr.departments
SET location_id = 'NEW YORK'
WHERE department_id = 20;

(Waits because Transaction 1 has conflicting
table lock.)

ROLLBACK; 25

26 1 row processed.

(Conflicting table lock released.)
ROLLBACK;

SQL Processing for Application Developers 1-19

Locking Tables Explicitly

Table 1-3 (Cont.) Examples of Concurrency Under Explicit Locking

Time
Transaction 1 Point Transaction 2

LOCK TABLE hr.departments 27
IN SHARE ROW EXCLUSIVE MODE;

Statement processed.

28 LOCK TABLE hr.departments
IN EXCLUSIVE MODE
NOWAIT;

ORA-00054

29 LOCK TABLE hr.departments
IN SHARE ROW EXCLUSIVE MODE
NOWAIT;

ORA-00054

30 LOCK TABLE hr.departments
IN SHARE MODE
NOWAIT;

ORA-00054

31 LOCK TABLE hr.departments
IN ROW EXCLUSIVE MODE
NOWAIT;

ORA-00054

32 LOCK TABLE hr.departments
IN SHARE MODE
NOWAIT;

ORA-00054

33 SELECT location_id
FROM hr.departments
WHERE department_id = 20;

LOCATION_ID

DALLAS

1 row selected.

34 SELECT location_id
FROM hr.departments
WHERE department_id = 20
FOR UPDATE OF location_id;

LOCATION_ID

DALLAS

1 row selected.

1-20 Oracle Database Advanced Application Developer's Guide

Locking Tables Explicitly

Table 1-3 (Cont.) Examples of Concurrency Under Explicit Locking

Time
Transaction 1 Point Transaction 2

35 UPDATE hr.departments
SET location_id = 'NEW YORK'
WHERE department_id = 20;

(Waits because Transaction 1 has conflicting

table lock.)

UPDATE hr.departments 36 (Deadlock.)
SET location_id = 'NEW YORK'
WHERE department_id = 20;
(Waits because Transaction 2 locked same
Trows.)
Cancel operation. 37
ROLLBACK;

38 1 row processed.
LOCK TABLE hr.departments 39
IN EXCLUSIVE MODE;

40 LOCK TABLE hr.departments

IN EXCLUSIVE MODE;

ORA-00054

41 LOCK TABLE hr.departments
IN ROW EXCLUSIVE MODE
NOWAIT;

ORA-00054

42 LOCK TABLE hr.departments
IN SHARE MODE;

ORA-00054

43 LOCK TABLE hr.departments
IN ROW EXCLUSIVE MODE
NOWAIT;

ORA-00054

44 LOCK TABLE hr.departments
IN ROW SHARE MODE
NOWAIT;

ORA-00054

45 SELECT location_id
FROM hr.departments
WHERE department_id = 20;

LOCATION_ID

DALLAS

1 row selected.

SQL Processing for Application Developers 1-21

Locking Tables Explicitly

Table 1-3 (Cont.) Examples of Concurrency Under Explicit Locking

Time
Transaction 1 Point Transaction 2
46 SELECT location_id
FROM hr.departments
WHERE department_id = 20
FOR UPDATE OF location_id;
(Waits because Transaction 1 has conflicting
table lock.)
UPDATE hr.departments 47
SET department_id = 30
WHERE department_id = 20;
1 row processed.
COMMIT; 48
49 0 rows selected.
(Transaction 1 released conflicting lock.)
SET TRANSACTION READ ONLY; 50
SELECT location_id 51

FROM hr.departments
WHERE department_id = 10;

LOCATION_ID

BOSTON
52 UPDATE hr.departments
SET location_id = 'NEW YORK'
WHERE department_id = 10;
1 row processed.
SELECT location_id 53

FROM hr.departments
WHERE department_id = 10;

LOCATION_ID

BOSTON
(Transaction 1 does not see uncommitted
data.)
54 COMMIT;

SELECT location_ id 55
FROM hr.departments
WHERE department_id = 10;

LOCATION_ID

BOSTON

(Same result even after Transaction 2
commits.)

1-22 Oracle Database Advanced Application Developer's Guide

Using Oracle Lock Management Services (User Locks)

Table 1-3 (Cont.) Examples of Concurrency Under Explicit Locking

Time
Transaction 1 Point Transaction 2
COMMIT; 56
SELECT location_ id 57

FROM hr.departments
WHERE department_id = 10;

LOCATION_ID

NEW YORK

(Sees committed data.)

Using Oracle Lock Management Services (User Locks)

Your applications can use Oracle Lock Management services (user locks) by invoking
subprograms the DBMS_LOCK package. An application can request a lock of a specific
mode, give it a unique name recognizable in another subprogram in the same or
another instance, change the lock mode, and release it. Because a reserved user lock is
an Oracle Database lock, it has all the features of a database lock, such as deadlock
detection. Ensure that any user locks used in distributed transactions are released
upon COMMIT, otherwise an undetected deadlock can occur.

See Also: Oracle Database PL/SQL Packages and Types Reference for
detailed information about the DBMS_LOCK package

Topics:

= When to Use User Locks

= Viewing and Monitoring Locks

When to Use User Locks

User locks can help:

s Provide exclusive access to a device, such as a terminal

= Provide application-level enforcement of read locks

s Detect when a lock is released and clean up after the application
= Synchronize applications and enforce sequential processing

Example 1-2 shows how the Pro*COBOL precompiler uses locks to ensure that there
are no conflicts when multiple people must access a single device.

Example 1-2 How the Pro*COBOL Precompiler Uses Locks

Khkkkkkhkhhhhhkhkhkhkhhhhhhhhkhrhhhhhhhhkdkdhrhhhhhdkkdkxhhhhddhhkxxrrrhkhkxk

* Print Check *
* Any cashier may issue a refund to a customer returning goods. *
* Refunds under $50 are given in cash, more than $50 by check. *
* This code prints the check. One printer is opened by all *
* the cashiers to avoid the overhead of opening and closing it *
* for every check, meaning that lines of output from multiple *
* cashiers can become interleaved if you do not ensure exclusive *
* access to the printer. The DBMS_LOCK package is used to *

SQL Processing for Application Developers 1-23

Using Serializable Transactions for Concurrency Control

* ensure exclusive access. *
khkkhkkhkkkhkhkkhkhhhkhhhhkhhhkhkdhhkhkhhhkhkhhhhhhhkhhhhkdhhhkdhhkhkdhhhkhdhkkhhhkxhhrkxhkxx
CHECK-PRINT
* Get the lock "handle" for the printer lock.
MOVE "CHECKPRINT" TO LOCKNAME-ARR.
MOVE 10 TO LOCKNAME-LEN.
EXEC SQL EXECUTE
BEGIN DBMS_LOCK.ALLOCATE_UNIQUE (:LOCKNAME, :LOCKHANDLE);
END; END-EXEC.
* Lock the printer in exclusive mode (default mode).
EXEC SQL EXECUTE
BEGIN DBMS_LOCK.REQUEST (:LOCKHANDLE) ;
END; END-EXEC.
* You now have exclusive use of the printer, print the check.

* Unlock the printer so other people can use it
EXEC SQL EXECUTE
BEGIN DBMS_LOCK.RELEASE (:LOCKHANDLE);
END; END-EXEC.

Viewing and Monitoring Locks

Table 1-4 describes the Oracle Database facilities that display locking information for
ongoing transactions within an instance.

Table 1-4 Ways to Display Locking Information

Tool Description

Oracle Enterprise From the Additional Monitoring Links section of the Database
Manager 10g Database Performance page, click Database Locks to display user blocks,
Control blocking locks, or the complete list of all database locks. See Oracle

Database 2 Day DBA for more information.

UTLLOCKT.SQL The UTLLOCKT.SQL script displays a simple character lock wait-for
graph in tree structured fashion. Using any SQL tool (such as
SQL*Plus) to run the script, it prints the sessions in the system that are
waiting for locks and the corresponding blocking locks. The location
of this script file is operating system dependent. (You must have run
the CATBLOCK.SQL script before using UTLLOCKT.SQL.)

Using Serializable Transactions for Concurrency Control

By default, Oracle Database permits concurrently running transactions to modify, add,
or delete rows in the same table, and in the same data block. Changes made by one
transaction are not seen by another concurrent transaction until the transaction that
made the changes commits.

If a transaction A attempts to update or delete a row that has been locked by another
transaction B (by way of a DML or SELECT FOR UPDATE statement), then A's DML
statement blocks until B commits or rolls back. Once B commits, transaction A can see
changes that B has made to the database.

For most applications, this concurrency model is the appropriate one, because it
provides higher concurrency and thus better performance. But some rare cases require
transactions to be serializable. Serializable transactions must run in such a way that
they appear to be running one at a time (serially), rather than concurrently. Concurrent
transactions running in serialized mode can make only the database changes that they
could make if the transactions ran one after the other.

1-24 Oracle Database Advanced Application Developer's Guide

Using Serializable Transactions for Concurrency Control

Figure 1-1 shows a serializable transaction (B) interacting with another transaction
(A).

The SQL standard defines three possible kinds of transaction interaction, and four
levels of isolation that provide increasing protection against these interactions. These
interactions and isolation levels are summarized in Table 1-5.

Table 1-5 Summary of ANSI Isolation Levels

Isolation Level Dirty Read' Unrepeatable Read’ Phantom Read?®
READ UNCOMMITTED Possible Possible Possible

READ COMMITTED Not possible Possible Possible
REPEATABLE READ Not possible Not possible Possible
SERIALIZABLE Not possible Not possible Not possible

! A transaction can read uncommitted data changed by another transaction.
2 A transaction rereads data committed by another transaction and sees the new data.

3 A transaction can run a query again, and discover rows inserted by another committed
transaction.

Table 1-6 summarizes the action of Oracle Database for these isolation levels.

Table 1-6 ANSI Isolation Levels and Oracle Database

Isolation Level Description

READ UNCOMMITTED Oracle Database never permits "dirty reads." Although some other
database products use this undesirable technique to improve
thoughput, it is not required for high throughput with Oracle Database.

READ COMMITTED Oracle Database meets the READ COMMITTED isolation standard. This is
the default mode for all Oracle Database applications. Because an
Oracle Database query only sees data that was committed at the
beginning of the query (the snapshot time), Oracle Database actually
offers more consistency than is required by the SQL standard for READ
COMMITTED isolation.

REPEATABLE READ Oracle Database does not normally support this isolation level, except
as provided by SERTALIZABLE.

SERIALIZABLE Oracle Database does not provide this isolation level by default, but
you can request it.

Topics:

= How Serializable Transactions Interact

» Setting the Isolation Level of a Serializable Transaction
= Referential Integrity and Serializable Transactions

= READ COMMITTED and SERIALIZABLE Isolation

= Application Tips for Transactions

How Serializable Transactions Interact

Figure 1-1 on page 1-26 shows how a serializable transaction (Transaction B) interacts
with another transaction (A, which can be either SERIALIZABLE or READ
COMMITTED).

SQL Processing for Application Developers 1-25

Using Serializable Transactions for Concurrency Control

When a serializable transaction fails with ORA-08177, the application can take any of
several actions:

s Commit the work executed to that point

= Run additional, different, statements, perhaps after rolling back to a prior
savepoint in the transaction

= Roll back the entire transaction and try it again

Oracle Database stores control information in each data block to manage access by
concurrent transactions. To use the SERIALIZABLE isolation level, you must use the
INITRANS clause of the CREATE TABLE or ALTER TABLE statement to set aside
storage for this control information. To use serializable mode, INITRANS must be set
to at least 3.

Figure 1-1 Time Line for Two Transactions

TIME

TRANSACTION A

(arbitrary)

begin work
update row 2
in block 1

insert row 4

commit

Issue update "too recent"

for B to see

Change other row in
same block, see own
[EL [

Create possible
"phantom" row

Uncommitted changes
invisible

Make changes visible
to transactions that
begin later

Make changes
after A commits

B can see its own changes
but not the committed
changes of transaction A.

Failure on attempt to update
row updated and committed
since transaction B began

1-26 Oracle Database Advanced Application Developer's Guide

TRANSACTION B

(serializable)

SET TRANSACTION
ISOLATION LEVEL <
SERIALIZABLE

read row 1 in block 1

update row 1 in block 1
read updated row 1 in
block 1

read old row 2 in block 1
search for row 4
(notfound)

update row 3 in block 1

re-read updated row 1
in block 1
search for row 4 (not found)
read old row 2 in block 1

update row 2 in block 1
FAILS; rollback and retry

Using Serializable Transactions for Concurrency Control

Setting the Isolation Level of a Serializable Transaction

You can change the isolation level of a transaction using the ISOLATION LEVEL clause
of the SET TRANSACTION statement, which must be the first statement issued in a
transaction.

Use the ALTER SESSION statement to set the transaction isolation level on a
session-wide basis.

See Also:

» Oracle Database SQL Language Reference for the syntax of the ALTER
SESSION statement

» Oracle Database SQL Language Reference for the syntax of the SET
TRANSACTION statement

Oracle Database stores control information in each data block to manage access by
concurrent transactions. Therefore, if you set the transaction isolation level to
SERIALIZABLE, then you must use the ALTER TABLE statement to set INITRANS to
at least 3. This parameter causes Oracle Database to allocate sufficient storage in each
block to record the history of recent transactions that accessed the block. Use higher
values for tables for which many transactions update the same blocks.

Referential Integrity and Serializable Transactions

Because Oracle Database does not use read locks, even in SERIALIZABLE
transactions, data read by one transaction can be overwritten by another. Transactions
that perform database consistency checks at the application level must not assume that
the data they read will not change during the execution of the transaction (even
though such changes are not visible to the transaction). Database inconsistencies can
result unless such application-level consistency checks are coded carefully, even when
using SERTALIZABLE transactions.

Note: Examples in this topic apply to both READ COMMITTED and
SERIALIZABLE transactions.

Figure 1-2 on page 1-28 shows two different transactions that perform
application-level checks to maintain the referential integrity parent/child relationship
between two tables. One transaction checks that a row with a specific primary key
value exists in the parent table before inserting corresponding child rows. The other
transaction checks to see that no corresponding detail rows exist before deleting a
parent row. In this case, both transactions assume (but do not ensure) that data they
read will not change before the transaction completes.

SQL Processing for Application Developers 1-27

Using Serializable Transactions for Concurrency Control

Figure 1-2 Referential Integrity Check

B's query does

not prevent this

e TRANSACTION A TRANSACTION B
read parent (it exists) read child rows (not found)
b insert child row(s) delete parent €=
commit work commit work

A's query does

not prevent this
delete

The read issued by transaction A does not prevent transaction B from deleting the
parent row, and transaction B's query for child rows does not prevent transaction A
from inserting child rows. This scenario leaves a child row in the database with no
corresponding parent row. This result occurs even if both A and B are SERIALIZABLE
transactions, because neither transaction prevents the other from making changes in
the data it reads to check consistency.

As this example shows, sometimes you must take steps to ensure that the data read by
one transaction is not concurrently written by another. This requires a greater degree
of transaction isolation than defined by the SERIALIZABLE mode in the SQL
standard.

Fortunately, it is straightforward in Oracle Database to prevent the anomaly described:

s Transaction A can use SELECT FOR UPDATE to query and lock the parent row and
thereby prevent transaction B from deleting the row.

s Transaction B can prevent Transaction A from gaining access to the parent row by
reversing the order of its processing steps. Transaction B first deletes the parent
row, and then rolls back if its subsequent query detects the presence of
corresponding rows in the child table.

Referential integrity can also be enforced in Oracle Database using database triggers,
instead of a separate query as in Transaction A. For example, an INSERT into the child
table can fire a BEFORE INSERT row-level trigger to check for the corresponding
parent row. The trigger queries the parent table using SELECT FOR UPDATE, ensuring
that parent row (if it exists) remains in the database for the duration of the transaction
inserting the child row. If the corresponding parent row does not exist, the trigger
rejects the insert of the child row.

SQL statements issued by a database trigger run in the context of the SQL statement
that caused the trigger to fire. All SQL statements executed within a trigger see the
database in the same state as the triggering statement. Thus, in a READ COMMITTED
transaction, the SQL statements in a trigger see the database as of the beginning of the
triggering statement execution, and in a transaction running in SERIALIZABLE mode,

1-28 Oracle Database Advanced Application Developer's Guide

Using Serializable Transactions for Concurrency Control

the SQL statements see the database as of the beginning of the transaction. In either
case, the use of SELECT FOR UPDATE by the trigger correctly enforces referential
integrity.

READ COMMITTED and SERIALIZABLE Isolation

Oracle Database gives you a choice of two transaction isolation levels with different
characteristics. Both the READ COMMITTED and SERIALIZABLE isolation levels
provide a high degree of consistency and concurrency. Both levels reduce contention,
and are designed for deploying real-world applications. The rest of this topic compares
the two isolation modes and provides information helpful in choosing between them.

Topics:
s Transaction Set Consistency
s Comparison of READ COMMITTED and SERIALIZABLE Transactions

s Choosing an Isolation Level for Transactions

Transaction Set Consistency

A useful way to describe the READ COMMITTED and SERIALIZABLE isolation levels in
Oracle Database is to consider:

= A collection of database tables (or any set of data)
= A sequence of reads of rows in those tables
= The set of transactions committed at any moment

An operation (a query or a transaction) is transaction set consistent if its read
operations all return data written by the same set of committed transactions. When an
operation is not transaction set consistent, some reads reflect the changes of one set of
transactions, and other reads reflect changes made by other transactions. Such an
operation sees the database in a state that reflects no single set of committed
transactions.

Oracle Database transactions running in READ COMMITTED mode are transaction-set
consistent on an individual-statement basis, because all rows read by a query must be
committed before the query begins.

Oracle Database transactions running in SERIALIZABLE mode are transaction set
consistent on an individual-transaction basis, because all statements in a
SERIALIZABLE transaction run on an image of the database as of the beginning of the
transaction.

In other database systems, a single query run in READ COMMITTED mode provides
results that are not transaction set consistent. The query is not transaction set
consistent, because it might see only a subset of the changes made by another
transaction. For example, a join of a master table with a detail table can see a master
record inserted by another transaction, but not the corresponding details inserted by
that transaction, or vice versa. The READ COMMITTED mode avoids this problem, and
so provides a greater degree of consistency than read-locking systems.

In read-locking systems, at the cost of preventing concurrent updates, the SQL
standardREPEATABLE READ isolation provides transaction set consistency at the
statement level, but not at the transaction level. The absence of phantom protection
means two queries issued by the same transaction can see data committed by different
sets of other transactions. Only the throughput-limiting and deadlock-susceptible
SERIALIZABLE mode in these systems provides transaction set consistency at the
transaction level.

SQL Processing for Application Developers 1-29

Using Serializable Transactions for Concurrency Control

Comparison of READ COMMITTED and SERIALIZABLE Transactions

Table 1-7 summarizes key similarities and differences between READ COMMITTED and
SERIALIZABLE transactions.

Table 1-7 Read Committed and Serializable Transactions

Operation Read Committed Serializable
Dirty write Not Possible Not Possible
Dirty read Not Possible Not Possible
Unrepeatable read Possible Not Possible
Phantoms Possible Not Possible
Compliant with ANSI/ISO SQL 92 Yes Yes

Read snapshot time Statement Transaction
Transaction set consistency Statement level =~ Transaction level
Row-level locking Yes Yes

Readers block writers No No

Writers block readers No No
Different-row writers block writers No No
Same-row writers block writers Yes Yes

Waits for blocking transaction Yes Yes

Subject to "cannot serialize access" error No Yes

Error after blocking transaction terminates No No

Error after blocking transaction commits No Yes

Choosing an Isolation Level for Transactions

Choose an isolation level that is appropriate to the specific application and workload.
You might choose different isolation levels for different transactions. The choice
depends on performance and consistency needs, and consideration of application
coding requirements.

For environments with many concurrent users rapidly submitting transactions, you
must assess transaction performance against the expected transaction arrival rate and
response time demands, and choose an isolation level that provides the required
degree of consistency while performing well. Frequently, for high performance
environments, you must trade-off between consistency and concurrency (transaction
throughput).

Both Oracle Database isolation modes provide high levels of consistency and
concurrency (and performance) through the combination of row-level locking and
Oracle Database's multi-version concurrency control system. Because readers and
writers do not block one another in Oracle Database, while queries still see consistent
data, both READ COMMITTED and SERIALIZABLE isolation provide a high level of
concurrency for high performance, without the need for reading uncommitted ("dirty")
data.

READ COMMITTED isolation can provide considerably more concurrency with a
somewhat increased risk of inconsistent results (from phantoms and unrepeatable
reads) for some transactions. The SERIALIZABLE isolation level provides somewhat
more consistency by protecting against phantoms and unrepeatable reads, and might
be important where a read /write transaction runs a query more than once. However,

1-30 Oracle Database Advanced Application Developer's Guide

Autonomous Transactions

SERIALIZABLE mode requires applications to check for the "cannot serialize access"
error, and can significantly reduce throughput in an environment with many
concurrent transactions accessing the same data for update. Application logic that
checks database consistency must consider the fact that reads do not block writes in
either mode.

Application Tips for Transactions

When a transaction runs in serializable mode, any attempt to change data that was
changed by another transaction since the beginning of the serializable transaction
causes ORA-08177.

When you get this error, roll back the current transaction and run it again. The
transaction gets a transaction snapshot, and the operation is likely to succeed.

To minimize the performance overhead of rolling back transactions and running them
again, try to put DML statements that might conflict with other concurrent
transactions near the beginning of your transaction.

Autonomous Transactions

An autonomous transaction (AT) is an independent transaction started by another
transaction, the main transaction (MT). An autonomous transaction lets you suspend
the main transaction, do SQL operations, commit or roll back those operations, and
then resume the main transaction.

For example, in a stock purchase transaction, you might want to commit a customer's
information regardless of whether the purchase succeeds. Or, you might want to log
error messages to a debug table even if the transaction rolls back. Autonomous
transactions enable you to do such tasks.

An autonomous transaction runs within an autonomous scope; that is, within the
scope of an autonomous routine—a routine that you mark with the AUTONOMOUS_
TRANSACTION pragma. For the definition of routine in this context, see Oracle
Database PL/SQL Language Reference.

Figure 1-3 shows how control flows from the main transaction (MT) to an autonomous
transaction (AT) and back again. As you can see, the autonomous transaction can
commit multiple transactions (AT1 and AT2) before control returns to the main
transaction.

Figure 1-3 Transaction Control Flow

Main Transaction Autonomous Transaction
PROCEDURE procl IS PROCEDURE proc2 IS
emp_id NUMBER; PRAGMA AUTON. ..
BEGIN dept_id NUMBER;
emp_id := 7788; BEGIN MT suspends
INSERT ... — MT begins dept_id := 20;
SELECT ... UPDATE ... — 1 AT1 begins
proc2; > INSERT ...
DELETE ... UPDATE ...
coMMIT; — L MT ends COMMIT; ————— AT1ends
END; INSERT ... | AT2 begins
INSERT ...
COMMIT; ——1— AT2ends
END; MT resumes

SQL Processing for Application Developers 1-31

Autonomous Transactions

When you enter the executable section of an autonomous transaction, the main
transaction suspends. When you exit the transaction, the main transaction resumes.
COMMIT and ROLLBACK end the active autonomous transaction but do not exit the
autonomous transaction. As Figure 1-3 shows, when one transaction ends, the next
SQL statement begins another transaction.

A few more characteristics of autonomous transactions:

s The changes autonomous transactions effect do not depend on the state or the
eventual disposition of the main transaction. For example:

- Anautonomous transaction does not see any changes made by the main
transaction.

— When an autonomous transaction commits or rolls back, it does not affect the
outcome of the main transaction.

= The changes an autonomous transaction effects are visible to other transactions as
soon as that autonomous transaction commits. Therefore, users can access the
updated information without having to wait for the main transaction to commit.

s Autonomous transactions can start other autonomous transactions.

Figure 14 illustrates some possible sequences autonomous transactions can follow.

1-32 Oracle Database Advanced Application Developer's Guide

Autonomous Transactions

Figure 1-4 Possible Sequences of Autonomous Transactions

(A megn tran)saction scope
MT Scope) begins the main

fransaction. MTx. MTx MT Scope AT Scope 1 AT Scope 2 AT Scope 3 AT Scope 4
invokes the first autonomous
transaction scope (AT MTx
Scope1). MTx suspends. AT
Scope 1 begins the >
transaction Tx1.1. Tx1.1

A

At Scope 1 commits or rolls MT
back Tx1.1, than ends. MTx X ><
resumes.

MTx invokes AT Scope 2. MT
suspends, passing control to P
AT Scope 2 which, initially, is
performing queries.

AT Scope 2 then begins
Tx2.1 by, say, doing an
update. AT Scope 2 commits
or rolls back Tx2.1.

Tx2.1

Later, AT Scope 2 begins a
second transaction, Tx2.2, T™>2.2
then commits or rolls it back.

< |
AT Scope 2 performs a few MTx ><

queries, then ends, passing
control back to MTx.

MTx invokes AT Scope 3.
MTx suspends, AT Scope 3
begins.

Tx3.1

AT Scope 3 begins Tx3.1
which, in turn, invokes AT
Scope 4. Tx3.1 suspends, AT
Scope 4 begins.

Tx4.1

AT Scope 4 begins Tx4.1,
commits or rolls it back, then
ends. AT Scope 3 resumes.

AT Scope 3 commits or rolls ™| ><

back Tx3.1, then ends. MTx
resumes.

Finally, MT Scope commits or MTx

rolls back MTx, then ends. ><

= Examples of Autonomous Transactions

X

Topics:

s Defining Autonomous Transactions

See Also: Oracle Database PL/SQL Language Reference for detailed
information about autonomous transactions

Examples of Autonomous Transactions
s Ordering a Product

= Withdrawing Money from a Bank Account

As these examples illustrate, there are four possible outcomes when you use
autonomous and main transactions (see Table 1-8). There is no dependency between
the outcome of an autonomous transaction and that of a main transaction.

SQL Processing for Application Developers 1-33

Autonomous Transactions

Table 1-8 Possible Transaction Outcomes

Autonomous Transaction Main Transaction

Commits Commits
Commits Rolls back
Rolls back Commits
Rolls back Rolls back
Ordering a Product

In the example illustrated by Figure 1-5, a customer orders a product. The customer's
information (such as name, address, phone) is committed to a customer information
table—even though the sale does not go through.

Figure 1-5 Example: A Buy Order

MT Scope begins the main
transaction, MTx inserts the
buy order into a table. me M

MTx invokes the autonomous

transaction scope (AT >
Scope). When AT Scope ATx
begins, MT Scope suspends.

ATX, updates the audit table
with customer information.

A

MTx seeks to validate the
order, finds that the selected MTx ><

item is unavailable, and

therefore rolls back the main

transaction.

Withdrawing Money from a Bank Account

In this example, a customer tries to withdraw money from a bank account. In the
process, a main transaction invokes one of two autonomous transaction scopes (AT
Scope 1 or AT Scope 2).

The possible scenarios for this transaction are:

» Scenario 1: Sufficient Funds

» Scenario 2: Insufficient Funds with Overdraft Protection

= Scenario 3: Insufficient Funds Without Overdraft Protection

Scenario 1: Sufficient Funds There are sufficient funds to cover the withdrawal, so the
bank releases the funds (see Figure 1-6).

1-34 Oracle Database Advanced Application Developer's Guide

Autonomous Transactions

Figure 1-6 Bank Withdrawal—Sufficient Funds

MTx generates a
transaction ID.

Tx1.1 inserts the transaction
ID into the audit table and
commits.

MTx validates the balance on
the account.

Tx2.1, updates the audit table
using the transaction ID
generated above, then
commits.

MTx releases the funds. MT
Scope ends.

MT Scope AT Scope 1 AT Scope 2
MTx
Tx1.1

di

|
MTx ><

> Tx2.1

di

|
MTx

X

X

Scenario 2: Insufficient Funds with Overdraft Protection There are insufficient funds to cover
the withdrawal, but the customer has overdraft protection, so the bank releases the

funds (see Figure 1-7).

SQL Processing for Application Developers 1-35

Autonomous Transactions

Figure 1-7 Bank Withdrawal—Insufficient Funds with Overdraft Protection

MT Scope AT Scope 1 AT Scope 2

MTx

Tx1.1

A

MTx discovers that there are

insufficient funds to cover the MTx ><
withdrawal. It finds that the

customer has overdraft

protection and sets a flag to
the appropriate value.

Tx2.1, updates the P
audit table. ™21

A

MTX, releases the funds. MT MTx ><

Scope ends.

Scenario 3: Insufficient Funds Without Overdraft Protection There are insufficient funds to
cover the withdrawal and the customer does not have overdraft protection, so the
bank withholds the requested funds (see Figure 1-8).

1-36 Oracle Database Advanced Application Developer's Guide

Autonomous Transactions

Figure 1-8 Bank Withdrawal—Insufficient Funds Without Overdraft Protection

MT Scope AT Scope 1 AT Scope 2

MTx

Tx1.1

A

MTx discovers that there are

insufficient funds to cover the MTx ><
withdrawal. It finds that the

customer does not have
overdraft protection and sets
a flag to the appropriate
value.

Tx2.1, updates the >
audit table.

MTx Scope rolls back MTx,
denying the release of funds.
MT Scope ends.

MTx

X

X

Defining Autonomous Transactions

To define autonomous transactions, use PRAGMA AUTONOMOUS_ TRANSACTION, which
instructs the PL/SQL compiler to mark the subprogram as autonomous.

In Example 1-3, the function balance is autonomous.

Example 1-3 Marking a Packaged Subprogram as Autonomous

-- Create table for package to use:

DROP TABLE accounts;
CREATE TABLE accounts (account INTEGER, balance REAL);

-- Create package:

CREATE OR REPLACE PACKAGE banking AS
FUNCTION balance (acct_id INTEGER) RETURN REAL;
-- Additional functions and packages
END banking;
/
CREATE OR REPLACE PACKAGE BODY banking AS
FUNCTION balance (acct_id INTEGER) RETURN REAL IS
PRAGMA AUTONOMOUS_TRANSACTION;
my_bal REAL;
BEGIN
SELECT balance INTO my_bal FROM accounts WHERE account=acct_id;
RETURN my_bal;
END;
-- Additional functions and packages
END banking;

SQL Processing for Application Developers 1-37

Resuming Execution After Storage Allocation Error

See Also: Oracle Database PL/SQL Language Reference for more
information about autonomous transactions

Resuming Execution After Storage Allocation Error

When a long-running transaction is interrupted by an out-of-space error condition,
your application can suspend the statement that encountered the problem and resume
it after the space problem is corrected. This capability is known as resumable storage
allocation. It lets you avoid time-consuming rollbacks. It also lets you avoid splitting
the operation into smaller pieces and writing code to track its progress.

See Also: Oracle Database Administrator’s Guide for more information
about resumable storage allocation

Topics:
s What Operations Can Be Resumed After an Error Condition?

» Handling Suspended Storage Allocation

What Operations Can Be Resumed After an Error Condition?

Queries, DML statements, and certain DDL statements can be resumed if they
encounter an out-of-space error. The capability applies if the operation is performed
directly by a SQL statement, or if it is performed within a stored subprogram,
anonymous PL/SQL block, SQL*Loader, or an OCI call such as OCIStmtExecute.

Operations can be resumed after these kinds of error conditions:
» Out of space errors, such as ORA-01653.

= Space limit errors, such as ORA-01628.

= Space quota errors, such as ORA-01536.

Certain storage errors cannot be handled using this technique. In dictionary-managed
tablespaces, you cannot resume an operation if you run into the limit for rollback
segments, or the maximum number of extents while creating an index or a table. Use
locally managed tablespaces and automatic undo management in combination with
this feature.

Handling Suspended Storage Allocation

When a statement is suspended, your application does not receive the usual error
code. Therefore, it must do any logging or notification by coding a trigger to detect the
AFTER SUSPEND event and invoke functions in the DBMS_RESUMABLE package to get
information about the problem.

Within the body of the trigger, you can perform any notifications, such as sending
e-mail to alert an operator to the space problem.

Alternatively, the DBA can periodically check for suspended statements using the
static data dictionary view DBA_RESUMABLE and the dynamic performance view Vs$_
SESSION_WATT.

1-38 Oracle Database Advanced Application Developer's Guide

Resuming Execution After Storage Allocation Error

See Also:

s Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_RESUMABLE package

» Oracle Database Reference for information about the static data
dictionary view DBA_RESUMABLE

s Oracle Database Reference for information about the dynamic
performance view V$_SESSION_WAIT

When the space condition is corrected (usually by the DBA), the suspended statement
automatically resumes execution. If not corrected before the timeout period expires,
the statement raises a SERVERERROR exception.

To reduce the chance of out-of-space errors within the trigger itself, declare it as an
autonomous transaction, so that it uses a rollback segment in the SYSTEM tablespace. If
the trigger encounters a deadlock condition because of locks held by the suspended
statement, the trigger terminates and your application receives the original error
condition, as if the statement was never suspended. If the trigger encounters an
out-of-space condition, both the trigger and the suspended statement are rolled back.
You can prevent the rollback through an exception handler in the trigger, and wait for
the statement to be resumed.

The trigger in Example 1-4 handles storage errors within the database. For some kinds
of errors, it terminates the statement and alerts the DBA that this has happened
through an e-mail. For other errors, which might be temporary, it specifies that the
statement waits for eight hours before resuming, expecting the storage problem to be
fixed by then. To run this example, you must be logged in as SYSDBA.

Example 1-4 Resumable Storage Allocation

-- Create table used by trigger body

DROP TABLE rbs_error;
CREATE TABLE rbs_error (
SQL_TEXT VARCHAR2 (64),
ERROR_MSG VARCHAR2 (64),
SUSPEND_TIME VARCHAR2 (64)
)i

-- Resumable Storage Allocation
CREATE OR REPLACE TRIGGER suspend_example

AFTER SUSPEND
ON DATABASE

DECLARE
cur_sid NUMBER;
cur_inst NUMBER;
err_type VARCHAR2 (64) ;
object_owner VARCHAR2 (64) ;
object_type VARCHAR2 (64) ;
table_space_name VARCHAR2 (64);
object_name VARCHAR2 (64) ;
sub_object_name VARCHAR2 (64) ;
msg_body VARCHAR2 (64) ;
ret_value BOOLEAN;
error_txt VARCHAR2 (64) ;
mail_conn UTL_SMTP.CONNECTION;

BEGIN

SQL Processing for Application Developers 1-39

Resuming Execution After Storage Allocation Error

SELECT DISTINCT(SID) INTO cur_sid FROM VS$SMYSTAT;

cur_inst := USERENV('instance');
ret_value := DBMS_RESUMABLE.SPACE_ERROR_INFO
(err_type,

object_owner,
object_type,
table_space_name,
object_name,
sub_object_name);
IF object_type = 'ROLLBACK SEGMENT' THEN
INSERT INTO rbs_error

(SELECT SQL_TEXT, ERROR_MSG, SUSPEND_TIME

FROM DBA_RESUMABLE

WHERE SESSION_ID = cur_sid

AND INSTANCE_ID = cur_inst);

SELECT ERROR_MSG INTO error_txt
FROM DBA_RESUMABLE

WHERE SESSION_ID = cur_sid

AND INSTANCE_ID = cur_inst;

msg_body :=
'Space error occurred: Space limit reached for rollback segment '
|| object_name || ' on ' || to_char(SYSDATE, 'Month dd, YYYY, HH:MIam')
|| '. Error message was: ' || error_txt;

mail_conn := UTL_SMTP.OPEN_CONNECTION('localhost', 25);
UTL_SMTP.HELO (mail_conn, 'localhost');
UTL_SMTP.MAIL(mail_conn, 'sender@localhost');
UTL_SMTP.RCPT (mail_conn, 'recipient@localhost');
UTL_SMTP.DATA (mail_conn, msg_body) ;
UTL_SMTP.QUIT (mail_conn) ;
DBMS_RESUMABLE.ABORT (cur_sid);
ELSE
DBMS_RESUMABLE.SET_TIMEOUT(3600%*8);
END IF;
COMMIT;
END;
/

1-40 Oracle Database Advanced Application Developer's Guide

2

Using SQL Data Types in Database
Applications

This chapter explains how to use SQL data types in database applications.
Topics:

s Overview of SQL Data Types

» Representing Character Data

s Representing Numeric Data

= Representing Date and Time Data

= Representing Specialized Data

= Representing Conditional Expressions as Data
s Identifying Rows by Address

s How Oracle Database Converts Data Types

s Metadata for SQL Built-In Functions

See Also:

» Oracle Database PL/SQL Language Reference for information about
PL/SQL data types

» Oracle Database PL/SQL Language Reference for introductory
information about Abstract Data Types (ADTs)

» Oracle Database Object-Relational Developer’s Guide for advanced
information about ADTs

An ADT consists of a data structure and subprograms that manipulate
the data. In the static data dictionary view *_OBJECTS, the OBJECT_
TYPE of an ADE is TYPE. In the static data dictionary view *_TYPES, the
TYPECODE of an ADE is OBJECT.

» Oracle Database SecureFiles and Large Objects Developer’s Guide for
information about LOB data types

Large object (LOB) data types reference large objects that are stored
separately from other data items, such as text, graphic images, video
clips, and sound waveforms. LOB data types allow efficient, random,
piecewise access to this data.

Using SQL Data Types in Database Applications 2-1

Overview of SQL Data Types

Overview of SQL Data Types

A data type associates a fixed set of properties with the values that can be used in a
column of a table or in an argument of a subprogram. These properties cause Oracle
Database to treat values of one data type differently from values of another data type.
For example, Oracle Database can add values of NUMBER data type, but not values of
RAW data type.

Oracle Database provides many built-in data types and several categories for
user-defined types that can be used as data types.

The Oracle precompilers recognize other data types in embedded SQL programs.
These data types are called external data types and are associated with host variables.
Do not confuse Oracle Database built-in data types and user-defined types with
external data types.

See Also:

» Oracle Database SQL Language Reference for complete reference
information about the SQL data types

» Oracle Database Concepts to learn about Oracle Database built-in
data types

Representing Character Data
Topics:
s Overview of Character Data Types
= Specifying Column Lengths as Bytes or Characters
s Choosing Between CHAR and VARCHAR? Data Types
s Using Character Literals in SQL Statements

Overview of Character Data Types

You can use these SQL data types to store alphanumeric data:

= CHAR and NCHAR data types store fixed-length character literals.

= VARCHAR2 and NVARCHAR2 data types store variable-length character literals.
= NCHAR and NVARCHAR?2 data types store Unicode character data only.

= CLOB and NCLOB data types store single-byte and multibyte character strings of up
to (4 gigabytes - 1) * (the value obtained from DBMS_LOB.GETCHUNKSIZE).

= The LONG data type stores variable-length character strings containing up to two
gigabytes, but with many restrictions. This data type is provided only for
backward compatibility with existing applications. In general in new applications,
use CLOB and NCLOB data types to store large amounts of character data, and
BLOB and BFILE to store large amounts of binary data.

= The LONG RAW data type is similar to the RAW data type, except that it stores raw
data with a length up to two gigabytes. The LONG RAW data type is provided only
for backward compatibility with existing applications.

2-2 Oracle Database Advanced Application Developer's Guide

Representing Character Data

See Also:

» Oracle Database SecureFiles and Large Objects Developer’s Guide for
information about LOB data types and migration from LONG to
LOB data types

» Oracle Database SQL Language Reference for restrictions on LONG
data types

Specifying Column Lengths as Bytes or Characters

You can specify the lengths of CHAR and VARCHAR2 columns as either bytes or
characters. The lengths of NCHAR and NVARCHAR2 columns are always specified in
characters, making them ideal for storing Unicode data, where a character might
consist of multiple bytes. This table shows some column length specifications and their
meanings:

Column Length Specification Meaning

id VARCHAR2 (32 BYTE) The id column contains up to 32 single-byte
characters.

name VARCHAR?2 (32 CHAR) The name column contains up to 32 characters
of the database character set. If the database
character set includes multibyte characters,
then the 32 characters can occupy more than
32 bytes.

biography NVARCHAR2 (2000) The biography column contains up to 2000
characters of any Unicode-representable
language. The encoding depends on the
national character set. The column can contain
multibyte values even if the database
character set is single-byte.

comment VARCHAR2 (2000) The comment column contains up to 2000
bytes or characters, depending on the value of
the initialization parameter NLS_LENGTH_
SEMANTICS.

When using a multibyte database character encoding scheme, consider carefully the
space required for tables with character columns. If the database character encoding
scheme is single-byte, then the number of bytes and the number of characters in a
column is the same. If it is multibyte, however, then there generally is no such
correspondence. A character might consist of one or more bytes, depending upon the
specific multibyte encoding scheme and whether shift-in/shift-out control codes are
present. To avoid overflowing buffers, specify data as NCHAR or NVARCHAR? if it might
use a Unicode encoding that is different from the database character set.

See Also:

» Oracle Database Globalization Support Guide for more information
about SQL data types NCHAR and NVARCHAR2

» Oracle Database SQL Language Reference for more information about
SQL data types NCHAR and NVARCHAR2

Choosing Between CHAR and VARCHAR2 Data Types

When deciding which data type to use for a column that stores alphanumeric data in a
table, consider these points of distinction:

Using SQL Data Types in Database Applications 2-3

Representing Numeric Data

= Space usage

To store data more efficiently, use the VARCHAR2 data type. The CHAR data type
blank-pads and stores trailing blanks up to a fixed column length for all column
values, whereas the VARCHAR2 data type does not add extra blanks.

s Comparison semantics

Use the CHAR data type when you require ANSI compatibility in comparison
semantics (when trailing blanks are not important in string comparisons). Use the
VARCHAR?2 when trailing blanks are important in string comparisons.

= Future compatibility

The CHAR and VARCHAR?2 data types are fully supported. Today, the VARCHAR data
type automatically corresponds to the VARCHAR2 data type and is reserved for
future use.

When an application interfaces with Oracle Database, there is a character set on the
client and server side. Oracle Database uses the NLS_LANGUAGE parameter to
automatically convert CHAR, VARCHAR2, and LONG data from the database character
set to the character set defined for the user session, if these are different.

Oracle Database SQL Language Reference explains the comparison semantics that Oracle
Database uses to compare character data. Because Oracle Database blank-pads values
stored in CHAR columns but not in VARCHAR2 columns, a value stored in a VARCHAR?2
column can take up less space than the same value in a CHAR column. For this reason,
a full table scan on a large table containing VARCHAR2 columns may read fewer data
blocks than a full table scan on a table containing the same data stored in CHAR
columns. If your application often performs full table scans on large tables containing
character data, then you may be able to improve performance by storing data in
VARCHAR2 rather than in CHAR columns.

Performance is not the only factor to consider when deciding which data type to use.
Oracle Database uses different semantics to compare values of each data type. You
might choose one data type over the other if your application is sensitive to the
differences between these semantics. For example, if you want Oracle Database to
ignore trailing blanks when comparing character values, then you must store these
values in CHAR columns.

See Also: Oracle Database SQL Language Reference for more
information about comparison semantics for these data types

Using Character Literals in SQL Statements

Many SQL statements, functions, expressions, and conditions require character literals.
For information about using character literals in SQL statements, see Oracle Database
SQL Language Reference.

Representing Numeric Data
Topics:
s Overview of Numeric Data Types
s Floating-Point Number Formats
s Comparison Operators for Native Floating-Point Data Types
= Arithmetic Operations with Native Floating-Point Data Types

= Conversion Functions for Native Floating-Point Data Types

2-4 Oracle Database Advanced Application Developer's Guide

Representing Numeric Data

s Client Interfaces for Native Floating-Point Data Types

Overview of Numeric Data Types

The SQL data types NUMBER, BINARY_FLOAT, and BINARY_DOUBLE store numeric
data.

Use the NUMBER data type to store real numbers in a fixed-point or floating-point
format. Numbers using this data type are guaranteed to be portable among different
Oracle Database platforms, and offer up to 38 decimal digits of precision. You can store
positive and negative numbers of magnitude 1 x 107130 through 9.99 x10'® and 0, in a
NUMBER column.

The BINARY_FLOAT and BINARY_DOUBLE data types store floating-point data in the
32-bit IEEE 754 format and the double precision 64-bit IEEE 754 format respectively.
Compared to the Oracle Database NUMBER data type, arithmetic operations on
floating-point data are usually faster for BINARY_FLOAT and BINARY_DOUBLE. Also,
high-precision values require less space when stored as BINARY_FLOAT and BINARY_
DOUBLE.

In client interfaces supported by Oracle Database, the native instruction set supplied
by the hardware vendor performs arithmetic operations on BINARY_FLOAT and
BINARY_DOUBLE data types. The term native floating-point data type includes
BINARY_FLOAT and BINARY_DOUBLE data types and all implementations of these
types in supported client interfaces.

The floating-point number system is a common way of representing and manipulating
numeric values in computer systems. A floating-point number is characterized by
these components:

= Binary-valued sign
= Signed exponent

= Significand

= Base

A floating-point value is the signed product of its significand and the base raised to
the power of its exponent, as in this formula:

(-1)5i9" significand. base®®onent

For example, the number 4.31 is represented as follows:

(-1)9.431.1072

The components of the preceding representation are as follows:

Component Name Component Value

Sign 0
Significand 431
Base 10
Exponent -2

Using SQL Data Types in Database Applications 2-5

Representing Numeric Data

See Also:

» Oracle Database SQL Language Reference for more information about
the NUMBER data type

» Oracle Database SQL Language Reference for more information about
the BINARY_FLOAT and BINARY_DOUBLE data types

Floating-Point Number Formats

A floating-point number format specifies how components of a floating-point number
are represented. The choice of representation determines the range and precision of the
values the format can represent. By definition, the range is the interval bounded by the
smallest and the largest values the format can represent and the precision is the
number of digits in the significand.

Formats for floating-point values support neither infinite precision nor infinite range.
There are a finite number of bits to represent a number and only a finite number of
values that a format can represent. A floating-point number that uses more precision
than available with a given format is rounded.

A floating-point number can be represented in a binary system, as in the IEEE 754
standard, or in a decimal system, such as Oracle Database NUMBER. The base affects
many properties of the format, including how a numeric value is rounded.

For a decimal floating-point number format like Oracle Database NUMBER, rounding is
done to the nearest decimal place (for example. 1000, 10, or 0.01). The IEEE 754 formats
use a binary format for floating-point values and round numbers to the nearest binary
place (for example: 1024, 512, or 1/64).

The native floating-point data types round to the nearest binary place, so they are not
satisfactory for applications that require decimal rounding. Use the Oracle Database
NUMBER data type for applications in which decimal rounding is required on
floating-point data.

Topics:
= Using a Floating-Point Binary Format

= Special Values for Native Floating-Point Formats

Using a Floating-Point Binary Format

The value of a floating-point number that uses a binary format is determined by this
formula:

(-1)° 2% (by by by ... byy)
Table 2-1 describes the components of the formula.

Table 2-1 Components of the Binary Format for Floating-Point Numbers

Component Specifies ...

s Oorl
E Any integer between E,;, and E,,,, inclusive (see Table 2-2)
b; 0 or 1, where the sequence of bits represents a number in base 2 (see Table 2-2)

The leading bit of the significand, b,, must be set (1), except for subnormal numbers
(explained later). Therefore, the leading bit is not actually stored, so the formats
provide n bits of precision although only n-1 bits are stored.

2-6 Oracle Database Advanced Application Developer's Guide

Representing Numeric Data

Note: The IEEE 754 specification also defines extended
single-precision and extended double-precision formats, which are not
supported by Oracle Database.

The parameters for these formats are described in Table 2-2.

Table 2-2 Summary of Binary Format Parameters

Parameter Single-precision (32-bit) Double-precision (64-bit)
p 24 53

Epin -126 -1022

E +127 +1023

The storage parameters for the formats are described in Table 2-3. The in-memory
formats for single-precision and double-precision data types are specified by IEEE 754.

Table 2-3 Summary of Binary Format Storage Parameters

Data Type Sign bits Exponent bits Significand bits Total bits
Single-precision 1 8 24 (23 stored) 32
Double-precision 1 1 53 (52 stored) 64

A significand is normalized when the leading bit of the significand is set. IEEE 754
defines denormal or subnormal values as numbers that are too small to be
represented with an implied leading set bit in the significand. The number is too small
because its exponent would be too large if its significand were normalized to have an
implied leading bit set. IEEE 754 formats support subnormal values. Subnormal values
preserve this property: If x - y == 0.0 (using floating-point subtraction), then: x ==y.

Table 2—4 shows the range and precision of the required formats in the IEEE 754
standard and those of Oracle Database NUMBER. Range limits are expressed here in
terms of positive numbers; they also apply to the absolute value of a negative number.
(The notation "number e exponent" used here stands for number multiplied by 10 raised
to the exponent power: number - 10 ©Pore))

Table 2-4 Range and Precision of IEEE 754 formats

Oracle Database

Range and Single-precision Double-precision NUMBER Data
Precision 32-bit! 64-bit’ Type
Maximum positive 3.40282347¢+38 1.7976931348623157e+308 < 1.0e126
normal number

Minimum positive 1.17549435¢-38 2.2250738585072014e-308 1.0e-130
normal number

Maximum positive 1.17549421e-38 2.2250738585072009e-308 not applicable
subnormal number

Mininum positive 1.40129846e-45 4.9406564584124654e-324 not applicable
subnormal number

Precision (decimal 6-9 15-17 38 -40

digits)

! These numbers are quoted from the IEEE Numerical Computation Guide.

Using SQL Data Types in Database Applications 2-7

Representing Numeric Data

See Also:

» Oracle Database SQL Language Reference, section "Numeric Literals",
for information about literal representation of numeric values

» Oracle Database SQL Language Reference for more information about
floating-point formats

Special Values for Native Floating-Point Formats
IEEE 754 supports the special values shown in Table 2-5.

Table 2-5 Special Values for Native Floating-Point Formats

Value Meaning

+INF Positive infinity
-INF Negative infinity
NaN Not a number
+0 Positive zero

-0 Negative zero

NaN represent results of operations that are undefined. Many bit patterns in IEEE 754
represent NaN. Bit patterns can represent NaN with and without the sign bit set. IEEE
754 distinguishes between signalling NaNs and quiet NaNs.

IEEE 754 specifies action for when exceptions are enabled and disabled. In Oracle
Database, exceptions cannot be enabled; the database action is that specified by IEEE
754 for when exceptions are disabled. In particular, Oracle Database makes no
distinction between signalling and quiet NaNs. Programmers who use OCI can retrieve
NaN values from Oracle Database; whether a retrieved NaN value is signalling or quiet
depends on the client platform and beyond the control of Oracle Database.

IEEE 754 does not define the bit pattern for either type of NaN. Positive infinity,
negative infinity, positive zero, and negative zero are each represented by a specific bit
pattern.

In IEEE 754, the classes of values are:
n Zero

= Subnormal

= Normal

s Infinity

= NaN

Except for NaN, and ignoring signs, each class in the preceding list is larger than those
that precede it in the list.

In IEEE 754, NaN is unordered with other classes of special values and with itself.

When used with the database, special values of native floating-point data types act as
follows:

= AllNaNs are quiet.
= IEEE 754 exceptions are not raised.

m NaNis ordered as follows:

2-8 Oracle Database Advanced Application Developer's Guide

Representing Numeric Data

All non-NaN < NaN
Any NaN == any other NaN
-0 is converted to +0.
All NaNs are converted to the same bit pattern.
See Also: "Comparison Operators for Native Floating-Point Data

Types" on page 2-9 for more information about NaN compared to other
values

Comparison Operators for Native Floating-Point Data Types

Oracle Database defines these comparison operators for operations involving
floating-point data types:

Equal to

Not equal to

Greater than

Greater than or equal to
Less than

Less than or equal to

Unordered

Special cases:

Comparisons ignore the sign of zero (-0 equals, but is not less than, +0).

In Oracle Database, NaN equals itself. NaN is greater than everything except itself.
That is, NaN == NaN and NaN > x, unless x is NaN.

See Also: "Special Values for Native Floating-Point Formats" on
page 2-8 for more information about comparison results, ordering,
and other actions of special values

Arithmetic Operations with Native Floating-Point Data Types

Oracle Database defines operators for these arithmetic operations:

Multiplication
Division
Addition
Subtraction
Remainder

Square root

You can define the mode used to round the result of the operation. Exceptions can be
raised when operations are performed. Exceptions can also be disabled.

Formerly, Java required floating-point arithmetic to be exactly reproducible. IEEE 754
does not have this requirement. Therefore, results of operations (including arithmetic
operations) can be delivered to a destination that uses a range greater than the range
that the operands of the operation use.

Using SQL Data Types in Database Applications 2-9

Representing Numeric Data

You can compute the result of a double-precision multiplication at an extended
double-precision destination. When this is done, the result must be rounded as if the
destination were single-precision or double-precision. The range of the result, that is,
the number of bits used for the exponent, can use the range supported by the wider
(extended double-precision) destination. This occurrence may result in a
double-rounding error in which the least significant bit of the result is incorrect.

This situation can occur only for double-precision multiplication and division on
hardware that implements the IA-32 and IA-64 instruction set architecture. Thus,
except for this case, arithmetic for these data types is reproducible across platforms.
When the result of a computation is NaN, all platforms produce a value for which IS
NAN is true. However, all platforms do not have to use the same bit pattern.

Conversion Functions for Native Floating-Point Data Types

Oracle Database defines functions that convert between floating-point and other
formats, including string formats that use decimal precision (precision may be lost
during the conversion). For example, you can use these functions:

= TO_BINARY_DOUBLE, which converts float to double, decimal (string) to double,
and float or double to integer-valued double

= TO_BINARY_FLOAT, which converts double to float, decimal (string) to float, and
float or double to integer-valued float

= TO_CHAR, which converts float or double to decimal (string)
= TO_NUMBER, which converts a float, double, or string to a number

Oracle Database can raise exceptions during conversion. The IEEE 754 specification
defines these exceptions:

s Invalid

s Inexact

= Divide by zero

s Underflow

s Overflow

Oracle Database does not raise these exceptions for native floating-point data types.

Generally, situations that raise exceptions produce the values described in Table 2-6.

Table 2-6 Values Resulting from Exceptions

Exception Value

Underflow 0

Overflow -INF, +INF

Invalid Operation NaN

Divide by Zero -INF, +INF, NaN

Inexact Any value - rounding was performed

Client Interfaces for Native Floating-Point Data Types

Oracle Database has implemented support for native floating-point data types in these
client interfaces:

= SQL

2-10 Oracle Database Advanced Application Developer's Guide

Representing Date and Time Data

= PL/SQL

= OCIand OCCI

s Pro*C/C++

= JDBC

Topics:

= OCI Native Floating-Point Data Types SQLT_BFLOAT and SQLT_BDOUBLE
= Native Floating-Point Data Types Supported in ADTs

s Pro*C/C++ Support for Native Floating-Point Data Types

OCI Native Floating-Point Data Types SQLT_BFLOAT and SQLT_BDOUBLE

The OCI API implements the IEEE 754 single precision and double precision native
floating-point data types with the data types SQLT_BFLOAT and SQLT_BDOUBLE
respectively. Conversions between these types and the SQL types BINARY_FLOAT and
BINARY_DOUBLE are exact on platforms that implement the IEEE 754 standard for the
C data types FLOAT and DOUBLE.

See Also: Oracle Call Interface Programmer’s Guide

Native Floating-Point Data Types Supported in ADTs

Oracle Database supports the SQL data types BINARY_FLOAT and BINARY_DOUBLE
as attributes of ADTs.

Pro*C/C++ Support for Native Floating-Point Data Types

Pro*C/C++ supports the native FLOAT and DOUBLE data types using the column data
types BINARY_FLOAT and BINARY_DOUBLE. You can use these data types in the same
way that Oracle Database NUMBER data type is used. You can bind the native C/C++
data types FLOAT and DOUBLE to BINARY_FLOAT and BINARY_DOUBLE types
respectively by setting the Pro*C/C++ precompiler command line option NATIVE_
TYPES to Y (yes) when you compile your application.

Representing Date and Time Data
Topics:
s Overview of Date and Time Data Types
s Changing the Default Date Format
s Changing the Default Time Format
» Arithmetic Operations with Date and Time Data Types
= Converting Between Date and Time Types
= Importing and Exporting Date and Time Types

Overview of Date and Time Data Types
Oracle Database supports these date and time data types:

s DATE

Using SQL Data Types in Database Applications 2-11

Representing Date and Time Data

Use the DATE data type to store point-in-time values (dates and times) in a table.
The DATE data type stores the century, year, month, day, hours, minutes, and
seconds.

s TIMESTAMP

Use the TIMESTAMP data type to store values that are precise to fractional seconds.
For example, an application that must decide which of two events occurred first
might use TIMESTAMP. An application that specifies the time for a job might use
DATE.

s TIMESTAMP WITH TIME ZONE

Because TIMESTAMP WITH TIME ZONE can also store time zone information, it is
particularly suited for recording date information that must be gathered or
coordinated across geographic regions.

s TIME STAMP WITH LOCAL TIME ZONE

Use TIMESTAMP WITH LOCAL TIME ZONE when the time zone is not significant.
For example, you might use it in an application that schedules teleconferences,
where participants each see the start and end times for their own time zone.

The TIMESTAMP WITH LOCAL TIME ZONE type is appropriate for two-tier
applications in which you want to display dates and times that use the time zone
of the client system. It is generally inappropriate in three-tier applications because
data displayed in a Web browser is formatted according to the time zone of the
Web server, not the time zone of the browser. The Web server is the database client,
so its local time is used.

s INTERVAL DAY TO SECOND

Use the INTERVAL DAY TO SECOND data type to represent the precise difference
between two datetime values. For example, you might use this value to set a
reminder for a time 36 hours in the future or to record the time between the start
and end of a race. To represent long spans of time with high precision, you can use
a large value for the days portion.

s INTERVAL YEAR TO MONTH

Use the INTERVAL YEAR TO MONTH data type to represent the difference between
two datetime values, where the only significant portions are the year and the
month. For example, you might use this value to set a reminder for a date 18
months in the future, or check whether 6 months have elapsed since a particular
date.

Oracle Database stores dates in its own internal format. Date data is stored in
fixed-length fields of seven bytes each, corresponding to century, year, month, day,
hour, minute, and second.

See Also: Oracle Call Interface Programmer’s Guide for a complete
description of the Oracle Database internal date format

Displaying Current Date and Time

Use the SQL function SYSDATE to return the system date and time. You can use the
FIXED_DATE initialization parameter to set SYSDATE to a constant, which can be
useful for testing.

By default, SYSDATE is printed without a BC or AD qualifier. You can add BC to the
format string to print the date with the appropriate qualifier, as in Example 2-1.

2-12 Oracle Database Advanced Application Developer's Guide

Representing Date and Time Data

Example 2-1 Displaying Current Date and Time with AD or BC Qualifier
SELECT TO_CHAR (SYSDATE, 'DD-MON-YYYY BC') NOW FROM DUAL;

Result:

18-MAR-2009 AD
1 row selected.

For input and output of dates, the standard Oracle Database default date format is
DD-MON-RR. The RR datetime format element enables you store 20th century dates in
the 21st century by specifying only the last two digits of the year. For example, the
format '13-NOV-54" refers to the year 1954 in a query issued between 1950 and 2049,
but to the year 2054 in a query issued between 2050 and 2099.

See Also: Oracle Database SQL Language Reference for information
about the RR datetime format element.

Changing the Default Date Format

Use these techniques to change the default date format:
= To change on an instance-wide basis, use the NLS_DATE_FORMAT parameter.
s To change during a session, use the ALTER SESSION statement.

To enter dates that are not in the current default date format, use the TO_DATE
function with a format mask, as in Example 2-2.

Example 2-2 Changing the Default Date Format

SELECT TO_CHAR (TO_DATE('27-0CT-98', 'DD-MON-RR'), 'YYYY') "Year"
FROM DUAL;

Result:

Year

1998
1 row selected.

Be careful when using a date format such as DD-MON-YY. The YY indicates the year in
the current century. For example, 31-DEC-92 is December 31, 2092, not 1992 as you
might expect. To indicate years in any century other than the current one, use a
different format mask, such as the default RR.

Changing the Default Time Format

Time is stored in the 24-hour format: HH24:MI:SS

By default, the time in a DATE column is 12:00:00 A.M. (midnight) if no time portion is
specified or if the DATE is truncated.

In a time-only entry, the date portion defaults to the first day of the current month. To
enter the time portion of a date, use the TO_DATE function with a format mask
indicating the time portion, as in Example 2-3.

Using SQL Data Types in Database Applications 2-13

Representing Date and Time Data

Example 2-3 Changing the Default Time Format

DROP TABLE birthdays;
CREATE TABLE birthdays (name VARCHAR2 (20), day DATE);
INSERT INTO birthdays (name, day)

VALUES ('ANNIE',

TO_DATE('13-NOV-92 10:56 A.M.', 'DD-MON-YY HH:MI A.M.')
)i

Arithmetic Operations with Date and Time Data Types

Oracle Database provides features to help with date arithmetic, so that you need not
perform your own calculations on the number of seconds in a day, the number of days
in each month, and so on. Some useful features include:

ADD_MONTHS function, which returns the date plus the specified number of
months.

SYSDATE function, which returns the current date and time set for the operating
system on which the database resides.

SYSTIMESTAMP function, which returns the system date, including fractional
seconds and time zone, of the system on which the database resides.

TRUNC function, which when applied to a DATE value, trims off the time portion
so that it represents the very beginning of the day (the stroke of midnight). By
truncating two DATE values and comparing them, you can determine whether
they refer to the same day. You can also use TRUNC along with a GROUP BY clause
to produce daily totals.

Arithmetic operators such as + and -. For example, SYSDATE-7 refers to 7 days
before the current system date.

INTERVAL data types, which enable you to represent constants when performing
date arithmetic rather than performing your own calculations. For example, you
can add or subtract INTERVAL constants from DATE values or subtract two DATE
values and compare the result to an INTERVAL.

Comparison operators such as >, <, =, and BETWEEN.

Converting Between Date and Time Types

Oracle Database provides several useful functions that enable you to convert to and
from datetime data types. Some useful functions include:

EXTRACT, which extracts and returns the value of a specified datetime field from a
datetime or interval value expression

NUMTODSINTERVAL, which converts a NUMBER or expression that can be implicitly
converted to a NUMBER value to an INTERVAL DAY TO SECOND literal

NUMTOYMINTERVAL, which converts a NUMBER or expression that can be implicitly
converted to a NUMBER value to an INTERVAL YEAR TO MONTH literal

TO_DATE, which converts character data to a DATE data type
TO_CHAR, which converts DATE data to character data

TO_DSINTERVAL, which converts a character string to an INTERVAL DAY TO
SECOND value

TO_TIMESTAMP, which converts character data to a value of TIMESTAMP data
type

2-14 Oracle Database Advanced Application Developer's Guide

Representing Specialized Data

s TO_TIMESTAMP_TZ, which converts character data to a value of TIMESTAMP
WITH TIME ZONE data type

= TO_YMINTERVAL, which converts a character string to an INTERVAL YEAR TO
MONTH type

See Also: Oracle Database SQL Language Reference for details about
each function

Importing and Exporting Date and Time Types

TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH LOCAL TIME ZONE values are
always stored in normalized format, so that you can export, import, and compare
them without worrying about time zone offsets. DATE and TIMESTAMP values do not
store an associated time zone, and you must adjust them to account for any time zone
differences between source and target databases.

Representing Specialized Data
Topics:
= Representing Geographic Data
= Representing Multimedia Data
= Representing Large Amounts of Data
= Representing Searchable Text
= Representing XML
= Representing Dynamically Typed Data
= Representing Data with ANSI/ISO, DB2, and SQL/DS Data Types

Representing Geographic Data

To represent Geographic Information System (GIS) or spatial data in the database, you
can use Oracle Spatial features, including the type MDSYS.SDO_GEOMETRY. You can
store the data in the database by using either an object-relational or a relational model.
You can use a set of PL/SQL packages to query and manipulate the data.

See Also: Oracle Spatial Developer’s Guide to learn how to use
MDSYS.SDO_GEOMETRY

Representing Multimedia Data

Oracle Multimedia enables Oracle Database to store, manage, and retrieve images,
audio, video, or other heterogeneous media data in an integrated fashion with other
enterprise information. Oracle Multimedia extends Oracle Database reliability,
availability, and data management to multimedia content in traditional, Internet,
electronic commerce, and media-rich applications.

Whether you store such multimedia data inside the database as BLOB or BFILE
values, or store it externally on a Web server or other kind of server, you can use
Oracle Multimedia to access the data using either an object-relational or a relational
model, and manipulate and query the data using a set of ADTs.

Oracle Multimedia provides the ORDAudio, ORDDoc, ORDImage,
ORDImageSignature, ORDVideo, and SI_StillImage ADTs (including methods)
for these purposes:

Using SQL Data Types in Database Applications 2-15

Representing Specialized Data

= Extracting metadata and attributes from multimedia data

s Retrieving and managing multimedia data from Oracle Multimedia, Web servers,
file systems, and other servers

s Performing manipulation operations on image data

See Also: Oracle Multimedia Reference for information about Oracle
Multimedia types

Representing Large Amounts of Data

Oracle Database provides several data types for representing large amounts of data.
These data types are grouped under the general category of Large Objects (LOBs).
Table 2-7 describes the different LOBs.

Table 2-7 Large Object Data Types

Data Type Name Description

BLOB Binary large object Represents large amounts of binary data such as images,
video, or other multimedia data.

CLOB Character large object Represents large amounts of character data. CLOB types are
stored by using the database character set. Oracle Database
stores a CLOB up to 4,000 bytes inline as a VARCHAR2. If the
CLOB exceeds this length, then Oracle Database moves the
CLOB out of line.

NCLOB National character Represents large amounts of character data in National
large objects Character Set format.
BFILE External large object ~ Stores objects in the operating system 's file system,

outside of the database files or tablespace. The BFILE type
is read-only; other LOB types are read /write. BFEILE
objects are also sometimes referred to as external LOBs.

An instance of type BLOB, CLOB, or NCLOB can exist as either a persistent LOB instance
or a temporary LOB instance. Persistent and temporary instances differ as follows:

= A temporary LOB instance is declared in the scope of your application.
= A persistent LOB instance is created and stored in the database.

Except for declaring, freeing, creating, and committing, operations on persistent and
temporary LOB instances are performed the same way.

The RAW and LONG RAW data types store data that is not interpreted by Oracle
Database, that is, it is not converted when moving data between different systems.
These data types are intended for binary data and byte strings. For example, LONG RAW
can store graphics, sound, documents, and arrays of binary data; the interpretation is
dependent on the use.

Oracle Net and the Export and Import utilities do not perform character conversion
when transmitting RAW or LONG RAW data. When Oracle Database automatically
converts RAW or LONG RAW data to and from CHAR data, as is the case when entering
RAW data as a literal in an INSERT statement, the database represents the data as one
hexadecimal character representing the bit pattern for every four bits of RAW data. For
example, one byte of RAW data with bits 11001011 is displayed and entered as CB.

You cannot index LONG RAW data, but you can index RAW data. In earlier releases, the
LONG and LONG RAW data types were typically used to store large amounts of data. Use
of these types is no longer recommended for development. If your existing application
still uses these types, migrate your application to use LOB types. Oracle recommends

2-16 Oracle Database Advanced Application Developer's Guide

Representing Specialized Data

that you convert LONG RAW columns to binary LOB (BLOB) columns and convert LONG
columns to character LOB (CLOB or NCLOB) columns. LOB columns are subject to far
fewer restrictions than LONG and LONG RAW columns.

See Also:

» See Oracle Database SecureFiles and Large Objects Developer's Guide
for more information about LOBs

= See Oracle Database SQL Language Reference for restrictions on
LONG and LONG RAW data types

Representing Searchable Text

Rather than writing low-level code to do full-text searches, you can use Oracle Text. It
stores the search data in a special kind of index, and lets you query the data with
operators and PL/SQL packages. This technology enables you to create your own
search engine using data from tables, files, or URLs, and combine the search logic with
relational queries. You can also search XML data this way with the XPath notation.

See Also: Oracle Text Application Developer’s Guide for more
information

Representing XML

If you have information stored as files in XML format, or to take an ADT and store it as
XML, then you can use the XMLType built-in type.

XMLType columns store their data as either CLOB or binary XML. The XMLType
constructor can turn an existing object of any data type into an XML object.

When an XML object is inside the database, you can use queries to traverse it (using
the XML XPath notation) and extract all or part of its data.

You can also produce XML output from existing relational data and split XML
documents across relational tables and columns. You can use these packages to
transfer XML data into and out of relational tables:

= DBMS_XMLQUERY, which provides database-to-XMLType functionality

= DBMS_XMLGEN, which converts the results of a SQL query to a canonical XML
format

= DBMS_XMLSAVE, which provides XML to database-type functionality
You can use these SQL functions to process XML:

= EXTRACT, which applies a VARCHAR2 XPath string and returns an XMLType
instance containing an XML fragment

= SYS_XMLAGG, which aggregates all of the XML documents or fragments
represented by an expression and produces a single XML document

= SYS_XMLGEN, which takes an expression that evaluates to a particular row and
column of the database, and returns an instance of type XMLType containing an
XML document

= UPDATEXML, which takes as arguments an XMLType instance and an XPath-value
pair and returns an XMLType instance with the updated value

= XMLAGG, which takes a collection of XML fragments and returns an aggregated
XML document

Using SQL Data Types in Database Applications 2-17

Representing Specialized Data

= XMLCOLATTVAL, which creates an XML fragment and then expands the resulting
XML so that each XML fragment has the name column with the attribute name

= XMLCONCAT, which takes as input a series of XMLType instances, concatenates the
series of elements for each row, and returns the concatenated series

= XMLELEMENT, which takes an element name for identifier, an optional collection of
attributes for the element, and arguments that comprise the content of the element

= XMLFOREST, which converts each of its argument parameters to XML, and then
returns an XML fragment that is the concatenation of these converted arguments

= XMLSEQUENCE, which either takes as input an XML Type instance and returns a
varray of the top-level nodes in the XML Type, or takes as input a REFCURSOR
instance, with an optional instance of the XMLFormat object, and returns as an
XMLSequence type an XML document for each row of the cursor

XMLTRANSFORM, which takes as arguments an XMLType instance and an XSL style
sheet, applies the style sheet to the instance, and returns an XMLType

See Also:

» Oracle XML DB Developer’s Guide for details about the XMLType
data type

» Oracle XML Developer’’s Kit Programmer’s Guide for information
about client-side programming with XML

» Oracle Database SQL Language Reference for information about XML
functions

Representing Dynamically Typed Data

Some languages allow data types to change at run time or let a program check the type
of a variable. For example, C has the union keyword and the void * pointer, and
Java has the typeof operator and wrapper types such as Number. In Oracle Database,
you can create variables and columns that can hold data of any type and test such data
values to determine their underlying representation. For example, you can have a
single table column represent a numeric value in one row, a string value in another
row, and an object in another row.

You can use the built-in ADT SYS.ANYDATA to represent values of any scalar type or
ADT. sYS.ANYDATA has methods that accept scalar values of any type, and turn them
back into scalars or objects. Similarly, you can use the built-in ADT SYS.ANYDATASET
to represent values of any collection type. To check and manipulate type information,
use the DBMS_TYPES package, as in Example 2—4. With OCI, use the OCIType,
OCIAnyData, and OCIAnyDataSet interfaces.

See Also:

» Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_TYPES package

» Oracle Database Object-Relational Developer’s Guide for information
about the ANYDATA, ANYDATASET, and ANYTYPE types

» Oracle Call Interface Programmer’s Guide for information about the
OCl interfaces

Example 2-4 Accessing Information in a SYS.ANYDATA Column
CREATE OR REPLACE TYPE employee_type AS

2-18 Oracle Database Advanced Application Developer's Guide

Representing Specialized Data

OBJECT (empno NUMBER, ename VARCHAR2(10));
DROP TABLE mytab;
CREATE TABLE mytab (id NUMBER, data SYS.ANYDATA);

INSERT INTO mytab (id, data)
VALUES (1, SYS.ANYDATA.ConvertNumber (5));

INSERT INTO mytab (id, data)
VALUES (2, SYS.ANYDATA.ConvertObject (Employee_type (5555, 'john')));

CREATE OR REPLACE PROCEDURE p IS
CURSOR cur IS SELECT id, data FROM mytab;

v_id mytab.id%TYPE;
v_data mytab.data%$TYPE;
v_type SYS.ANYTYPE;
v_typecode PLS_INTEGER;
v_typename VARCHAR2 (60) ;
v_dummy PLS_INTEGER;
v_n NUMBER;
v_employee employee_type;
non_null_anytype_ for_ NUMBER exception;
unknown_typename exception;
BEGIN
OPEN cur;
LOOP

FETCH cur INTO v_id, v_data;
EXIT WHEN cur%NOTFOUND;

/* typecode signifies type represented by v_data.
GetType also produces a value of type SYS.ANYTYPE with methods you
can call to find precision and scale of a number, length of a
string, and so on. */

v_typecode := v_data.GetType (v_type /* OUT */);

/* Compare typecode to DBMS_TYPES constants to determine type of data
and decide how to display it. */

CASE v_typecode
WHEN DBMS_TYPES.TYPECODE_NUMBER THEN

IF v_type IS NOT NULL THEN -- This condition should never happen.
RAISE non_null_anytype_for_ NUMBER;
END IF;

-- For each type, there is a Get method.
v_dummy := v_data.GetNUMBER (v_n /* OUT */);
DBMS_OQUTPUT. PUT_LINE

(TO_CHAR(v_id) || ': NUMBER = ' || TO_CHAR(v_n));

WHEN DBMS_TYPES.TYPECODE_OBJECT THEN
v_typename := v_data.GetTypeName () ;
IF v_typename NOT IN ('HR.EMPLOYEE_TYPE') THEN
RAISE unknown_typename;
END IF;
v_dummy := v_data.GetObject (v_employee /* OUT */);
DBMS_OUTPUT. PUT_LINE
(TO_CHAR (v_id) || ': user-defined type = ' || v_typename ||
" (' || v_employee.empno || ', ' || v_employee.ename || ')');

Using SQL Data Types in Database Applications

2-19

Representing Specialized Data

END CASE;
END LOOP;
CLOSE cur;
EXCEPTION
WHEN non_null_anytype_for_NUMBER THEN
RAISE_Application_Error (-20000,
'Paradox: the return AnyType instance FROM GetType ' ||
'should be NULL for all but user-defined types');
WHEN unknown_typename THEN
RAISE_Application Error(-20000, 'Unknown user-defined type ' ||
v_typename || ' - program written to handle only HR.EMPLOYEE_TYPE');
END;
/

SELECT t.data.gettypename() AS "Type Name" FROM mytab t;

Result:

SYS.NUMBER
HR.EMPLOYEE_TYPE

2 rows selected.

Representing Data with ANSI/ISO, DB2, and SQL/DS Data Types

You can define columns of tables in Oracle Database through ANSI/ISO, DB2, and
SQL/DS data types. Oracle Database internally converts such data types to Oracle
Database data types.

The ANSI data type conversions are shown in Table 2-8. The ANSI/ISO data types
NUMERIC, DECIMAL, and DEC can specify only fixed-point numbers. For these data
types, s defaults to 0.

Table 2-8 ANSI Data Type Conversions to Oracle Database Data Types

ANSI SQL Data Type Oracle Database Data Type
CHARACTER (n) CHAR (n)

CHAR (n)

NUMERIC (p,s) NUMBER (p, s)

DECIMAL (p,s)

DEC (p,s)

INTEGER NUMBER (38)
INT

SMALLINT

FLOAT (p) FLOAT (p)
REAL FLOAT (63)
DOUBLE PRECISION FLOAT (126)
CHARACTER VARYING (n) VARCHAR2 (n)

CHAR VARYING (n)
TIMESTAMP TIMESTAMP

TIMESTAMP WITH TIME ZONE TIMESTAMP WITH TIME ZONE

2-20 Oracle Database Advanced Application Developer's Guide

Representing Conditional Expressions as Data

Table 2-9 shows the SQL /DS and DB2 conversions.

Table 2-9 SQL/DS, DB2 Data Type Conversions to Oracle Database Data Types

DB2 or SQL/DS Data Type Oracle Database Data Type
CHARACTER (n) CHAR (n)

VARCHAR (n) VARCHAR2 (n)

LONG VARCHAR LONG

DECIMAL (p,s) NUMBER (p, s)

INTEGER NUMBER (38)

SMALLINT

FLOAT (p) FLOAT (p)

DATE DATE

TIMESTAMP TIMESTAMP

The data types TIME, GRAPHIC, VARGRAPHIC, and LONG VARGRAPHIC of IBM
products SQL /DS and DB2 have no corresponding Oracle Database data type, and
they cannot be used.

Representing Conditional Expressions as Data

The Oracle Expression Filter feature enables you to store conditional expressions as
data in the database. The Oracle Expression Filter provides a mechanism that you can
use to place a constraint on a VARCHAR2 column to ensure that the values stored are
valid SQL WHERE clause expressions. This mechanism also identifies the set of
attributes that are legal to reference in the conditional expressions.

Scenario: You created the following table, in which each row holds data for a
stock-trading account holder, and you want to define a column that stores information
about the stocks in which each trader is interested as a conditional expression.

DROP TABLE traders;
CREATE TABLE traders (
name VARCHAR2 (10) ,
email VARCHAR2 (20) ,
interest VARCHAR2 (30)
)i

Solution:

1. Create a type with attributes for the trading symbol, limit price, and amount of
change in the stock price:

CREATE OR REPLACE TYPE ticker AS OBJECT (
symbol VARCHAR2 (20),
price NUMBER,
change NUMBER

)i

/

2. Create an attribute set based on the type ticker:

BEGIN
DBMS_EXPFIL.DROP_ATTRIBUTE SET (attr_set => 'ticker');
END;

Using SQL Data Types in Database Applications 2-21

Identifying Rows by Address

/

BEGIN
DBMS_EXPFIL.CREATE_ATTRIBUTE_SET
(attr_set => 'ticker',
from_type => 'YES');

END;

/

3. Associate the attribute set with the expression set stored in the database column
trader.interest:

BEGIN
DBMS_EXPFIL.ASSIGN_ATTRIBUTE_SET
(attr_set => 'ticker',
expr_tab => 'traders',
expr_col => 'interest');

END;

/

The preceding code ensures that the interest column stores valid conditional
expressions.

4. Populate the table with trader names, e-mail addresses, and conditional
expressions that represent stocks in which the trader is interested, at particular
prices. For example:

INSERT INTO traders (name, email, interest)
VALUES ('Vishu', 'vishu@example.com', 'symbol = ''ABC'' AND price > 25');

5. Use the EVALUATE operator to identify the conditional expressions that evaluate
to TRUE for a given data item. For example, this query returns traders who are
interested in the stock quote (symbol='ABC', price=31, change=5.2):

SELECT name, email

FROM traders

WHERE EVALUATE (
interest,
'symbol=>"'"ABC'",
price=>31,
change=>5.2"

) = 1;

Result:

1 row selected.

To speed up this type of query, you can create an Oracle Expression Filter index on
the interest column.

See Also: Oracle Database Rules Manager and Expression Filter
Developer’s Guide for details on Oracle Expression Filter

Identifying Rows by Address

The fastest way to access a row is by its address, or rowid, which uniquely identifies it.
Different rows in the same data block can have the same rowid only if they are in

2-22 Oracle Database Advanced Application Developer's Guide

Identifying Rows by Address

different clustered tables. If a row is larger than one data block, then its rowid
identifies its initial row piece.

To see rowids, you query the ROWID pseudocolumn, whose value is a string that
represents the address of the row. The string has the data type ROWID or UROWID.

See Also: Oracle Database SQL Language Reference for more
information about the ROWID pseudocolumn

Topics:

= Querying the ROWID Pseudocolumn
= ROWID Data Type

= UROWID Data Type

Querying the ROWID Pseudocolumn

Each table in Oracle Database has a pseudocolumn named ROWID, which can appear
in a query in either the SELECT list or the WHERE clause.

Example 2-5 uses the ROWID pseudocolumn in the SELECT list of a query. The rowids
show how the rows of the table are stored.

Example 2-5 Querying the ROWID Pseudocolumn

DROP TABLE t_tab; -- in case it exists
CREATE TABLE t_tab (coll ROWID);

INSERT INTO t_tab (coll)
SELECT ROWID

FROM employees

WHERE employee_id > 199;

Query:

SELECT employee_id, rowid
FROM employees
WHERE employee_id > 199;

ROWID varies, but result is similar to:

EMPLOYEE_ID ROWID

200 AAAPeSAAFAAAABTAAC
201 AAAPeSAAFAAAABTAAD
202 AAAPeSAAFAAAABTAAE
203 AAAPeSAAFAAAABTAAF
204 AAAPeSAAFAAAABTAAG
205 AAAPeSAAFAAAABTAAH
206 AAAPeSAAFAAAABTAATI

7 rows selected.

Query:

SELECT * FROM t_tab;

COL1 varies, but result is similar to:

coLl

Using SQL Data Types in Database Applications 2-23

Identifying Rows by Address

AAAPeSAAFAAAABTAAC
AAAPeSAAFAAAABTAAD
AAAPeSAAFAAAABTAAE
AAAPeSAAFAAAABTAAF
AAAPeSAAFAAAABTAAG
AAAPeSAAFAAAABTAAH
AAAPeSAAFAAAABTAAT

7 rows selected.

ROWID Data Type

In tables that are not index-organized, and in foreign tables, the values of the ROWID
pseudocolumn have the data type ROWID. The format of this data type is either
restricted, extended or external binary.

Note: You can create tables and clusters that have columns of the
type ROWID, but the values of these columns are not guaranteed to be
valid rowids.

Topics:

= Restricted ROWID

s Extended ROWID

s External Binary ROWID

Restricted ROWID

Internally, the ROWID is a structure that holds information that the database server
must access a row. The restricted internal ROWID is 6 bytes on most platforms. Each
restricted rowid includes these data:

s Data file identifier
s Block identifier
s Row identifier

The restricted ROWID pseudocolumn is returned to client applications in the form of an
18-character string with a hexadecimal encoding of the data block, row, and data file
components of the ROWID.

Extended ROWID

The extended ROWID data type includes the data in the restricted rowid plus a data
object number. The data object number is an identification number assigned to every
database segment. The extended internal ROWID is 10 bytes on most platforms.

Data in an extended ROWID pseudocolumn is returned to the client application in the
form of an 18-character string (for example, "AAAASMAALAAAAQKAAA"), which
represents a base 64 encoding of the components of the extended ROWID in a
four-piece format, OOOOOOFFFBBBBBBRRR. Extended rowids are not available directly.
You can use a supplied package, DBMS_ROWID, to interpret extended rowid contents.
The package functions extract and provide information that is available directly from a
restricted rowid and information specific to extended rowids.

2-24 Oracle Database Advanced Application Developer's Guide

How Oracle Database Converts Data Types

See Also: Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_ROWID package

External Binary ROWID

Some client applications use a binary form of the ROWID. For example, OCI and some
precompiler applications can map the ROWID data type to a 3GL structure on bind or
define calls. The size of the binary ROWID is the same for extended and restricted
ROWIDs. The information for the extended ROWID is included in an unused field of the
restricted ROWID structure.

The format of the extended binary ROWID, expressed as a C struct, is as follows:

struct riddef {
ub4 ridobjnum; /* data obj#--this field is
unused in restricted ROWIDs */
ub2 ridfilenum;
ubl filler;
ub4d ridblocknum;
ub?2 ridslotnum;

UROWID Data Type

The rows of some tables have addresses that are not physical or permanent or were not
generated by Oracle Database. For example, the row addresses of index-organized
tables are stored in index leaves, which can move. Oracle Database provides these
tables with logical row identifiers, called logical rowids. Rowids of foreign tables, such
as DB2 tables accessed through a gateway, are not standard Oracle Database rowids.
Oracle Database provides foreign tables with identifiers called foreign rowids.Oracle
Database uses universal rowids (urowids) to store the addresses of index-organized
and foreign tables. Both types of urowid are stored in the ROWID pseudocolumn, as are
the physical rowids of heap-organized tables.Oracle Database creates logical rowids
based on the primary key of the table. The logical rowids do not change if the primary
key does not change. The ROWID pseudocolumn of an index-organized table has a data
type of UROWID. You can access this pseudocolumn as you would access the ROWID
pseudocolumn of a heap-organized table (that is, using a SELECT ROWID statement).
To store the rowids of an index-organized table, define a column of type UROWID for
the table and retrieve the value of the ROWID pseudocolumn into that column.

How Oracle Database Converts Data Types

In some cases, Oracle Database accepts data of one data type where it expects data of a
different data type. Generally, an expression cannot contain values with different data
types. However, Oracle Database can use various SQL functions to automatically
convert data to the expected data type.

See Also: Oracle Database SQL Language Reference for details about
data type conversion

Topics:
» Data Type Conversion During Assignments

s Data Type Conversion During Expression Evaluation

Using SQL Data Types in Database Applications 2-25

How Oracle Database Converts Data Types

Data Type Conversion During Assignments

The data type conversion for an assignment succeeds if Oracle Database can convert
the data type of the value to be assigned to the data type of the target.

Assume that test_package, its public variable varl, and tablel_tab are declared
as follows:

CREATE OR REPLACE PACKAGE test_package AS
varl CHAR(5);

END;

/

DROP TABLE tablel_tab;

CREATE TABLE tablel_tab (coll NUMBER);

In the assignment

variable := expression

the data type of expression must be either the same as, or convertible to, the data

type of variable. For example, for this assignment, Oracle Database automatically
converts zero to the data type of varl, which is CHAR (5):

varl := 0;

In the statement
INSERT INTO tablel_tab (coll) VALUES (expression)
the data type of expression must be either the same as, or convertible to, the data

types of coll. For example, for this statement, Oracle Database automatically converts
the string '19' to the data type of col1, which is NUMBER:

INSERT INTO tablel_tab (coll) VALUES ('19')

In the statement
UPDATE tablel_tab SET column = expression
the data type of expression must be either the same as, or convertible to, the data

type of column. For example, for this statement, Oracle Database automatically
converts the string '30' to the data type of col1, which is NUMBER:

UPDATE tablel_tab SET coll = '30';

In the statement

SELECT column INTO variable FROM tablel_tab

the data type of column must be either the same as, or convertible to, the data type of
variable. For example, for this statement, Oracle Database automatically converts

the value selected from col1, which is 30, to the data type of varl, which is
CHAR(5):

SELECT coll INTO varl FROM tablel_tab WHERE coll = 30;

Data Type Conversion During Expression Evaluation

For expression evaluation, Oracle Database can automatically perform the same
conversions as for assignments. An expression is converted to a type based on its
context. For example, operands to arithmetic operators are converted to NUMBER, and
operands to string functions are converted to VARCHAR2.

2-26 Oracle Database Advanced Application Developer's Guide

Metadata for SQL Built-In Functions

Oracle Database can automatically convert:
] VARCHAR?2 or CHAR to NUMBER
] VARCHAR?2 or CHAR to DATE

Character to NUMBER conversions succeed only if the character string represents a
valid number. Character to DATE conversions succeed only if the character string
satisfies the session default format, which is specified by the initialization parameter
NLS_DATE_FORMAT.

Some common types of expressions are:
= Simple expressions, such as:

commission + '500'

= Boolean expressions, such as:

bonus > salary / '10°'

= Subprogram calls, such as:

MOD (counter, '2")

s WHERE clause conditions, such as:

WHERE hiredate = TO_DATE('1997-01-01"', 'yyyy-mm-dd')

m WHERE clause conditions, such as:

WHERE rowid = 'AAAAaoAATAAAADAAA'

In general, Oracle Database uses the rule for expression evaluation when a data type
conversion is needed in places not covered by the rule for assignment conversions.

In assignments of the form:

variable := expression

Oracle Database first evaluates expression using the conversion rules for expressions;
expression can be as simple or complex as desired. If it succeeds, then the evaluation of
expression results in a single value and data type. Then, Oracle Database tries to assign
this value to the target variable using the conversion rules for assignments.

Metadata for SQL Built-In Functions

You can see metadata for SQL built-in functions with the dynamic performance views
V$SQLFN_METADATA (which has general metadata) and V$SQLFN_ARG_METADATA
(which has metadata about arguments). You can join these views on the column
FUNCID. For functions with unlimited arguments, such as LEAST and GREATEST,
V$SQLFN_ARG_METADATA has only one row for each repeating argument.

These views enable third-party tools to leverage SQL built-in functions without
maintaining their metadata in the application layer.

See Also: Oracle Database Reference for detailed information about
the dynamic performance views V$SQLFN_METADATA and V$SQLFN_
ARG_METADATA

Often, an argument for a SQL built-in function can have any data type in a data type
family. Table 2-10 shows which data types belong to which families.

Using SQL Data Types in Database Applications 2-27

Metadata for SQL Built-In Functions

Table 2-10 Data Type Families

Family

Data Types

STRING

NUMERIC

DATETYPE

BINARY

CHARACTER

VARCHAR2

CLOB

NCHAR

NVARCHAR2

NCLOB

NUMBER

BINARY_FLOAT
BINARY_DOUBLE

DATE

TIMESTAMP
TIMESTAMP WITH TIME ZONE
TIMESTAMP WITH LOCAL TIME ZONE
INTERVAL YEAR TO MONTH
INTERVAL DAY TO SECOND
BLOB

RAW

LONGRAW

ARG Data Type

In the view V$SQLFN_METADATA, ARGn is the data type of a function whose return
value has the same data type as its nth argument. For example:

s The MAX function returns a value that has the data type of its first argument, so the
MAX function has data type ARG1.

s The DECODE function returns a value that has the data type of its third argument,

so the DECODE function has data type ARG3.

EXPR Data Type

In the view V$SQLFN_ARG_METADATA, EXPR is the data type of an argument that can
be any expression. An expression is either a single value or a combination of values
and SQL functions that has a single value.

Table 2-11 Display Types of SQL Built-In Functions

Display Type Description Example
NORMAL FUNC (A,B, ...) LEAST (A, B,C)
ARITHMETIC A FUNC B) A+B
PARENTHESIS FUNC () SYS_GUID()
RELOP A FUNC B) A IN B
CASE_LIKE CASE statement or DECODE decode

NOPAREN FUNC SYSDATE

2-28 Oracle Database Advanced

Application Developer's Guide

3

Using Regular Expressions in Database

Applications

This chapter explains how to use regular expressions in database applications.

Topics:

Overview of Regular Expressions
Metacharacters in Regular Expressions

Using Regular Expressions in SQL Statements: Scenarios

See Also:

» Oracle Database SQL Language Reference for information about
Oracle Database SQL functions for regular expressions

» Oracle Database Globalization Support Guide for details on using
SQL regular expression functions in a multilingual environment

» Oracle Regular Expressions Pocket Reference by Jonathan Gennick,
O'Reilly & Associates

» Mastering Regular Expressions by Jeffrey E. E. Friedl, O'Reilly &
Associates

Overview of Regular Expressions
Topics:

What Are Regular Expressions?
How Are Regular Expressions Useful?
Oracle Database Implementation of Regular Expressions

Oracle Database Support for the POSIX Regular Expression Standard

What Are Regular Expressions?

Regular expressions enable you to search for patterns in string data by using
standardized syntax conventions. You specify a regular expression through these types
of characters:

Metacharacters, which are operators that specify search algorithms

Literals, which are the characters for which you are searching

Using Regular Expressions in Database Applications 3-1

Overview of Regular Expressions

A regular expression can specify complex patterns of character sequences. For
example, this regular expression searches for the literals f or ht, the t literal, the p
literal optionally followed by the s literal, and finally the colon (:) literal:

(f|ht) tps?:

The parentheses are metacharacters that group a series of pattern elements to a single
element; the pipe symbol (|) matches an alternative in the group. The question mark
(?) is a metacharacter indicating that the preceding pattern, in this case the s character,
is optional. Thus, the preceding regular expression matches the http:, https:, ftp:,
and ftps: strings.

How Are Regular Expressions Useful?

Regular expressions are a powerful text processing component of programming
languages such as PERL and Java. For example, a PERL script can process each HTML
file in a directory, read its contents into a scalar variable as a single string, and then use
regular expressions to search for URLs in the string. One reason that many developers
write in PERL is for its robust pattern matching functionality.

Oracle Database support of regular expressions enables developers to implement
complex match logic in the database. This technique is useful for these reasons:

= By centralizing match logic in Oracle Database, you avoid intensive string
processing of SQL results sets by middle-tier applications. For example, life
science customers often rely on PERL to do pattern analysis on bioinformatics data
stored in huge databases of DNA and proteins. Previously, finding a match for a
protein sequence such as [AG].{4}GK[ST] was handled in the middle tier. The
SQL regular expression functions move the processing logic closer to the data,
thereby providing a more efficient solution.

= Before Oracle Database 10g, developers often coded data validation logic on the
client, requiring the same validation logic to be duplicated for multiple clients.
Using server-side regular expressions to enforce constraints solves this problem.

s The built-in SQL and PL/SQL regular expression functions and conditions make
string manipulations more powerful and less cumbersome than in previous
releases of Oracle Database.

Oracle Database Implementation of Regular Expressions

Oracle Database implements regular expression support with a set of Oracle Database
SQL functions and conditions that enable you to search and manipulate string data.
You can use these functions in any environment that supports Oracle Database SQL.
You can use these functions on a text literal, bind variable, or any column that holds
character data such as CHAR, NCHAR, CLOB, NCLOB, NVARCHAR2, and VARCHAR?2 (but
not LONG).

Table 3-1 describes the regular expression functions and conditions.

3-2 Oracle Database Advanced Application Developer's Guide

Overview of Regular Expressions

Table 3-1 SQL Regular Expression Functions and Conditions

SQL Element Category Description

REGEXP_LIKE Condition Searches a character column for a pattern. Use this function in
the WHERE clause of a query to return rows matching a regular
expression. The condition is also valid in a constraint or as a
PL/SQL function returning a boolean.

This WHERE clause filters employees with a first name of Steven
or Stephen:

WHERE REGEXP_LIKE(first_name, 'ASte(v|ph)en$')

REGEXP_REPLACE Function Searches for a pattern in a character column and replaces each
occurrence of that pattern with the specified string.

These function call puts a space after each character in the
country_ name column:

REGEXP_REPLACE (country_name, '(.)', "\1 ')

REGEXP_INSTR Function Searches a string or substring for a given occurrence of a regular
expression pattern (a substring) and returns an integer
indicating the position in the string or substring where the
match is found. You specify which occurrence you want to find
and the start position.

This function call performs a boolean test for a valid e-mail
address in the email column:

REGEXP_INSTR (email, '\w+@\w+(\.\w+)+') > 0

REGEXP_SUBSTR Function Searches a string or substring for a given occurrence of a regular
expression pattern (a substring) and returns the substring itself.
You specify which occurrence you want to find and the start
position.

This function call uses the x flag to match the first string by
ignoring spaces in the regular expression:

REGEXP_SUBSTR('oracle', 'oracle', 1, 1, 'x")

REGEXP_COUNT Function Returns the number of times a pattern appears in a string. You
specify the string and the pattern. You can also specify the start
position and matching options (for example, c for case
sensitivity).

This function call returns the number of times that e (but not E)
appears in the string 'Albert Einstein', starting at
character position 7 (that is, one):

REGEXP_COUNT ('Albert Einstein', 'e', 7, 'c')

A string literal in a REGEXP function or condition conforms to the rules of SQL text
literals. By default, regular expressions must be enclosed in single quotation marks. If
your regular expression includes the single quotation mark, then enter two single
quotation marks to represent one single quotation mark within the expression. This
technique ensures that the entire expression is interpreted by the SQL function and
improves the readability of your code. You can also use the g-quote syntax to define
your own character to terminate a text literal. For example, you can delimit your
regular expression with the pound sign (#) and then use a single quotation mark
within the expression.

Note: If your expression comes from a column or a bind variable,
then the preceding rules for quotation marks do not apply.

Using Regular Expressions in Database Applications 3-3

Metacharacters in Regular Expressions

See Also:

» Oracle Database SQL Language Reference for syntax, descriptions,
and examples of the REGEXP functions and conditions

» Oracle Database SQL Language Reference for information about
character literals

Oracle Database Support for the POSIX Regular Expression Standard

Oracle Database implementation of regular expressions conforms to these standards:
= IEEE Portable Operating System Interface (POSIX) standard draft 1003.2/D11.2
= Unicode Regular Expression Guidelines of the Unicode Consortium

Oracle Database follows the exact syntax and matching semantics for these operators
as defined in the POSIX standard for matching ASCII (English language) data. You can
find the POSIX standard draft at this URL:

http://www.opengroup.org/onlinepubs/007908799/xbd/re.html

Oracle Database enhances regular expression support in these ways:

= Extends the matching capabilities for multilingual data beyond what is specified
in the POSIX standard.

= Adds support for the common PERL regular expression extensions that are not
included in the POSIX standard but do not conflict with it. Oracle Database
provides built-in support for some heavily used PERL regular expression
operators, for example, character class shortcuts, the "nongreedy" modifier, and so
on.

Oracle Database supports a set of common metacharacters used in regular expressions.
For information about the action of supported metacharacters and related features, see
"Metacharacters in Regular Expressions" on page 3-4.

Note: The interpretation of metacharacters differs between tools that
support regular expressions. If you are porting regular expressions
from another environment to Oracle Database, ensure that the regular
expression syntax is supported and the action is what you expect.

Metacharacters in Regular Expressions
Topics:
s POSIX Metacharacters in Oracle Database Regular Expressions
= Multilingual Extensions to POSIX Regular Expression Standard
s PERL-Influenced Extensions to POSIX Regular Expression Standard

POSIX Metacharacters in Oracle Database Regular Expressions

Table 3-2 lists the list of metacharacters supported for use in regular expressions
passed to SQL regular expression functions and conditions. These metacharacters
conform to the POSIX standard; any differences in action from the standard are noted
in the "Description” column.

3-4 Oracle Database Advanced Application Developer's Guide

Metacharacters in Regular Expressions

Table 3-2 POSIX Metacharacters in Oracle Database Regular Expressions

Syntax Operator Name Description Example
Any Character — Matches any character in the database character set. The expression a.b matches the
Dot If the n flag is set, it matches the newline character. ~ strings abb, acb, and adb, but does
The newline is recognized as the linefeed character not match acc.
(\x0a) on Linux, UNIX, and Windows or the
carriage return character (\x0d) on Macintosh
platforms.
Note: In the POSIX standard, this operator matches
any English character except NULL and the
newline character.
+ One or More — Matches one or more occurrences of the preceding The expression a+ matches the
Plus Quantifier subexpression. strings a, aa, and aaa, but does not
match bbb.
? Zero or One — Matches zero or one occurrence of the preceding The expression ab?c matches the
Question Mark subexpression. strings abc and ac, but does not
Quantifier match abbc.
* Zero or More — Matches zero or more occurrences of the preceding The expression ab*c matches the
Star Quantifier subexpression. By default, a quantifier match is strings ac, abc, and abbc, but does
"greedy," because it matches as many occurrences as not match abb.
possible while allowing the rest of the match to
succeed.
{m} Interval—Exact ~ Matches exactly m occurrences of the preceding The expression a {3} matches the
Count subexpression. strings aaa, but does not match aa.
{m,} Interval—At Matches at least m occurrences of the preceding The expression a{3, } matches the
Least Count subexpression. strings aaa and aaaa, but does not
match aa.
{m, n} Interval—Betwee Matches at least m, but not more than n occurrences The expression a{3, 5} matches

n Count

of the preceding subexpression.

the strings aaa, aaaa, and aaaaa,
but does not match aa.

Matching
Character List

Matches any single character in the list within the
brackets. These operators are allowed within the
list, but other metacharacters included are treated
as literals:

= Range operator: -

. POSIX character class: [: :]

. POSIX collation element: [. .]

n POSIX character equivalence class: [= =]

A dash (-) is a literal when it occurs first or last in
the list, or as an ending range point in a range
expression, as in [#--]. A right bracket (1) is
treated as a literal if it occurs first in the list.

Note: In the POSIX standard, a range includes all
collation elements between the start and end of the
range in the linguistic definition of the current
locale. Thus, ranges are linguistic rather than byte
values ranges; the semantics of the range
expression are independent of character set. In
Oracle Database, the linguistic range is determined
by the NLS_SORT initialization parameter.

The expression [abc] matches the
first character in the strings all,
bill, and cold, but does not
match any characters in do11.

Nonmatching
Character List

Matches any single character not in the list within
the brackets. Characters not in the nonmatching
character list are returned as a match. See the
description of the Matching Character List operator
for an account of metacharacters allowed in the
character list.

The expression [~abc] matches
the character d in the string
abcdef, but not the character a, b,
or c. The expression [“abc]+
matches the sequence def in the
string abcdef, but not a, b, or c.

The expression [~a-1] excludes
any character between a and 1
from the search result. This
expression matches the character j
in the string hij, but does not
match any characters in the string
abcdefghi.

Using Regular Expressions in Database Applications 3-5

Metacharacters in Regular Expressions

Table 3-2 (Cont.) POSIX Metacharacters in Oracle Database Regular Expressions

Syntax

Operator Name

Description

Example

Or

Matches an alternative.

The expression a | b matches
character a or character b.

Subexpression or
Grouping

Treats the expression within parentheses as a unit.
The subexpression can be a string of literals or a
complex expression containing operators.

The expression (abc) ?def
matches the optional string abc,
followed by def. Thus, the
expression matches abcdefghi
and def, but does not match ghi.

\n Back reference Matches the n'" preceding subexpression, that is, The expression (abc [def)xy\1
whatever is grouped within parentheses, where nis Mmatches the strings abcxyabc and
an integer from 1 to 9. The parentheses cause an defxydef, but does not match
expression to be remembered; a back reference abcxydef or abexy.
refers to it. A back refe.rence.counts sungpressions A backreference enables you to
from left to right, starting with the opening search for a repeated string without
parenthesis of each preceding subexpression. The knowing the actual string ahead of
expression is invalid if the source string contains time. For example, the expression
fewer than n subexpressions preceding the \n. A (.*)\1¢ matches a line
Oracle Database supports the back reference consisting of two adjacent instances
expression in the regular expression pattern and the 0f the same string.
replacement string of the REGEXP_REPLACE
function.

\ Escape Character Treats the subsequent metacharacter in the The expression \ + searches for the
expression as a literal. Use a backslash (\) to search plus character (+). It matches the
for a character that is normally treated as a plus character in the string
metacharacter. Use consecutive backslashes (\\) to abc+def, but does not match
match the backslash literal itself. abcdef.

~ Beginning of Line Matches the beginning of a string (default). In The expression ~def matches def

Anchor multiline mode, it matches the beginning of any in the string defghi but does not
line within the source string. match def in abcdef.

S End of Line Matches the end of a string (default). In multiline The expression def$ matches def

Anchor mode, it matches the end of any line within the in the string abcdef but does not

source string.

match def in the string defghi.

3-6 Oracle Database Advanced Application Developer's Guide

Metacharacters in Regular Expressions

Table 3-2 (Cont.) POSIX Metacharacters in Oracle Database Regular Expressions

Syntax Operator Name Description Example
[:class:] POSIX Character Matches any character belonging to the specified The expression [[:upper:]]+
Class POSIX character class. You can use this operator ~ searches for one or more

to search for characters with specific formatting consecutive uppercase characters.
such as uppercase characters, or you can search for =~ This expression matches DEF in the
special characters such as digits or punctuation string abcDEFghi but does not
characters. The full set of POSIX character classes is match the string abcdefghi.
supported.

Note: In English regular expressions, range
expressions often indicate a character class. For
example, [a-z] indicates any lowercase character.
This convention is not useful in multilingual
environments, where the first and last character of a
given character class might not be the same in all
languages. Oracle Database supports the character
classes in Table 3-3 based on character class
definitions in Globalization classification data.

[.element.] POSIX Collating Specifies a collating element to use in the regular The expression [[.ch.]] searches
Element Operator expression. The element must be a defined for the collating element ch and
collating element in the current locale. Use any matches ch in string chabc, but
collating element defined in the locale, including does not match cdefg. The
single-character and multicharacter elements. The = expression [a-[.ch.]] specifies
NLS_SORT initialization parameter determines the range a to ch.

supported collation elements.This operator lets you
use a multicharacter collating element in cases
where only one character is otherwise allowed. For
example, you can ensure that the collating element
ch, when defined in a locale such as Traditional
Spanish, is treated as one character in operations
that depend on the ordering of characters.

[=character=] POSIX Character Matches all characters that are members of the same The expression [[=n=]] searches
Equivalence character equivalence class in the current locale as for characters equivalent tonin a
Class the specified character. Spanish locale. It matches both N

The character equivalence class must occur within a and fiin the string £1 Nifio.

character list, so the character equivalence class is
always nested within the brackets for the character
list in the regular expression.

Usage of character equivalents depends on how
canonical rules are defined for your database locale.
See Oracle Database Globalization Support Guide for
more information about linguistic sorting and
string searching.

See Also: Oracle Database SQL Language Reference for syntax,
descriptions, and examples of the REGEXP functions and conditions

Multilingual Extensions to POSIX Regular Expression Standard

When applied to multilingual data, Oracle Database implementation of the POSIX
operators extends beyond the matching capabilities specified in the POSIX standard.
Table 3-3 shows the relationship of the operators in the POSIX standard.

The first column lists the supported operators.

The second column indicates whether the POSIX standard for Basic Regular
Expression (BRE) defines the operator.

The third column indicates whether the POSIX standard for Extended Regular
Expression (ERE) defines the operator.

The fourth column indicates whether the Oracle Database implementation extends
the operator's semantics for handling multilingual data.

Using Regular Expressions in Database Applications 3-7

Metacharacters in Regular Expressions

Oracle Database lets you enter multibyte characters directly, if you have a direct input
method, or use functions to compose the multibyte characters. You cannot use the
Unicode hexadecimal encoding value of the form \xxxx. Oracle Database evaluates
the characters based on the byte values used to encode the character, not the graphical
representation of the character.

Table 3-3 POSIX and Multilingual Operator Relationships

Multilingual

Operator POSIX BRE syntax POSIX ERE Syntax Enhancement
\ Yes Yes --
* Yes Yes --
+ -- Yes -
? -- Yes -
| -- Yes -
~ Yes Yes Yes
S Yes Yes Yes

Yes Yes Yes
[] Yes Yes Yes
() Yes Yes --
{m} Yes Yes -
{m, } Yes Yes -
{m,n} Yes Yes --
\n Yes Yes Yes
[..1] Yes Yes Yes
[::] Yes Yes Yes
[==] Yes Yes Yes

PERL-Influenced Extensions to POSIX Regular Expression Standard

Table 3—4 describes PERL-influenced metacharacters supported in Oracle Database
regular expression functions and conditions. These metacharacters are not in the
POSIX standard, but are common at least partly from the popularity of PERL. PERL
character class matching is based on the locale model of the operating system, whereas
Oracle Database regular expressions are based on the language-specific data of the
database. In general, a regular expression involving locale data cannot be expected to
produce the same results between PERL and Oracle Database.

3-8 Oracle Database Advanced Application Developer's Guide

Metacharacters in Regular Expressions

Table 3—-4 PERL-Influenced Extensions in Oracle Database Regular Expressions

Reg. Exp. Matches. ..

Example

\d A digit character. It is equivalent to the The expression ~\ (\d{3}\) \d{3}-\d{4}$ matches

POSIX class [[:digit:]1]. (650) 555-0100 but does not match
650-555-0100.

\D A nondigit character. It is equivalent to the ~ The expression \w\d\D matches b2b and b2_ but does
POSIX class [~ [:digit:]]. not match b22.

\w A word character, which is defined as an The expression \w+@\w+ (\ . \w+) + matches the string
alphanumeric or underscore (_) character. It jdoe@company.co.uk but not the string
is equivalent to the POSIX class jdoe@company.

[[:alnum:]_].If you do not want to
include the underscore character, you can
use the POSIX class [[:alnum:]].

\W A nonword character. It is equivalent to the =~ The expression \w+\W\s\w+ matches the string to:
POSIX class [[:alnum:]_]. bill but not the string to bill.

\s A whitespace character. It is equivalent to The expression \ (\w\s\w\s\) matches the string (a
the POSIX class [[: space:]]. b) but not the string (ab).

\S A nonwhitespace character. It is equivalent ~ The expression \ (\w\S\w\S\) matches the string
to the POSIX class [~ [:space:]]. (abde) butnot the string (a b d e).

\A Only at the beginning of a string. In The expression \AL matches only the first L character
multi-line mode, that is, when embedded in the string Linel\nLine2\n, regardless of whether
newline characters in a string are considered the search is in single-line or multi-line mode.
the termination of a line, \ A does not match
the beginning of each line.

\7Z Only at the end of a string or before a In the expression \s\Z, the \'s matches the last space
newline ending a string. In multi-line mode, inthestring. i n e \n,regardless of whether the
that is, when embedded newline characters search is in single-line or multi-line mode.
in a string are considered the termination of
a line, \ z does not match the end of each
line.

\z Only at the end of a string. In the expression \s\ z, the \ s matches the newline in
thestring . i n e \n, regardless of whether the
search is in single-line or multi-line mode.

? The preceding pattern element 0 or more The expression \w ?x\w is "nongreedy" and so

times ("nongreedy"”). This quantifier matches matches abxc in the string abxcxd. The expression

the empty string whenever possible. \w*x\w is "greedy" and so matches abxcxd in the
string abxcxd. The expression \w* ?x\w also
matches the string xa.

+? The preceding pattern element 1 or more The expression \w+?x\w is "nongreedy" and so
times ("nongreedy"). matches abxc in the string abxcxd. The expression

\w+x\w is "greedy" and so matches abxcxd in the
string abxcxd. The expression \w+?x\w does not
match the string xa, but does match the string axa.

??

The preceding pattern element 0 or 1 time
("nongreedy"). This quantifier matches the
empty string whenever possible.

The expression a??aa is "nongreedy" and matches aa
in the string aaaa. The expression a?aa is "greedy"
and so matches aaa in the string aaaa.

Using Regular Expressions in Database Applications 3-9

Using Regular Expressions in SQL Statements: Scenarios

Table 3-4 (Cont.) PERL-Influenced Extensions in Oracle Database Regular Expressions

Reg. Exp. Matches. ..

Example

{n}? The preceding pattern element exactly n
times ("nongreedy"). In this case {n}? is
equivalent to {n}.

The expression (a|aa) {2} ? matches aa in the string
aaaa.

{n,}? The preceding pattern element at least n
times ("nongreedy").

The expression a{2, } ? is "nongreedy" and matches aa
in the string aaaaa. The expression a{2, } is "greedy"
and so matches aaaaa.

{n,m}? At least n but not more than m times

The expression a{2, 4} ? is "nongreedy" and matches

('nongreedy"). {0, m} ? matches the empty ~ aa in the string aaaaa. The expressiona{2, 4} is

string whenever possible.

"greedy" and so matches aaaa.

The Oracle Database regular expression functions and conditions support the pattern
matching modifiers described in Table 3-5.

Table 3-5 Pattern Matching Modifiers

Mod. Description

Example

i Specifies case-insensitive matching. This regular expression returns AbCd:
REGEXP_SUBSTR('AbCd', ‘'abcd', 1, 1, 'i")
c Specifies case-sensitive matching. This regular expression fails to match:

REGEXP_SUBSTR('AbCd', 'abcd', 1, 1, 'c')

n Allows the period (.), which by default does
not match newlines, to match the newline
character.

This regular expression matches the string only because the
n flag is specified:

REGEXP_SUBSTR('a'||CHR(10)||'d', 'a.d', 1, 1, 'n")

m Performs the search in multi-line mode. The
metacharacter ~ and $ signify the start and
end, respectively, of any line anywhere in
the source string, rather than only at the
start or end of the entire source string.

This regular expression returns ac:

REGEXP_SUBSTR('ab' | |CHR(10) ||'ac', '*a.', 1, 2, 'm')

x Ignores whitespace characters in the regular
expression. By default, whitespace
characters match themselves.

This regular expression returns abcd:

REGEXP_SUBSTR('abcd', 'a b c d', 1, 1, 'x')

Using Regular Expressions in SQL Statements: Scenarios

Scenarios:

» Using a Constraint to Enforce a Phone Number Format

= Using Back References to Reposition Characters

Using a Constraint to Enforce a Phone Number Format

Regular expressions are useful for enforcing constraints. For example, suppose that
you want to ensure that phone numbers are entered into the database in a standard
format. Example 3-1 creates a contacts table and adds a CHECK constraint to the p_
number column to enforce this format mask:

(XXX) XXX-XXXX

Example 3-1 Enforcing a Phone Number Format with Regular Expressions

DROP TABLE contacts;
CREATE TABLE contacts (

3-10 Oracle Database Advanced Application Developer's Guide

Using Regular Expressions in SQL Statements: Scenarios

1_name VARCHAR2 (30) ,

p_number VARCHAR2 (30)

CONSTRAINT c_contacts_pnf

CHECK (REGEXP_LIKE (p_number, 'A\(\d{3}\) \d{3}-\d{4}s$"))
)i

Table 3-6 explains the elements of the regular expression.

Table 3—-6 Explanation of the Regular Expression Elements in Example 3—1

Regular Expression

Element Matches . ..
~ The beginning of the string.
\ (A left parenthesis. The backward slash (\) is an escape character that

indicates that the left parenthesis after it is a literal rather than a
grouping expression.

\d{3} Exactly three digits.

\) A right parenthesis. The backward slash (\) is an escape character that
indicates that the right parenthesis after it is a literal rather than a
grouping expression.

(space character) A space character.
\d{3} Exactly three digits.
- A hyphen.

\d{4} Exactly four digits.

$ The end of the string.

Example 3-2 Inserting Phone Numbers in Correct and Incorrect Formats

These are correct:

INSERT INTO contacts (p_number) VALUES('(650) 555-0100");
INSERT INTO contacts (p_number) VALUES('(215) 555-0100");

These generate CHECK constraint errors:

INSERT INTO contacts (p_number) VALUES('650 555-0100');
INSERT INTO contacts (p_number) VALUES('650 555 0100');
INSERT INTO contacts (p_number) VALUES('650-555-0100");
INSERT INTO contacts (p_number) VALUES('(650)555-0100");
INSERT INTO contacts (p_number) VALUES(' (650) 555-0100");

Using Back References to Reposition Characters

As explained in Table 3-2, back references store matched subexpressions in a
temporary buffer, enabling you to reposition characters. You access buffers with the \n
notation, where n is a number in the range from 1 through 9. Each subexpression is
enclosed in parentheses, and its characters are numbered from left to right.

Example 3-3 creates a table, populates it with names in different formats, and uses a
query that repositions names that are in the format "first middle last" to the format
"last, first middle". It ignores names not in the format "first middle last". The elements
of the regular expression in the query are explained in Table 3-7.

Example 3-3 Using Back References to Reposition Characters

Create and populate table:

Using Regular Expressions in Database Applications 3-11

Using Regular Expressions in SQL Statements: Scenarios

DROP TABLE famous_people;

CREATE TABLE famous_people (names VARCHAR2 (20));

INSERT INTO famous_people (names) VALUES ('John Quincy Adams');
INSERT INTO famous_people (names) VALUES ('Harry S. Truman');
INSERT INTO famous_people (names) VALUES ('John Adams');

INSERT INTO famous_people (names) VALUES (' John Quincy Adams');
INSERT INTO famous_people (names) VALUES ('John_Quincy_Adams');

SQL*Plus formatting command:

COLUMN "names after regexp" FORMAT A20

Repositioning query:

SELECT names "names",
REGEXP_REPLACE (names, '#(\S+)\s(\S+)\s(\s+)$', '\3, \1 \2')
AS "names after regexp"
FROM famous_people;

Result:

names names after regexp
John Quincy Adams Adams, John Quincy
Harry S. Truman Truman, Harry S.
John Adams John Adams

John Quincy Adams John Quincy Adams
John_Quincy_Adams John_Quincy_Adams

5 rows selected.

Table 3-7 Explanation of the Regular Expression Elements in Example 3-3

Regular Expression

Element Description

~ Matches the beginning of the string.

S Matches the end of the string.

(\S+) Matches one or more nonspace characters. The parentheses are not
escaped so they function as a grouping expression.

\s Matches a whitespace character.

\1 Substitutes the first subexpression, that is, the first group of

parentheses in the matching pattern.

\2 Substitutes the second subexpression, that is, the second group of
parentheses in the matching pattern.

\3 Substitutes the third subexpression, that is, the third group of
parentheses in the matching pattern.

, Inserts a comma character.

3-12 Oracle Database Advanced Application Developer's Guide

4

Using Indexes in Database Applications

This chapter explains how to use indexes in database applications.
Topics:

= Privileges Needed to Create Indexes

= Guidelines for Application-Specific Indexes

= Examples of Creating Basic Indexes

= When to Use Domain Indexes

s When to Use Function-Based Indexes

See Also:

s Oracle Database Administrator’s Guide for information about
creating and managing indexes

» Oracle Database Performance Tuning Guide for detailed information
about using indexes

» Oracle Database SQL Language Reference for the syntax of
statements to work with indexes

s Oracle Database Administrator’s Guide for information about
creating hash clusters to improve performance, as an alternative to
indexing

Privileges Needed to Create Indexes

When using indexes in an application, you might need to ask the DBA to grant
privileges or make changes to initialization parameters.

To create an index, you must own, or have the INDEX object privilege for, the
corresponding table. The schema that contains the index must also have a quota for
the tablespace intended to contain the index, or the UNLIMITED TABLESPACE system
privilege. To create an index in another user's schema, you must have the CREATE ANY
INDEX system privilege.

Guidelines for Application-Specific Indexes

You can create indexes on columns to speed up queries. Indexes provide faster access
to data for operations that return a small portion of a table's rows.

In general, create an index on a column in any of these situations:

s The column is queried frequently.

Using Indexes in Database Applications 4-1

Guidelines for Application-Specific Indexes

m A referential constraint exists on the column.
= A UNIQUE key constraint exists on the column.

You can create an index on any column; however, if the column is not used in any of
these situations, creating an index on the column does not increase performance and
the index takes up resources unnecessarily.

Although the database creates an index for you on a column with a constraint,
explicitly creating an index on such a column is recommended.

You can use these techniques to determine which columns are best candidates for
indexing:

s Use the EXPLAIN PLAN feature to show a theoretical execution plan of a given
query statement.

= Use the dynamic performance view V$SQL_PLAN to determine the actual
execution plan used for a given query statement.

Sometimes, if an index is not being used by default and it would be more efficient to
use that index, you can use a query hint so that the index is used.
See Also:

» Oracle Database Performance Tuning Guide for information about
using the V$SQL_PLAN view, the EXPLAIN PLAN statement, query
hints, and measuring the performance benefits of indexes

» Oracle Database Reference for general information about the
V$SQL__PLAN view
Topics:
s Which Come First, Data or Indexes?
s Create a Temporary Table Space Before Creating Indexes
= Index the Correct Tables and Columns
» Limit the Number of Indexes for Each Table
s Choose Column Order in Composite Indexes
» Gather Index Statistics

s Drop Unused Indexes

Which Come First, Data or Indexes?

Typically, you insert or load data into a table (using SQL*Loader or Import) before
creating indexes. Otherwise, the overhead of updating the index slows down the insert
or load operation. The exception to this rule is that you must create an index for a
cluster before you insert any data into the cluster.

Create a Temporary Table Space Before Creating Indexes

When you create an index on a table that has data, Oracle Database must use sort
space to create the index. The database uses the sort space in memory allocated for the
creator of the index (the amount for each user is determined by the initialization
parameter SORT_AREA_SIZE), but the database must also swap sort information to
and from temporary segments allocated on behalf of the index creation. If the index is
extremely large, Oracle recommends following these steps:

4-2 Oracle Database Advanced Application Developer's Guide

Guidelines for Application-Specific Indexes

1. Create a temporary tablespace using the CREATE TABLESPACE statement.

2. Use the TEMPORARY TABLESPACE option of the ALTER USER statement to make
this your temporary tablespace.

3. Create the index using the CREATE INDEX statement.

4. Drop this tablespace using the DROP TABLESPACE statement. Then use the ALTER
USER statement to reset your temporary tablespace to your original temporary
tablespace.

Under certain conditions, you can load data into a table with the SQL*Loader "direct
path load", and an index can be created as data is loaded.

See Also: Oracle Database Utilities for information about direct path
load

Index the Correct Tables and Columns

Use these guidelines for determining when to create an index:

= Create an index if you frequently want to retrieve less than about 15% of the rows
in a large table. This threshold percentage varies greatly, however, according to the
relative speed of a table scan and how clustered the row data is about the index
key. The faster the table scan, the lower the percentage; the more clustered the row
data, the higher the percentage.

= Index columns that are used for joins to improve join performance.

= Primary and unique keys automatically have indexes, but you might want to
create an index on a foreign key; see Chapter 5, "Maintaining Data Integrity in
Database Applications,” for more information.

= Small tables do not require indexes; if a query is taking too long, then the table
might have grown from small to large.

Some columns are strong candidates for indexing. Columns with one or more of these
characteristics are good candidates for indexing:

= Values are unique in the column, or there are few duplicates.
» There is a wide range of values (good for regular indexes).
» There is a small range of values (good for bitmap indexes).

s The column contains many nulls, but queries often select all rows having a value.
In this case, a comparison that matches all the non-null values, such as:

WHERE COL_X >= -9.99 *power (10,125)

is preferable to

WHERE COL_X IS NOT NULL

This is because the first uses an index on COL_X (if COL_X is a numeric column).
Columns with these characteristics are less suitable for indexing:
s There are many nulls in the column and you do not search on the non-null values.
LONG and LONG RAW columns cannot be indexed.

The size of a single index entry cannot exceed roughly one-half (minus some
overhead) of the available space in the data block. Consult with the database
administrator for assistance in determining the space required by an index.

Using Indexes in Database Applications 4-3

Guidelines for Application-Specific Indexes

Limit the Number of Indexes for Each Table

The more indexes, the more overhead is incurred as the table is altered. When rows are
inserted or deleted, all indexes on the table must be updated. When a column is
updated, all indexes on the column must be updated.

You must weigh the performance benefit of indexes for queries against the
performance overhead of updates. For example, if a table is primarily read-only, you
might use more indexes; but, if a table is heavily updated, you might use fewer
indexes.

Choose Column Order in Composite Indexes

Although you can specify columns in any order in the CREATE INDEX statement, the
order of columns in the CREATE INDEX statement can affect query performance. In
general, put the column expected to be used most often first in the index. You can
create a composite index (using several columns), and use the same index for queries
that reference all or some of these columns.

Example 4-1 VENDOR_PARTS Table

DROP TABLE vendor_parts;
CREATE TABLE vendor_parts (
vendor_id VARCHAR2(9),
part_no VARCHAR2 (7),

unit_cost REAL
)i

INSERT INTO vendor_parts (vendor_id, part_no, unit_cost)
VALUES (1012, 10440, .25);

INSERT INTO vendor_parts (vendor_id, part_no, unit_cost)
VALUES (1012, 10441, .39);

INSERT INTO vendor_parts (vendor_id, part_no, unit_cost)
VALUES (1012, 457, 4.95);

INSERT INTO vendor_parts (vendor_id, part_no, unit_cost)
VALUES (1010, 10440, .27);

INSERT INTO vendor_parts (vendor_id, part_no, unit_cost)
VALUES (1010, 457, 5.12);

INSERT INTO vendor_parts (vendor_id, part_no, unit_cost)
VALUES (1220, 8300, 1.33);

INSERT INTO vendor_parts (vendor_id, part_no, unit_cost)
VALUES (1012, 8300, 1.19);

INSERT INTO vendor_parts (vendor_id, part_no, unit_cost)
VALUES (1292, 457, 5.28);
Query:

SELECT * FROM vendor_parts
ORDER BY vendor_id;

Result:

VENDOR_ID PART_NO UNIT_COST

4-4 Oracle Database Advanced Application Developer's Guide

Guidelines for Application-Specific Indexes

1010 10440 .27
1010 457 5.12
1012 457 4.95
1012 8300 1.19
1012 10441 .39
1012 10440 .25
1220 8300 1.33
1292 457 5.28

8 rows selected.

Assume that there are five vendors, and each vendor has about 1000 parts.

Suppose that the VENDOR_PARTS table is commonly queried by SQL statements such
as:

SELECT * FROM vendor_parts
WHERE part_no = 457 AND vendor_id = 1012
ORDER BY vendor_id;

Result:

VENDOR_ID PART_NO UNIT_COST

1 row selected.

To increase the performance of such queries, you might create a composite index
putting the most selective column first; that is, the column with the most values:

CREATE INDEX ind_vendor_id
ON vendor_parts (part_no, vendor_id);

Composite indexes speed up queries that use the leading portion of the index. So in
this example, the performance of queries with WHERE clauses using only the PART_NO
column improve also. Because there are only five distinct values, placing a separate
index on VENDOR_ID serves no purpose.

Gather Index Statistics

The database can use indexes more effectively when it has statistical information about
the tables involved in the queries. You or the DBA can periodically gather statistics by
invoking procedures such as DBMS_STATS.GATHER_TABLE_STATISTICS and DBMS_
STATS.GATHER_SCHEMA_STATISTICS. For information about these procedures, see
Oracle Database PL/SQL Packages and Types Reference.

Drop Unused Indexes
You might drop an index if:

= It does not speed up queries. The table might be very small, or there might be
many rows in the table but very few index entries.

= The queries in your applications do not use the index.

To find out if an index is being used, you can monitor it. If you see that the index is
never used, rarely used, or used in a way that seems to provide no benefit, you can
either drop it immediately or you can make it invisible until you are sure that you do
not need it, and then drop it. If you discover that you do need the invisible index, you
can make it visible again.

Using Indexes in Database Applications 4-5

Examples of Creating Basic Indexes

When you drop an index, all extents of the index's segment are returned to the
containing tablespace and become available for other objects in the tablespace.

To drop an index, use the SQL statement DROP INDEX. For example, this statement
drops the index named Emp_name:

DROP INDEX Emp_ename;

If you drop a table, then all associated indexes are dropped.
To drop an index, the index must be contained in your schema or you must have the
DROP ANY INDEX system privilege.

See Also:

n Oracle Database Administrator’s Guide for information about
monitoring index usage

n Oracle Database Administrator’s Guide for information about
making indexes invisible

» Oracle Database SQL Language Reference for information about the
DROP INDEX statement

Examples of Creating Basic Indexes

You can create an index for a table to improve the performance of queries issued
against the corresponding table. You can also create an index for a cluster. You can
create a composite index on multiple columns up to a maximum of 32 columns. A
composite index key cannot exceed roughly one-half (minus some overhead) of the
available space in the data block.

Oracle Database automatically creates an index to enforce a UNIQUE or PRIMARY KEY
constraint. In general, it is better to create such constraints to enforce uniqueness,
instead of using the obsolete CREATE UNIQUE INDEX syntax.

Use the SQL statement CREATE INDEX to create an index.

Example 4-2 Creating Indexes
Create index for single column, to speed up queries that test that column:

CREATE INDEX emp_phone ON EMPLOYEES (PHONE_NUMBER) ;

Create index for single column, specifying some physical attributes for index:

CREATE INDEX emp_lastname ON EMPLOYEES (LAST_ NAME)

STORAGE (
INITIAL 20K
NEXT 20k

PCTINCREASE 75

)
PCTFREE O0;

Create index for two columns, to speed up queries that test either first column or both
columns:

CREATE INDEX emp_id email ON EMPLOYEES (EMPLOYEE ID, EMAIL);

For query that sorts on UPPER (LASTNAME) , index on LAST_NAME column does not
speed up operation, and might be slow to invoke function for each result row. Create

4-6 Oracle Database Advanced Application Developer's Guide

When to Use Function-Based Indexes

function-based index that precomputes the result of the function for each column
value,speeding up queries that use the function for searching or sorting:

CREATE INDEX emp_upper_lastname ON EMPLOYEES (UPPER (LAST_NAME)) ;

When to Use Domain Indexes

Domain indexes are appropriate for special-purpose applications implemented using
data cartridges. The domain index helps to manipulate complex data, such as spatial,
audio, or video data. If you must develop such an application, see Oracle Database Data
Cartridge Developer’s Guide.

Oracle Database supplies specialized data cartridges to help manage these kinds of
complex data. So, if you must create a search engine, or a geographic information
system, you can do much of the work simply by creating the right kind of index.

When to Use Function-Based Indexes

A function-based index is an index built on an expression. It extends your indexing
capabilities beyond indexing on a column. A function-based index increases the
variety of ways in which you can access data.

Note:

s The index is more effective if you gather statistics for the table or
schema, using the procedures in the DBMS_STATS package.

s The index cannot contain any null values. Either ensure that the
appropriate columns contain no null values, or use the NVL
function in the index expression to substitute some other value for
nulls.

The expression indexed by a function-based index can be an arithmetic expression or
an expression that contains a PL/SQL function, package function, C callout, or SQL
function. Function-based indexes also support linguistic sorts based on collation keys,
efficient linguistic collation of SQL statements, and case-insensitive sorts.

Like other indexes, function-based indexes improve query performance. For example,
if you must access a computationally complex expression often, then you can store it in
an index. Then when you must access the expression, it is available. You can find a
detailed description of the advantages of function-based indexes in "Advantages of
Function-Based Indexes" on page 4-8.

Function-based indexes have all of the same properties as indexes on columns. Unlike
indexes on columns that can be used by both cost-based and rule-based optimization,
however, function-based indexes can be used by only by cost-based optimization.
Other restrictions on function-based indexes are described in "Restrictions on
Function-Based Indexes" on page 4-10.

See Also:

s Oracle Database Concepts for general information about
function-based indexes

m Oracle Database Administrator’s Guide for information about
creating function-based indexes

Using Indexes in Database Applications 4-7

When to Use Function-Based Indexes

Topics:

Advantages of Function-Based Indexes
Restrictions on Function-Based Indexes

Examples of Function-Based Indexes

Advantages of Function-Based Indexes

Function-based indexes:

Increase the number of situations where the optimizer can perform a range scan
instead of a full table scan (as in Example 4-3).

Range scans typically produce fast response times if the predicate selects less than
15% of the rows of a large table. The optimizer can estimate how many rows are
selected by expressions more accurately if the expressions are materialized in a
function-based index. (Expressions of function-based indexes are represented as
virtual columns and ANALYZE can build histograms on such columns.)

Precompute the value of a computationally intensive function and store it in the
index.

An index can store computationally intensive expression that you access often.
When you must access a value, it is available, greatly improving query execution
performance.

Create indexes on object columns and REF columns.

Methods that describe objects can be used as functions on which to build indexes.
For example, you can use the MAP method to build indexes on an ADT column.

Create more powerful sorts.

You can perform case-insensitive sorts with the UPPER and LOWER functions,
descending order sorts with the DESC keyword, and linguistic-based sorts with the
NLSSORT function.

Note: Oracle Database sorts columns with the DESC keyword in
descending order. Such indexes are treated as function-based indexes.
Descending indexes cannot be bitmapped or reverse, and cannot be
used in bitmapped optimizations. To get the DESC functionality before
Oracle Database version 8, remove the DESC keyword from the
CREATE INDEX statement.

In Example 4-3, an index is built on (Column_a + Column_b); therefore, the
expression in the WHERE clause of the SELECT statement allows the optimizer to
perform a range scan instead of a full table scan.

Example 4-3 Function-Based Index Allows Optimizer to Perform Range Scan

DROP TABLE Example_tab;
CREATE TABLE Example_tab (

Column_a INTEGER,
Column_b INTEGER
)i

INSERT INTO Example_tab (Column_a, Column_b)
VALUES (1, 2);

4-8 Oracle Database Advanced Application Developer's Guide

When to Use Function-Based Indexes

INSERT INTO Example_tab (Column_a, Column_b)
VALUES (2, 4);

INSERT INTO Example_tab (Column_a, Column_b)
VALUES (3, 6);

INSERT INTO Example_tab (Column_a, Column_b)
VALUES (4, 8);

INSERT INTO Example_tab (Column_a, Column_b)
VALUES (5, 10);

Query:
SELECT * FROM Example_tab ORDER BY Column_a;

Result:

5 rows selected.

Create index:

CREATE INDEX Idx ON Example_tab(Column_a + Column_b);

Query:

SELECT * FROM Example_tab
WHERE Column_a + Column_ b < 10
ORDER BY Column_a;

Result:

COLUMN_A COLUMN_B

1 2
2
3 6

3 rows selected.

In Example 4-4:

s The function-based index Distance_index calls the object method Distance_
from_equator for each city in a table. The method is applied to the object
column Reg_Obj. A query uses Distance_index to quickly find cities that are
more than 1000 miles from the equator. (The table is not populated for the
example, so the query returns no rows.)

» The function-based index Compare_index stores the temperature delta and the
maximum temperature. The result of the delta is sorted in descending order. A
query uses Compare_index to quickly find table rows where the temperature
delta is less than 20 and the maximum temperature is greater than 75. (The table is
not populated for the example, so the query returns no rows.)

Using Indexes in Database Applications 4-9

When to Use Function-Based Indexes

Example 4-4 Function-Based Indexes

DROP TABLE Weatherdata_tab;
CREATE TABLE Weatherdata_tab (
Reg_obj INTEGER,
Maxtemp INTEGER,
Mintemp INTEGER
)

CREATE OR REPLACE FUNCTION Distance_from equator (
Reg_obj IN INTEGER

) RETURN INTEGER
DETERMINISTIC

IS

BEGIN
RETURN (3000) ;

END;

/

Create index:

CREATE INDEX Distance_ index

ON Weatherdata_tab (Distance_from_equator (Reg_obj));:
Query:

SELECT * FROM Weatherdata_tab

WHERE (Distance_from equator (Reg Obj)) > '1000';
Result:

no rows selected

Create index:
CREATE INDEX Compare_index
2 ON Weatherdata_tab ((Maxtemp - Mintemp) DESC, Maxtemp);
Query:
SELECT * FROM Weatherdata tab
WHERE ((Maxtemp - Mintemp) < '20' AND Maxtemp > '75');
Result:

no rows selected

Restrictions on Function-Based Indexes

Function-based indexes have these restrictions:

= Only cost-based optimization can use function-based indexes. Remember to
invoke DBMS_STATS.GATHER_TABLE_STATISTICS or DBMS_STATS.GATHER_
SCHEMA_STATISTICS, for the function-based index to be effective.

= Any top-level or package-level PL/SQL functions that are used in the index
expression must be declared as DETERMINISTIC. That is, they always return the
same result given the same input, for example, the UPPER function. You must
ensure that the subprogram really is deterministic, because Oracle Database does
not check that the assertion is true.

These semantic rules demonstrate how to use the keyword DETERMINISTIC:

= You can declare a top level subprogram as DETERMINISTIC.

4-10 Oracle Database Advanced Application Developer's Guide

When to Use Function-Based Indexes

= You can declare a PACKAGE level subprogram as DETERMINISTIC in the
PACKAGE specification but not in the PACKAGE BODY. An exception is raised if
DETERMINISTIC is used inside a PACKAGE BODY

= You can declare a private subprogram (declared inside another subprogram or
a PACKAGE BODY) as DETERMINISTIC

= A DETERMINISTIC subprogram can invoke another subprogram whether the
invoked subprogram is declared as DETERMINISTIC or not.

If you change the semantics of a DETERMINISTIC function and recompile it, then
existing function-based indexes and materialized views report results for the prior
version of the function. Thus, if you change the semantics of a function, you must
manually rebuild any dependent function-based indexes and materialized views.

Expressions in a function-based index cannot contain any aggregate functions. The
expressions must reference only columns in a row in the table.

You must analyze the table or index before the index is used.
Bitmap optimizations cannot use descending indexes.
Function-based indexes are not used when OR-expansion is done.

The index function cannot be marked NOT NULL. To avoid a full table scan, you
must ensure that the query cannot fetch null values.

Function-based indexes cannot use expressions that return VARCHAR2 or RAW data
types of unknown length from PL/SQL functions. A workaround is to limit the
size of the function's output by indexing a substring of known length. For
example:

CREATE OR REPLACE FUNCTION initials (
name IN VARCHAR2
) RETURN VARCHAR2

DETERMINISTIC
IS
BEGIN

RETURN('A. J.');
END;

/

/* Invoke SUBSTR both when creating index and when referencing
function in queries. */

CREATE INDEX func_substr_index ON
EMPLOYEES (SUBSTR(initials (FIRST NAME),1,10));

SELECT SUBSTR(initials(FIRST NAME),1,10) FROM EMPLOYEES;

See Also: Oracle Database PL/SQL Language Reference for CREATE
FUNCTION restrictions

Examples of Function-Based Indexes

Function-Based Index for Case-Insensitive Searches
Precomputing Arithmetic Expressions with a Function-Based Index

Function-Based Index for Language-Dependent Sorting

Using Indexes in Database Applications 4-11

When to Use Function-Based Indexes

Function-Based Index for Case-Insensitive Searches
This statement allows faster case-insensitive searches in table EMP_TAB.

CREATE INDEX emp_lastname ON EMPLOYEES (UPPER(LAST_NAME)) ;

The SELECT statement uses the function-based index on UPPER(LAST_NAME) to return
all of the employees with name like :KEYCOL.

SELECT * FROM EMPLOYEES WHERE UPPER(LAST_NAME) LIKE 'J%S_N';

Precomputing Arithmetic Expressions with a Function-Based Index

This statement computes a value for each row using columns A, B, and C, and stores
the results in the index.

DROP TABLE Fbi_tab;
CREATE TABLE Fbi_tab (
a INTEGER,
b INTEGER,
¢ INTEGER
)i

CREATE INDEX Idx ON Fbi_tab (a + b * (¢ - 1), a, b);

The SELECT statement can either use index range scan (because the expression is a
prefix of index Idx) or index fast full scan (which might be preferable if the index has
specified a high parallel degree).

SELECT a FROM Fbi_tab WHERE a + b * (¢ - 1) < 100;

Function-Based Index for Language-Dependent Sorting

This example demonstrates how a function-based index can be used to sort based on
the collation order for a national language. The NLSSORT function returns a sort key
for each name, using the collation sequence GERMAN.

DROP TABLE nls_tab;
CREATE TABLE nls_tab (NAME VARCHAR2(80));

CREATE INDEX nls_index
ON nls_tab (NLSSORT(NAME, 'NLS_SORT = GERMAN'));

The SELECT statement selects all of the contents of the table and orders it by NAME.
The rows are ordered using the German collation sequence. The Globalization Support
parameters are not needed in the SELECT statement, because in a German session,
NLS_ SORT is set to German and NL.S_ COMP is set to ANSTI.

SELECT * FROM nls_tab
WHERE NAME IS NOT NULL
ORDER BY NAME;

4-12 Oracle Database Advanced Application Developer's Guide

O

Maintaining Data Integrity in Database
Applications

This chapter explains how to use constraints to enforce the business rules associated
with your database and prevent the entry of invalid information into tables.

Topics:

s Overview of Constraints

= Enforcing Referential Integrity with Constraints
» Minimizing Space and Time Overhead for Indexes Associated with Constraints
= Guidelines for Indexing Foreign Keys

= Referential Integrity in a Distributed Database

s When to Use CHECK Constraints

» Examples of Defining Constraints

s Enabling and Disabling Constraints

» Modifying Constraints

s Renaming Constraints

s Dropping Constraints

s Managing FOREIGN KEY Constraints

= Viewing Information About Constraints

Overview of Constraints

You can define constraints to enforce business rules on data in your tables. Business
rules specify conditions and relationships that must always be true, or must always be
false. Because each company defines its own policies about things like salaries,
employee numbers, inventory tracking, and so on, you can specify a different set of
rules for each database table.

When an integrity constraint applies to a table, all data in the table must conform to
the corresponding rule. When you issue a SQL statement that modifies data in the
table, Oracle Database ensures that the new data satisfies the integrity constraint,
without any checking within your program.

Maintaining Data Integrity in Database Applications 5-1

Overview of Constraints

Enforcing Business Rules with Constraints

You can enforce rules by defining constraints more reliably than by adding logic to
your application. Oracle Database can check that all the data in a table obeys an
integrity constraint faster than an application can.

For example, to ensure that each employee works for a valid department:
1. Create tables dept_tab and emp_tab:

DROP TABLE dept_tab;

CREATE TABLE dept_tab (
deptname VARCHAR2 (20),
deptno INTEGER

)i

DROP TABLE emp_tab;
CREATE TABLE emp_tab (

empname VARCHAR2 (80),

empno INTEGER, deptno INTEGER
)i

2. Create a rule that all values in the department table are unique:
ALTER TABLE dept_tab
ADD PRIMARY KEY (deptno);
3. Create a rule that every department listed in the employee table must match a
value in the department table:

ALTER TABLE emp_tab
ADD FOREIGN KEY (deptno)
REFERENCES dept_tab(deptno) ;

When you add an employee record to the table, Oracle Database automatically checks
that its department number appears in the department table.

To enforce this rule without constraints, you can use a trigger to query the department
table and test that each employee's department is valid. This method is less reliable
than using constraints, because SELECT in Oracle Database uses consistent read (CR),
so the query might miss uncommitted changes from other transactions.

Enforcing Business Rules with Application Logic

You might enforce business rules through both application logic and constraints, if you
can filter out bad data before attempting an insert or update. This might let you
provide instant feedback to the user, and reduce the load on the database. This
technique is appropriate when you can determine that data values are wrong or out of
range without checking against any data in the table.

Creating Indexes for Use with Constraints

All enabled unique and primary keys require corresponding indexes. Create these
indexes by hand, rather than letting the database create them. Note that:

= Constraints use existing indexes where possible, rather than creating indexes.

= Unique and primary keys can use both nonunique and unique indexes. They can
even use only the first few columns of nonunique indexes.

= At most one unique or primary key can use each nonunique index.

5-2 Oracle Database Advanced Application Developer's Guide

Overview of Constraints

s The column orders in the index and the constraint need not match.

s If you must check whether an index is used by a constraint, for example when you
want to drop the index, the object number of the index used by a unique or
primary key constraint is stored in CDEF$.ENABLED for that constraint. It is not
shown in any static data dictionary view or dynamic performance view.

s Oracle Database does not automatically index foreign keys.

When to Use NOT NULL Constraints

By default, all columns can contain null values. Define NOT NULL constraints only for
columns that always require values. For example, an employee's manager or hire date
might be temporarily omitted. Some employees might not have a commission.
Columns like these must not have NOT NULL constraints. However, an employee name
might be required from the very beginning, and you can enforce this rule with a NOT
NULL integrity constraint.

NOT NULL constraints are often combined with other constraints to further restrict the
values that can exist in specific columns. For example, the combination of NOT NULL
and UNIQUE constraints forces the input of values in the UNIQUE key, eliminating the
possibility that a new row's data conflicts with an existing row's data.

Because Oracle Database indexes do not store keys that are all null, to allow
index-only scans of the table or some other operation that requires indexing all rows,
you must put a NOT NULL constraint on at least one indexed column.

See Also: "Defining Relationships Between Parent and Child Tables"
on page 5-9
Specify a NOT NULL constraint like this:
ALTER TABLE table name MODIFY column_name NOT NULL;
Example 5-1 uses the SQL*Plus command DESCRIBE to show which columns of the

DEPARTMENTS table have NOT NULL constraints, and then shows what happens if you
try to insert NULL values in columns that have NOT NULL constraints.

Example 5-1 Inserting NULL Values into Columns with NOT NULL Constraints
DESCRIBE DEPARTMENTS;

Result:
Name Null? Type
DEPARTMENT_ID NOT NULL NUMBER (4)
DEPARTMENT_NAME NOT NULL VARCHAR2 (30)
MANAGER_ID NUMBER (6)
LOCATION_ID NUMBER (4)

Try to insert NULL into DEPARTMENT_ID column:

INSERT INTO DEPARTMENTS (
DEPARTMENT_ID, DEPARTMENT NAME, MANAGER_ID, LOCATION_ID

)
VALUES (NULL, 'Sales', 200, 1700);

Result:

Maintaining Data Integrity in Database Applications 5-3

Overview of Constraints

VALUES (NULL, 'Sales', 200, 1700)

*

ERROR at line 4:
ORA-01400: cannot insert NULL into ("HR"."DEPARTMENTS"."DEPARTMENT_ ID")

Omitting a value for a column that cannot be NULL is the same as assigning it the
value NULL:

INSERT INTO DEPARTMENTS (
DEPARTMENT_NAME, MANAGER_ID, LOCATION_ID
)

VALUES ('Sales', 200, 1700);
Result:

INSERT INTO DEPARTMENTS (

*

ERROR at line 1:
ORA-01400: cannot insert NULL into ("HR"."DEPARTMENTS"."DEPARTMENT ID")

When to Use Default Column Values

Assign default values to columns that contain typical values. For example, in the
DEPT_TAB table, if most departments are located in New York, then the default value
for the LOC column can be set to NEW YORK.

Default values can help avoid errors where there is a number, such as zero, that
applies to a column that has no entry. For example, a default value of zero can simplify
testing, by changing a test like this:

IF sal IS NOT NULL AND sal < 50000

to the simpler form:

IF sal < 50000

Depending upon your business rules, you might use default values to represent zero
or false, or leave the default values as NULL to signify an unknown value.

Defaults are also useful when you use a view to make a subset of a table's columns
visible. For example, you might allow users to insert rows through a view. The base
table might also have a column named inserter, not included in the definition of the
view, to log the user that inserts each row. To record the user name automatically,
define a default value that invokes the USER function:

CREATE TABLE audit_trail (
valuel NUMBER,
value?2 VARCHAR2 (32),
inserter VARCHAR2 (30) DEFAULT USER) ;

Setting Default Column Values

Default values can be defined using any literal, or almost any expression, including
calls to these functions:

s SYSDATE
s SYS_CONTEXT
s USER

s USERENV

5-4 Oracle Database Advanced Application Developer's Guide

Overview of Constraints

= UID

Default values cannot include expressions that refer to a sequence, PL/SQL function,
column, LEVEL, ROWNUM, or PRIOR. The data type of a default literal or expression
must match or be convertible to the column data type.

Sometimes the default value is the result of a SQL function. For example, a call to
SYS_CONTEXT can set a different default value depending on conditions such as the
user name. To be used as a default value, a SQL function must have parameters that
are all literals, cannot reference any columns, and cannot invoke any other functions.

If you do not explicitly define a default value for a column, the default for the column
is implicitly set to NULL.

You can use the keyword DEFAULT within an INSERT statement instead of a literal
value, and the corresponding default value is inserted.

Choosing a Primary Key for a Table

Each table can have one primary key, which uniquely identifies each row in a table
and ensures that no duplicate rows exist. When selecting a primary key, use these
guidelines:

s Whenever practical, use a column containing a sequence number. This satisfies all
the other guidelines.

s Choose a column whose data values are unique, because the purpose of a primary
key is to uniquely identify each row of the table.

s Choose a column whose data values never change. A primary key value is only
used to identify a row in the table, and its data must never be used for any other
purpose.

s Choose a column that does not contain any nulls. A PRIMARY KEY constraint, by
definition, does not allow any row to contain a null in any column that is part of
the primary key.

s Choose a column that is short and numeric. Short primary keys are easy to type.
You can use sequence numbers to easily generate numeric primary keys.

= Minimize your use of composite primary keys. Although composite primary keys
are allowed, they do not satisfy all of the other recommendations. For example,
composite primary key values are long and cannot be assigned by sequence
numbers.

When to Use UNIQUE Constraints

Choose columns for unique keys carefully. The purpose of these constraints is different
from that of primary keys. Unique key constraints are appropriate for any column
where duplicate values are not allowed. Primary keys identify each row of the table
uniquely, and typically contain values that have no significance other than being
unique. Figure 5-1 shows an example of a table with a unique key constraint.

Maintaining Data Integrity in Database Applications 5-5

Enforcing Referential Integrity with Constraints

Figure 5-1 Table with a UNIQUE Constraint

— UNIQUE Key Constraint
Table DEPARTMENTS (no row may duplicate a
DEPID | DNAME | LOC value in the constraint's

10 Administration |1700 | comn)
20 Marketing 1800
30 Purchasing 1700
40 Human Resources [2400
INSERT
INTO
50 MARKETING 1700 —4— This row violates the UNIQUE key constraint,
because "MARKETING" is already present in another
row; therefore, it is not allowed in the table.
60 2400 —§— This row is allowed because a null value is
entered for the DNAME column; however, if a

NOT NULL constraint is also defined on the
DNAME column, this row is not allowed.

Note: You cannot have identical values in the non-null columns of a
composite UNIQUE key constraint (UNIQUE key constraints allow
NULL values).

Some examples of good unique keys include:

= Anemployee social security number (the primary key might be the employee
number)

= A truck license plate number (the primary key might be the truck number)

= A customer phone number, consisting of the two columns AREA_CODE and
LOCAL_PHONE (the primary key might be the customer number)

= A department name and location (the primary key might be the department
number)

When to Use Constraints On Views
The constraints in this chapter apply to tables, not views.

Although you can declare constraints on views, such constraints do not help maintain
data integrity. Instead, they are used to enable query rewrites on queries involving
views, which helps performance with materialized views and other data warehousing
features. Such constraints are always declared with the DISABLE keyword, and you
cannot use the VALIDATE keyword. The constraints are never enforced, and there is no
associated index.

See Also: Oracle Database Data Warehousing Guide for information
about using constraints in data warehousing

Enforcing Referential Integrity with Constraints

Whenever two tables contain one or more common columns, Oracle Database can
enforce the relationship between the two tables through a referential integrity
constraint. Define a PRIMARY or UNIQUE key constraint on the column in the parent

5-6 Oracle Database Advanced Application Developer's Guide

Enforcing Referential Integrity with Constraints

table (the one that has the complete set of column values). Define a FOREIGN KEY
constraint on the column in the child table (the one whose values must refer to existing
values in the other table).

Note: In static data dictionary views *_CONSTRAINTS, a FOREIGN
KEY constraint has CONSTRAINT_TYPE value R (for referential
integrity).

See Also: "Defining Relationships Between Parent and Child Tables"
on page 5-9 for information about defining additional constraints,
including the foreign key

Figure 5-2 shows a foreign key defined on the department number. It guarantees that
every value in this column must match a value in the primary key of the department
table. This constraint prevents erroneous department numbers from getting into the
employee table.

Foreign keys can be composed of multiple columns. Such a composite foreign key
must reference a composite primary or unique key of the exact same structure, with
the same number of columns and the same data types. Because composite primary and
unique keys are limited to 32 columns, a composite foreign key is also limited to 32
columns.

Maintaining Data Integrity in Database Applications 5-7

Enforcing Referential Integrity with Constraints

Figure 5-2 Tables with FOREIGN KEY Constraints

Parent Key
Primary key of
referenced table

Table DEPARTMENTS

DEPID | DNAME | Loc

10 Administration 1700

20 Marketing 1800

30 Purchasing 1700 Foreign Ke'

40 Human Resources |[2400 (valuegs in dgpendent
~= table must match a value

i 7

Referenced or
Parent Table

in unique key or primary
key of referenced table)

e
-
Table EMPLOYEES Seeal,
-
ID | LNAME | JOB MGR HIREDATE SAL COMM | DEPTNO
100 King AD_PRES 17-JUN-87 24000 90
101 Kochhar AD_VP 100 21-SEP-89 17000 90
102 De Hann AD_VP 100 13-JAN-93 17000 90
103 Hunold IT_PROG 102 03-JAN-90 9000 60 This row violates
the referential
. constraint
Dependent or Child Table because "25"
is not present
in the referenced
table's primary
INSERT key; therefore,
INTO .
the row is not
allowed in
556 CRICKET PU_CLERK 31-0CT-96 5000 25 —@&—the table.
556 CRICKET PU_CLERK 31-0CT-96 5000 —f—This row is
allowed in the
table because a
null value is
entered in the
DEPTNO column;

however, if a not
null constraint is
also defined for
this column, this
row is not allowed.

FOREIGN KEY Constraints and NULL Values

Foreign keys allow key values that are all NULL, even if there are no matching
PRIMARY or UNIQUE keys.

= By default (without any NOT NULL or CHECK clauses), the FOREIGN KEY constraint
enforces the match none rule for composite foreign keys in the ANSI/ISO
standard.

= To enforce the match full rule for NULL values in composite foreign keys, which
requires that all components of the key be NULL or all be non-null, define a CHECK
constraint that allows only all nulls or all non-nulls in the composite foreign key.
For example, with a composite key comprised of columns 2, B, and C:

CHECK ((A IS NULL AND B IS NULL AND C IS NULL) OR
(A IS NOT NULL AND B IS NOT NULL AND C IS NOT NULL))

= In general, it is not possible to use declarative referential integrity to enforce the
match partial rule for NULL values in composite foreign keys, which requires the

5-8 Oracle Database Advanced Application Developer's Guide

Enforcing Referential Integrity with Constraints

non-null portions of the key to appear in the corresponding portions in the
primary or unique key of a single row in the referenced table. You can often use
triggers to handle this case, as described in Oracle Database PL/SQL Language
Reference.

Defining Relationships Between Parent and Child Tables

Several relationships between parent and child tables can be determined by the other
types of constraints defined on the foreign key in the child table.

No Constraints on the Foreign Key When no other constraints are defined on the
foreign key, any number of rows in the child table can reference the same parent key
value. This model allows nulls in the foreign key.

This model establishes a one-to-many relationship between the parent and foreign
keys that allows undetermined values (nulls) in the foreign key. An example of such a
relationship is shown in Figure 5-2 between the employee and department tables.
Each department (parent key) has many employees (foreign key), and some employees
might not be in a department (nulls in the foreign key).

NOT NULL Constraint on the Foreign Key When nulls are not allowed in a foreign
key, each row in the child table must explicitly reference a value in the parent key
because nulls are not allowed in the foreign key.

Any number of rows in the child table can reference the same parent key value, so this
model establishes a one-to-many relationship between the parent and foreign keys.
However, each row in the child table must have a reference to a parent key value; the
absence of a value (a null) in the foreign key is not allowed. The same example in the
previous section can be used to illustrate such a relationship. However, in this case,
employees must have a reference to a specific department.

UNIQUE Constraint on the Foreign Key When a UNIQUE constraint is defined on the
foreign key, only one row in the child table can reference a given parent key value.
This model allows nulls in the foreign key.

This model establishes a one-to-one relationship between the parent and foreign keys
that allows undetermined values (nulls) in the foreign key. For example, assume that
the employee table had a column named MEMBERNO, referring to an employee
membership number in the company insurance plan. Also, a table named INSURANCE
has a primary key named MEMBERNO, and other columns of the table keep respective
information relating to an employee insurance policy. The MEMBERNO in the employee
table must be both a foreign key and a unique key:

= To enforce referential integrity rules between the EMP_TAB and INSURANCE tables
(the FOREIGN KEY constraint)

= To guarantee that each employee has a unique membership number (the UNIQUE
key constraint)

UNIQUE and NOT NULL Constraints on the Foreign Key When both UNIQUE and
NOT NULL constraints are defined on the foreign key, only one row in the child table
can reference a given parent key value, and because NULL values are not allowed in
the foreign key, each row in the child table must explicitly reference a value in the
parent key.

This model establishes a one-to-one relationship between the parent and foreign keys
that does not allow undetermined values (nulls) in the foreign key. If you expand the
previous example by adding a NOT NULL constraint on the MEMBERNO column of the

Maintaining Data Integrity in Database Applications 5-9

Enforcing Referential Integrity with Constraints

employee table, in addition to guaranteeing that each employee has a unique
membership number, you also ensure that no undetermined values (nulls) are allowed
in the MEMBERNO column of the employee table.

Rules for Multiple FOREIGN KEY Constraints

Oracle Database allows a column to be referenced by multiple FOREIGN KEY
constraints; there is no limit on the number of dependent keys. This situation might be
present if a single column is part of two different composite foreign keys.

Deferring Constraint Checks

When Oracle Database checks a constraint, it signals an error if the constraint is not
satisfied. To defer checking constraints until the end of the current transaction, use the
SET CONSTRAINTS statement.

Note: You cannot use the SET CONSTRAINTS statement inside a
trigger.

When deferring constraint checks:
= Select appropriate data.

You might want to defer constraint checks on UNIQUE and FOREIGN keys if the
data you are working with has any of these characteristics:

- Tables are snapshots.

— Some tables contain a large amount of data being manipulated by another
application, which might not return the data in the same order.

= Update cascade operations on foreign keys.
= Ensure that constraints are deferrable.

After identifying the appropriate tables, ensure that their FOREIGN, UNIQUE and
PRIMARY key constraints are created DEFERRABLE.

= Within the application that manipulates the data, set all constraints deferred before
you begin processing any data, as follows:

SET CONSTRAINTS ALL DEFERRED;
= (Optional) Check for constraint violations immediately before committing the
transaction.

Immediately before the COMMIT statement, run the SET CONSTRAINTS ALL
IMMEDIATE statement. If there are any problems with a constraint, this statement
fails, and identifies the constraint that caused the error. If you commit while
constraints are violated, the transaction rolls back and you get an error message.

In Example 5-2, the PRIMARY and FOREIGN keys of the table emp are created
DEFERRABLE and then deferred.

Example 5-2 Deferring Constraint Checks

DROP TABLE dept;

CREATE TABLE dept (
deptno NUMBER PRIMARY KEY,
dname VARCHAR2 (30)

)

5-10 Oracle Database Advanced Application Developer's Guide

Enforcing Referential Integrity with Constraints

DROP TABLE emp;
CREATE TABLE emp (

empno NUMBER,

ename VARCHAR2 (30),

deptno NUMBER,

CONSTRAINT pk_emp_empno PRIMARY KEY (empno) DEFERRABLE,

CONSTRAINT fk_emp_deptno FOREIGN KEY (deptno) REFERENCES dept (deptno) DEFERRABLE
)

INSERT INTO dept (deptno, dname) VALUES (10, 'Accounting');
INSERT INTO dept (deptno, dname) VALUES (20, 'SALES');

INSERT INTO emp (empno, ename, deptno) VALUES (1, 'Corleone', 10);
INSERT INTO emp (empno, ename, deptno) VALUES (2, 'Costanza', 20);
COMMIT;

SET CONSTRAINTS ALL DEFERRED;

UPDATE dept
SET deptno = deptno + 10
WHERE deptno = 20;

Query:

SELECT * from dept
ORDER BY deptno;

Result:

DEPTNO DNAME

10 Accounting
30 SALES

2 rows selected.

Update:

UPDATE emp
SET deptno = deptno + 10
WHERE deptno = 20;

Result:

1 row updated.

Query:

SELECT * from emp
ORDER BY deptno;

Result:
EMPNO ENAME DEPTNO
1 Corleone 10
2 Costanza 30

2 rows selected.

The SET CONSTRAINTS applies only to the current transaction, and its setting lasts for
the duration of the transaction, or until another SET CONSTRAINTS statement resets
the mode. The ALTER SESSION SET CONSTRAINTS statement applies only for the
current session. The defaults specified when you create a constraint remain while the
constraint exists.

Maintaining Data Integrity in Database Applications 5-11

Minimizing Space and Time Overhead for Indexes Associated with Constraints

See Also: Oracle Database SQL Language Reference for more
information about the SET CONSTRAINTS statement

Minimizing Space and Time Overhead for Indexes Associated with
Constraints

When you create a UNIQUE or PRIMARY key, Oracle Database checks to see if an
existing index can be used to enforce uniqueness for the constraint. If there is no such
index, the database creates one.

When Oracle Database uses a unique index to enforce a constraint, and constraints
associated with the unique index are dropped or disabled, the index is dropped. To
preserve the statistics associated with the index (which would take a long time to
re-create), specify the KEEP INDEX clause on the DROP CONSTRAINT statement.

While enabled foreign keys reference a PRIMARY or UNIQUE key, you cannot disable or
drop the PRIMARY or UNIQUE key constraint or the index.

Note: UNIQUE and PRIMARY keys with deferrable constraints must
all use nonunique indexes.

To use existing indexes when creating unique and primary key constraints, include
USING INDEX in the CONSTRAINT clause. For details and examples, see Oracle
Database SQL Language Reference.

Guidelines for Indexing Foreign Keys

Index foreign keys unless the matching unique or primary key is never updated or
deleted.

See Also: Oracle Database Concepts for more information about
indexing foreign keys

Referential Integrity in a Distributed Database

The declaration of a referential constraint cannot specify a foreign key that references a
primary or unique key of a remote table.

However, you can maintain parent/child table relationships across nodes using
triggers.

See Also: Oracle Database PL/SQL Language Reference for more
information about triggers that enforce referential integrity

Oracle Database Advanced Application Developer's Guide

When to Use CHECK Constraints

Note: If you decide to define referential integrity across the nodes of
a distributed database using triggers, be aware that network failures
can make both the parent table and the child table inaccessible.

For example, assume that the child table is in the SALES database, and
the parent table is in the HQ database.

If the network connection between the two databases fails, then some
data manipulation language (DML) statements against the child table
(those that insert rows or update a foreign key value) cannot proceed,
because the referential integrity triggers must have access to the
parent table in the HQ database.

When to Use CHECK Constraints

Use CHECK constraints when you must enforce integrity rules based on logical
expressions, such as comparisons. Never use CHECK constraints when any of the other
types of constraints can provide the necessary checking.

See Also: "Choosing Between CHECK and NOT NULL Constraints"
on page 5-14

Examples of CHECK constraints include:

A CHECK constraint on employee salaries so that no salary value is greater than
10000.

A CHECK constraint on department locations so that only the locations "BOSTON",
"NEW YORK", and "DALLAS" are allowed.

A CHECK constraint on the salary and commissions columns to prevent the
commission from being larger than the salary.

Restrictions on CHECK Constraints

A CHECK constraint requires that a condition be true or unknown for every row of the
table. If a statement causes the condition to evaluate to false, then the statement is
rolled back. The condition of a CHECK constraint has these limitations:

The condition must be a boolean expression that can be evaluated using the values
in the row being inserted or updated.

The condition cannot contain subqueries or sequences.

The condition cannot include the SYSDATE, UID, USER, or USERENV SQL
functions.

The condition cannot contain the pseudocolumns LEVEL or ROWNUM.
The condition cannot contain the PRIOR operator.

The condition cannot contain a user-defined function.

Maintaining Data Integrity in Database Applications 5-13

When to Use CHECK Constraints

See Also:

» Oracle Database SQL Language Reference for information about the
LEVEL pseudocolumn

» Oracle Database SQL Language Reference for information about the
ROWNUM pseudocolumn

» Oracle Database SQL Language Reference for information about the
PRIOR operator (used in hierarchical queries)

Designing CHECK Constraints

When using CHECK constraints, remember that a CHECK constraint is violated only if
the condition evaluates to false; true and unknown values (such as comparisons with
nulls) do not violate a check condition. Ensure that any CHECK constraint that you
define is specific enough to enforce the rule.

For example, consider this CHECK constraint:

CHECK (Sal > 0 OR Comm >= 0)

At first glance, this rule may be interpreted as "do not allow a row in the employee
table unless the employee salary is greater than zero or the employee commission is
greater than or equal to zero.” But if a row is inserted with a null salary, that row does
not violate the CHECK constraint, regardless of whether the commission value is valid,
because the entire check condition is evaluated as unknown. In this case, you can
prevent such violations by placing NOT NULL constraints on both the SAL and coMM
columns.

Note: If you are not sure when unknown values result in NULL
conditions, review the truth tables for the logical conditions in Oracle
Database SQL Language Reference

Rules for Multiple CHECK Constraints

A single column can have multiple CHECK constraints that reference the column in its
definition. There is no limit to the number of CHECK constraints that can be defined
that reference a column.

The order in which the constraints are evaluated is not defined, so be careful not to
rely on the order or to define multiple constraints that conflict with each other.

Choosing Between CHECK and NOT NULL Constraints

According to the ANSI/ISO standard, a NOT NULL constraint is an example of a CHECK
constraint, where the condition is:

CHECK (column_name IS NOT NULL)
Therefore, you can write NOT NULL constraints for a single column using either a NOT

NULL constraint or a CHECK constraint. The NOT NULL constraint is easier to use than
the CHECK constraint.

In the case where a composite key can allow only all nulls or all values, you must use a
CHECK constraint. For example, this CHECK constraint allows a key value in the
composite key made up of columns C1 and C2 to contain either all nulls or all values:

CHECK ((Cl IS NULL AND C2 IS NULL) OR (Cl IS NOT NULL AND C2 IS NOT NULL))

5-14 Oracle Database Advanced Application Developer's Guide

Examples of Defining Constraints

Examples of Defining Constraints

Example 5-3 and Example 5—4 show how to create simple constraints during the
prototype phase of your database design. In these examples, each constraint is given a
name. Naming the constraints prevents the database from creating multiple copies of
the same constraint, with different system-generated names, if the data definition
language (DDL) statement runs multiple times.

Example 5-3 creates tables and their constraints at the same time, using the CREATE
TABLE statement.

Example 5-3 Defining Constraints with the CREATE TABLE Statement

DROP TABLE DeptTab;
CREATE TABLE DeptTab (
Deptno NUMBER(3) CONSTRAINT pk_DeptTab_Deptno PRIMARY KEY,
Dname VARCHAR2 (15),
Loc VARCHAR2 (15),
CONSTRAINT u_DeptTab_Dname Loc UNIQUE (Dname, Loc),
CONSTRAINT c_DeptTab_Loc
CHECK (Loc IN ('NEW YORK', 'BOSTON', 'CHICAGO')));

DROP TABLE EmpTab;
CREATE TABLE EmpTab (

Empno NUMBER (5) CONSTRAINT pk_ EmpTab_ Empno PRIMARY KEY,

)
Ename VARCHAR2 (15) NOT NULL,
Job VARCHAR2 (10),
Mgr NUMBER (5) CONSTRAINT r_ EmpTab_Mgr REFERENCES EmpTab,
Hiredate DATE,
Sal NUMBER(7,2),
Comm NUMBER (5,2),

Deptno NUMBER (3) NOT NULL
CONSTRAINT r_ EmpTab_DeptTab REFERENCES DeptTab ON DELETE CASCADE) ;

Example 54 creates constraints for existing tables, using the ALTER TABLE statement.

You cannot create a validated constraint on a table if the table contains rows that
violate the constraint.

Example 5-4 Defining Constraints with the ALTER TABLE Statement

-- Create tables without constraints:

DROP TABLE DeptTab;
CREATE TABLE DeptTab (
Deptno NUMBER(3),

Dname VARCHAR2 (15),
Loc VARCHAR2 (15)
)i

DROP TABLE EmpTab;
CREATE TABLE EmpTab (
Empno NUMBER (5)
Ename VARCHAR2 (15),
(1
)

Job VARCHAR2 (10),
Mgr NUMBER (5) ,
Hiredate DATE,

Sal NUMBER(7,2),
Comm NUMBER (5,2),

Deptno NUMBER (3)

Maintaining Data Integrity in Database Applications 5-15

Enabling and Disabling Constraints

--Define constraints with the ALTER TABLE statement:

ALTER TABLE DeptTab
ADD CONSTRAINT pk DeptTab_Deptno PRIMARY KEY (Deptno);

ALTER TABLE EmpTab
ADD CONSTRAINT fk_DeptTab_Deptno
FOREIGN KEY (Deptno) REFERENCES DeptTab;

ALTER TABLE EmpTab MODIFY (Ename VARCHAR2(15) NOT NULL);

See Also: Oracle Database Administrator’s Guide for information
about creating and maintaining constraints for a large production
database

Privileges Needed to Define Constraints

The creator of a constraint must have the ability to create tables (the CREATE TABLE or
CREATE ANY TABLE system privilege), or the ability to alter the table (the ALTER object
privilege for the table or the ALTER ANY TABLE system privilege) with the constraint.
Additionally, UNIQUE and PRIMARY KEY constraints require that the owner of the
table have either a quota for the tablespace that contains the associated index or the
UNLIMITED TABLESPACE system privilege. FOREIGN KEY constraints also require
some additional privileges.

See Also: '"Privileges Required to Create FOREIGN KEY
Constraints" on page 5-23

Naming Constraints

Assign names to constraints NOT NULL, UNIQUE, PRIMARY KEY, FOREIGN KEY, and
CHECK using the CONSTRAINT option of the constraint clause. This name must be
unique among the constraints that you own. If you do not specify a constraint name,
one is assigned automatically by Oracle Database.

Choosing your own name makes error messages for constraint violations more
understandable, and prevents the creation of duplicate constraints with different
names if the SQL statements are run more than once.

See the previous examples of the CREATE TABLE and ALTER TABLE statements for
examples of the CONSTRAINT option of the constraint clause. The name of each
constraint is included with other information about the constraint in the data
dictionary.

See Also: "Viewing Information About Constraints" on page 5-24 for
examples of static data dictionary views

Enabling and Disabling Constraints

This section explains the mechanisms and procedures for manually enabling and
disabling constraints.

enabled constraint. When a constraint is enabled, the corresponding rule is enforced
on the data values in the associated columns. The definition of the constraint is stored
in the data dictionary.

disabled constraint. When a constraint is disabled, the corresponding rule is not
enforced. The definition of the constraint is still stored in the data dictionary.

5-16 Oracle Database Advanced Application Developer's Guide

Enabling and Disabling Constraints

An integrity constraint represents an assertion about the data in a database. This
assertion is always true when the constraint is enabled. The assertion might not be true
when the constraint is disabled, because data that violates the integrity constraint can
be in the database.

Topics:

= Why Disable Constraints?

s Creating Enabled Constraints (Default)

s Creating Disabled Constraints

= Enabling Existing Constraints

= Disabling Existing Constraints

s Guidelines for Enabling and Disabling Key Constraints

= Fixing Constraint Exceptions

Why Disable Constraints?

During day-to-day operations, keep constraints enabled. In certain situations,
temporarily disabling the constraints of a table makes sense for performance reasons.
For example:

s When loading large amounts of data into a table using SQL*Loader

= When performing batch operations that make massive changes to a table (such as
changing each employee number by adding 1000 to the existing number)

= When importing or exporting one table at a time

Temporarily turning off constraints can speed up these operations.

Creating Enabled Constraints (Default)

When you define an integrity constraint (using either CREATE TABLE or ALTER
TABLE), Oracle Database enables the constraint by default. For code clarity, you can
explicitly enable the constraint by including the ENABLE clause in its definition, as in
Example 5-5.

Example 5-5 Creating Enabled Constraints

/* Use CREATE TABLE statement to create enabled constraint
(ENABLE keyword is optional): */

DROP TABLE tl;
CREATE TABLE tl1 (Empno NUMBER(5) PRIMARY KEY ENABLE) ;

/* Create table without constraint
and then use ALTER TABLE statement to add enabled constraint
(ENABLE keyword is optional): */

DROP TABLE t2;
CREATE TABLE t2 (Empno NUMBER(5));

ALTER TABLE t2 ADD PRIMARY KEY (Empno) ENABLE;

Include the ENABLE clause when defining a constraint for a table to be populated a
row at a time by individual transactions. This ensures that data is always consistent,
and reduces the performance overhead of each DML statement.

Maintaining Data Integrity in Database Applications 5-17

Enabling and Disabling Constraints

An ALTER TABLE statement that tries to enable an integrity constraint fails if an
existing row of the table violates the integrity constraint. The statement rolls back and
the constraint definition is neither stored nor enabled.

See Also: "Fixing Constraint Exceptions” on page 5-19 for more
information about rows that violate constraints

Creating Disabled Constraints

You define and disable an integrity constraint (using either CREATE TABLE or ALTER
TABLE), by including the DISABLE clause in its definition, as in Example 5-6.

Example 5-6 Creating Disabled Constraints
/* Use CREATE TABLE statement to create disabled constraint */

DROP TABLE t1;
CREATE TABLE tl (Empno NUMBER(5) PRIMARY KEY DISABLE) ;

/* Create table without constraint
and then use ALTER TABLE statement to add disabled constraint */

DROP TABLE t2;
CREATE TABLE t2 (Empno NUMBER(5));

ALTER TABLE t2 ADD PRIMARY KEY (Empno) DISABLE;

Include the DISABLE clause when defining a constraint for a table to have large
amounts of data inserted before anybody else accesses it, particularly if you must
cleanse data after inserting it, or must fill empty columns with sequence numbers or
parent/child relationships.

An ALTER TABLE statement that defines and disables a constraint never fails, because
its rule is not enforced.

Enabling Existing Constraints

After you have cleansed the data and filled the empty columns, you can enable
constraints that were disabled during data insertion.

To enable an existing constraint, use the ALTER TABLE statement with the ENABLE
clause, as in Example 5-7.

Example 5-7 Enabling Existing Constraints

-- Create table with disabled constraints:

DROP TABLE DeptTab;
CREATE TABLE DeptTab (
Deptno NUMBER(3) PRIMARY KEY DISABLE,
Dname VARCHAR2 (15),
Loc VARCHAR2 (15),
CONSTRAINT uk_DeptTab_Dname_Loc UNIQUE (Dname, Loc) DISABLE,
CONSTRAINT c_DeptTab_Loc
CHECK (Loc IN ('NEW YORK', 'BOSTON', 'CHICAGO')) DISABLE
)i

-- Enable constraints:

ALTER TABLE DeptTab

5-18 Oracle Database Advanced Application Developer's Guide

Enabling and Disabling Constraints

ENABLE PRIMARY KEY
ENABLE CONSTRAINT uk_DeptTab_Dname_ Loc
ENABLE CONSTRAINT c_DeptTab_Loc;

An ALTER TABLE statement that attempts to enable an integrity constraint fails if any
of the table rows violate the integrity constraint. The statement is rolled back and the
constraint is not enabled.

See Also: "Fixing Constraint Exceptions” on page 5-19 for more
information about rows that violate constraints

Disabling Existing Constraints

If you must perform a large insert or update when a table contains data, you can
temporarily disable constraints to improve performance of the bulk operation.

To disable an existing constraint, use the ALTER TABLE statement with the DISABLE
clause, as in Example 5-8.

Example 5-8 Disabling Existing Constraints

-- Create table with enabled constraints:

DROP TABLE DeptTab;
CREATE TABLE DeptTab (
Deptno NUMBER(3) PRIMARY KEY ENABLE,
Dname VARCHAR2 (15),
Loc VARCHAR2 (15),
CONSTRAINT uk_DeptTab_Dname_Loc UNIQUE (Dname, Loc) ENABLE,
CONSTRAINT c_DeptTab_Loc
CHECK (Loc IN ('NEW YORK', 'BOSTON', 'CHICAGO')) ENABLE
)i

-- Disable constraints:

ALTER TABLE DeptTab

DISABLE PRIMARY KEY

DISABLE CONSTRAINT uk DeptTab_Dname_Loc
DISABLE CONSTRAINT c_DeptTab_Loc;

Guidelines for Enabling and Disabling Key Constraints

When enabling or disabling UNIQUE, PRIMARY KEY, and FOREIGN KEY constraints, be
aware of several important issues and prerequisites. UNIQUE key and PRIMARY KEY
constraints are usually managed by the database administrator.

See Also: Oracle Database Administrator’s Guide and "Managing
FOREIGN KEY Constraints" on page 5-22

Fixing Constraint Exceptions

If a row of a table disobeys an integrity constraint, then this row is in violation of the
constraint and is called an exception to the constraint. If any exceptions exist, then the
constraint cannot be enabled. The rows that violate the constraint must be updated or
deleted before the constraint can be enabled.

You can identify exceptions for a specific integrity constraint as you try to enable the
constraint.

Maintaining Data Integrity in Database Applications 5-19

Modifying Constraints

See Also: "Fixing Constraint Exceptions” on page 5-19 for more
information about this procedure

When you try to create or enable a constraint, and the statement fails because integrity
constraint exceptions exist, the statement is rolled back. You cannot enable the
constraint until all exceptions are either updated or deleted. To determine which rows
violate the integrity constraint, include the EXCEPTIONS option in the ENABLE clause
of a CREATE TABLE or ALTER TABLE statement.

See Also: Oracle Database Administrator’s Guide for more information
about responding to constraint exceptions

Modifying Constraints

Starting with Oracle8i, you can modify an existing constraint with the MODIFY
CONSTRAINT clause, as in Example 5-9.

See Also: Oracle Database SQL Language Reference for information
about the parameters you can modify

Example 5-9 Modifying Constraints
/* Create & then modify a CHECK constraint: */

DROP TABLE X1Tab;

CREATE TABLE X1Tab (
al NUMBER
CONSTRAINT c_Xl1Tab_al CHECK (al>3)
DEFERRABLE DISABLE

)i

ALTER TABLE X1Tab
MODIFY CONSTRAINT c_X1Tab_al ENABLE;

ALTER TABLE X1Tab
MODIFY CONSTRAINT c_X1Tab_al RELY;

ALTER TABLE X1Tab
MODIFY CONSTRAINT c_X1Tab_al INITIALLY DEFERRED;

ALTER TABLE X1Tab
MODIFY CONSTRAINT c_X1Tab_al ENABLE NOVALIDATE;

/* Create & then modify a PRIMARY KEY constraint: */

DROP TABLE tl;
CREATE TABLE tl (al INT, bl INT);

ALTER TABLE tl
ADD CONSTRAINT pk_tl_al PRIMARY KEY(al) DISABLE;

ALTER TABLE tl
MODIFY PRIMARY KEY INITIALLY IMMEDIATE
USING INDEX PCTFREE = 30 ENABLE NOVALIDATE;

ALTER TABLE tl
MODIFY PRIMARY KEY ENABLE NOVALIDATE;

5-20 Oracle Database Advanced Application Developer's Guide

Renaming Constraints

Renaming Constraints

One property of a constraint that you can modify is its name. Situations in which you
would rename a constraint include:

= You want to clone a table and its constraints.

Constraint names must be unique, even across multiple schemas. Therefore, the
constraints in the original table cannot have the same names as those in the cloned
table.

= You created a constraint with a default system-generated name, and now you
want to give it a name that is easy to remember, so that you can easily enable and
disable it.

Example 5-10 shows how to find the system-generated name of a constraint and
change it.

Example 5-10 Renaming a Constraint

DROP TABLE T;

CREATE TABLE T (
Cl NUMBER PRIMARY KEY,
C2 NUMBER

)i

Query:

SELECT CONSTRAINT NAME FROM USER_CONSTRAINTS

WHERE TABLE_NAME = 'T

AND CONSTRAINT TYPE = 'P';

Result (system-generated name of constraint name varies):

CONSTRAINT_NAME

SYS_C0013059
1 row selected.

Rename constraint from name reported in preceding query to T_C1_PK:

ALTER TABLE T

RENAME CONSTRAINT SYS_C0013059
TO T_CL_PK;

Query:

SELECT CONSTRAINT_NAME FROM USER_CONSTRAINTS
WHERE TABLE_NAME = 'T'
AND CONSTRAINT TYPE = 'P';

Result:

CONSTRAINT_NAME

1 row selected.

Maintaining Data Integrity in Database Applications 5-21

Dropping Constraints

Dropping Constraints

You can drop a constraint using the DROP clause of the ALTER TABLE statement.
Situations in which you would drop a constraint include:

s The constraint enforces a rule that is no longer true.
= The constraint is no longer needed.

To drop a constraint and all other integrity constraints that depend on it, specify
CASCADE.

Example 5-11 Dropping Constraints

-- Create table with constraints:

DROP TABLE DeptTab;
CREATE TABLE DeptTab (
Deptno NUMBER(3) PRIMARY KEY,
Dname VARCHAR2 (15),
Loc VARCHAR2 (15),
CONSTRAINT uk_DeptTab_Dname_Loc UNIQUE (Dname, Loc),
CONSTRAINT c_DeptTab_Loc
CHECK (Loc IN ('NEW YORK', 'BOSTON', 'CHICAGO'))
)i

-- Drop constraints:

ALTER TABLE DeptTab

DROP PRIMARY KEY

DROP CONSTRAINT uk_ DeptTab_Dname_Loc
DROP CONSTRAINT c_DeptTab_Loc;

When dropping UNIQUE, PRIMARY KEY, and FOREIGN KEY constraints, be aware of
several important issues and prerequisites. UNIQUE and PRIMARY KEY constraints are
usually managed by the database administrator.

See Also:

» Oracle Database SQL Language Reference for more information about
the DROP clause of the ALTER TABLE statement.

n Oracle Database Administrator’s Guide for more information about
dropping constraints.

» Oracle Database SQL Language Reference for information about the
CASCADE CONSTRAINTS clause of the DROP TABLE statement,
which drops all referential integrity constraints that refer to
primary and unique keys in the dropped table

Managing FOREIGN KEY Constraints

FOREIGN KEY constraints enforce relationships between columns in different tables.
Therefore, they cannot be enabled if the constraint of the referenced primary or unique
key is not present or not enabled.

Data Types and Names for Foreign Key Columns

You must use the same data type for corresponding columns in the dependent and
referenced tables. The column names need not match.

5-22 Oracle Database Advanced Application Developer's Guide

Managing FOREIGN KEY Constraints

Limit on Columns in Composite Foreign Keys

Because foreign keys reference primary and unique keys of the parent table, and
PRIMARY KEY and UNIQUE key constraints are enforced using indexes, composite
foreign keys are limited to 32 columns.

Foreign Key References Primary Key by Default

If the column list is not included in the REFERENCES option when defining a FOREIGN
KEY constraint (single column or composite), then Oracle Database assumes that you
intend to reference the primary key of the specified table. Alternatively, you can
explicitly specify the column(s) to reference in the parent table within parentheses.
Oracle Database automatically checks to verify that this column list references a
primary or unique key of the parent table. If it does not, then an informative error is
returned.

Privileges Required to Create FOREIGN KEY Constraints

To create a FOREIGN KEY constraint, the creator of the constraint must have privileged
access to the parent and child tables.

= Parent Table The creator of the referential integrity constraint must own the
parent table or have REFERENCES object privileges on the columns that constitute
the parent key of the parent table.

s Child Table The creator of the referential integrity constraint must have the ability
to create tables (that is, the CREATE TABLE or CREATE ANY TABLE system
privilege) or the ability to alter the child table (that is, the ALTER object privilege
for the child table or the ALTER ANY TABLE system privilege).

In both cases, necessary privileges cannot be obtained through a role; they must be
explicitly granted to the creator of the constraint.

These restrictions allow:

s The owner of the child table to explicitly decide which constraints are enforced
and which other users can create constraints

s The owner of the parent table to explicitly decide if foreign keys can depend on the
primary and unique keys in her tables

Choosing How Foreign Keys Enforce Referential Integrity

Oracle Database allows different types of referential integrity actions to be enforced, as
specified with the definition of a FOREIGN KEY constraint:

s Prevent Delete or Update of Parent Key The default setting prevents the deletion
or update of a parent key if there is a row in the child table that references the key.
For example:

CREATE TABLE Emp_tab (
FOREIGN KEY (Deptno) REFERENCES Dept_tab) ;

s Delete Child Rows When Parent Key Deleted The ON DELETE CASCADE action
allows parent key data that is referenced from the child table to be deleted, but not
updated. When data in the parent key is deleted, all rows in the child table that
depend on the deleted parent key values are also deleted. To specify this
referential action, include the ON DELETE CASCADE option in the definition of the
FOREIGN KEY constraint. For example:

CREATE TABLE Emp_tab (

Maintaining Data Integrity in Database Applications 5-23

Viewing Information About Constraints

FOREIGN KEY (Deptno) REFERENCES Dept_tab
ON DELETE CASCADE) ;

= Set Foreign Keys to Null When Parent Key Deleted The ON DELETE SET NULL
action allows data that references the parent key to be deleted, but not updated.
When referenced data in the parent key is deleted, all rows in the child table that
depend on those parent key values have their foreign keys set to null. To specify
this referential action, include the ON DELETE SET NULL option in the definition of
the FOREIGN KEY constraint. For example:

CREATE TABLE Emp_tab (
FOREIGN KEY (Deptno) REFERENCES Dept_tab
ON DELETE SET NULL) ;

Viewing Information About Constraints

To find the names of constraints, what columns they affect, and other information to
help you manage them, query the static data dictionary views * _CONSTRAINTS and
*_CONS_COLUMNS, as in Example 5-12.

See Also: Oracle Database Reference for information about *_
CONSTRAINTS and * CONS_COLUMNS

Example 5-12 Viewing Information About Constraints

DROP TABLE DeptTab;
CREATE TABLE DeptTab (
Deptno NUMBER(3) PRIMARY KEY,
Dname VARCHAR2 (15),
Loc VARCHAR2 (15),
CONSTRAINT uk_DeptTab_Dname_Loc UNIQUE (Dname, Loc),
CONSTRAINT c_DeptTab_Loc
CHECK (Loc IN ('NEW YORK', 'BOSTON', 'CHICAGO'))
)i

DROP TABLE EmpTab;
CREATE TABLE EmpTab (
Empno NUMBER (5) PRIMARY KEY,

Ename VARCHAR2 (15) NOT NULL,
Job VARCHAR2 (10),
Mgr NUMBER (5) CONSTRAINT r_EmpTab_Mgr

REFERENCES EmpTab ON DELETE CASCADE,
Hiredate DATE,
Sal NUMBER (7, 2),
Comm NUMBER (5, 2) ,
Deptno NUMBER (3) NOT NULL
CONSTRAINT r_EmpTab_Deptno REFERENCES DeptTab
)

-- Format columns (optional):

COLUMN CONSTRAINT_NAME FORMAT A20;
COLUMN CONSTRAINT_TYPE FORMAT A4 HEADING 'TYPE';
COLUMN TABLE_NAME FORMAT Al0;
COLUMN R_CONSTRAINT_NAME FORMAT Al7;
COLUMN SEARCH_CONDITION FORMAT A40;
COLUMN COLUMN_NAME FORMAT Al2;

List accessible constraints in DeptTab and EmpTab:

5-24 Oracle Database Advanced Application Developer's Guide

Viewing Information About Constraints

SELECT CONSTRAINT_NAME, CONSTRAINT_TYPE, TABLE_NAME, R_CONSTRAINT_NAME
FROM USER_CONSTRAINTS

WHERE (TABLE_NAME = 'DEPTTAB' OR TABLE_NAME = 'EMPTAB')

ORDER BY CONSTRAINT_NAME;

Result:

CONSTRAINT_NAME TYPE TABLE_NAME R_CONSTRAINT NAME
C_DEPTTAB_LOC c DEPTTAB
R_EMPTAB_DEPTNO R EMPTAB SYS_C006286
R_EMPTAB_MGR R EMPTAB SYS_C006290
SYS_C006286 P DEPTTAB
SYS_C006288 c EMPTAB
SYS_C006289 c EMPTAB
SYS_C006290 P EMPTAB
UK_DEPTTAB_DNAME_LOC U DEPTTAB

8 rows selected.

Distinguish between NOT NULL and CHECK constraints in DeptTab and EmpTab:

SELECT CONSTRAINT_NAME, SEARCH_CONDITION

FROM USER_CONSTRAINTS

WHERE (TABLE NAME = 'DEPTTAB' OR TABLE_NAME = 'EMPTAB')
AND CONSTRAINT_TYPE = 'C'

ORDER BY CONSTRAINT_NAME;

Result:

CONSTRAINT_NAME SEARCH_CONDITION

C_DEPTTAB_LOC Loc IN ('NEW YORK', 'BOSTON', 'CHICAGO')
SYS_C006288 "ENAME" IS NOT NULL

SYS_C006289 "DEPTNO" IS NOT NULL

3 rows selected.

For DeptTab and EmpTab, list columns that constitute constraints:

SELECT CONSTRAINT_NAME, TABLE_NAME, COLUMN_NAME

FROM USER_CONS_COLUMNS

WHERE (TABLE_NAME = 'DEPTTAB' OR TABLE_NAME = 'EMPTAB')
ORDER BY CONSTRAINT_NAME;

Result:

CONSTRAINT NAME TABLE_NAME COLUMN_NAME
C_DEPTTAB_LOC DEPTTAB LOC
R_EMPTAB_DEPTNO EMPTAB DEPTNO
R_EMPTAB_MGR EMPTAB MGR
SYS_C006286 DEPTTAB DEPTNO
SYS_C006288 EMPTAB ENAME
SYS_C006289 EMPTAB DEPTNO
SYS_C006290 EMPTAB EMPNO

UK_DEPTTAB_DNAME_LOC DEPTTAB LOC
UK_DEPTTAB_DNAME_LOC DEPTTAB DNAME

9 rows selected.

Note that:

Maintaining Data Integrity in Database Applications 5-25

Viewing Information About Constraints

= Some constraint names are user specified (such as UK_DEPTTAB_DNAME_LOC),
while others are system specified (such as SYS_C006290).

s Each constraint type is denoted with a different character in the CONSTRAINT _
TYPE column. This table summarizes the characters used for each constraint type:

Constraint Type Character

PRIMARY KEY P
UNIQUE KEY U
FOREIGN KEY R
CHECK, NOT NULL C

Note: An additional constraint type is indicated by the character "v"
in the CONSTRAINT_TYPE column. This constraint type corresponds
to constraints created using the WITH CHECK OPTION for views.

These constraints are explicitly listed in the SEARCH_CONDITION column:
= NOT NULL constraints

s The conditions for user-defined CHECK constraints

5-26 Oracle Database Advanced Application Developer's Guide

Part li

PL/SQL for Application Developers

This part presents information that application developers need about PL/SQL, the
Oracle procedural extension of SQL.

Chapters:

Chapter 6, "Coding PL/SQL Subprograms and Packages"
Chapter 7, "Using PL/Scope"

Chapter 8, "Using the PL/SQL Hierarchical Profiler"
Chapter 9, "Developing PL/SQL Web Applications"
Chapter 10, "Developing PL/SQL Server Pages (PSP)"
Chapter 11, "Using Continuous Query Notification (CQN)"

See Also: Oracle Database PL/SQL Language Reference for a complete
description of PL/SQL

6

Coding PL/SQL Subprograms and Packages

This chapter describes some procedural capabilities of Oracle Database for application
development, including:

s Overview of PL/SQL Units

s Compiling PL/SQL Subprograms for Native Execution

» Cursor Variables

» Handling PL/SQL Compile-Time Errors

» Handling Run-Time PL/SQL Errors

= Debugging Stored Subprograms

» Invoking Stored Subprograms

s Invoking Remote Subprograms

s Invoking Stored PL/SQL Functions from SQL Statements
= Returning Large Amounts of Data from a Function

s Coding Your Own Aggregate Functions

See Also:

» Oracle Database PL/SQL Language Reference for more information
about PL/SQL subprograms

» Oracle Database PL/SQL Language Reference for more information
about PL/SQL packages

» Oracle Database Performance Tuning Guide for information about
application tracing tools, which can help you find problems in
PL/SQL code

Overview of PL/SQL Units

PL/SQL is a modern, block-structured programming language. It provides several
features that make developing powerful database applications very convenient. For
example, PL/SQL provides procedural constructs, such as loops and conditional
statements, that are not available in standard SQL.

You can directly enter SQL data manipulation language (DML) statements inside
PL/SQL blocks, and you can use subprograms supplied by Oracle to perform data
definition language (DDL) statements.

PL/SQL code runs on the server, so using PL/SQL lets you centralize significant parts
of your database applications for increased maintainability and security. It also enables

Coding PL/SQL Subprograms and Packages 6-1

Overview of PL/SQL Units

you to achieve a significant reduction of network overhead in client/server
applications.

Note: Some Oracle tools, such as Oracle Forms, contain a PL/SQL
engine that lets you run PL/SQL locally.

You can even use PL/SQL for some database applications instead of 3GL programs
that use embedded SQL or Oracle Call Interface (OCI).

PL/SQL units include:

= Anonymous Blocks

s Stored PL/SQL Units
» Triggers

See Also:

» Oracle Database PL/SQL Language Reference for syntax and
examples of operations on PL/SQL packages

s Oracle Database PL/SQL Packages and Types Reference for
information about the PL/SQL packages that come with Oracle
Database

= "Dependencies Among Local and Remote Database Procedures"
on page 18-11 for information about dependencies among stored
PL/SQL units

Anonymous Blocks

An anonymous block is a PL/SQL unit that has no name. An anonymous block
consists of an optional declarative part, an executable part, and one or more optional
exception handlers.

The declarative part declares PL/SQL variables, exceptions, and cursors. The
executable part contains PL/SQL code and SQL statements, and can contain nested
blocks.

Exception handlers contain code that is invoked when the exception is raised, either as
a predefined PL/SQL exception (such as NO_DATA_FOUND or ZERO_DIVIDE) or as an
exception that you define.

Anonymous blocks are usually used interactively from a tool, such as SQL*Plus, or in
a precompiler, OCI, or SQL*Module application. They are usually used to invoke
stored subprograms or to open cursor variables.

The anonymous block in Example 6-1 uses the DBMS_OUTPUT package to print the
names of all employees in the HR.EMPLOYEES table who are in department 20.

Example 6—1 Anonymous Block

DECLARE
last_name VARCHAR2 (10);
cursor cl IS
SELECT LAST NAME FROM EMPLOYEES
WHERE DEPARTMENT_ID = 20;
BEGIN
OPEN c1;
LOOP

6-2 Oracle Database Advanced Application Developer's Guide

Overview of PL/SQL Units

FETCH cl INTO last_name;
EXIT WHEN c1%$NOTFOUND;
DBMS_OUTPUT.PUT_LINE(last_name) ;
END LOOP;
END;
/
Result:

Hartstein
Fay

Exceptions let you handle Oracle Database error conditions with PL/SQL program
logic, enabling your application to prevent the server from issuing an error that can
cause the client application to end. The anonymous block in Example 6-2 handles the
predefined Oracle Database exception NO_DATA_FOUND (which results in ORA-01403
if not handled).

Example 6-2 Anonymous Block with Exception Handler for Predefined Error

DECLARE
Emp_number INTEGER := 9999
Emp_name VARCHAR2 (10) ;
BEGIN
SELECT LAST_NAME INTO Emp_name
FROM EMPLOYEES
WHERE EMPLOYEE_ID = Emp_number;

DBMS_OUTPUT.PUT_LINE('Employee name is ' || Emp_name);
EXCEPTION
WHEN NO_DATA FOUND THEN
DBMS_OUTPUT.PUT_LINE('No such employee: ' || Emp_number);
END;
/
Result:

No such employee: 9999

You can also define your own exceptions; that is, you can declare them in the
declaration part of a block and define them in the exception part of the block, as in
Example 6-3.

Example 6-3 Anonymous Block with Exception Handler for User-Defined Exception

DECLARE
Emp_name VARCHAR?2 (10) ;
Emp_number INTEGER;
Empno_out_of_range EXCEPTION;
BEGIN

Emp_number := 10001;
IF Emp_number > 9999 OR Emp_number < 1000 THEN
RAISE Empno_out_of_range;
ELSE
SELECT LAST_NAME INTO Emp_name
FROM EMPLOYEES
WHERE EMPLOYEE_ID = Emp_number;

DBMS_OUTPUT.PUT_LINE('Employee name is ' || Emp_name);
END IF;
EXCEPTION
WHEN Empno_out_of_range THEN
DBMS_OUTPUT . PUT_LINE('Employee number ' || Emp_number ||

' is out of range.');
END;

Coding PL/SQL Subprograms and Packages 6-3

Overview of PL/SQL Units

/
Result:

Employee number 10001 is out of range.

See Also:

» Oracle Database PL/SQL Packages and Types Reference for complete
information about the DBMS_OUTPUT package

» Oracle Database PL/SQL Language Reference and "Handling
Run-Time PL/SQL Errors" on page 6-23

= "Cursor Variables" on page 6-19

Stored PL/SQL Units

A stored PL/SQL unit is a subprogram (procedure or function) or package that:
= Has aname.

s Can take parameters, and can return values.

s Isstored in the data dictionary.

= Can be invoked by many users.

If a subprogram belongs to a package, it is called a package subprogram; if not, it is
called a standalone subprogram.

Topics:

= Naming Subprograms

= Subprogram Parameters

s Creating Subprograms

= Altering Subprograms

= Dropping Subprograms and Packages

= External Subprograms

s PL/SQL Function Result Cache

s PL/SQL Packages

s PL/SQL Object Size Limits

s Creating Packages

= Naming Packages and Package Objects
= Package Invalidations and Session State
s Packages Supplied with Oracle Database
s Overview of Bulk Binding

s When to Use Bulk Binds

Naming Subprograms

Because a subprogram is stored in the database, it must be named. This distinguishes
it from other stored subprograms and makes it possible for applications to invoke it.
Each publicly-visible subprogram in a schema must have a unique name, and the
name must be a legal PL/SQL identifier.

6-4 Oracle Database Advanced Application Developer's Guide

Overview of PL/SQL Units

Note: If you plan to invoke a stored subprogram using a stub
generated by SQL*Module, then the stored subprogram name must
also be a legal identifier in the invoking host 3GL language, such as
Adaor C.

Subprogram Parameters

Stored subprograms can take parameters. In the procedure in Example 64, the
department number is an input parameter that is used when the parameterized cursor
cl is opened.

Example 6—4 Stored Procedure with Parameters

CREATE OR REPLACE PROCEDURE get_emp_names (
dept_num IN NUMBER
)
IS
emp_name VARCHAR2 (10);
CURSOR cl (dept_num NUMBER) IS
SELECT LAST NAME FROM EMPLOYEES
WHERE DEPARTMENT ID = dept_num;
BEGIN
OPEN c1 (dept_num) ;
LOOP
FETCH cl INTO emp_name;
EXIT WHEN C1%NOTFOUND;
DBMS_OUTPUT.PUT_LINE (emp_name) ;
END LOOP;
CLOSE c1;
END;
/

The formal parameters of a subprogram have three major attributes, described in
Table 6-1.

Table 6-1 Attributes of Subprogram Parameters

Parameter Attribute Description

Name This must be a legal PL/SQL identifier.

Mode This indicates whether the parameter is an input-only parameter (IN),
an output-only parameter (OUT), or is both an input and an output
parameter (IN OUT). If the mode is not specified, then IN is assumed.

Data Type This is a standard PL/SQL data type.

Topics:

= Parameter Modes

s Parameter Data Types

= %TYPE and %ROWTYPE Attributes

= Passing Composite Variables as Parameters
= Initial Parameter Values

Parameter Modes Parameter modes define the action of formal parameters. You can use
the three parameter modes, IN (the default), OUT, and IN OUT, with any subprogram.

Coding PL/SQL Subprograms and Packages 6-5

Overview of PL/SQL Units

Avoid using the OUT and IN OUT modes with functions. Good programming practice
dictates that a function returns a single value and does not change the values of
variables that are not local to the subprogram.

Table 6-2 summarizes the information about parameter modes.

Table 6-2 Parameter Modes

IN ouT IN OUT

The default. Must be specified. Must be specified.

Passes values to a Returns values to the caller. Passes initial values to a
subprogram. subprogram; returns updated

values to the caller.

Formal parameter acts likea Formal parameter acts likean = Formal parameter acts like an

constant. uninitialized variable. initialized variable.
Formal parameter cannot be Formal parameter cannot be Formal parameter must be
assigned a value. used in an expression; must be assigned a value.

assigned a value.
Actual parameter canbea Actual parameter must be a Actual parameter must be a
constant, initialized variable, variable. variable.

literal, or expression.

See Also: Oracle Database PL/SQL Language Reference for details

about parameter modes
Parameter Data Types The data type of a formal parameter consists of one of these:
= An unconstrained type name, such as NUMBER or VARCHAR2.

= A type that is constrained using the $TYPE or $ROWTYPE attributes.

Note: Numerically constrained types such as NUMBER(2) or
VARCHAR2(20) are not allowed in a parameter list.

%TYPE and %ROWTYPE Attributes Use the type attributes $TYPE and $ROWTYPE to
constrain the parameter. For example, the procedure heading in Example 6—4 can be
written as follows:

PROCEDURE get_emp_names (dept_num IN EMPLOYEES.DEPARTMENT ID%TYPE)
This gives the dept_num parameter the same data type as the DEPARTMENT_ID

column in the EMPLOYEES table. The column and table must be available when a
declaration using $TYPE (or $ROWTYPE) is elaborated.

Using $TYPE is recommended, because if the type of the column in the table changes,
it is not necessary to change the application code.

If the get_emp_names procedure is part of a package, you can use
previously-declared public (package) variables to constrain its parameter data types.
For example:

dept_number NUMBER(2) ;

PROCEDURE get_emp_names (dept_num IN dept_number%TYPE) ;

6-6 Oracle Database Advanced Application Developer's Guide

Overview of PL/SQL Units

Use the $ROWTYPE attribute to create a record that contains all the columns of the
specified table. The procedure in Example 6-5 returns all the columns of the
EMPLOYEES table in a PL/SQL record for the given employee ID.

%TYPE and %ROWTYPE Attributes

CREATE OR REPLACE PROCEDURE get_emp_rec (
emp_number IN EMPLOYEES.EMPLOYEE ID%TYPE,
emp_info OUT EMPLOYEES%ROWTYPE

)

IS

BEGIN
SELECT * INTO emp_info
FROM EMPLOYEES
WHERE EMPLOYEE_ID =

END;

/

Example 6-5

emp_number;

Invoke procedure from PL/SQL block:

DECLARE

emp_row EMPLOYEES%ROWTYPE;
BEGIN

get_emp_rec (206, emp_row) ;

DBMS_OUTPUT.
DBMS_OUTPUT.
.PUT('FIRST NAME: ' || emp_row.FIRST NAME);
DBMS_OUTPUT.
DBMS_OUTPUT.
DBMS_OUTPUT.
DBMS_OUTPUT.
DBMS_OUTPUT.
.PUT ('PHONE_NUMBER: ' || emp_row.PHONE_ NUMBER) ;
DBMS_OUTPUT.
DBMS_OUTPUT.
DBMS_OUTPUT.
DBMS_OUTPUT.
DBMS_OUTPUT.
DBMS_OUTPUT.
DBMS_OUTPUT.
.PUT('COMMISSION_PCT: ' || emp_row.COMMISSION_PCT);
DBMS_OUTPUT.
DBMS_OUTPUT.
DBMS_OUTPUT.
DBMS_OUTPUT.

DBMS_OUTPUT

DBMS_OUTPUT

DBMS_OUTPUT

PUT('EMPLOYEE_ID: ' || emp_row.EMPLOYEE ID);
NEW_LINE;

NEW_LINE;
PUT('LAST NAME: ' || emp_row.LAST NAME);
NEW_LINE;

PUT('EMAIL: ' || emp_row.EMAIL);
NEW_LINE;

NEW_LINE;
PUT('HIRE DATE: ' || emp_row.HIRE_DATE);
NEW_LINE;

PUT('JOB_ID: ' || emp_row.JOB_ID);
NEW_LINE;

PUT('SALARY: ' || emp_row.SALARY);
NEW_LINE;

NEW_LINE;
PUT ('MANAGER_ID: ' ||
NEW_LINE;

PUT ('DEPARTMENT ID: ' || emp_row.DEPARTMENT ID);

emp_row.MANAGER_ID) ;

DBMS_OUTPUT.
END;
/
Result:

NEW_LINE;

EMPLOYEE_ID: 206
FIRST NAME: William
LAST_NAME: Gietz
EMAIL: WGIETZ
PHONE_NUMBER: 415.555.0100
HIRE_DATE: 07-JUN-94
JOB_ID: AC_ACCOUNT
SALARY: 8300
COMMISSION_PCT:
MANAGER_ID: 205
DEPARTMENT_ID: 110

Coding PL/SQL Subprograms and Packages 6-7

Overview of PL/SQL Units

Stored functions can return values that are declared using $ROWTYPE. For example:

FUNCTION get_emp_rec (dept_num IN EMPLOYEES.DEPARTMENT ID%TYPE)
RETURN EMPLOYEES%ROWTYPE IS ...

Passing Composite Variables as Parameters You can pass PL/SQL composite variables
(collections and records) as parameters to stored subprograms.

If the subprogram is remote, you must create a redundant loop-back DBLINK, so that
when the remote subprogram compiles, the type checker that verifies the source uses
the same definition of the user-defined composite variable type as the invoker uses.

Initial Parameter Values Parameters can take initial values. Use either the assignment
operator or the DEFAULT keyword to give a parameter an initial value. For example,
these are equivalent:

PROCEDURE Get_emp_names (Dept_num IN NUMBER := 20) IS ...
PROCEDURE Get_emp_names (Dept_num IN NUMBER DEFAULT) IS ...

When a parameter takes an initial value, it can be omitted from the actual parameter
list when you invoke the subprogram. When you do specify the parameter value on
the invocation, it overrides the initial value.

Note: Unlike in an anonymous PL/SQL block, you do not use the
keyword DECLARE before the declarations of variables, cursors, and
exceptions in a stored subprogram. In fact, it is an error to use it.

Creating Subprograms
Use a text editor to write the subprogram. Then, using an interactive tool such as
SQL*Plus, load the text file containing the procedure by entering:

@Qget_emp
This loads the procedure into the current schema from the get_emp.sql file (. sql is

the default file extension). The slash (/) after the code is not part of the code, it only
activates the loading of the procedure.

Caution: When developing a subprogram, it is usually preferable to
use the statement CREATE OR REPLACE PROCEDURE or CREATE OR
REPLACE FUNCTION. This statement replaces any previous version of
that subprogram in the same schema with the newer version, but
without warning.

You can use either the keyword IS or AS after the subprogram parameter list.

See Also:

» Oracle Database SQL Language Reference for the syntax of the
CREATE FUNCTION statement

» Oracle Database SQL Language Reference for the syntax of the
CREATE PROCEDURE statement

6-8 Oracle Database Advanced Application Developer's Guide

Overview of PL/SQL Units

Privileges Needed

To create a subprogram, a package specification, or a package body, you must meet
these prerequisites:

= You must have the CREATE PROCEDURE system privilege to create a subprogram
or package in your schema, or the CREATE ANY PROCEDURE system privilege to
create a subprogram or package in another user's schema. In either case, the
package body must be created in the same schema as the package.

Note: To create without errors (to compile the subprogram or
package successfully) requires these additional privileges:

s The owner of the subprogram or package must be explicitly
granted the necessary object privileges for all objects referenced
within the body of the code.

= The owner cannot obtain required privileges through roles.

If the privileges of the owner of a subprogram or package change, then the
subprogram must be reauthenticated before it is run. If a necessary privilege to a
referenced object is revoked from the owner of the subprogram or package, then the
subprogram cannot be run.

The EXECUTE privilege on a subprogram gives a user the right to run a subprogram
owned by another user. Privileged users run the subprogram under the security
domain of the owner of the subprogram. Therefore, users need not be granted the
privileges to the objects referenced by a subprogram. This allows for more disciplined
and efficient security strategies with database applications and their users.
Furthermore, all subprograms and packages are stored in the data dictionary (in the
SYSTEM tablespace). No quota controls the amount of space available to a user who
creates subprograms and packages.

Note: Package creation requires a sort. The user creating the package
must be able to create a sort segment in the temporary tablespace with
which the user is associated.

Altering Subprograms

To alter a subprogram, you must first drop it using the DROP PROCEDURE or DROP
FUNCTION statement, then re-create it using the CREATE PROCEDURE or CREATE
FUNCTION statement. Alternatively, use the CREATE OR REPLACE PROCEDURE or
CREATE OR REPLACE FUNCTION statement, which first drops the subprogram if it
exists, then re-creates it as specified.

Caution: The subprogram is dropped without warning.

Dropping Subprograms and Packages

A standalone subprogram, a standalone function, a package body, or an entire package
can be dropped using the SQL statements DROP PROCEDURE, DROP FUNCTION, DROP
PACKAGE BODY, and DROP PACKAGE, respectively. A DROP PACKAGE statement drops
both the specification and body of a package.

This statement drops the 01d_sal_raise procedure in your schema:

DROP PROCEDURE 0l1d_sal_raise;

Coding PL/SQL Subprograms and Packages 6-9

Overview of PL/SQL Units

Privileges Needed

To drop a subprogram or package, the subprogram or package must be in your
schema, or you must have the DROP ANY PROCEDURE privilege. An individual
subprogram within a package cannot be dropped; the containing package specification
and body must be re-created without the subprograms to be dropped.

External Subprograms

A PL/SQL subprogram running on an Oracle Database instance can invoke an
external subprogram written in a third-generation language (3GL). The 3GL
subprogram runs in a separate address space from that of the database.

See Also: Chapter 14, "Developing Applications with Multiple
Programming Languages," for information about external
subprograms

PL/SQL Function Result Cache

Using the PL/SQL function result cache can save significant space and time. Each time
a result-cached PL/SQL function is invoked with different parameter values, those
parameters and their result are stored in the cache. Subsequently, when the same
function is invoked with the same parameter values, the result is retrieved from the
cache, instead of being recomputed. Because the cache is stored in a shared global area
(SGA), it is available to any session that runs your application.

If a database object that was used to compute a cached result is updated, the cached
result becomes invalid and must be recomputed.

The best candidates for result-caching are functions that are invoked frequently but
depend on information that changes infrequently or never.

For more information about the PL/SQL function result cache, see Oracle Database
PL/SQL Language Reference.

PL/SQL Packages

A package is a collection of related program objects (for example, subprogram,
variables, constants, cursors, and exceptions) stored as a unit in the database.

Using packages is an alternative to creating subprograms as standalone schema
objects. Packages have many advantages over standalone subprograms. For example,
they:

= Let you organize your application development more efficiently.

» Let you grant privileges more efficiently.

= Let you modify package objects without recompiling dependent schema objects.
= Enable Oracle Database to read multiple package objects into memory at once.

= Can contain global variables and cursors that are available to all subprograms in
the package.

= Let you overload subprograms. Overloading a subprogram means creating
multiple subprograms with the same name in the same package, each taking
arguments of different number or data type.

See Also: Oracle Database PL/SQL Language Reference for more
information about subprogram name overloading

6-10 Oracle Database Advanced Application Developer's Guide

Overview of PL/SQL Units

The specification part of a package declares the public types, variables, constants, and
subprograms that are visible outside the immediate scope of the package. The body of
a package defines both the objects declared in the specification and private objects that
are not visible to applications outside the package.

Example 6-6 creates a package that contains one stored function and two stored
procedures, and then invokes a procedure.

Example 6-6 Creating PL/SQL Package and Invoking Packaged Subprogram

-- Sequence that packaged function needs:

CREATE SEQUENCE emp_sequence
START WITH 8000
INCREMENT BY 10;

-- Package specification:

CREATE or REPLACE PACKAGE employee_management IS
FUNCTION hire_emp (
firstname VARCHAR2,
lastname VARCHAR2,

email VARCHAR2,
phone VARCHAR2,
hiredate DATE,

job VARCHAR2,
sal NUMBER,
comm NUMBER,
mgr NUMBER,
deptno NUMBER

) RETURN NUMBER;

PROCEDURE fire_emp (
emp_id IN NUMBER
)

PROCEDURE sal_raise (
emp_id IN NUMBER,
sal_incr IN NUMBER

)

END employee_management;
/

-- Package body:

CREATE or REPLACE PACKAGE BODY employee_management IS
FUNCTION hire_emp (
firstname VARCHAR2,
lastname VARCHAR2,

email VARCHAR2,
phone VARCHAR2,
hiredate DATE,

job VARCHAR2,
sal NUMBER,
comm NUMBER,
mgr NUMBER,
deptno NUMBER

) RETURN NUMBER
IS

new_empno NUMBER (10) ;

Coding PL/SQL Subprograms and Packages 6-11

Overview of PL/SQL Units

BEGIN
new_empno := emp_sequence.NEXTVAL;

INSERT INTO EMPLOYEES (
employee_id,
first_name,
last_name,
email,
phone_number,
hire_date,
job_id,
salary,
commission_pct,
manager_id,
department_id

)

VALUES (
new_empno,
firstname,
lastname,
email,
phone,
hiredate,
job,
sal,
comm,
mgr,
deptno

)

RETURN (new_empno) ;
END hire_emp;

PROCEDURE fire_emp (
emp_id IN NUMBER

) IS

BEGIN
DELETE FROM EMPLOYEES
WHERE EMPLOYEE_ID = emp_id;

IF SQL$NOTFOUND THEN
raise_application_error (
-20011,
'Invalid Employee Number: ' || TO_CHAR(Emp_id)
)
END IF;
END fire_emp;

PROCEDURE sal_raise (

emp_id IN NUMBER,
sal_incr IN NUMBER

) IS

BEGIN
UPDATE EMPLOYEES
SET SALARY = SALARY + sal_incr
WHERE EMPLOYEE_ID = emp_id;

IF SQLSNOTFOUND THEN

raise_application_error(
-20011,

6-12 Oracle Database Advanced Application Developer's Guide

Overview of PL/SQL Units

'Invalid Employee Number: ' || TO_CHAR(Emp_id)
)
END IF;
END sal_raise;
END employee_management;
/
Invoke packaged procedures:

DECLARE
empno NUMBER (6) ;
sal NUMBER (6) ;
temp NUMBER (6) ;

BEGIN
empno := employee_management.hire_emp (
'John',
'Doe',
'john.doe@company.com',
'555-0100",
'20-SEP-07",
'ST_CLERK',
2500,
0,
100,
20) ;
DBMS_OUTPUT.PUT_LINE('New employee ID is ' || TO_CHAR (empno));
END;
/
PL/SQL Object Size Limits

The size limit for PL/SQL stored database objects such as subprograms, triggers, and
packages is the size of the Descriptive Intermediate Attributed Notation for Ada
(DIANA) code in the shared pool in bytes. The Linux and UNIX limit on the size of
the flattened DIANA /code size is 64K but the limit might be 32K on desktop
platforms.

The most closely related number that a user can access is the PARSED_SIZE in the
static data dictionary view *_OBJECT_SIZE. That gives the size of the DIANA in
bytes as stored in the SYS. IDL_xxx$ tables. This is not the size in the shared pool.
The size of the DIANA part of PL/SQL code (used during compilation) is significantly
larger in the shared pool than it is in the system table.

Creating Packages

Each part of a package is created with a different statement. Create the package
specification using the CREATE PACKAGE statement. The CREATE PACKAGE statement
declares public package objects.

To create a package body, use the CREATE PACKAGE BODY statement. The CREATE
PACKAGE BODY statement defines the procedural code of the public subprograms
declared in the package specification.

You can also define private, or local, package subprograms, and variables in a package
body. These objects can only be accessed by other subprograms in the body of the
same package. They are not visible to external users, regardless of the privileges they
hold.

It is often more convenient to add the OR REPLACE clause in the CREATE PACKAGE or
CREATE PACKAGE BODY statements when you are first developing your application.

Coding PL/SQL Subprograms and Packages 6-13

Overview of PL/SQL Units

The effect of this option is to drop the package or the package body without warning.
The CREATE statements are:

CREATE OR REPLACE PACKAGE Package_name AS ...

and

CREATE OR REPLACE PACKAGE BODY Package_name AS ...

Creating Packaged Objects The body of a package can contain:

= Subprograms declared in the package specification.

= Definitions of cursors declared in the package specification.

= Local subprograms, not declared in the package specification.
= Local variables.

Subprograms, cursors, and variables that are declared in the package specification are
global. They can be invoked, or used, by external users that have EXECUTE permission
for the package or that have EXECUTE ANY PROCEDURE privileges.

When you create the package body, ensure that each subprogram that you define in
the body has the same parameters, by name, data type, and mode, as the declaration in
the package specification. For functions in the package body, the parameters and the
return type must agree in name and type.

Privileges to Needed to Create or Drop Packages The privileges required to create or drop a
package specification or package body are the same as those required to create or drop
a standalone subprogram. See "Creating Subprograms" on page 6-8 and "Dropping
Subprograms and Packages" on page 6-9.

Naming Packages and Package Objects

The names of a package and all public objects in the package must be unique within a
given schema. The package specification and its body must have the same name. All
package constructs must have unique names within the scope of the package, unless
overloading of subprogram names is desired.

Package Invalidations and Session State

Each session that references a package object has its own instance of the corresponding
package, including persistent state for any public and private variables, cursors, and
constants. If any of the session's instantiated packages (specification or body) are
invalidated, then all package instances in the session are invalidated and recompiled.
Therefore, the session state is lost for all package instances in the session.

When a package in a given session is invalidated, the session receives ORA-04068 the
first time it attempts to use any object of the invalid package instance. The second time
a session makes such a package call, the package is reinstantiated for the session
without error. However, if you handle this error in your application, be aware of the
following:

= For optimal performance, Oracle Database returns this error message only
once—each time the package state is discarded. When a subprogram in one
package invokes a subprogram in another package, the session state is lost for
both packages.

» If aserver session traps ORA-04068, then ORA-04068 is not raised for the client
session. Therefore, when the client session attempts to use an object in the

6-14 Oracle Database Advanced Application Developer's Guide

Overview of PL/SQL Units

package, the package is not reinstantiated. To reinstantiate the package, the client
session must either reconnect to the database or recompile the package.

In Example 6-7, the RAISE statement raises the current exception, ORA-04068, which
is the cause of the exception being handled, ORA-06508. ORA-04068 is not trapped.

Example 6-7 Raising ORA-04068

PROCEDURE p IS

package_exception EXCEPTION;

PRAGMA EXCEPTION_INIT (package_exception, -6508);
BEGIN

EXCEPTION
WHEN package_exception THEN
RAISE;

END;
/

In Example 6-8, the RAISE statement raises the exception ORA-20001 in response to
ORA-06508, instead of the current exception, ORA-04068. ORA-04068 is trapped.
When this happens, the ORA-04068 error is masked, which stops the package from
being reinstantiated.

Example 6-8 Trapping ORA-04068

PROCEDURE p IS
package_exception EXCEPTION;
other_exception EXCEPTION;
PRAGMA EXCEPTION_INIT (package_exception, -6508);
PRAGMA EXCEPTION_INIT (other_exception, -20001);
BEGIN

EXCEPTION
WHEN package_exception THEN
RAISE other exception;

END;
/

In most production environments, DDL operations that can cause invalidations are
usually performed during inactive working hours; therefore, this situation might not
be a problem for end-user applications. However, if package invalidations are
common in your system during working hours, then you might want to code your
applications to handle this error when package calls are made.

Packages Supplied with Oracle Database

There are many packages provided with Oracle Database, either to extend the
functionality of the database or to give PL/SQL access to SQL features. You can invoke
these packages from your application.

See Also: Oracle Database PL/SQL Packages and Types Reference for an
overview of these Oracle Database packages

Overview of Bulk Binding

Oracle Database uses two engines to run PL/SQL blocks and subprograms. The
PL/SQL engine runs procedural statements, while the SQL engine runs SQL

Coding PL/SQL Subprograms and Packages 6-15

Overview of PL/SQL Units

statements. During execution, every SQL statement causes a context switch between
the two engines, resulting in performance overhead.

Performance can be improved substantially by minimizing the number of context
switches required to run a particular block or subprogram. When a SQL statement
runs inside a loop that uses collection elements as bind variables, the large number of
context switches required by the block can cause poor performance. Collections
include:

= Varrays

= Nested tables

= Index-by tables
= Host arrays

Binding is the assignment of values to PL/SQL variables in SQL statements. Bulk
binding is binding an entire collection at once. Bulk binds pass the entire collection
back and forth between the two engines in a single operation.

Typically, using bulk binds improves performance for SQL statements that affect four
or more database rows. The more rows affected by a SQL statement, the greater the
performance gain from bulk binds.

Note: This section provides an overview of bulk binds to help you
decide whether to use them in your PL/SQL applications. For detailed
information about using bulk binds, including ways to handle
exceptions that occur in the middle of a bulk bind operation, see
Oracle Database PL/SQL Language Reference.

Parallel DML statements are disabled with bulk binds.

When to Use Bulk Binds

Consider using bulk binds to improve the performance of:
= DML Statements that Reference Collections

= SELECT Statements that Reference Collections

= FOR Loops that Reference Collections and Return DML

DML Statements that Reference Collections A bulk bind, which uses the FORALL keyword,
can improve the performance of INSERT, UPDATE, or DELETE statements that
reference collection elements.

The PL/SQL block in Example 6-9 increases the salary for employees whose
manager's ID number is 7902, 7698, or 7839, with and without bulk binds. Without
bulk bind, PL/SQL sends a SQL statement to the SQL engine for each updated
employee, leading to context switches that slow performance.

Example 6-9 DML Statements that Reference Collections

DECLARE
2 TYPE numlist IS VARRAY (100) OF NUMBER;
3 id NUMLIST := NUMLIST(7902, 7698, 7839);
BEGIN
-- Efficient method, using bulk bind:

FORALL i IN id.FIRST..id.LAST
UPDATE EMPLOYEES

6-16 Oracle Database Advanced Application Developer's Guide

Overview of PL/SQL Units

SET SALARY = 1.1 * SALARY
WHERE MANAGER_ID = id(i);

-- Slower method:

FOR i IN id.FIRST..id.LAST LOOP
UPDATE EMPLOYEES
SET SALARY = 1.1 * SALARY
WHERE MANAGER_ID = id(i);

END LOOP;
END;
/

SELECT Statements that Reference Collections The BULK COLLECT INTO clause can
improve the performance of queries that reference collections. You can use BULK
COLLECT INTO with tables of scalar values, or tables of $TYPE values.

The PL/SQL block in Example 6-10 queries multiple values into PL/SQL tables, with
and without bulk binds. Without bulk bind, PL/SQL sends a SQL statement to the
SQL engine for each selected employee, leading to context switches that slow
performance.

Example 6-10 SELECT Statements that Reference Collections

DECLARE

TYPE var_tab IS TABLE OF VARCHAR2 (20)

INDEX BY

empno
ename
counter

CURSOR ¢
SELECT

PLS_INTEGER;

VAR_TAB;
VAR_TAB;
NUMBER;

IS
EMPLOYEE_ID, LAST_NAME

FROM EMPLOYEES
WHERE MANAGER_ID = 7698;

BEGIN

-- Efficient method, using bulk bind:

SELECT EMPLOYEE_ID, LAST NAME BULK COLLECT
INTO empno, ename

FROM EMPLOYEES

WHERE MANAGER_ID = 7698;

-- Slower method:

counter

= 1;

FOR rec IN c LOOP

empno (counter) := rec.EMPLOYEE_ID;
ename (counter) := rec.LAST NAME;
counter := counter + 1;

END LOOP;

END;
/

FOR Loops that Reference Collections and Return DML You can use the FORALL keyword
with the BULK COLLECT INTO keywords to improve the performance of FOR loops
that reference collections and return DML.

Coding PL/SQL Subprograms and Packages 6-17

Compiling PL/SQL Subprograms for Native Execution

The PL/SQL block in Example 6-11 updates the EMPLOYEES table by computing
bonuses for a collection of employees. Then it returns the bonuses in a column called
bonus_list_inst. The actions are performed with and without bulk binds. Without
bulk bind, PL/SQL sends a SQL statement to the SQL engine for each updated
employee, leading to context switches that slow performance.

Example 6—11 FOR Loops that Reference Collections and Return DML

DECLARE
TYPE emp_list IS VARRAY(100) OF EMPLOYEES.EMPLOYEE ID%TYPE;
empids emp_list := emp_list(182, 187, 193, 200, 204, 206);

TYPE bonus_list IS TABLE OF EMPLOYEES.SALARY$TYPE;
bonus_list_inst bonus_list;

BEGIN
-- Efficient method, using bulk bind:

FORALL i IN empids.FIRST..empids.LAST

UPDATE EMPLOYEES

SET SALARY = 0.1 * SALARY

WHERE EMPLOYEE_ID = empids (i)

RETURNING SALARY BULK COLLECT INTO bonus_list_inst;

-- Slower method:

FOR i IN empids.FIRST..empids.LAST LOOP
UPDATE EMPLOYEES
SET SALARY = 0.1 * SALARY
WHERE EMPLOYEE_ID = empids (i)
RETURNING SALARY INTO bonus_list_inst(i);
END LOOP;
END;
/

Triggers

A trigger is a special kind of PL/SQL anonymous block. You can define triggers to fire
before or after SQL statements, either on a statement level or for each row that is
affected. You can also define INSTEAD OF triggers or system triggers (triggers on
DATABASE and SCHEMA).

See Also: Oracle Database PL/SQL Language Referencefor more
information about triggers

Compiling PL/SQL Subprograms for Native Execution

You can speed up PL/SQL subprograms by compiling them into native code residing
in shared libraries.

You can use native compilation with both the supplied packages and the subprograms
you write yourself. Subprograms compiled this way work in all server environments,
such as the shared server configuration (formerly known as multithreaded server) and
Oracle Real Application Clusters (Oracle RAC).

This technique is most effective for computation-intensive subprograms that do not
spend much time running SQL, because it can do little to speed up SQL statements
invoked from these subprograms.

With Java, you can use the ncomp tool to compile your own packages and classes.

6-18 Oracle Database Advanced Application Developer's Guide

Cursor Variables

See Also:

» Oracle Database PL/SQL Language Reference for details on PL/SQL
native compilation

» Oracle Database Java Developer’s Guide for details on Java native
compilation

Cursor Variables

A cursor is a static object; a cursor variable is a pointer to a cursor. Because cursor
variables are pointers, they can be passed and returned as parameters to subprograms.
A cursor variable can also refer to different cursors in its lifetime.

Additional advantages of cursor variables include:

Encapsulation
Queries are centralized in the stored subprogram that opens the cursor variable.
Easy maintenance

If you must change the cursor, then you only make the change in the stored
subprogram, not in each application.

Convenient security

The user of the application is the user name used when the application connects to
the server. The user must have EXECUTE permission on the stored subprogram
that opens the cursor. But, the user need not have READ permission on the tables
used in the query. This capability can be used to limit access to the columns in the
table and access to other stored subprograms.

See Also: Oracle Database PL/SQL Language Reference for more
information about cursor variables

Topics:

Declaring and Opening Cursor Variables

Examples of Cursor Variables

Declaring and Opening Cursor Variables

Memory is usually allocated for a cursor variable in the client application using the
appropriate ALLOCATE statement. In Pro*C, use the EXEC SQL ALLOCATE cursor_
name statement. In OCI, use the Cursor Data Area.

You can also use cursor variables in applications that run entirely in a single server
session. You can declare cursor variables in PL/SQL subprograms, open them, and use
them as parameters for other PL/SQL subprograms.

Examples of Cursor Variables

This section has these examples of cursor variable usage in PL/SQL:

Example 6-12, "Fetching Data with Cursor Variable"

Example 6-13, "Cursor Variable with Discriminator”

Coding PL/SQL Subprograms and Packages 6-19

Cursor Variables

See Also: For additional cursor variable examples that use
programmatic interfaces:

» Pro*COBOL Programmer’s Guide

» Oracle Call Interface Programmer’s Guide

Example 6-12 creates a package that defines a PL/SQL cursor variable type and two
procedures, and then invokes the procedures from a PL/SQL block. The first
procedure opens a cursor variable using a bind variable in the WHERE clause. The
second procedure uses a cursor variable to fetch rows from the EMPLOYEES table.

Example 6-12 Fetching Data with Cursor Variable

CREATE OR REPLACE PACKAGE emp_data AS
TYPE emp_val_cv_type IS REF CURSOR
RETURN EMPLOYEES%ROWTYPE;

PROCEDURE open_emp_cv (

emp_cv IN OUT emp_val_cv_type,

dept_number IN EMPLOYEES . DEPARTMENT_ID%TYPE
)

PROCEDURE fetch_emp_data (
emp_cv IN emp_val_cv_type,
emp_row OUT EMPLOYEES%ROWTYPE
)
END emp_data;
/
CREATE OR REPLACE PACKAGE BODY emp_data AS
PROCEDURE open_emp_cv (

emp_cv IN OUT emp_val_cv_type,

dept_number IN EMPLOYEES . DEPARTMENT_ID%TYPE
)
IS
BEGIN

OPEN emp_cv FOR

SELECT * FROM EMPLOYEES

WHERE DEPARTMENT ID = dept_number;
END open_emp_cv;

PROCEDURE fetch_emp_data (
emp_cv IN emp_val_cv_type,
emp_row OUT EMPLOYEES%ROWTYPE

)

IS

BEGIN
FETCH emp_cv INTO emp_row;

END fetch_emp_data;

END emp_data;
/

Invoke packaged procedures:

DECLARE
emp_curs emp_data.emp_val_cv_type;
dept_number EMPLOYEES.DEPARTMENT ID%TYPE;
emp_row EMPLOYEES$ROWTYPE;

BEGIN

dept_number := 20;

6-20 Oracle Database Advanced Application Developer's Guide

Cursor Variables

-- Open cursor, using variable:
emp_data.open_emp_cv(emp_curs, dept_number);
-- Fetch and display data:

LOOP
emp_data.fetch emp data(emp_curs, emp_row);
EXIT WHEN emp_curs%NOTFOUND;
DBMS_OUTPUT . PUT (emp_row.LAST NAME || ' ');
DBMS_OUTPUT.PUT_LINE (emp_row.SALARY) ;

END LOOP;

END;

/

In Example 6-13, the procedure opens a cursor variable for either the EMPL.OYEES
table or the DEPARTMENTS table, depending on the value of the parameter discrim.
The anonymous block invokes the procedure to open the cursor variable for the
EMPLOYEES table, but fetches from the DEPARTMENTS table, which raises the
predefined exception ROWTYPE_MISMATCH.

Example 6-13 Cursor Variable with Discriminator

CREATE OR REPLACE PACKAGE emp_dept_data AS
TYPE cv_type IS REF CURSOR;

PROCEDURE open_cv (
cv IN OUT cv_type,
discrim IN POSITIVE
)i
END emp_dept_data;

CREATE OR REPLACE PACKAGE BODY emp_dept_data AS
PROCEDURE open_cv (

cv IN OUT cv_type,

discrim IN POSITIVE) IS
BEGIN

IF discrim = 1 THEN

OPEN cv FOR

SELECT * FROM EMPLOYEES;
ELSIF discrim = 2 THEN
OPEN cv FOR
SELECT * FROM DEPARTMENTS;
END IF;
END open_cv;
END emp_dept_data;
/

Invoke procedure open_cv from anonymous block:

DECLARE
emp_rec EMPLOYEES%ROWTYPE;
dept_rec DEPARTMENTS%ROWTYPE;

cv Emp_dept_data.CV_TYPE;

BEGIN
emp_dept_data.open cv(cv, 1); =-- Open cv for EMPLOYEES fetch.
FETCH cv INTO dept_rec; -- Fetch from DEPARTMENTS.

DBMS_OUTPUT. PUT (dept_rec .DEPARTMENT_ID) ;

Coding PL/SQL Subprograms and Packages 6-21

Handling PL/SQL Compile-Time Errors

DBMS_OUTPUT.PUT_LINE(' ' || dept_rec.LOCATION_ID);
EXCEPTION
WHEN ROWTYPE MISMATCH THEN
BEGIN
DBMS_OUTPUT . PUT_LINE
('Row type mismatch, fetching EMPLOYEES data ...');
FETCH cv INTO emp_rec;
DBMS_OUTPUT . PUT (emp_rec . DEPARTMENT_ID) ;
DBMS_OUTPUT.PUT_LINE(' ' || emp_rec.LAST_NAME);
END;
END;
/
Result:

Row type mismatch, fetching EMPLOYEES data ...
90 King

Handling PL/SQL Compile-Time Errors

To list compile-time errors, query the static data dictionary view *_ERRORS. From
these views, you can retrieve original source code. The error text associated with the
compilation of a subprogram is updated when the subprogram is replaced, and it is
deleted when the subprogram is dropped.

SQL*Plus issues a warning message for compile-time errors, but for more information
about them, you must use the command SHOW ERRORS.

Note: Before issuing the SHOW ERRORS statement, use the SET
LINESIZE statement to get long lines on output. The value 132 is
usually a good choice. For example:

SET LINESIZE 132

Example 6-14 has two compile-time errors: WHER should be WHERE, and END should be
followed by a semicolon. SHOW ERRORS shows the line, column, and description of
each error.

Example 6—-14 Compile-Time Errors

CREATE OR REPLACE PROCEDURE fire_emp (
emp_id NUMBER

) AS

BEGIN
DELETE FROM EMPLOYEES
WHER EMPLOYEE_ID = Emp_id;

END

/

Result:

Warning: Procedure created with compilation errors.

Command:

SHOW ERRORS;

Result:

Errors for PROCEDURE FIRE_EMP:

6-22 Oracle Database Advanced Application Developer's Guide

Handling Run-Time PL/SQL Errors

LINE/COL ERROR

5/3 PL/SQL: SQL Statement ignored

6/8 PL/SQL: ORA-00933: SQL command not properly ended

7/3 PLS-00103: Encountered the symbol "end-of-file" when expecting
one of the following:
; <an identifier> <a double-quoted delimited-identifier>
current delete exists prior <a single-quoted SQL string>
The symbol ";" was substituted for "end-of-file" to continue.

See Also:

» Oracle Database Reference for more information about the static
data dictionary view *_SOURCE

» SQL*Plus User’s Guide and Reference for more information about
the SHOW ERRORS statement

Handling Run-Time PL/SQL Errors

Oracle Database allows user-defined errors in PL/SQL code to be handled so that
user-specified error numbers and messages are returned to the client application,
which can handle the error.

User-specified error messages are returned using the RAISE_APPLICATION_ERROR
procedure. For example:

RAISE_APPLICATION_ERROR (error_number, 'text', keep_error_stack)

This procedure stops subprogram execution, rolls back any effects of the subprogram,
and returns a user-specified error number and message (unless the error is trapped by
an exception handler). error_number must be in the range of -20000 to -20999.

Use error number -20000 as a generic number for messages where it is important to
relay information to the user, but having a unique error number is not required. Text
must be a character expression, 2 KB or less (longer messages are ignored). To add the
error to errors on the stack, set Keep_error_stack to TRUE; to replace the existing
errors, set it to FALSE (the default).

Note: Some Oracle Database packages, such as DBMS_OUTPUT,
DBMS_DESCRIBE, and DBMS_ALERT, use application error
numbers in the range -20000 to -20005. See the descriptions of these
packages for more information.

The RAISE_APPLICATION_ERROR procedure is often used in exception handlers or in
the logic of PL/SQL code. For example, this exception handler selects the string for the
associated user-defined error message and invokes the RAISE_APPLICATION_ERROR
procedure:

WHEN NO_DATA_FOUND THEN
SELECT Error_string INTO Message
FROM Error_table,
V$SNLS_PARAMETERS V
WHERE Error_number = -20101 AND Lang = v.value AND
v.parameter = "NLS_LANGUAGE";
Raise_application_error(-20101, Message);

Coding PL/SQL Subprograms and Packages 6-23

Handling Run-Time PL/SQL Errors

Topics:

s Declaring Exceptions and Exception Handlers
s Unhandled Exceptions

» Handling Errors in Distributed Queries

= Handling Errors in Remote Subprograms

Declaring Exceptions and Exception Handlers

User-defined exceptions are explicitly defined and raised within the PL/SQL block, to
process errors specific to the application. When an exception is raised, the usual
execution of the PL/SQL block stops, and an exception handler is invoked. Specific
exception handlers can be written to handle any internal or user-defined exception.

Application code can check for a condition that requires special attention using an IF
statement. If there is an error condition, then two options are available:

= Enter a RAISE statement that names the appropriate exception. A RAISE
statement stops the execution of the subprogram, and control passes to an
exception handler (if any).

s Invoke the RAISE_APPLICATION_ERROR procedure to return a user-specified
error number and message.

You can also define an exception handler to handle user-specified error messages. For
example, Figure 6-1 shows:

= An exception and associated exception handler in a subprogram

= A conditional statement that checks for an error (such as transferring funds not
available) and enters a user-specified error number and message within a trigger

s How user-specified error numbers are returned to the invoking environment (in
this case, a subprogram), and how that application can define an exception that
corresponds to the user-specified error number

Declare a user-defined exception in a subprogram or package body (private
exceptions), or in the specification of a package (public exceptions). Define an
exception handler in the body of a subprogram (standalone or package).

6-24 Oracle Database Advanced Application Developer's Guide

Handling Run-Time PL/SQL Errors

Figure 6—1 Exceptions and User-Defined Errors

Procedure fire_emp (empid NUMBER) IS
invalid_empid EXCEPTION;
PRAGMA EXCEPTION_INIT (invalid_empid, -20101);

- Error number
BEGIN . returned to
DELETE FROM emp WHERE empno = empid; calling
EXCEPTION environment
WHEN invlid_empid THEN
INSERT INTO emp_audit
VALUES (empid, ’‘Fired before probation ended’) ;
END;
- TRIGGER emp_probation
BEFORE DELETE ON emp
Table EMP FOR EACH ROW
BEGIN
IF (sysdate-:o0ld.hiredate)<30 THEN
raise_application_error (20101,
"Employee’ | |old.ename| |’ on probation’)
END IF;
N END;

Unhandled Exceptions

In database PL/SQL units, an unhandled user-error condition or internal error
condition that is not trapped by an appropriate exception handler causes the implicit
rollback of the program unit. If the program unit includes a COMMIT statement before
the point at which the unhandled exception is observed, then the implicit rollback of
the program unit can only be completed back to the previous COMMIT.

Additionally, unhandled exceptions in database-stored PL/SQL units propagate back
to client-side applications that invoke the containing program unit. In such an

application, only the application program unit invocation is rolled back (not the entire
application program unit), because it is submitted to the database as a SQL statement.

If unhandled exceptions in database PL/SQL units are propagated back to database
applications, modify the database PL/SQL code to handle the exceptions. Your
application can also trap for unhandled exceptions when invoking database program
units and handle such errors appropriately.

Handling Errors in Distributed Queries

You can use a trigger or a stored subprogram to create a distributed query. This
distributed query is decomposed by the local Oracle Database instance into a
corresponding number of remote queries, which are sent to the remote nodes for
execution. The remote nodes run the queries and send the results back to the local
node. The local node then performs any necessary post-processing and returns the
results to the user or application.

If a portion of a distributed statement fails, possibly from a constraint violation, then
Oracle Database returns ORA-02055. Subsequent statements, or subprogram
invocations, return ORA-02067 until a rollback or a rollback to savepoint is entered.

Design your application to check for any returned error messages that indicates that a
portion of the distributed update has failed. If you detect a failure, rollback the entire
transaction (or rollback to a savepoint) before allowing the application to proceed.

Coding PL/SQL Subprograms and Packages 6-25

Debugging Stored Subprograms

Handling Errors in Remote Subprograms

When a subprogram is run locally or at a remote location, these types of exceptions
can occur:

s PL/SQL user-defined exceptions, which must be declared using the keyword
EXCEPTION

s PL/SQL predefined exceptions, such as NO_DATA_FOUND
s SQL errors, such as ORA-00900

= Application exceptions, which are generated using the RAISE_ APPLICATION_
ERROR procedure.

When using local subprogrames, all of these messages can be trapped by writing an
exception handler, such as:

EXCEPTION
WHEN ZERO_DIVIDE THEN
/* Handle the exception */

The WHEN clause requires an exception name. If the exception that is raised does not
have a name, such as those generated with RAISE_APPLICATION_ERROR, then one
can be assigned using PRAGMA_EXCEPTION_INIT. For example:

DECLARE

Null_salary EXCEPTION;
PRAGMA EXCEPTION_INIT(Null_salary, -20101);
BEGIN

RAISE_APPLICATION_ERROR(-20101, 'salary is missing');
EXCEPTION
WHEN Null_salary THEN

When invoking a remote subprogram, exceptions are also handled by creating a local
exception handler. The remote subprogram must return an error number to the local
invoking subprogram, which then handles the exception, as shown in the previous
example. Because PL/SQL user-defined exceptions always return ORA-06510 to the
local subprogram, these exceptions cannot be handled. All other remote exceptions can
be handled in the same manner as local exceptions.

Debugging Stored Subprograms

Compiling a stored subprogram involves fixing any syntax errors in the code. You
might need to do additional debugging to ensure that the subprogram works correctly,
performs well, and recovers from errors. Such debugging might involve:

» Adding extra output statements to verify execution progress and check data
values at certain points within the subprogram.

= Running a separate debugger to analyze execution in greater detail.
Topics:

s PL/Scope

s PL/SQL Hierarchical Profiler

s Oracle JDeveloper

6-26 Oracle Database Advanced Application Developer's Guide

Debugging Stored Subprograms

PL/Scope

= DBMS_OUTPUT Package

s Privileges for Debugging PL/SQL and Java Stored Subprograms
s Writing Low-Level Debugging Code

= DBMS_DEBUG_JDWP Package

= DBMS_DEBUG Package

PL/Scope is a compiler-driven tool that collects and organizes data about user-defined
identifiers from PL/SQL source code. Because PL/Scope is a compiler-driven tool, you
use it through interactive development environments (such as SQL Developer and
JDeveloper), rather than directly.

PL/Scope enables the development of powerful and effective PL/Scope source code
browsers that increase PL/SQL developer productivity by minimizing time spent
browsing and understanding source code.

For more information about PL/Scope, see Chapter 7, "Using PL/Scope."

PL/SQL Hierarchical Profiler

The PL/SQL hierarchical profiler reports the dynamic execution profile of your
PL/SQL program, organized by subprogram calls. It accounts for SQL and PL/SQL
execution times separately. Each subprogram-level summary in the dynamic execution
profile includes information such as number of calls to the subprogram, time spent in
the subprogram itself, time spent in the subprogram's subtree (that is, in its descendent
subprograms), and detailed parent-children information.

You can browse the generated HTML reports in any browser. The browser's
navigational capabilities, combined with well chosen links, provide a powerful way to
analyze performance of large applications, improve application performance, and
lower development costs.

For a detailed description of PL/SQL hierarchical profiler, see Chapter 8, "Using the
PL/SQL Hierarchical Profiler."

Oracle JDeveloper

Recent releases of Oracle JDeveloper have extensive features for debugging PL/SQL,
Java, and multi-language programs. You can get Oracle JDeveloper as part of various
Oracle product suites. Often, a more recent release is available as a download at
http://www.oracle.com/technology/.

DBMS_OUTPUT Package

You can also debug stored subprograms and triggers using the Oracle package DBMS_
OUTPUT. Put PUT and PUT_LINE statements in your code to output the value of
variables and expressions to your terminal.

Privileges for Debugging PL/SQL and Java Stored Subprograms

Starting with Oracle Database 10g, a new privilege model applies to debugging
PL/SQL and Java code running within the database. This model applies whether you
are using Oracle JDeveloper, Oracle Developer, or any of the various third-party

Coding PL/SQL Subprograms and Packages 6-27

Debugging Stored Subprograms

PL/SQL or Java development environments, and it affects both the DBMS_DEBUG and
DBMS_DEBUG_JDWP APIs.

For a session to connect to a debugger, the effective user at the time of the connect
operation must have the DEBUG CONNECT SESSION system privilege. This effective
user might be the owner of a DR subprogram involved in making the connect call.

When a debugger becomes connected to a session, the session login user and the
enabled session-level roles are fixed as the privilege environment for that debugging
connection. Any DEBUG or EXECUTE privileges needed for debugging must be granted
to that combination of user and roles.

= Tobe able to display and change Java public variables or variables declared in a
PL/SQL package specification, the debugging connection must be granted either
EXECUTE or DEBUG privilege on the relevant code.

= Tobe able to either display and change private variables or breakpoint and run
code lines step by step, the debugging connection must be granted DEBUG
privilege on the relevant code

Caution: The DEBUG privilege allows a debugging session to do
anything that the subprogram being debugged could have done if
that action had been included in its code.

In addition to these privilege requirements, the ability to stop on individual code lines
and debugger access to variables are allowed only in code compiled with debug
information generated. Use the PL/SQL compilation parameter PL.SQL_DEBUG and
the DEBUG keyword on statements such as ALTER PACKAGE to control whether the
PL/SQL compiler includes debug information in its results. If not, variables are not
accessible, and neither stepping nor breakpoints stop on code lines. The PL/SQL
compiler never generates debug information for code hidden with the PL/SQL wrap
utility.

See Also: Oracle Database PL/SQL Language Reference, for
information about the wrap utility

The DEBUG ANY PROCEDURE system privilege is equivalent to the DEBUG privilege
granted on all objects in the database. Objects owned by SYS are included if the value
of the 07_DICTIONARY_ACCESSIBILITY parameter is TRUE.

A debug role mechanism is available to carry privileges needed for debugging that are
not normally enabled in the session. See the documentation on the DBMS_DEBUG and
DBMS_DEBUG_JDWP packages for details on how to specify a debug role and any
necessary related password.

The JAVADEBUGPRIV role carries the DEBUG CONNECT SESSION and DEBUG ANY
PROCEDURE privileges. Grant it only with the care those privileges warrant.

Caution: Granting DEBUG ANY PROCEDURE privilege, or granting
DEBUG privilege on any object owned by SYS, means granting
complete rights to the database.

Writing Low-Level Debugging Code

If you are writing code for part of a debugger, you might need to use packages such as
DBMS_DEBUG_JDWP or DBMS_DEBUG.

6-28 Oracle Database Advanced Application Developer's Guide

Invoking Stored Subprograms

DBMS_DEBUG_JDWP Package

The DBMS_DEBUG_JDWP package, provided starting with Oracle9i Release 2, provides
a framework for multi-language debugging that is expected to supersede the DBMS_
DEBUG package over time. It is especially useful for programs that combine PL/SQL
and Java.

DBMS_DEBUG Package

The DBMS_DEBUG package, provided starting with Oracle8i, implements server-side
debuggers and provides a way to debug server-side PL/SQL units. Several of the
debuggers available, such as Oracle Procedure Builder and various third-party vendor
solutions, use this APL

See Also:
» Oracle Procedure Builder Developer’s Guide

» Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_DEBUG package and associated
privileges

» Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_OUTPUT package and associated
privileges

s The Oracle JDeveloper documentation for information about
using package DBMS_DEBUG_JDWP

» Oracle Database SQL Language Reference for more details on
privileges

s The PL/SQL page at
http://www.oracle.com/technology/ for information
about writing low-level debug code

Invoking Stored Subprograms

Stored PL/SQL subprograms can be invoked from many different environments. For
example:

= Interactively, using an Oracle Database tool

= From the body of another subprogram

s From within an application (such as a SQL*Forms or a precompiler)
s From the body of a trigger

Stored PL/SQL functions (but not procedures) can also be invoked from within SQL
statements. For details, see "Invoking Stored PL/SQL Functions from SQL Statements"
on page 6-35.

Topics:

= Privileges Required to Invoke a Subprogram

= Invoking a Subprogram Interactively from Oracle Tools
s Invoking a Subprogram from Another Subprogram

s Invoking a Subprogram from a 3GL Application

Coding PL/SQL Subprograms and Packages 6-29

Invoking Stored Subprograms

See Also: aOracle Database PL/SQL Language Reference for information
about invoking PL/SQL subprograms, including passing
parameters.

» Oracle Database PL/SQL Language Reference for information about
coding the body of a trigger

Privileges Required to Invoke a Subprogram

You do not need privileges to invoke:

= Standalone subprograms that you own

= Subprograms in packages that you own

s Public standalone subprograms

= Subprograms in public packages

To invoke a standalone or packaged subprogram owned by another user:

= You must have the EXECUTE privilege for the standalone subprogram or for the
package containing the subprogram, or you must have the EXECUTE ANY
PROCEDURE system privilege.

= If you are running a remote subprogram, then you must be granted the EXECUTE
privilege or EXECUTE ANY PROCEDURE system privilege directly, not through a
role.

= You must include the name of the owner in the invocation. For example:

EXECUTE jdoe.Fire_emp (1043);
EXECUTE jdoe.Hire_fire.Fire_emp (1043);

» If the subprogram is a definer's-rights (DR) subprogram, then it runs with the
privileges of the owner. The owner must have all the necessary object privileges
for any referenced objects.

= If the subprogram is an invoker's-rights (IR) subprogram, then it runs with your
privileges. You must have all the necessary object privileges for any referenced
objects; that is, all objects accessed by the subprogram through external references
that are resolved in your schema. You can hold these privileges either directly or
through a role. Roles are enabled unless an IR subprogram is invoked directly or
indirectly by a DR subprogram.

Invoking a Subprogram Interactively from Oracle Tools

You can invoke a subprogram interactively from an Oracle Database tool, such as
SQL*Plus. Example 615 uses SQL*Plus to create a procedure and then invokes it in
two different ways.

Example 6-15 Invoking a Subprogram Interactively with SQL*Plus

CREATE OR REPLACE PROCEDURE salary_raise (
employee EMPLOYEES.EMPLOYEE_ID$TYPE,
increase EMPLOYEES.SALARY%TYPE

)

IS

BEGIN
UPDATE EMPLOYEES
SET SALARY = SALARY + increase
WHERE EMPLOYEE_ID = employee;

6-30 Oracle Database Advanced Application Developer's Guide

Invoking Stored Subprograms

END;

Invoke procedure from within PL/SQL block:

BEGIN

salary raise(205, 200);
END;
/

Result:

PL/SQL procedure successfully completed.

Invoke procedure with EXECUTE statement:

EXECUTE salary raise(205, 200);

Result:

PL/SQL procedure successfully completed.

Some interactive tools allow you to create session variables, which you can use for the
duration of the session. Using SQL*Plus, Example 6-16 creates, uses, and prints a

session variable.

Example 6-16 Creating and Using a Session Variable with SQL*Plus

-- Create function for later use:

CREATE OR REPLACE FUNCTION get_job_id (
emp_id EMPLOYEES.EMPLOYEE_ID$TYPE
) RETURN EMPLOYEES.JOB_ID%TYPE
IS
job_id EMPLOYEES.JOB_ID%TYPE;
BEGIN
SELECT JOB_ID INTO job_id
FROM EMPLOYEES
WHERE EMPLOYEE ID = emp_id;

RETURN job_id;
END;
/
-- Create session variable:

VARIABLE job VARCHAR2(10);

-- Run function and store returned value in session variable:

EXECUTE :job := get_job_id(204);
PL/SQL procedure successfully completed.

SQL*Plus command:

PRINT job;

Result:

Coding PL/SQL Subprograms and Packages 6-31

Invoking Stored Subprograms

See Also:

» SQL*Plus User's Guide and Reference for information about the
EXECUTE command

= Your tools documentation for information about performing
similar operations using your development tool

Invoking a Subprogram from Another Subprogram

A subprogram or a trigger can invoke another stored subprogram. In Example 6-17,
the procedure print_mgr_name invokes the procedure print_emp_name.

Recursive subprogram invocations are allowed (that is, a subprogram can invoke
itself).

Example 6-17 Invoking a Subprogram from Within Another Subprogram

-- Create procedure that takes employee's ID and prints employee's name:

CREATE OR REPLACE PROCEDURE print_emp name (
emp_id EMPLOYEES.EMPLOYEE_ID%TYPE
)
IS
fname EMPLOYEES.FIRST NAMESRTYPE;
lname EMPLOYEES.LAST NAMESRTYPE;
BEGIN
SELECT FIRST NAME, LAST NAME
INTO fname, Ilname
FROM EMPLOYEES
WHERE EMPLOYEE_ID = emp_id;

DBMS_OUTPUT.PUT_LINE (
'Employee #' || emp_id || ': ' || fname || ' ' || lname
)i
END;
/

-- Create procedure that takes employee's ID and prints manager's name:

CREATE OR REPLACE PROCEDURE print_mgr name (
emp_id EMPLOYEES.EMPLOYEE_ID$TYPE
)
IS
mgr_id EMPLOYEES.MANAGER_ID%TYPE;
BEGIN
SELECT MANAGER_ID
INTO mgr_id
FROM EMPLOYEES
WHERE EMPLOYEE_ID = emp_id;

DBMS_OUTPUT.PUT_LINE (
'Manager of employee #' || emp_id || ' is:
)i
print_emp_name (mgr_id);
END;
/

Invoke procedures:

6-32 Oracle Database Advanced Application Developer's Guide

Invoking Remote Subprograms

BEGIN
print_emp_name (200) ;
print_mgr_name (200) ;

END;

/

Result:

Employee #200: Jennifer Whalen
Manager of employee #200 is:
Employee #101: Neena Kochhar

Invoking a Subprogram from a 3GL Application

A 3GL database application, such as a precompiler or an OCI application, can invoke a
subprogram from within its own code.

Assume that the procedure Fire_empl was created as follows:

CREATE OR REPLACE PROCEDURE fire_empl (Emp_id NUMBER) AS
BEGIN
DELETE FROM Emp_tab WHERE Empno = Emp_id;
END;

To run a subprogram within the code of a precompiler application, you must use the
EXEC call interface. For example, this statement invokes the Fire_emp procedure in
the code of a precompiler application:

EXEC SQL EXECUTE
BEGIN
Fire_empl (: Empnum) ;
END;
END-EXEC;

See Also: Oracle Call Interface Programmer’s Guide for information
about invoking PL/SQL subprograms from within 3GL
applications

Invoking Remote Subprograms

Remote subprograms (standalone and packaged) can be invoked from within a
subprogram, OCI application, or precompiler by specifying the remote subprogram
name, a database link, and the parameters for the remote subprogram.

For example, this SQL*Plus statement invokes the procedure fire_empl, which is
located in the database and referenced by the local database link named boston_
server:

EXECUTE fire_empl@boston_server (1043);

You must specify values for all remote subprogram parameters, even if there are
defaults. You cannot access remote package variables and constants.

Coding PL/SQL Subprograms and Packages 6-33

Invoking Remote Subprograms

Caution:

= Remote subprogram invocations use run-time binding. The
user account to which you connect depends on the database
link. (Stored subprograms use compile-time binding.)

s Ifalocal subprogram invokes a remote subprogram, and a time
stamp mismatch is found during execution of the local
subprogram, then the remote subprogram is not run, and the
local subprogram is invalidated.

Topics:
= Synonyms for Remote Subprograms

s Committing Transactions

See Also: "Handling Errors in Remote Subprograms” on
page 6-26 for information about exception handling when invoking
remote subprograms

Synonyms for Remote Subprograms

You can create a synonym for a remote subprogram name and database link, and then
use the synonym to invoke the subprogram. For example:

CREATE SYNONYM synonyml for fire_empl@boston_server;

EXECUTE synonyml (1043);
/

The synonym enables you to invoke the remote subprogram from an Oracle Database
tool application, such as a SQL*Forms application, as well from within a subprogram,
OCI application, or precompiler.

Synonyms provide both data independence and location transparency. Synonyms
permit applications to function without modification regardless of which user owns
the object and regardless of which database holds the object. However, synonyms are
not a substitute for privileges on database objects. Appropriate privileges must be
granted to a user before the user can use the synonym.

Because subprograms defined within a package are not individual objects (the package
is the object), synonyms cannot be created for individual subprograms within a
package.

If you do not want to use a synonym, you can create a local subprogram to invoke the
remote subprogram. For example:

CREATE OR REPLACE PROCEDURE local_procedure
(arg IN NUMBER)

AS

BEGIN
fire_empl@boston_server (arg) ;

END;

/

DECLARE
arg NUMBER;

BEGIN
local_procedure (arg) ;

END;

6-34 Oracle Database Advanced Application Developer's Guide

Invoking Stored PL/SQL Functions from SQL Statements

See Also:
» Oracle Database Concepts for general information about synonyms

» Oracle Database SQL Language Reference for information about the
CREATE SYNONYM statement

Committing Transactions

All invocations to remotely stored subprograms are assumed to perform updates;
therefore, this type of referencing always requires two-phase commit of that
transaction (even if the remote subprogram is read-only). Furthermore, if a transaction
that includes a remote subprogram invocation is rolled back, then the work done by
the remote subprogram is also rolled back.

A subprogram invoked remotely can usually run a COMMIT, ROLLBACK, or
SAVEPOINT statement, the same as a local subprogram. However, there are some
differences in action:

= If the transaction was originated by a database that is not an Oracle database, as
might be the case in XA applications, these operations are not allowed in the
remote subprogram.

= After doing one of these operations, the remote subprogram cannot start any
distributed transactions of its own.

= If the remote subprogram does not commit or roll back its work, the commit is
done implicitly when the database link is closed. In the meantime, further
invocations to the remote subprogram are not allowed because it is still considered
to be performing a transaction.

A distributed transaction modifies data on two or more databases. A distributed
transaction is possible using a subprogram that includes two or more remote updates
that access data on different databases. Statements in the construct are sent to the
remote databases, and the execution of the construct succeeds or fails as a unit. If part
of a distributed update fails and part succeeds, then a rollback (of the entire
transaction or to a savepoint) is required to proceed. Consider this when creating
subprograms that perform distributed updates.

Invoking Stored PL/SQL Functions from SQL Statements

Caution: Because SQL is a declarative language, rather than an
imperative (or procedural) one, you cannot know how many times a
function invoked from a SQL statement will run—even if the function
is written in PL/SQL, an imperative language.

If your application requires that a function be executed a certain
number of times, do not invoke that function from a SQL statement.
Use a cursor instead.

For example, if your application requires that a function be called once
for each selected row, then open a cursor, select rows from the cursor,
and call the function for each row. This guarantees that the number of
calls to the function is the number of rows fetched from the cursor.

Coding PL/SQL Subprograms and Packages 6-35

Invoking Stored PL/SQL Functions from SQL Statements

To be invoked from a SQL statement, a stored PL/SQL function must be declared
either at schema level or in a package specification.

These SQL statements can invoke stored PL/SQL functions:

INSERT
UPDATE
DELETE
SELECT
CALL

(CALL can also invoke a stored PL/SQL procedure.)

To invoke a PL/SQL subprogram from SQL, you must either own or have EXECUTE
privileges on the subprogram. To select from a view defined with a PL/SQL function,
you must have SELECT privileges on the view. No separate EXECUTE privileges are
necessary to select from the view.

For general information about invoking subprograms, including passing parameters,
see Oracle Database PL/SQL Language Reference.

Topics:

Why Invoke Stored PL/SQL Subprograms from SQL Statements?
Where PL/SQL Functions Can Appear in SQL Statements

When PL/SQL Functions Can Appear in SQL Expressions
Controlling Side Effects

Why Invoke Stored PL/SQL Subprograms from SQL Statements?
Invoking PL/SQL subprograms in SQL statements can:

Increase user productivity by extending SQL

Expressiveness of the SQL statement increases where activities are too complex,
too awkward, or unavailable with SQL.

Increase query efficiency

Functions used in the WHERE clause of a query can filter data using criteria that
must otherwise be evaluated by the application.

Manipulate character strings to represent special data types (for example, latitude,
longitude, or temperature).

Provide parallel query execution

If the query is parallelized, then SQL statements in your PL/SQL subprogram
might also be run in parallel (using the parallel query option).

Where PL/SQL Functions Can Appear in SQL Statements

A PL/SQL function can appear in a SQL statement wherever a built-in SQL function
or an expression can appear in a SQL statement. For example:

Select list of the SELECT statement
Condition of the WHERE or HAVING clause

CONNECT BY, START WITH, ORDER BY, or GROUP BY clause

6-36 Oracle Database Advanced Application Developer's Guide

Invoking Stored PL/SQL Functions from SQL Statements

s VALUES clause of the INSERT statement
s SET clause of the UPDATE statement

A PL/SQL table function (which returns a collection of rows) can appear in a SELECT
statement instead of:

s Column name in the SELECT list
s Table name in the FROM clause

A PL/SQL function cannot appear in these contexts, which require unchanging
definitions:

s CHECK constraint clause of a CREATE or ALTER TABLE statement

s Default value specification for a column

When PL/SQL Functions Can Appear in SQL Expressions

To be invoked from a SQL expression, a PL/SQL function must satisfy these
requirements:

= It must be a row function, not a column (group) function; that is, its argument
cannot be an entire column.

s Its formal parameters must be IN parameters, not OUT or IN OUT parameters.

s Its formal parameters and its return value (if any) must have Oracle built-in data
types (such as CHAR, DATE, or NUMBER), not PL/SQL data types (such as
BOOLEAN,RECORD,OITABLE)

There is an exception to this rule: A formal parameter can have a PL/SQL data
type if the corresponding actual parameter is implicitly converted to the data type
of the formal parameter (as in Example 6-19).

The function in Example 6-18 satisfies the preceding requirements.

Example 6-18 PL/SQL Function in SQL Expression (Follows Rules)

DROP TABLE payroll; -- in case it exists
CREATE TABLE payroll (

srate NUMBER,

orate NUMBER,

acctno NUMBER
)i

CREATE OR REPLACE FUNCTION gross_pay (
emp_id IN NUMBER,
st_hrs IN NUMBER :
ot_hrs IN NUMBER :=

) RETURN NUMBER

IS
st_rate NUMBER;
ot_rate NUMBER;

BEGIN
SELECT srate, orate
INTO st_rate, ot_rate
FROM payroll
WHERE acctno = emp_id;

1 1
[
o

RETURN st_hrs * st_rate + ot_hrs * ot_rate;
END gross_pay;
/

Coding PL/SQL Subprograms and Packages 6-37

Invoking Stored PL/SQL Functions from SQL Statements

In Example 6-19, the SQL statement CALL invokes the PL/SQL function £1, whose
formal parameter and return value have PL/SQL data type PLS_INTEGER. The CALL
statement succeeds because the actual parameter, 2, is implicitly converted to the data
type PLS_INTEGER. If the actual parameter had a value outside the range of PLS_
INTEGER, the CALL statement would fail.

Example 6-19 PL/SQL Function in SQL Expression (Exception to Rule)

CREATE OR REPLACE FUNCTION f1 (
b IN PLS_INTEGER
) RETURN PLS_INTEGER
IS
BEGIN
RETURN
CASE
WHEN b > 0 THEN 1
WHEN b <= 0 THEN -1
ELSE NULL
END;
END f1;
/

VARIABLE x NUMBER;
CALL £1(b=>2) INTO :x;
PRINT x;

Result:

Controlling Side Effects

The purity of a stored subprogram refers to the side effects of that subprogram on
database tables or package variables. Side effects can prevent the parallelization of a
query, yield order-dependent (and therefore, indeterminate) results, or require that
package state be maintained across user sessions. Various side effects are not allowed
when a function is invoked from a SQL query or DML statement.

In releases before Oracle8i, Oracle Database leveraged the PL/SQL compiler to enforce
restrictions during the compilation of a stored subprogram or a SQL statement.
Starting with Oracle8i, the compile-time restrictions were relaxed, and a smaller set of
restrictions are enforced during execution.

This change provides uniform support for stored subprograms written in PL/SQL,
Java, and C, and it allows programmers the most flexibility possible.

Topics:

» Restrictions

= Declaring a Function

= Parallel Query and Parallel DML

= PRAGMA RESTRICT_REFERENCES for Backward Compatibility

6-38 Oracle Database Advanced Application Developer's Guide

Invoking Stored PL/SQL Functions from SQL Statements

Restrictions

When a new SQL statement is run, checks are made to see if it is logically embedded
within the execution of a running SQL statement. This occurs if the statement is run
from a trigger or from a subprogram that was in turn invoked from the running SQL
statement. In these cases, further checks determine if the new SQL statement is safe in
the specific context.

These restrictions are enforced on subprograms:

= A subprogram invoked from a query or DML statement might not end the current
transaction, create or rollback to a savepoint, or ALTER the system or session.

= A subprogram invoked from a query (SELECT) statement or from a parallelized
DML statement might not run a DML statement or otherwise modify the database.

= A subprogram invoked from a DML statement might not read or modify the
particular table being modified by that DML statement.

These restrictions apply regardless of what mechanism is used to run the SQL
statement inside the subprogram or trigger. For example:

= They apply to a SQL statement invoked from PL/SQL, whether embedded
directly in a subprogram or trigger body, run using the native dynamic
mechanism (EXECUTE IMMEDIATE), or run using the DBMS_SQL package.

= They apply to statements embedded in Java with SQL]J syntax or run using JDBC.

= They apply to statements run with OCI using the callback context from within an
"external" C function.

You can avoid these restrictions if the execution of the new SQL statement is not
logically embedded in the context of the running statement. PL/SQL autonomous
transactions provide one escape (see "Autonomous Transactions" on page 1-31).
Another escape is available using Oracle Call Interface (OCI) from an external C
function, if you create a new connection rather than using the handle available from
the OCIExtProcContext argument.

Declaring a Function

You can use the keywords DETERMINISTIC and PARALLEL_ENABLE in the syntax for
declaring a function. These are optimization hints that inform the query optimizer and
other software components about:

= Functions that need not be invoked redundantly
s Functions permitted within a parallelized query or parallelized DML statement

Only functions that are DETERMINISTIC are allowed in function-based indexes and in
certain snapshots and materialized views.

A deterministic function depends solely on the values passed into it as arguments and
does not reference or modify the contents of package variables or the database or have
other side-effects. Such a function produces the same result value for any combination
of argument values passed into it.

You place the DETERMINISTIC keyword after the return value type in a declaration of
the function. For example:

CREATE OR REPLACE FUNCTION f1 (
pl NUMBER

) RETURN NUMBER DETERMINISTIC

IS

BEGIN

Coding PL/SQL Subprograms and Packages 6-39

Invoking Stored PL/SQL Functions from SQL Statements

RETURN pl * 2;
END;
/

You might place this keyword in these places:

= On a function defined in a CREATE FUNCTION statement
= Ina function declaration in a CREATE PACKAGE statement
= On a method declaration in a CREATE TYPE statement

Do not repeat the keyword on the function or method body in a CREATE PACKAGE
BODY or CREATE TYPE BODY statement.

Certain performance optimizations occur on invocations of functions that are marked
DETERMINISTIC without any other action being required. These features require that
any function used with them be declared DETERMINISTIC:

= Any user-defined function used in a function-based index.

= Any function used in a materialized view, if that view is to qualify for Fast Refresh
or is marked ENABLE QUERY REWRITE.

The preceding functions features attempt to use previously calculated results rather
than invoking the function when it is possible to do so.

It is good programming practice to make functions that fall into these categories
DETERMINISTIC:

= Functions used in a WHERE, ORDER BY, or GROUP BY clause

= Functions that MAP or ORDER methods of a SQL type

= Functions that help determine whether or where a row appears in a result set
Keep these points in mind when you create DETERMINISTIC functions:

s The database cannot recognize if the action of the function is indeed deterministic.
If the DETERMINISTIC keyword is applied to a function whose action is not truly
deterministic, then the result of queries involving that function is unpredictable.

= If you change the semantics of a DETERMINISTIC function and recompile it, then
existing function-based indexes and materialized views report results for the prior
version of the function. Thus, if you change the semantics of a function, you must
manually rebuild any dependent function-based indexes and materialized views.

See Also: Oracle Database PL/SQL Language Reference for CREATE
FUNCTION restrictions

Parallel Query and Parallel DML

Oracle Database's parallel execution feature divides the work of running a SQL
statement across multiple processes. Functions invoked from a SQL statement that is
run in parallel might have a separate copy run in each of these processes, with each
copy invoked for only the subset of rows that are handled by that process.

Each process has its own copy of package variables. When parallel execution begins,
these are initialized based on the information in the package specification and body as
if a user is logging into the system; the values in package variables are not copied from
the original login session. And changes made to package variables are not
automatically propagated between the various sessions or back to the original session.
Java STATIC class attributes are similarly initialized and modified independently in
each process. Because a function can use package (or Java STATIC) variables to

6-40 Oracle Database Advanced Application Developer's Guide

Invoking Stored PL/SQL Functions from SQL Statements

accumulate some value across the various rows it encounters, Oracle Database cannot
assume that it is safe to parallelize the execution of all user-defined functions.

For SELECT statements in Oracle Database versions before 8.1.5, the parallel query
optimization allowed functions noted as both RNPS and WNPS in a PRAGMA
RESTRICT_REFERENCES declaration to run in parallel. Functions defined with
CREATE FUNCTION statements had their code implicitly examined to determine if they
were pure enough; parallelized execution might occur even though a pragma cannot
be specified on these functions.

See Also: "PRAGMA RESTRICT_REFERENCES for Backward
Compatibility" on page 6-41

For DML statements in Oracle Database versions before 8.1.5, the parallelization
optimization looked to see if a function was noted as having all four of RNDS, WNDS,
RNPS and WNPS specified in a PRAGMA RESTRICT_REFERENCES declaration; those
functions that were marked as neither reading nor writing to either the database or
package variables could run in parallel. Again, those functions defined with a CREATE
FUNCTION statement had their code implicitly examined to determine if they were
actually pure enough; parallelized execution might occur even though a pragma
cannot be specified on these functions.

Oracle Database versions 8.1.5 and later continue to parallelize those functions that
earlier versions recognize as parallelizable. The PARALLEL_ENABLE keyword is the
preferred way to mark your code as safe for parallel execution. This keyword is
syntactically similar to DETERMINISTIC as described in "Declaring a Function" on
page 6-39; it is placed after the return value type in a declaration of the function, as in:

CREATE OR REPLACE FUNCTION f1 (
pl NUMBER

) RETURN NUMBER PARALLEL ENABLE

IS

BEGIN
RETURN pl * 2;

END;

/

A PL/SQL function defined with CREATE FUNCTION might still be run in parallel
without any explicit declaration that it is safe to do so, if the system can determine that
it neither reads nor writes package variables nor invokes any function that might do
so. A Java method or C function is never seen by the system as safe to run in parallel,
unless the programmer explicitly indicates PARALLEL_ENABLE on the call
specification, or provides a PRAGMA RESTRICT_REFERENCES indicating that the
function is sufficiently pure.

An additional run-time restriction is imposed on functions run in parallel as part of a
parallelized DML statement. Such a function is not permitted to in turn run a DML
statement; it is subject to the same restrictions that are enforced on functions that are
run inside a query (SELECT) statement.

See Also: Restrictions on page 6-39

PRAGMA RESTRICT_REFERENCES for Backward Compatibility

In Oracle Database versions before 8.1.5 (Oracle8i), programmers used PRAGMA
RESTRICT_REFERENCES to assert the purity level of a subprogram. In subsequent
versions, use the hints PARALLEL_ENABLE and DETERMINISTIC, instead, to
communicate subprogram purity to Oracle Database.

Coding PL/SQL Subprograms and Packages 6-41

Invoking Stored PL/SQL Functions from SQL Statements

You can remove PRAGMA RESTRICT_REFERENCES from your code. However, this
pragma remains available for backward compatibility in situations where one of these
conditions is true:

s Itis impossible or impractical to edit existing code to remove PRAGMA RESTRICT_
REFERENCES completely. If you do not remove it from a subprogram S1 that
depends on another subprogram S2, then PRAGMA RESTRICT_REFERENCES
might also be needed in S2, so that 51 will compile.

= Replacing PRAGMA RESTRICT_REFERENCES in existing code with hints
PARALLEL_ENABLE and DETERMINISTIC would negatively affect the action of
new, dependent code. Use PRAGMA RESTRICT_REFERENCES to preserve the
action of the existing code.

An existing PL/SQL application can thus continue using the pragma even on new
functionality, to ease integration with the existing code. Do not use the pragma in a
new application.

If you use PRAGMA RESTRICT_REFERENCES, place it in a package specification, not in
a package body. It must follow the declaration of a subprogram, but it need not follow
immediately. Only one pragma can reference a given subprogram declaration.

To code the PRAGMA RESTRICT_REFERENCES, use this syntax:

PRAGMA RESTRICT_REFERENCES (
Function_name, WNDS [, WNPS] [, RNDS] [, RNPS] [, TRUST]);

Where:

Option Description

WNDS The subprogram writes no database state (does not modify database tables).

RNDS The subprogram reads no database state (does not query database tables).

WNPS The subprogram writes no package state (does not change the values of packaged
variables).

RNPS The subprogram reads no package state (does not reference the values of packaged
variables)

TRUST The other restrictions listed in the pragma are not enforced; they are simply
assumed to be true. This allows easy invocation from functions that have
RESTRICT_REFERENCES declarations to those that do not.

You can pass the arguments in any order. If any SQL statement inside the subprogram
body violates a rule, then you get an error when the statement is parsed.

In Example 6-20, the function compound__ neither reads nor writes database or
package state; therefore, you can assert the maximum purity level. Always assert the
highest purity level that a subprogram allows, so that the PL/SQL compiler never
rejects the subprogram unnecessarily.

Example 6-20 PRAGMA RESTRICT_REFERENCES

DROP TABLE accounts; -- in case it exists
CREATE TABLE accounts (

acctno INTEGER,

balance NUMBER
)i

INSERT INTO accounts (acctno, balance)
VALUES (12345, 1000.00);

6-42 Oracle Database Advanced Application Developer's Guide

Invoking Stored PL/SQL Functions from SQL Statements

CREATE OR REPLACE PACKAGE finance AS
FUNCTION compound (
yvears IN NUMBER,
amount IN NUMBER,
rate IN NUMBER
) RETURN NUMBER;
PRAGMA RESTRICT REFERENCES (compound_, WNDS, WNPS, RNDS, RNPS);
END finance;
/
CREATE PACKAGE BODY finance AS
FUNCTION compound (
years IN NUMBER,
amount IN NUMBER,
rate IN NUMBER
) RETURN NUMBER
IS
BEGIN
RETURN amount * POWER((rate / 100) + 1, years);
END compound_;
-- No pragma in package body
END finance;
/
DECLARE
interest NUMBER;
BEGIN
SELECT finance.compound_ (5, 1000, 6)
INTO interest
FROM accounts
WHERE acctno = 12345;
END;
/

Topics:
= Using the Keyword TRUST
= Differences between Static and Dynamic SQL Statements

s Opverloading Packaged PL/SQL Functions

Using the Keyword TRUST When PRAGMA RESTRICT REFERENCES includes the keyword
TRUST, the restrictions listed in the pragma are assumed to be true, and not enforced.

When you invoke a subprogram that is in a section of code that does not use pragmas
(such as a Java method), from a section of PL/SQL code that does use pragmas,
specify PRAGMA RESTRICT REFERENCES with TRUST for either the invoked
subprogram or the invoking subprogram.

In both Example 6-21 and Example 622, the PL/SQL function f invokes the Java
procedure java_sleep. In Example 6-21, this is possible because java_sleepis
declared to be WNDS with TRUST. In Example 6-22, it is possible because f is declared
to be WNDS with TRUST, which allows it to invoke any subprogram.

Example 6-21 PRAGMA RESTRICT REFERENCES with TRUST on Invokee

CREATE OR REPLACE PACKAGE p IS
PROCEDURE java_sleep (milli_seconds IN NUMBER)
AS LANGUAGE JAVA NAME 'java.lang.Thread.sleep(long)';
PRAGMA RESTRICT REFERENCES (java_sleep,WNDS, TRUST) ;

Coding PL/SQL Subprograms and Packages 6-43

Invoking Stored PL/SQL Functions from SQL Statements

FUNCTION f (n NUMBER) RETURN NUMBER;
END p;
/
CREATE OR REPLACE PACKAGE BODY p IS
FUNCTION £ (
n NUMBER
) RETURN NUMBER
IS
BEGIN
java_sleep(n);
RETURN n;
END f;
END p;
/

Example 6-22 PRAGMA RESTRICT REFERENCES with TRUST on Invoker

CREATE OR REPLACE PACKAGE p IS
PROCEDURE java_sleep (milli_seconds IN NUMBER)
AS LANGUAGE JAVA NAME 'java.lang.Thread.sleep(long)';

FUNCTION £ (n NUMBER) RETURN NUMBER;
PRAGMA RESTRICT REFERENCES (f,WNDS, TRUST);
END p;
/
CREATE OR REPLACE PACKAGE BODY p IS
FUNCTION £ (
n NUMBER
) RETURN NUMBER
IS
BEGIN
java_sleep(n);
RETURN n;
END f;
END p;
/

Differences between Static and Dynamic SQL Statements Static INSERT, UPDATE, and
DELETE statements do not violate RNDS if these statements do not explicitly read any
database states, such as columns of a table. However, dynamic INSERT, UPDATE, and
DELETE statements always violate RNDS, regardless of whether the statements
explicitly read database states.

This INSERT statement violates RNDS if it is executed dynamically, but it does not
violate RNDS if it is executed statically.

INSERT INTO my_table values(3, 'BOB');

This UPDATE statement always violates RNDS statically and dynamically, because it
explicitly reads the column name of my_table.

UPDATE my_table SET id=777 WHERE name='BOB';

Overloading Packaged PL/SQL Functions PL/SQL lets you overload packaged (but not
standalone) functions; that is, you can use the same name for different functions if
their formal parameters differ in number, order, or data type family. However, PRAGMA

RESTRICT_REFERENCES applies to only one function declaration (the most recently
declared one).

In Example 6-23, the pragma applies to the second declaration of valid.

6-44 Oracle Database Advanced Application Developer's Guide

Coding Your Own Aggregate Functions

Example 6-23 Overloaded Packaged Function with PRAGMA RESTRICT_REFERENCES

CREATE OR REPLACE PACKAGE tests AS
FUNCTION valid (x NUMBER) RETURN CHAR;
FUNCTION valid (x DATE) RETURN CHAR;
PRAGMA RESTRICT REFERENCES (valid, WNDS);

END;

/

Returning Large Amounts of Data from a Function

In a data warehousing environment, you might use PL/SQL functions to transform
large amounts of data. Perhaps the data is passed through a series of transformations,
each performed by a different function. PL/SQL table functions let you perform such
transformations without significant memory overhead or the need to store the data in
tables between each transformation stage. These functions can accept and return
multiple rows, can return rows as they are ready rather than all at once, and can be
parallelized.

See Also: Oracle Database PL/SQL Language Reference for more
information about performing multiple transformations with
pipelined table functions

Coding Your Own Aggregate Functions

To analyze a set of rows and compute a result value, you can code your own aggregate
function that works the same as a built-in aggregate like SUM:

s Define an ADT that defines these member functions:
m ODCIAggregateInitialize
n ODCIAggregatelterate
n ODCIAggregateMerge
s ODCIAggregateTerminate

s Code the member functions. In particular, ODCIAggregateIterate
accumulates the result as it is invoked once for each row that is processed. Store
any intermediate results using the attributes of the ADT.

» Create the aggregate function, and associate it with the ADT.

s Call the aggregate function from SQL queries, DML statements, or other places
that you might use the built-in aggregates. You can include typical options such as
DISTINCT and ALL in the invocation of the aggregate function.

See Also: Oracle Database Data Cartridge Developer’s Guide for
more information about user-defined aggregate functions

Coding PL/SQL Subprograms and Packages 6-45

Coding Your Own Aggregate Functions

6-46 Oracle Database Advanced Application Developer's Guide

7

Using PL/Scope

PL/Scope is a compiler-driven tool that collects data about identifiers in PL/SQL
source code at program-unit compilation time and makes it available in static data
dictionary views. The collected data includes information about identifier types,
usages (declaration, definition, reference, call, assignment) and the location of each
usage in the source code.

PL/Scope enables the development of powerful and effective PL/Scope source code
browsers that increase PL/SQL developer productivity by minimizing time spent
browsing and understanding source code.

PL/Scope is intended for application developers, and is usually used in the
environment of a development database.

Note: PL/Scope cannot collect data for a PL/SQL unit whose source
code is wrapped. For information about wrapping PL/SQL source
code, see Oracle Database PL/SQL Language Reference.

Topics:

= Specifying Identifier Collection

= PL/Scope Identifier Data for STANDARD and DBMS_STANDARD
= How Much Space is PL/Scope Data Using?

= Viewing PL/Scope Data

= Identifier Types that PL/Scope Collects

= Usages that PL/Scope Reports

= Sample PL/Scope Session

Specifying Identifier Collection

By default, PL/Scope does not collect data for identifiers in the PL/SQL source
program. To have PL/Scope collect data for all identifiers in the PL/SQL source
program, including identifiers in package bodies, set the PL/SQL compilation
parameter PLSCOPE_SETTINGS to ' IDENTIFIERS:ALL'.

Note: Collecting all identifiers might generate large amounts of data
and slow compile time.

Using PL/Scope 7-1

PL/Scope Identifier Data for STANDARD and DBMS_STANDARD

PL/Scope stores the data that it collects in the SYSAUX tablespace. If the SYSAUX
tablespace is unavailable, and you compile a program unit with PLSCOPE_
SETTINGS='IDENTIFIERS:ALL', PL/Scope does not collect data for the compiled
object. The compiler does not issue a warning, but it saves a warning in USER_
ERRORS.

See Also:

» Oracle Database Reference for information about PLSCOPE_
SETTINGS

» Oracle Database PL/SQL Language Reference for information about
PL/SQL compilation parameters

PL/Scope Identifier Data for STANDARD and DBMS_STANDARD

The packages STANDARD and DBMS_STANDARD declare and define base types, such as
VARCHAR2 and NUMBER, and subprograms such as RAISE_APPLICATION_ERROR. If
your database has PL/Scope identifier data for these packages, PL/Scope can track
your usage of the identifiers that these packages create.

Do You Need STANDARD and DBMS_STANDARD Identifier Data?

You can use PL/Scope without STANDARD and DBMS_ STANDARD identifier data. You
need this data only if you must know where your code uses the base types or
subprograms that these packages create—for example, to know where your code uses
the base type BINARY_INTEGER, so that you can substitute PLS_INTEGER.

Does Your Database Have STANDARD and DBMS_STANDARD Identifier Data?

A newly created Oracle 11.1.0.7 database, or a database that was upgraded to 11.1.0.7
from 10.2, has PL/Scope identifier data for the packages STANDARD and DBMS_
STANDARD. A database that was upgraded to 11.1.0.7 from 11.1.0.6 does not have this
data.

To see if your database has this data, use the query in Example 7-1.

Example 7-1 shows what the query returns when the database has PL/Scope identifier
data for STANDARD and DBMS_STANDARD.

Example 7-1 Is STANDARD and DBMS_STANDARD PL/Scope Identifier Data Available?
Query:

SELECT UNIQUE OBJECT_NAME

FROM ALL_IDENTIFIERS

WHERE OBJECT_NAME IN ('STANDARD', 'DBMS_STANDARD')
AND OWNER='SYS';

Result:

OBJECT_NAME

DBMS_STANDARD
STANDARD

2 rows selected.

If the query in Example 7-1 selects no rows, then the database does not have PL/Scope
identifier data for the packages STANDARD and DBMS_STANDARD. To collect this data,

7-2 Oracle Database Advanced Application Developer's Guide

PL/Scope Identifier Data for STANDARD and DBMS_STANDARD

a DBA must recompile the packages STANDARD and DBMS_ STANDARD, as explained in
"Recompiling STANDARD and DBMS_STANDARD" on page 7-3.

Recompiling STANDARD and DBMS_STANDARD

A DBA can use this procedure to recompile the packages STANDARD and DBMS_
STANDARD:

Note: This procedure invalidates and revalidates (by recompiling)
every PL/SQL object in the database.

1. Connect to the database, shut it down, and then start it in UPGRADE mode:

CONNECT / AS SYSDBA;
SHUTDOWN IMMEDIATE;
STARTUP PFILE=parameter_initialization_file UPGRADE;

2. Have PL/Scope collect data for all identifiers in the packages STANDARD and
DBMS__STANDARD:

ALTER SESSION SET PLSCOPE_SETTINGS='IDENTIFIERS:ALL';

3. Invalidate and recompile the database:

@?/rdbms/admin/utlirp.sqgl

Now all PL/SQL objects in the database are invalid except STANDARD and DBMS_
STANDARD, which were recompiled with PLSCOPE_
SETTINGS="'IDENTIFIERS:ALL".

4. (Optional) Invalidate any other PL/SQL objects that you want to recompile with
PLSCOPE_SETTINGS="'IDENTIFIERS:ALL"', using a script similar to this.

Customize the query on lines 5 through 9 to invalidate only those objects for
which you need PL/Scope identifier data. Collecting all identifiers for all objects,
as this script does, might generate large amounts of data and slow compile time:

DECLARE
TYPE ObjIDArray IS TABLE OF NUMBER INDEX BY BINARY_ INTEGER;
ObjIDs ObjIDArray;
BEGIN
SELECT object_id BULK COLLECT INTO ObjIDs
FROM ALL_OBJECTS
WHERE object_type IN
(SELECT DISTINCT TYPE
FROM ALL_PLSQL_OBJECT_ SETTINGS) ;
FOR i IN 1..SQL$ROWCOUNT LOOP
BEGIN
DBMS_UTILITY.INVALIDATE (ObjIDs (i),
' PLSCOPE_SETTINGS=IDENTIFIERS:ALL REUSE SETTINGS') ;
NULL;
END;
END LOOP;
END;
/

Using PL/Scope 7-3

How Much Space is PL/Scope Data Using?

Notes: In the preceding script:

s Do not substitute Obj IDs.LAST for SQL%$ROWCOUNT, because
ObjIDs attributes are dependent on a package that is locked by
the anonymous block.

= If your database is large, do not substitute a cursor FOR LOOP for
the BULK COLLECT statement, or you will run out of resources.

5. Shut down the database, and then start it in NORMAL mode:

SHUTDOWN IMMEDIATE;
STARTUP PFILE=parameter_initialization_ file;

6. For any remaining invalid PL/SQL objects, do either of these:
= Allow them to be recompiled automatically, as they are referenced.
(This can be slow if there are complex dependencies.)

= Run the script utlrp.sgl to recompile the invalid PL/SQL objects, as
explained in "Running utlrp.sql to Recompile Invalid PL/SQL Objects" on
page 7-4.

Running utlrp.sql to Recompile Invalid PL/SQL Objects

If the database was restarted in NORMAL mode (step 5 on page 7-4), then a DBA, or a
user who has been granted the DBA role, can use this procedure:

1. Connect to the database as SYS:

CONNECT / AS SYS;

2. Run the script utlrp.sql:

@?/rdbms/admin/utlrp.sql

If the script gives you any instructions, follow them, and then run the script again.

If the script terminates abnormally without giving any instructions, run it again.

How Much Space is PL/Scope Data Using?

PL/Scope stores its data in the SYSAUX tablespace. If you are logged on as SYSDBa,
you can use the query in Example 7-2 to display the amount of space that PL/Scope
data is using.

Example 7-2 How Much Space is PL/Scope Data Using?
Query:

SELECT SPACE_USAGE_KBYTES
FROM V$SYSAUX_OCCUPANTS
WHERE OCCUPANT_NAME='PL/SCOPE';

Result:

SPACE_USAGE_KBYTES

1 row selected.

7-4 Oracle Database Advanced Application Developer's Guide

Viewing PL/Scope Data

For information about managing the SYSAUX tablespace, see Oracle Database
Administrator’s Guide.

Viewing PL/Scope Data
To view the data that PL/Scope has collected, you can use either:
» Static Data Dictionary Views
= Demo Tool

= SQL Developer

Static Data Dictionary Views

The static data dictionary views *_IDENTIFIERS display information about
PL/Scope identifiers, including their types and usages. For general information about
these views, see Oracle Database Reference.

Topics:
= Unique Keys
= Context

= Signature

Unique Keys

Each row of a *_IDENTIFIERS view represents a unique usage of an identifier in the
PL/SQL unit. In each of these views, these are equivalent unique keys within a
compilation unit:

s LINE, COL, and USAGE
s USAGE_ID

For the usages in the *_ IDENTIFIERS views, see "Usages that PL/Scope Reports" on
page 7-9.

Note: An identifier that is passed to a subprogram in IN OUT mode
has two rows in *_IDENTIFIERS: a REFERENCE usage
(corresponding to IN) and an ASSIGNMENT usage (corresponding to
ouT).

Context

Context is useful for discovering relationships between usages. Except for top-level
schema object declarations and definitions, every usage of an identifier happens
within the context of another usage. For example:

= Alocal variable declaration happens within the context of a top-level procedure
declaration.

s If an identifier is declared as a variable, such as x VARCHAR?2 (10), the USAGE_
CONTEXT_ID of the VARCHAR?2 type reference contains the USAGE_ID of the x
declaration, allowing you to associate the variable declaration with its type.

In other words, USAGE_CONTEXT_ID is a reflexive foreign key to USAGE_1ID, as
Example 7-3 shows.

Using PL/Scope 7-5

Viewing PL/Scope Data

Example 7-3 USAGE_CONTEXT_ID and USAGE_ID
ALTER SESSION SET PLSCOPE_SETTINGS = 'IDENTIFIERS:ALL';

CREATE OR REPLACE PROCEDURE a (pl IN BOOLEAN) IS
v PLS_INTEGER;
BEGIN
v o= 42;
DBMS_OUTPUT.PUT_LINE (V) ;
RAISE_APPLICATION_ERROR (-20000, 'Bad');
EXCEPTION
WHEN Program_Error THEN NULL;
END a;
/
CREATE OR REPLACE PROCEDURE b (p2 OUT PLS_INTEGER, p3 IN OUT VARCHAR2) IS
n NUMBER;
g BOOLEAN := TRUE;
BEGIN
FOR j IN 1..5 LOOP
a(qg); a(TRUE); a(TRUE);
IF j > 2 THEN
GOTO z;
END IF;
END LOOP;
<<z>> DECLARE
d CONSTANT CHAR(1l) := 'X';
BEGIN
SELECT COUNT(*) INTO n FROM Dual WHERE Dummy = d;
END z;
END b;
/
WITH v AS (
SELECT Line,
Col,
INITCAP (NAME) Name,
LOWER (TYPE) Type,
LOWER (USAGE) Usage,
USAGE_ID,
USAGE_CONTEXT_ID
FROM USER_IDENTIFIERS
WHERE Object_Name = 'B'
AND Object_Type = 'PROCEDURE'
)
SELECT RPAD(LPAD(' ', 2*(Level-1)) |
Name, 20, '.')||'
RPAD(Type, 20) ||
RPAD (Usage, 20)
IDENTIFIER_USAGE_CONTEXTS

FROM v

START WITH USAGE_CONTEXT_ID = 0

CONNECT BY PRIOR USAGE_ID = USAGE_CONTEXT_ID
ORDER SIBLINGS BY Line, Col

IDENTIFIER_USAGE_CONTEXTS

B procedure declaration
=3 procedure definition
P2 formal out declaration

P3.. i formal in out declaration
Noooiiiieinan variable declaration

7-6 Oracle Database Advanced Application Developer's Guide

Identifier Types that PL/Scope Collects

Demo Tool

[variable declaration
[variable assignment
1O iterator declaration
A procedure call
[0 variable reference
Ao, procedure call
Ao, procedure call
Teeeeiieeea iterator reference
/R label reference
/N label declaration
Deviiiiieeeen constant declaration
Do constant assignment
1 variable assignment
| constant reference
Signature

The signature of an identifier is unique, within and across program units. That is, the
signature distinguishes the identifier from other identifiers with the same name,
whether they are defined in the same program unit or different program units.

For the program unit in Example 7—4, which has two identifiers named p, the static
data dictionary view USER_IDENTIFIERS has several rows in which NAME is p, but in
these rows, SIGNATURE varies. The rows associated with the outer procedure p have
one signature, and the rows associated with the inner procedure p have another
signature. If program unit g calls procedure p, the USER_IDENTIFIERS view for g has
a row in which NAME is p and SIGNATURE is the signature of the outer procedure p.

Example 7-4 Program Unit with Two Identifiers Named p

CREATE OR REPLACE PROCEDURE p IS
PROCEDURE p IS
BEGIN

DBMS_OUTPUT. PUT_LINE('Inner p');

END p;

BEGIN
DBMS_OUTPUT. PUT_LINE ('Outer p');
p0);

END p;

SORACLE_HOME/plsgl/demo/plscopedemo.sgl is an HTML-based demo
implemented as a PL/SQL Web Application using the PL/SQL Web Toolkit. For more
information about PL/SQL Web Applications, see "Implementing PL/SQL Web
Applications" on page 9-2.

SQL Developer

PL/Scope is a feature of SQL Developer. For information about using PL/Scope from
SQL Developer, see the SQL Developer online documentation.

Identifier Types that PL/Scope Collects

Table 7-1 shows the identifier types that PL/Scope collects, in alphabetical order. The
identifier types in Table 7-1 appear in the TYPE column of the *_IDENTIFIER static
data dictionary views, which are described in Oracle Database Reference.

Using PL/Scope 7-7

Identifier Types that PL/Scope Collects

Note: Identifiers declared in compilation units that were not
compiled with PLSCOPE_SETTINGS='IDENTIFIERS:ALL' donot
appear in *_IDENTIFIER static data dictionary views.

Table 7-1 Identifier Types that PL/Scope Collects

TYPE Column Value Comment

ASSOCIATIVE ARRAY
CONSTANT
CURSOR

BFILE DATATYPEBLOB Each DATATYPE is a base type declared in package STANDARD.
DATATYPEBOOLEAN

DATATYPECHARACTER

DATATYPECLOB

DATATYPEDATE

DATATYPEINTERVAL

DATATYPENUMBER

DATATYPETIME

DATATYPETIMESTAMP

DATATYPE

EXCEPTION

FORMAL INFORMAL IN
OUTFORMAL OUT

FUNCTION

INDEX TABLE

ITERATOR An iterator is the index of a FOR loop.
LABEL A label declaration also acts as a context.
LIBRARY

NESTED TABLE

OBJECT

OPAQUE Examples of internal opaque types are ANYDATA and XMLType.
PACKAGE

PROCEDURE

RECORD

REFCURSOR

SUBTYPE

SYNONYM PL/Scope does not resolve the base object name of a synonym. To
find the base object name of a synonym, query *_SYNONYMS.

TRIGGER
UROWID
VARRAY

VARIABLE Can be object attribute, local variable, package variable, or record
field.

7-8 Oracle Database Advanced Application Developer's Guide

Usages that PL/Scope Reports

Usages that PL/Scope Reports

Table 7-2 shows the usages that PL/Scope reports, in alphabetical order. The identifier
types in Table 7-2 appear in the USAGE column of the *_ IDENTIFIER static data
dictionary views, which are described in Oracle Database Reference.

Table 7-2 Usages that PL/Scope Reports

USAGE Column
Value

Description

ASSIGNMENT

CALL

DECLARATION

DEFINITION

An assignment can be made only to an identifier that can have a value,
such as a VARIABLE. Examples of assignments are:

= Using an identifier to the left of an assignment operator
= Using an identifier in the INTO clause of a FETCH statement
= Passing an identifier to a subprogram by reference (OUT mode)

= Using an identifier as the bind argument in the USING clause of an
EXECUTE IMMEDIATE statement in either OUT or IN OUT mode

An identifier that is passed to a subprogram in IN OUT mode has both a
REFERENCE usage (corresponding to IN) and an ASSIGNMENT usage
(corresponding to OUT).

In the context of PL/ Scope, a CALL is an operation that pushes a call onto
the call stack; that is:

s A call to a FUNCTION or PROCEDURE

= Running or fetching a cursor identifier (a logical call to SQL)

A GOTO statement or raise of an exception is not a CALL, because neither
pushes a call onto the call stack.

A DECLARATION tells the compiler that an identifier exists, and each
identifier has exactly one DECLARATION. Each DECLARATION can have an
associated data type.

For a loop index declaration, LINE and COL (in *_IDENTIFIERS views)
are the line and column of the FOR clause that implicitly declares the loop
index.

For a label declaration, LINE and COL are the line and column on which the
label appears (and is implicitly declared) within the delimiters << and >>.

A DEFINITION tells the compiler how to implement or use a previously
declared identifier.

Each of these types of identifiers has a DEFINITION:
= EXCEPTION (can have multiple definitions)

[FUNCTION

[OBJECT

u PACKAGE

[PROCEDURE

u TRIGGER

For a top-level identifier only, the DEFINITION and DECLARATION are in
the same place.

Using PL/Scope 7-9

Sample PL/Scope Session

Table 7-2 (Cont.) Usages that PL/Scope Reports

USAGE Column
Value Description

REFERENCE A REFERENCE uses an identifier without changing its value. Examples of

references are:
= Raising an exception identifier

= Using a type identifier in the declaration of a variable or formal
parameter

= Using a variable identifier whose type contains fields to access a field.
For example, in myrecordvar.myfield : = 1, a reference is made to
myrecordvar, and an assignment is made to myfield.

= Using a cursor for any purpose except FETCH
= Passing an identifier to a subprogram by value (IN mode)

= Using an identifier as the bind argument in the USING clause of an
EXECUTE IMMEDIATE statement in either IN or IN OUT mode

An identifier that is passed to a subprogram in IN OUT mode has both a
REFERENCE usage (corresponding to IN) and an ASSIGNMENT usage
(corresponding to OUT).

Sample PL/Scope Session

In this sample session, assume that you are logged in as HR.

1.

Set the session parameter:

ALTER SESSION SET PLSCOPE_SETTINGS='IDENTIFIERS:ALL';

Create this package:

CREATE OR REPLACE PACKAGE PACK1l IS
TYPE rl is RECORD (rfl VARCHAR2 (10));
FUNCTION F1(fpl NUMBER) RETURN NUMBER;
PROCEDURE P1 (ppl VARCHAR2) ;
END PACK1;
/
CREATE OR REPLACE PACKAGE BODY PACK1 IS
FUNCTION F1(fpl NUMBER) RETURN NUMBER IS
a NUMBER := 10;
BEGIN
RETURN a;
END F1;
PROCEDURE P1 (ppl VARCHAR2) IS
prl rl;
BEGIN
prl.rfl := ppl;
END;
END PACK1;
/

Verify that PL/Scope collected all identifiers for the package body:

SELECT PLSCOPE_SETTINGS
FROM USER_PLSQL_OBJECT_SETTINGS
WHERE NAME='PACKl' AND TYPE='PACKAGE BODY'

Result:

PLSCOPE_SETTINGS

7-10 Oracle Database Advanced Application Developer's Guide

Sample PL/Scope Session

IDENTIFIERS:ALL

Display unique identifiers in HR by querying for all DECLARATION usages. For
example, to see all unique identifiers with name like %1, use these SQL*Plus
formatting commands and this query:

COLUMN NAME FORMAT A6
COLUMN SIGNATURE FORMAT A32
COLUMN TYPE FORMAT A9

SELECT NAME, SIGNATURE, TYPE

FROM USER_IDENTIFIERS

WHERE NAME LIKE '$%1' AND USAGE='DECLARATION'
ORDER BY OBJECT_TYPE, USAGE_ID;

Result is similar to:

NAME SIGNATURE TYPE

PACK1 41820FA4DSEF6BE707895178DOC5C4AEF PACKAGE

R1 EEBB6849DEE31BC77BF186EBAESD4E2D RECORD
RF1 41D70040337349634A7F547BC83517C7 VARIABLE
F1 4559CF050A5F5C3ESFS5FFDDODID55EFA FUNCTION
FP1 CAC3474C112DBEC67AB926978D9A16C1 FORMAL IN
Pl B7C0576BA4D00C33A65CC0C64CADABS89 PROCEDURE

PP1 6B74CF95A5B7377A735925DFAA280266 FORMAL IN
FP1 98EB63B8A4AFEBSEF94D50A20165D6CC FORMAL IN
PPl AD89FEOEAEICESD6D48AA4684E0DS57DF FORMAL IN
PR1 1B5117F30ESDAE0261A02CAASE33883F VARIABLE

10 rows selected.

The *_IDENTIFIERS static data dictionary views display only basic type names;
for example, the TYPE of a local variable or record field is VARIABLE. To
determine the exact type of a VARIABLE, you must use its USAGE_CONTEXT_1ID.

Find all local variables:

COLUMN VARIABLE_NAME FORMAT Al3
COLUMN CONTEXT_NAME FORMAT Al2

SELECT a.NAME variable_name,
b.NAME context_name,
a.SIGNATURE
FROM USER_IDENTIFIERS a, USER_IDENTIFIERS b
WHERE a.USAGE_CONTEXT _ID = b.USAGE_ID
a.TYPE = 'VARIABLE'
a.USAGE = 'DECLARATION'
AND a.OBJECT _NAME = 'PACK1'
a.0BJECT_NAME = b.OBJECT_NAME
a.0OBJECT_TYPE = b.OBJECT_TYPE
AND (b.TYPE = 'FUNCTION' or b.TYPE = 'PROCEDURE')
ORDER BY a.OBJECT _TYPE, a.USAGE_ID;

Result:

VARIABLE_NAME CONTEXT_NAME SIGNATURE

A F1l 1691C6B3C951FCAA2CBEEB47F85CF128
PR1 Pl 1B5117F30E8DAE0261A02CAASE33883F

Using PL/Scope 7-11

Sample PL/Scope Session

2 rows selected.

6. Find all usages performed on the local variable A:

COLUMN USAGE FORMAT All
COLUMN USAGE_ID FORMAT 999
COLUMN OBJECT_NAME FORMAT All
COLUMN OBJECT_TYPE FORMAT Al2

SELECT USAGE, USAGE_ID, OBJECT_NAME, OBJECT_TYPE

FROM USER_IDENTIFIERS

WHERE SIGNATURE='1691C6B3C951FCAA2CBEEB47F85CF128' -- signature of A
ORDER BY OBJECT_TYPE, USAGE_ID;

Result:

USAGE USAGE_ID OBJECT NAME OBJECT_TYPE
DECLARATION 6 PACK1 PACKAGE BODY
ASSIGNMENT 8 PACK1 PACKAGE BODY
REFERENCE 9 PACK1 PACKAGE BODY

3 rows selected.

The usages performed on the local identifier A are the identifier declaration
(USAGE_ID 6), an assignment (USAGE_ID 8), and a reference (USAGE_ID 9).

7. From the declaration of the local identifier 2, find its type:

COLUMN NAME FORMAT A6
COLUMN TYPE FORMAT Al5

SELECT a.NAME, a.TYPE

FROM USER_IDENTIFIERS a, USER_IDENTIFIERS b

WHERE a.USAGE = 'REFERENCE'

AND a.USAGE_CONTEXT_ID = b.USAGE_ID

AND b.USAGE = 'DECLARATION'

AND b.SIGNATURE = '4559CF050A5F5C3ES5F5FFDDODID5S5EFA' -- signature of F1
AND a.OBJECT_TYPE = b.OBJECT_TYPE

AND a.OBJECT_NAME = b.OBJECT_NAME;

Result:

NUMBER NUMBER DATATYPE

1 row selected.

Note: This query produces the output shown only if your database

has PL/Scope identifier data for the packages STANDARD and DBMS_
STANDARD. For more information, see "PL/Scope Identifier Data for

STANDARD and DBMS_STANDARD" on page 7-2.

8. Find out where the assignment to local identifier A occurred:

SELECT LINE, COL, OBJECT_NAME, OBJECT_TYPE
FROM USER_IDENTIFIERS
WHERE SIGNATURE='1691C6B3C951FCAA2CBEEB47F85CF128' -- signature of A

7-12 Oracle Database Advanced Application Developer's Guide

Sample PL/Scope Session

AND USAGE='ASSIGNMENT';

Result:

3 5 PACK1 PACKAGE BODY

1 row selected.

Using PL/Scope 7-13

Sample PL/Scope Session

7-14 Oracle Database Advanced Application Developer's Guide

8

Using the PL/SQL Hierarchical Profiler

You can use the PL/SQL hierarchical profiler to identify bottlenecks and
performance-tuning opportunities in PL/SQL applications.

The profiler reports the dynamic execution profile of a PL/SQL program organized by
function calls, and accounts for SQL and PL/SQL execution times separately. No
special source or compile-time preparation is required; any PL/SQL program can be
profiled.

This chapter describes the PL/SQL hierarchical profiler and explains how to use it to
collect and analyze profile data for a PL/SQL program.

Topics:

s Overview of PL/SQL Hierarchical Profiler
» Collecting Profile Data

s Understanding Raw Profiler Output

= Analyzing Profile Data

= plshprof Utility

Overview of PL/SQL Hierarchical Profiler

Nonhierarchical (flat) profilers record the time that a program spends within each
subprogram—the function time or self time of each subprogram. Function time is
helpful, but often inadequate. For example, it is helpful to know that a program
spends 40% of its time in the subprogram INSERT_ORDER, but it is more helpful to
know which subprograms call INSERT_ORDER often and the total time the program
spends under INSERT_ORDER (including its descendant subprograms). Hierarchical
profilers provide such information.

The PL/SQL hierarchical profiler:

= Reports the dynamic execution profile of your PL/SQL program, organized by
subprogram calls

= Accounts for SQL and PL/SQL execution times separately
= Requires no special source or compile-time preparation

m Stores results in database tables (hierarchical profiler tables) for custom report
generation by integrated development environment (IDE) tools (such as SQL
Developer and third-party tools)

= Provides subprogram-level execution summary information, such as:

= Number of calls to the subprogram

Using the PL/SQL Hierarchical Profiler 8-1

Collecting Profile Data

= Time spent in the subprogram itself (function time or self time)

= Time spent in the subprogram itself and in its descendent subprograms
(subtree time)

s Detailed parent-children information, for example:
— All callers of a given subprogram (parents)
- All subprograms that a given subprogram called (children)
- How much time was spent in subprogram x when called from y

- How many calls to subprogram x were from y

The PL/SQL hierarchical profiler is implemented by the DBMS_HPROF package and
has two components:

Data collection

The data collection component is an intrinsic part of the PL/SQL Virtual Machine.
The DBMS_HPROF package provides APIs to turn hierarchical profiling on and off.
The raw profiler output is written to a file.

Analyzer

The analyzer component processes the raw profiler output and stores the results in
hierarchical profiler tables.

Note: To generate simple HTML reports directly from raw profiler
output, without using the Analyzer, you can use the plshprof
command-line utility.

Collecting Profile Data

To collect profile data from your PL/SQL program for the PL/SQL hierarchical
profiler, follow these steps:

1.

Ensure that you have these privileges:
= EXECUTE privilege on the DBMS_HPROF package

= WRITE privilege on the directory that you specify when you call DBMS_
HPROF.START_PROFILING

Use the DBMS_HPROF.START_PROFILING PL/SQL API to start hierarchical
profiler data collection in a session.

Run your PL/SQL program long enough to get adequate code coverage.

To get the most accurate measurements of elapsed time, avoid unrelated activity
on the system on which your PL/SQL program is running.

Use the DBMS_HPROF.STOP_PROFILING PL/SQL API to stop hierarchical profiler
data collection.

For more information about DBMS_HPROF.START_PROFILING and DBMS_
HPROF.STOP_PROFILING, see Oracle Database PL/SQL Packages and Types Reference.

Consider this PL/SQL procedure, test:

CREATE OR REPLACE PROCEDURE test IS

n NUMBER;

PROCEDURE foo IS

8-2 Oracle Database Advanced Application Developer's Guide

Understanding Raw Profiler Output

BEGIN
SELECT COUNT(*) INTO n FROM EMPLOYEES;
END foo;

BEGIN -- test
FOR 1 IN 1..3 LOOP
foo;
END LOOP;
END test;
/

The SQL script in Example 8-1 profiles the execution of the PL/SQL procedure test.

Example 8-1 Profiling a PL/SQL Procedure

BEGIN
/* Start profiling.
Write raw profiler output to file test.trc in a directory
that is mapped to directory object PLSHPROF_DIR
(see note after example). */

DBMS_HPROF.START_PROFILING ('PLSHPROF_DIR', 'test.trc');
END;
/
-- Run procedure to be profiled
BEGIN
test;
END;
/
BEGIN
-- Stop profiling
DBMS_HPROF . STOP_PROFILING;
END;
/

Note: A directory object is an alias for a file system path name. For
example, if you are connected to the database AS SYSDBA, this
CREATE DIRECTORY statement creates the directory object
PLSHPROF_DIR and maps it to the file system directory
/private/plshprof/results:

CREATE DIRECTORY PLSHPROF_DIR as '/private/plshprof/results';

To run the SQL script in Example 8-1, you must have READ and
WRITE privileges on both PLSHPROF_DIR and the directory to which
it is mapped. if you are connected to the database AS SYSDBA, this
GRANT statement grants READ and WRITE privileges on PLSHPROF_
DIR to HR:

GRANT READ, WRITE ON DIRECTORY PLSHPROF_DIR TO HR;

For more information about using directory objects, see Oracle
Database SecureFiles and Large Objects Developer’s Guide.

Understanding Raw Profiler Output

Raw profiler output is intended to be processed by the analyzer component of the
PL/SQL hierarchical profiler. However, even without such processing, it provides a

simple function-level trace of the program. This topic explains how to understand raw

profiler output.

Using the PL/SQL Hierarchical Profiler

8-3

Understanding Raw Profiler Output

Note: The raw profiler format shown in this chapter is intended only
to illustrate conceptual features of raw profiler output. Format
specifics are subject to change at each Oracle Database release.

The SQL script in Example 8-1 wrote this raw profiler output to the file test.trc:

P#V PLSHPROF Internal Version 1.0

P#! PL/SQL Timer Started

P#C PLSQL."".""."_plsgl_vm"

P#X 2

P#C PLSQL."".""."__ anonymous_block"

P#X 50

P#C PLSQL."HR"."TEST"::7."TEST"#980980e97e42f8ec #1
P#X 3

P#C PLSQL."HR"."TEST"::7."TEST.F00"#980980e97e42f8ec #4
P#X 35

P#C SQL."HR"."TEST"::7."_ static_sqgl_exec_line6" #6
P#X 206

P#R

P#X 26

P#R

P#X 2

P#C PLSQL."HR"."TEST"::7."TEST.F00"#980980e97e42f8ec #4
P#X 4

P#C SQL."HR"."TEST"::7."_ static_sqgl_exec_line6" #6
P#X 80

P#R

P#X 3

P#R

P#X 0

P#C PLSQL."HR"."TEST"::7."TEST.F00"#980980e97e42f8ec #4
P#X 3

P#C SQL."HR"."TEST"::7."__static_sqgl_exec_line6" #6
P#X 69

P#R

P#X 3

P#R

P#X 1

P#R

P#X 1

P#R

P#X 3

P#R

P#C PLSQL."".""."_plsqgl_wvm"

P#X 3

P#C PLSQL."".""."__ anonymous_block"

P#X 44

P#C PLSQL."SYS"."DBMS_HPROF"::11."STOP_PROFILING"#980980e97e42f8ec #53
P#R

P#R

P#R

P#! PL/SQL Timer Stopped

Table 8—1 Raw Profiler Output File Indicators

Indicator Meaning

PH#V PLSHPROF banner with version number

P#C Call to a subprogram (call event)

8-4 Oracle Database Advanced Application Developer's Guide

Understanding Raw Profiler Output

Table 8—1 (Cont.) Raw Profiler Output File Indicators

Indicator Meaning

P#R Return from a subprogram (return event)
P#X Elapsed time between preceding and following events
P#! Comment

Call events (P#C) and return events (P#R) are always properly nested (like matched
parentheses). If an unhandled exception causes a called subprogram to exit, the
profiler still reports a matching return event.

Each call event (P#C) entry in the raw profiler output includes this information:
= Namespace to which the called subprogram belongs
See "Namespaces of Tracked Subprograms" on page 8-6.
= Name of the PL/SQL module in which the called subprogram is defined
» Type of the PL/SQL module in which the called subprogram is defined
= Name of the called subprogram
This name might be one of the "Special Function Names" on page 8-6.

= Hexadecimal value that represents an MD5 hash of the signature of the called
subprogram

The DBMS_HPROF.analyze PL/SQL API (described in "Analyzing Profile Data"
on page 8-6) stores the hash value in a hierarchical profiler table, which allows
both you and DBMS_HPROF.analyze to distinguish between overloaded
subprograms (subprograms with the same name).

s Line number at which the called subprogram is defined in the PL/SQL module

PL/SQL hierarchical profiler does not measure time spent at individual lines
within modules, but you can use line numbers to identify the source locations of
subprograms in the module (as IDE/Tools do) and to distinguish between
overloaded subprograms.

For example, consider this entry in the preceding example of raw profiler output:

P#C PLSQL."HR"."TEST"::7."TEST.FO0"#980980e97e42f8ec #4

The components of the preceding entry have these meanings:

Component Meaning

PLSQL PLSQL is the namespace to which the called subprogram belongs.

"HR"."TEST" HR.TEST is the name of the PL/SQL module in which the called
subprogram is defined.

7 7 is the internal enumerator for the module type of HR.TEST.
Examples of module types are procedure, package, and package
body.

"TEST.FOO" TEST.FOO is the name of the called subprogram.

#980980e97e42f8ec #980980e97e42f8ec is a hexadecimal value that represents an
MD?5 hash of the signature of TEST.FOO.

#4 4 is the line number in the PL/SQL module HR.TEST at which
TEST.FOO is defined.

Using the PL/SQL Hierarchical Profiler 8-5

Analyzing Profile Data

Note: When a subprogram is inlined, it is not reported in the profiler
output. For information about subprogram inlining, see Oracle
Database PL/SQL Language Reference.

When a call to a DETERMINISTIC function is "optimized away," it is
not reported in the profiler output. For information about
DETERMINISTIC functions, see Oracle Database PL/SQL Language
Reference.

Namespaces of Tracked Subprograms

The subprograms that the PL/SQL hierarchical profiler tracks are classified into the
namespaces PLSQL and SQL, as follows:

= Namespace PLSQL includes:
- PL/SQL subprogram calls
- PL/SQL triggers
- PL/SQL anonymous blocks
- Remote subprogram calls
- Package initialization blocks

= Namespace SQL includes SQL statements executed from PL/SQL, such as queries,
data manipulation language (DML) statements, data definition language (DDL)
statements, and native dynamic SQL statements

Special Function Names

PL/SQL hierarchical profiler tracks certain operations as if they were functions with
the names and namespaces shown in Table 8-2.

Table 8-2 Function Names of Operations that the PL/SQL Hierarchical Profiler Tracks

Tracked Operation Function Name Namespace
Call to PL/SQL Virtual Machine _ plsgl_vm PL/SQL
PL/SQL anonymous block __anonymous_block PL/SQL
Package initialization block _ pkg_init PL/SQL
Static SQL statement at line 1ine# __static_sqgl_exec_lineline# SQL
Dynamic SQL statement at line I1ine# _ dyn_sqgl_exec_lineline# SQL

SQL FETCH statement at line 1ine# _ sqgl_fetch_lineline# SQL

Analyzing Profile Data

The analyzer component of the PL/SQL hierarchical profiler, DBMS_HPROF.analyze,
processes the raw profiler output and stores the results in the hierarchical database
tables described in Table 8-3.

8-6 Oracle Database Advanced Application Developer's Guide

Analyzing Profile Data

Table 8-3 PL/SQL Hierarchical Profiler Database Tables

Table Description

DBMSHP_RUNS Top-level information for this run of DBMS_
HPROF.analyze. For column descriptions, see Table 8—4
on page 8-8.

DBMSHP_FUNCTION_INFO Information for each subprogram profiled in this run of

DBMS_HPROF.analyze. For column descriptions, see
Table 8-5 on page 8-9.

DBMSHP_PARENT_CHILD_INFO Parent-child information for each subprogram profiled in

this run of DBMS_HPROF.analyze. For column
descriptions, see Table 8-6 on page 8-8.

Topics:

Creating Hierarchical Profiler Tables

Understanding Hierarchical Profiler Tables

Note: To generate simple HTML reports directly from raw profiler
output, without using the Analyzer, you can use the plshprof
command-line utility. For details, see "plshprof Utility" on page 8-13.

Creating Hierarchical Profiler Tables

To create the hierarchical profiler tables in Table 8-3 and the other data structures
required for persistently storing profile data, follow these steps:

1.

Run the script domshptab.sgl (located in the directory rdbms /admin).

This script creates both the hierarchical profiler tables in Table 8-3 and the other
data structures required for persistently storing profile data.

Note: Running the script dbmshptab.sql drops any previously
created hierarchical profiler tables.

Ensure that you have these privileges:
= EXECUTE privilege on the DBMS_HPROF package
= READ privilege on the directory that DBMS_HPROF.analyze specifies

Use the PL/SQL API DBMS_HPROF.analyze to analyze a single raw profiler
output file and store the results in hierarchical profiler tables.

(For an example of a raw profiler output file, see test.trc in "Understanding
Raw Profiler Output" on page 8-3.)

For more information about DBMS_HPROF.analyze, see Oracle Database PL/SQL
Packages and Types Reference.

4. Use the hierarchical profiler tables to generate custom reports.

The anonymous block in Example 8-2:

Invokes the function DBMS_HPROF.analyze function, which:

- Analyzes the profile data in the raw profiler output file test.trc (from
"Understanding Raw Profiler Output” on page 8-3), which is in the directory

Using the PL/SQL Hierarchical Profiler 8-7

Analyzing Profile Data

that is mapped to the directory object PLSHPROF_DIR, and stores the data in
the hierarchical profiler tables in Table 8-3 on page 8-7.

— Returns a unique identifier that you can use to query the hierarchical profiler
tables in Table 8-3 on page 8-7. (By querying these hierarchical profiler tables,
you can produce customized reports.)

= Stores the unique identifier in the variable runid, which it prints.

Example 8-2 Invoking DBMS_HPROF.analyze

DECLARE
runid NUMBER;

BEGIN
runid := DBMS_HPROF.analyze (LOCATION=>'PLSHPROF DIR',

FILENAME=>'test.trc');

DBMS_OUTPUT.PUT_LINE('runid = ' || runid)

END;

/

Understanding Hierarchical Profiler Tables

These topics explain how to use the hierarchical profiler tables in Table 8-3:
» Hierarchical Profiler Database Table Columns

» Distinguishing Between Overloaded Subprograms

» Hierarchical Profiler Tables for Sample PL/SQL Procedure

» Examples of Calls to DBMS_HPROF.analyze with Options

Hierarchical Profiler Database Table Columns

Table 84 describes the columns of the hierarchical profiler table DBMSHP_RUNS, which
contains one row of top-level information for each run of DBMS_HPROF.analyze.

The primary key for the hierarchical profiler table DBMSHP_RUNS is RUNID.

Table 8-4 DBMSHP_RUNS Table Columns

Column Name Column Data Type Column Contents

RUNID NUMBER PRIMARY KEY Unique identifier for this run of
DBMS_HPROF.analyze, generated
from DBMSHP_RUNNUMBER sequence.

RUN_TIMESTAMP TIMESTAMP Time stamp for this run of DBMS_
HPROF.analyze.

RUN_COMMENT VARCHAR?2 (2047) Comment that you provided for this
run of DBMS_HPROF.analyze.

TOTAL_ELAPSED_TIME INTEGER Total elapsed time for this run of
DBMS_HPROF.analyze.

Table 8-5 describes the columns of the hierarchical profiler table DBMSHP_FUNCTION_
INFO, which contains one row of information for each subprogram profiled in this run
of DBMS_HPROF.analyze. If a subprogram is overloaded, Table 8-5 has a row for each
variation of that subprogram. Each variation has its own LINE# and HASH (see
"Distinguishing Between Overloaded Subprograms" on page 8-10).

The primary key for the hierarchical profiler table DBMSHP_FUNCTION_INFO is
RUNID, SYMBOLID.

8-8 Oracle Database Advanced Application Developer's Guide

Analyzing Profile Data

Table 8-5 DBMSHP_FUNCTION_INFO Table Columns

Column Name

Column Data Type

Column Contents

RUNID

SYMBOLID

OWNER

MODULE

TYPE

FUNCTION

LINE#

HASH

NAMESPACE

SUBTREE_ELAPSED_TIME

FUNCTION_ELAPSED_TIME

CALLS

NUMBER

NUMBER

VARCHAR2 (32)

VARCHAR?2 (2047)

VARCHAR2 (32)

VARCHAR2 (4000)

NUMBER

RAW (32)

VARCHAR2 (32)

INTEGER

INTEGER

INTEGER

References RUNID column of DBMSHP_
RUNS table. For a description of that
column, see Table 8—4.

Symbol identifier for subprogram
(unique for this run of DBMS_
HPROF.analyze).

Owner of module in which each
subprogram is defined (for example,
SYS or HR).

Module in which subprogram is defined
(for example, DBMS_LOB, UTL_HTTP, or
MY_PACKAGE).

Type of module in which subprogram is
defined (for example, PACKAGE,
PACKAGE_BODY,OrPROCEDURE)

Name of subprogram (not necessarily a
function) (for example, INSERT_ORDER,
PROCESS_ITEMS,OITEST)

This name might be one of the "Special
Function Names" on page 8-6.

For subprogram B defined within
subprogram A, this name is A. B.

A recursive call to function X is denoted
X@n, where n is the recursion depth. For
example, X@1 is the first recursive call to
X.

Line number in OWNER.MODULE at
which FUNCTION is defined.

Hash code for signature of subprogram
(unique for this run of DBMS_
HPROF.analyze).

Namespace of subprogram. For details,
see "Namespaces of Tracked
Subprograms” on page 8-6.

Elapsed time, in microseconds, for
subprogram, including time spent in
descendant subprograms.

Elapsed time, in microseconds, for
subprogram, excluding time spent in
descendant subprograms.

Number of calls to subprogram.

Table 8-6 describes the columns of the hierarchical profiler table DBMSHP_PARENT_
CHILD_INFO, which contains one row of parent-child information for each unique
parent-child subprogram combination profiled in this run of DBMS_HPROF.analyze.

Using the PL/SQL Hierarchical Profiler 8-9

Analyzing Profile Data

Table 8-6 DBMSHP_PARENT_CHILD_INFO Table Columns

Column Name Column Data Type Column Contents

RUNID NUMBER References RUNID column of
DBMSHP_FUNCTION_INFO table. For
a description of that column, see
Table 8-5.

PARENTSYMID NUMBER Parent symbol ID.

RUNID, PARENTSYMID references
DBMSHP_FUNCTION_INFO (RUNID,
SYMBOLID).

CHILDSYMID VARCHAR2 (32) Child symbol ID.

RUNID, CHILDSYMID references
DBMSHP_FUNCTION_INFO (RUNID,

SYMBOLID).
SUBTREE_ELAPSED_ INTEGER Elapsed time, in microseconds, for
TIME RUNID, CHILDSYMID when called

from RUNID, PARENTSYMID,
including time spent in descendant

subprograms.
FUNCTION_ELAPSED_ INTEGER Elapsed time, in microseconds, for
TIME RUNID, CHILDSYMID when called

from RUNID, PARENTSYMID,
excluding time spent in descendant
subprograms.

CALLS INTEGER Number of calls to RUNID,
CHILDSYMID from RUNID,
PARENTSYMID.

Distinguishing Between Overloaded Subprograms

Overloaded subprograms are different subprograms with the same name (see Oracle
Database PL/SQL Language Reference).

Suppose that a program declares three subprograms named compute—the first at line
50, the second at line 76, and the third at line 100. In the DBMSHP_FUNCTION_INFO
table, each of these subprograms has compute in the FUNCTION column. To
distinguish between the three subprograms, use either the LINE# column (which has
50 for the first subprogram, 76 for the second, and 100 for the third) or the HASH
column (which has a unique value for each subprogram).

In the profile data for two different runs, the LINE# and HASH values for a function
might differ. The LINE# value of a function changes if you insert or delete lines before
the function definition. The HASH value changes only if the signature of the function
changes; for example, if you change the parameter list.

Hierarchical Profiler Tables for Sample PL/SQL Procedure

The hierarchical profiler tables for the PL/SQL procedure test in "Collecting Profile
Data" on page 8-2 are shown in Example 8-3 through Example 8-5.

Example 8-3 DBMSHP_RUNS Table for Sample PL/SQL Procedure

RUNID RUN_TIMESTAMP TOTAL_ELAPSED_TIME RUN_COMMENT
1 10-APR-06 12.01.56.766743 PM 2637 First run of TEST

8-10 Oracle Database Advanced Application Developer's Guide

Analyzing Profile Data

Example 8-4 DBMSHP_FUNCTION_INFO Table for Sample PL/SQL Procedure

RUNID SYMBOLID OWNER MODULE TYPE NAMESPACE FUNCTION

1 1 PLSQL __anonymous_block
1 2 PLSQL __plsgl_vm

1 3 HR TEST PROCEDURE PLSQL TEST

1 4 HR TEST PROCEDURE PLSQL TEST.FOO

1 5 SYS DBMS_HPROF PACKAGE_BODY PLSQL STOP_PROFILING

1 6 HR TEST PROCEDURE SQL _ static_sql_exec_line5
LINE# CALLS HASH SUBTREE_ELAPSED_TIME FUNCTION_ELAPSED TIME

0 2 980980E97E42F8EC 2554 342

0 2 980980E97E42F8EC 2637 83

1 1 980980E97E42F8EC 2212 28

3 3 980980E97E42F8EC 2184 126

57 1 980980E97E42F8EC 0 0

5 3 980980E97E42F8EC 1998 1998

Example 8-5 DBMSHP_PARENT_CHILD_INFO Table for Sample PL/SQL Procedure
RUNID PARENTSYMID CHILDSYMID SUBTREE_ELAPSED_TIME FUNCTION_ELAPSED_TIME CALLS

1 2 1 2554 342 2
1 3 2212 28 1
1 3 4 2184 126 3
1 1 5 0 0 1
1 4 6 1998 1998 3

Consider the third row of the table DBMSHP_PARENT_CHILD_INFO (Example 8-5).
The RUNID column shows that this row corresponds to the first run. The columns
PARENTSYMID and CHILDSYMID show that the symbol IDs of the parent (caller) and
child (called subprogram) are 3 and 4, respectively. The table DBMSHP_FUNCTION_
INFO (Example 8—4) shows that for the first run, the symbol IDs 3 and 4 correspond to
procedures TEST and TEST.FOO, respectively. Therefore, the information in this row is
about calls from the procedure TEST to the procedure FOO (defined within TEST) in
the module HR.TEST. This row shows that, when called from the procedure TEST, the
function time for the procedure FOO is 126 microseconds, and the time spent in the
FOO subtree (including descendants) is 2184 microseconds.

Examples of Calls to DBMS_HPROF.analyze with Options

For an example of a call to DBMS_HPROF.analyze without options, see Example 82
on page 8-8.

Example 8-6 creates a package, creates a procedure that invokes subprograms in the
package, profiles the procedure, and uses DBMS_HRPROF.analyze to analyze the raw
profiler output file. The raw profiler output file is in the directory corresponding to the
PLSHPROF_DIR directory object.

Example 8-6 Invoking DBMS_HPROF.analyze with Options

-- Create package

CREATE OR REPLACE PACKAGE pkg IS
PROCEDURE myproc (n IN out NUMBER) ;
FUNCTION myfunc (v VARCHAR2) RETURN VARCHAR2;
FUNCTION myfunc (n PLS_INTEGER) RETURN PLS_INTEGER;
END pkg;
/
CREATE OR REPLACE PACKAGE BODY pkg IS
PROCEDURE myproc (n IN OUT NUMBER) IS

Using the PL/SQL Hierarchical Profiler 8-11

Analyzing Profile Data

FUNCTION myfunc (v VARCHAR2) RETURN VARCHAR2 IS
n NUMBER;
BEGIN
n := LENGTH(v) ;
myproc (n) ;
IF n > 20 THEN
RETURN SUBSTR(v, 1, 20);
ELSE
RETURN v || '...';
END IF;
END;

FUNCTION myfunc (n PLS_INTEGER) RETURN PLS_INTEGER IS
i PLS_INTEGER;
PROCEDURE myproc (n IN out PLS_INTEGER) IS
BEGIN
n:=n+ 1;
END;
BEGIN
i :=n;
myproc (i) ;
RETURN 1;
END;
END pkg;
/

-- Create procedure that invokes packaged subprograms

CREATE OR REPLACE PROCEDURE test2 IS
x NUMBER := 5;
y VARCHAR2 (32767) ;
BEGIN
pkg.myproc (x) ;
y := pkg.myfunc('hello');
END;

-- Profile test2

BEGIN
DBMS_HPROF . START_PROFILING ('PLSHPROF_DIR', 'test2.trc');
END;
/
BEGIN
test?;
END;
/
BEGIN
DBMS_HPROF.STOP_PROFILING;
END;
/
-- If not done, create hierarchical profiler tables
-- (see "Creating Hierarchical Profiler Tables" on page 8-7.)

-- Call DBMS_HPROF.analyze with options

DECLARE

8-12 Oracle Database Advanced Application Developer's Guide

plshprof Utility

runid NUMBER;
BEGIN
-- Analyze only subtrees rooted at trace entry "HR"."PKG"."MYPROC"

runid := DBMS_HPROF.analyze ('PLSHPROF_DIR', 'test2.trc',
trace => '"HR"."PKG"."MYPROC"');

-- Analyze up to 20 calls to subtrees rooted at trace entry
-- "HR"."PKG"."MYFUNC". Because "HR"."PKG"."MYFUNC" is overloaded,
-- both overloads are considered for analysis.

runid := DBMS_HPROF.analyze ('PLSHPROF_DIR', 'test2.trc',
collect => 20,
trace => '"HR"."PKG"."MYFUNC"');

-- Analyze second call to PL/SQL virtual machine

runid := DBMS_HPROF.analyze ('PLSHPROF_DIR', 'test2.trc',
skip => 1, collect => 1,
trace => o . nn . n "_plsql_m" 1) ,.
END;

plshprof Utility

The plshprof command-line utility (located in the directory $ORACLE_HOME/bin/)
generates simple HITML reports from either one or two raw profiler output files. (For
an example of a raw profiler output file, see test.trc in "Collecting Profile Data" on
page 8-2.)

You can browse the generated HTML reports in any browser. The browser's
navigational capabilities, combined with well chosen links, provide a powerful way to
analyze performance of large applications, improve application performance, and
lower development costs.

Topics:

= plshprof Options

s HTML Report from a Single Raw Profiler Output File

= HTML Difference Report from Two Raw Profiler Output Files

plshprof Options
The command to run the plshprof utility is:

plshprof [option...] profiler output_filename 1 profiler output_filename 2

Each optionis one of these:

Option Description Default

-skip count Skips first count calls. Use only with 0
-trace symbol.

-collect count Collects information for count calls. Use 1
only with -trace symbol.

-output filename Specifies name of output file symbol.html or
tracefilel.html

Using the PL/SQL Hierarchical Profiler 8-13

plshprof Utility

Option Description Default
-summary Prints only elapsed time None
-trace symbol Specifies function name of tree root Not applicable

Suppose that your raw profiler output file, test.trc, is in the current directory. You
want to analyze and generate HTML reports, and you want the root file of the HTML
report to be named report.html. Use this command (% is the prompt):

% plshprof -output report test.trc

HTML Report from a Single Raw Profiler Output File

To generate a PL/SQL hierarchical profiler HTML report from a single raw profiler
output file, use these commands:

% cd target_directory
% plshprof -output html_root_filename profiler output_filename

target_directory is the directory in which you want the HTML files to be created.
html_root_filename is the name of the root HTML file to be created.
profiler_output_filename is the name of a raw profiler output file.

The preceding plshprof command generates a set of HTML files. Start browsing
them from html_root_filename.html.

Topics:

» First Page of Report

= Function-Level Reports

= Module-Level Reports

= Namespace-Level Reports

s Parents and Children Report for a Function

First Page of Report

The first page of an HIML report from a single raw profiler output file includes
summary information and hyperlinks to other pages of the report.

Sample First Page
PL/SQL Elapsed Time (microsecs) Analysis

2831 microsecs (elapsed time) & 12 function calls

The PL/SQL Hierarchical Profiler produces a collection of reports that present
information derived from the profiler output log in a variety of formats. These reports
have been found to be the most generally useful as starting points for browsing;:

= Function Elapsed Time (microsecs) Data sorted by Total Subtree Elapsed Time
(microsecs)

= Function Elapsed Time (microsecs) Data sorted by Total Function Elapsed Time
(microsecs)

In addition, the following reports are also available:

= Function Elapsed Time (microsecs) Data sorted by Function Name

8-14 Oracle Database Advanced Application Developer's Guide

plshprof Utility

s Function Elapsed Time (microsecs) Data sorted by Total Descendants Elapsed
Time (microsecs)

s Function Elapsed Time (microsecs) Data sorted by Total Function Call Count

s Function Elapsed Time (microsecs) Data sorted by Mean Subtree Elapsed Time
(microsecs)

= Function Elapsed Time (microsecs) Data sorted by Mean Function Elapsed Time
(microsecs)

= Function Elapsed Time (microsecs) Data sorted by Mean Descendants Elapsed
Time (microsecs)

= Module Elapsed Time (microsecs) Data sorted by Total Function Elapsed Time
(microsecs)

= Module Elapsed Time (microsecs) Data sorted by Module Name
s Module Elapsed Time (microsecs) Data sorted by Total Function Call Count

= Namespace Elapsed Time (microsecs) Data sorted by Total Function Elapsed Time
(microsecs)

= Namespace Elapsed Time (microsecs) Data sorted by Namespace
= Namespace Elapsed Time (microsecs) Data sorted by Total Function Call Count

» Parents and Children Elapsed Time (microsecs) Data

Function-Level Reports

The function-level reports provide a flat view of the profile information. Each
function-level report includes this information for each function:

= Function time (time spent in the function itself, also called "self time")
= Descendants time (time spent in the descendants of the function)

= Subtree time (time spent in the subtree of the function—function time plus
descendants time)

s Number of calls to the function
s Function name

The function name is hyperlinked to the Parents and Children Report for the
function.

Each function-level report is sorted on a particular attribute; for example, function
time or subtree time.

This sample report is sorted in descending order of the total subtree elapsed time for
the function, which is why information in the Subtree and Ind% columns is in bold

type:

Sample Report

Function Elapsed Time (microsecs) Data sorted by Total Subtree Elapsed Time
(microsecs)

2831 microsecs (elapsed time) & 12 function calls

Subtree Ind% Function Descendant Ind% Calls Ind% Function Name

2831 100% 93 2738 96.7% 2 16.7% __plsq_vm

Using the PL/SQL Hierarchical Profiler 8-15

plshprof Utility

Subtree Ind% Function Descendant Ind% Calls Ind% Function Name

2738 96.7% 310 2428 85.8% 2 16.7% __anonymous_block

2428 85.8% 15 2413 85.2% 1 8.3% HR.TEST.TEST (Line 1)

2413 85.2% 435 1978 69.9% 3 25.0% HR.TEST.TEST.FOO (Line 3)

1978 69.9% 1978 0 0.0% 3 25.0% HR.TEST.__static_sql_exec_
line5 (Line 5)

0 0.0% O 0 0.0% 1 8.3% SYS.DBMS_HPROFE.STOP_
PROFILING (Line 53)

Module-Level Reports
Each module-level report includes this information for each module (for example,
package or type):

= Module time (time spent in the module—sum of the function times of all functions
in the module)

s Number of calls to functions in the module

Each module-level report is sorted on a particular attribute; for example, module time
or module name.

This sample report is sorted by module time, which is why information in the Module,
Ind%, and Cum% columns is in bold type:

Sample Report
Module Elapsed Time (microsecs) Data sorted by Total Function Elapsed Time
(microsecs)

166878 microsecs (elapsed time) & 1099 function calls

Module Ind% Cum% Calls Ind% Module Name

84932 50.9% 509% 6 0.5% HR.P
67749 40.6% 91.5% 216 19.7% SYS.DBMS_LOB
13340 8.0% 99.5% 660 60.1% SYS.UTL_FILE

839 0.5% 100% 214 19.5% SYS.UTL_RAW
18 0.0% 100% 2 0.2% HR.UTILS
0 0.0% 100% 1 0.1% SYS.DBMS_HPROF

Namespace-Level Reports
Each namespace-level report includes this information for each namespace:

= Namespace time (time spent in the namespace—sum of the function times of all
functions in the namespace)

= Number of calls to functions in the namespace

Each namespace-level report is sorted on a particular attribute; for example,
namespace time or number of calls to functions in the namespace.

This sample report is sorted by function time, which is why information in the
Function, Ind%, and Cum% columns is in bold type:

8-16 Oracle Database Advanced Application Developer's Guide

plshprof Utility

Sample Report

Namespace Elapsed Time (microsecs) Data sorted by Total Function Elapsed Time
(microsecs)

166878 microsecs (elapsed time) & 1099 function calls

Function Ind% Cum% Calls Ind% Namespace
93659 56.1% 56.1% 1095 99.6% PLSQL
73219 43.9% 100% 4 04% SQL

Parents and Children Report for a Function

For each function tracked by the profiler, the Parents and Children Report provides
information about parents (functions that call it) and children (functions that it calls).
For each parent, the report gives the function's execution profile (subtree time,
function time, descendants time, and number of calls). For each child, the report gives
the execution profile for the child when called from this function (but not when called
from other functions).

The execution profile for a function includes the same information for that function as
a function-level report includes for each function (for details, see "Function-Level
Reports" on page 8-15).

This Sample Report is a fragment of a Parents and Children Report that corresponds to
a function named HR.P.UPLOAD. The first row has this summary information:

m There are two calls to the function HR.P.UPLOAD.

s The total subtree time for the function is 166,860 microseconds—11,713
microseconds (7.0%) in the function itself and 155,147 microseconds (93.0%) in its
descendants.

After the row "Parents" are the execution profile rows for the two parents of
HR.P.UPLOAD, which are HR.UTILS.COPY_IMAGE and HR.UTILS.COPY_FILE.

The first parent execution profile row, for HR.UTILS.COPY_IMAGE, shows:

s HR.UTILS.COPY_IMAGE calls HR.P.UPLOAD once, which is 50% of the number of
calls to HR.P.UPLOAD.

s The subtree time for HR.P.UPLOAD when called from HR.UTILS.COPY_ IMAGE is
106,325 microseconds, which is 63.7% of the total subtree time for HR.P.UPLOAD.

s The function time for HR.P.UPLOAD when called from HR.UTILS.COPY_ IMAGE is
6,434 microseconds, which is 54.9% of the total function time for HR.P.UPLOAD.

After the row "Children" are the execution profile rows for the children of
HR.P.UPLOAD when called from HR.P.UPLOAD.

The third child execution profile row, for SYS.UTL_FILE.GET_RAW, shows:
s HR.P.UPLOAD calls SYS.UTL_FILE.GET_RAW 216 times.

m The subtree time, function time and descendants time for SYS.UTL_FILE.GET__
RAW when called from HR.P.UPLOAD are 12,487 microseconds, 3,969 microseconds,
and 8,518 microseconds, respectively.

n Of the total descendants time for HR.P.UPLOAD (155,147 microseconds), the child
SYS.UTL_FILE.GET_RAW is responsible for 12,487 microsecs (8.0%).

Using the PL/SQL Hierarchical Profiler 8-17

plshprof Utility

Sample Report
HR.PUPLOAD (Line 3)

Subtree Ind% Function Ind% Descendant Ind% Calls Ind% Function Name

166860 100% 11713 7.0% 155147 93.0% 2 0.2% HR.PUPLOAD
(Line 3)

Parents:

106325 63.7% 6434 54.9% 99891 64.4% 1 50.0% HR.UTILS.COPY_
IMAGE (Line 3)

60535 36.3% 5279 45.1% 55256 35.6% 1 50.0% HR.UTILS.COPY_
FILE (Line 8))

Children:

71818 46.3% 71818 100% 0 N/A 2 100% HR.P.__static_sql_
exec_line38 (Line 38)

67649 43.6% 67649 100% 0O N/A 214 100% SYS.DBMS_
LOB.WRITEAPPEN
D (Line 926)

12487 8.0% 3969 100% 8518 100% 216 100% SYS.UTL_FILE.GET_
RAW (Line 1089)

1401 0.9% 1401 100% 0O N/A 2 100% HR.P.__static_sql_
exec_line39 (Line 39)

839 0.5% 839 100% O N/A 214 100% SYS.UTL_FILE.GET_
RAW (Line 246)

740 0.5% 73 100% 667 100% 2 100% SYS.UTL_
FILE.FOPEN (Line
422)

113 0.1% 11 100% 102 100% 2 100% SYS.UTL_
FILE.FCLOSE (Line
585)

100 0.1% 100 100% O N/A 2 100% SYS.DBMS_
LOB.CREATETEMP
ORARY (Line 536)

HTML Difference Report from Two Raw Profiler Output Files

To generate a PL/SQL hierarchical profiler HTML difference report from two raw
profiler output files, use these commands:

% cd target_directory
% plshprof -output html_root_filename profiler output_filename 1 profiler output_filename_2

target_directory is the directory in which you want the HTML files to be created.
html_root_filename is the name of the root HTML file to be created.

profiler output_filename_1 and profiler output_filename_ 2 are the
names of raw profiler output files.

The preceding plshprof command generates a set of HTML files. Start browsing
them from html_ root_filename.html.

Topics:
= Difference Report Conventions

» First Page of Difference Report

8-18 Oracle Database Advanced Application Developer's Guide

plshprof Utility

= Function-Level Difference Reports
s Module-Level Difference Reports
= Namespace-Level Difference Reports

s Parents and Children Difference Report for a Function

Difference Report Conventions
Difference reports use these conventions:

= Inareport title, Delta means difference, or change.

= A positive value indicates that the number increased (regressed) from the first run
to the second run.

= A negative value for a difference indicates that the number decreased (improved)
from the first run to the second run.

s The symbol # after a function name means that the function was called in only one
run.

First Page of Difference Report

The first page of an HTML difference report from two raw profiler output files
includes summary information and hyperlinks to other pages of the report.

Sample First Page
PL/SQL Elapsed Time (microsecs) Analysis — Summary Page

This analysis finds a net regression of 2709589 microsecs (elapsed time) or 80%
(3393719 versus 6103308). Here is a summary of the 7 most important individual
function regressions and improvements:

Regressions: 3399382 microsecs (elapsed time)

Function Rel% Ind% Calls Rel% Function Name

2075627 +941% 61.1% O HR.PG (Line 35)
1101384 +54.6% 324% 5 +55.6% HR.PH (Line 18)
222371 6.5% 1 HR.PJ (Line 10)

Improvements: 689793 microsecs (elapsed time)

Function Rel% Ind% Calls Rel% Function Name

-467051 -50.0% 67.7% -2 -50.0% HR.PF (Line 25)
-222737 323% -1 HR.PI (Line 2)#
-5 217% 0.0% 0 HR.P.TEST (Line 46)

The PL/SQL Timing Analyzer produces a collection of reports that present
information derived from the profiler's output logs in a variety of formats. The
following reports have been found to be the most generally useful as starting points
for browsing:

= Function Elapsed Time (microsecs) Data for Performance Regressions

= Function Elapsed Time (microsecs) Data for Performance Improvements

Using the PL/SQL Hierarchical Profiler 8-19

plshprof Utility

In addition, the following reports are also available:

Function Elapsed Time (microsecs) Data sorted by Function Name

Function Elapsed Time (microsecs) Data sorted by Total Subtree Elapsed Time
(microsecs) Delta

Function Elapsed Time (microsecs) Data sorted by Total Function Elapsed Time
(microsecs) Delta

Function Elapsed Time (microsecs) Data sorted by Total Descendants Elapsed
Time (microsecs) Delta

Function Elapsed Time (microsecs) Data sorted by Total Function Call Count Delta
Module Elapsed Time (microsecs) Data sorted by Module Name

Module Elapsed Time (microsecs) Data sorted by Total Function Elapsed Time
(microsecs) Delta

Module Elapsed Time (microsecs) Data sorted by Total Function Call Count Delta
Namespace Elapsed Time (microsecs) Data sorted by Namespace

Namespace Elapsed Time (microsecs) Data sorted by Total Function Elapsed Time
(microsecs)

Namespace Elapsed Time (microsecs) Data sorted by Total Function Call Count

File Elapsed Time (microsecs) Data Comparison with Parents and Children

Function-Level Difference Reports

Each function-level difference report includes, for each function, the change in these
values from the first run to the second run:

Function time (time spent in the function itself, also called "self time")
Descendants time (time spent in the descendants of the function)

Subtree time (time spent in the subtree of the function—function time plus
descendants time)

Number of calls to the function
Mean function time

The mean function time is the function time divided by number of calls to the
function.

Function name

The function name is hyperlinked to the Parents and Children Difference Report
for the function.

The report in Sample Report 1 shows the difference information for all functions that
performed better in the first run than they did in the second run. Note that:

For HR.P.G, the function time increased by 2,075,627 microseconds (941%), which
accounts for 61.1% of all regressions.

For HR.P.H, the function time and number of calls increased by 1,101,384
microseconds (54.6%) and 5 (55.6%), respectively, but the mean function time
improved by 1,346 microseconds (-0.6%).

HR.P.J was called in only one run.

8-20 Oracle Database Advanced Application Developer's Guide

plshprof Utility

Sample Report 1
Function Elapsed Time (microsecs) Data for Performance Regressions

Subtree Function Rel% Ind% Cum% Descendant Calls Rel% Mean Function Rel% Function Name
4075787 2075627 +941% 61.1% 61.1% 2000160 0 2075627 +941% HR.P.G (Line 35)
1101384 1101384 +54.6% 32.4% 93.5% 0 5 +55.6% -1346 -0.6% HR.PH (Line 18)
222371 222371 65% 100% 0 1 HR.PJ (Line 10)#
The report in Sample Report 2 shows the difference information for all functions that
performed better in the second run than they did in the first run.
Sample Report 2
Function Elapsed Time (microsecs) Data for Performance Improvements
Subtree Function Rel% Ind% Cum% Descendant Calls Rel% Mean Function Rel% Function Name
-1365827 -467051 -50.0% 67.7% 67.7% -898776 -2 -50.0% -32 0.0% HR.PF (Line 25)
-222737 -222737 323% 100% 0 -1 HR.PI (Line 2)
2709589 -5 -21.7% 0.0% 100% 2709594 0 -5 -20.8 HR.PTEST (Line 46)#
The report in Sample Report 3 summarizes the difference information for all functions.
Sample Report 3
Function Elapsed Time (microsecs) Data sorted by Total Function Call Count Delta
Subtree Function Rel% Ind% Descendant Calls Rel% Mean Function Rel% Function Name
1101384 1101384 +54.6% 32.4% 0 5 +55.6% -1346 -0.6% HR.PH (Line 18)
-1365827 -467051 +50.0% 67.7% -898776 -2 -50.0% -32 -0.0% HR.PF (Line 25)
-222377 -222377 32.3% 0 -1 HR.PI (Line 2)#
222371 222371 6.5% 0 1 HR.PJ(Line 10)#
4075787 2075627 +941% 61.1% 2000160 0 2075627 +941% HR.P.G (Line 35)
2709589 -5 -21.7% 0.0% 2709594 0 -5 -20.8% HR.PTEST (Line 46)
0 0 0 0 SYS.DBMS_HPROE.STOP_

PROFILING (Line 53)

Module-Level Difference Reports
Each module-level report includes, for each module, the change in these values from
the first run to the second run:

= Module time (time spent in the module—sum of the function times of all functions
in the module)

s Number of calls to functions in the module

Sample Report

Module Elapsed Time (microsecs) Data sorted by Total Function Elapsed Time
(microsecs) Delta

Module Calls Module Name

2709589 3 HR.P

Using the PL/SQL Hierarchical Profiler 8-21

plshprof Utility

Module Calls Module Name

0 0 SYS.DBMS_HPROF

Namespace-Level Difference Reports

Each namespace-level report includes, for each namespace, the change in these values
from the first run to the second run:

= Namespace time (time spent in the namespace—sum of the function times of all
functions in the namespace)

= Number of calls to functions in the namespace

Sample Report
Namespace Elapsed Time (microsecs) Data sorted by Namespace

Function Calls Namespace

2709589 3 PLSQL

Parents and Children Difference Report for a Function

The Parents and Children Difference Report for a function shows changes in the
execution profiles of these from the first run to the second run:

= Parents (functions that call the function)
s Children (functions that the function calls)

Execution profiles for children include only information from when this function
calls them, not for when other functions call them.

The execution profile for a function includes this information:
= Function time (time spent in the function itself, also called "self time")
= Descendants time (time spent in the descendants of the function)

= Subtree time (time spent in the subtree of the function—function time plus
descendants time)

s Number of calls to the function
s Function name

The sample report is a fragment of a Parents and Children Difference Report that
corresponds to a function named HR.P.X.

The first row, a summary of the difference between the first and second runs, shows
regression: function time increased by 1,094,099 microseconds (probably because the
function was called five more times).

The "Parents" rows show that HR.P.G called HR.P.X nine more times in the second run
than it did in the first run, while HR.P.F called it four fewer times.

The "Children" rows show that HR.P.X called each child five more times in the second
run than it did in the first run.

Sample Report
HR.P.X (Line 11)

8-22 Oracle Database Advanced Application Developer's Guide

plshprof Utility

Subtree Function Descendant Calls

Function Name

3322196 1094099 2228097 5
Parents:

6037490 1993169 4044321 9
-2715294 -899070 -1816224 -4
Children:

1125489 1125489 0 5
1102608 1102608 0 5

HR.PX (Line 11)

HR.P.G (Line 38)
HR.PF (Line 28)

HR.PJ (Line 10)
HR.PI (Line 2)

The Parents and Children Difference Report for a function is accompanied by a

Function Comparison Report, which shows the execution profile of the function for the
first and second runs and the difference between them. This example is the Function
Comparison Report for the function HR.P.X:

Sample Report

Elapsed Time (microsecs) for HR.P.X (Line 11) (20.1% of total regression)

First Second

HR.P.X (Line 11) Trace Ind% Trace Ind% Diff Diff%
Function Elapsed Time (microsecs) 1999509 26.9% 3093608 24.9% 1094099 +54.7%
Descendants Elapsed Time 4095943 55.1% 6324040 50.9% 2228097 +54.4%
(microsecs)

Subtree Elapsed Time (microsecs) 6095452 81.9% 9417648 75.7% 3322196 +54.5%
Function Calls 9 25.0% 14 28.6% 5 +55.6%
Mean Function Elapsed Time 222167.7 220972.0 -1195.7 -0.5%
(microsecs)

Mean Descendants Elapsed Time 455104.8 4517171 -3387.6 -0.7%
(microsecs)

Mean Subtree Elapsed Time 677272.4 672689.1 -4583.3 -0.7%
(microsecs)

Using the PL/SQL Hierarchical Profiler 8-23

plshprof Utility

8-24 Oracle Database Advanced Application Developer's Guide

9

Developing PL/SQL Web Applications

This chapter explains how to develop PL/SQL Web applications, which let you make
your database available on the intranet.

Topics:

s Overview of PL/SQL Web Applications

s Implementing PL/SQL Web Applications

s Using mod_plsql Gateway to Map Client Requests to a PL/SQL Web Application
= Using Embedded PL/SQL Gateway

s Generating HTML Output with PL/SQL

= Passing Parameters to PL/SQL Web Applications

s Performing Network Operations in PL/SQL Subprograms

Overview of PL/SQL Web Applications

Typically, a Web application written in PL/SQL is a set of stored subprograms that
interact with Web browsers through HTTP. A set of interlinked, dynamically generated
HTML pages forms the user interface of a web application.

The program flow of a PL/SQL Web application is similar to that in a CGI PERL script.
Developers often use CGI scripts to produce Web pages dynamically, but such scripts
are often not optimal for accessing the database. Delivering Web content with PL/SQL
stored subprograms provides the power and flexibility of database processing. For
example, you can use data manipulation language (DML) statements, dynamic SQL
statements, and cursors. You also eliminate the process overhead of forking a new CGI
process to handle each HTTP request.

Figure 9-1 illustrates the generic process for a PL/SQL Web application.

Developing PL/SQL Web Applications 9-1

Implementing PL/SQL Web Applications

Figure 9-1 PL/SQL Web Application

Stored

e Procedure

Tel

Web 4—6—
Web
—‘H Toolkit

=

Il

Web
Server

Implementing PL/SQL Web Applications

You can implement a Web browser-based application entirely in PL/SQL with these
Oracle Database components:

= PL/SQL Gateway
s PL/SQL Web Toolkit

PL/SQL Gateway

The PL/SQL gateway enables a Web browser to invoke a PL/SQL stored subprogram
through an HTTP listener. The gateway is a platform on which PL/SQL users develop
and deploy PL/SQL Web applications.

mod_plsql

mod_plsqgl is one implementation of the PL/SQL gateway. The module is a plug-in of
Oracle HTTP Server and enables Web browsers to invoke PL/SQL stored
subprograms. Oracle HTTP Server is a component of both Oracle Application Server
and the database.

The mod_plsgl plug-in enables you to use PL/SQL stored subprograms to process
HTTP requests and generate responses. In this context, an HTTP request is a URL that
includes parameter values to be passed to a stored subprogram. PL/SQL gateway
translates the URL, invokes the stored subprogram with the parameters, and returns
output (typically HTML) to the client.

Some advantages of using mod_plsgl over the embedded form of the PL/SQL
gateway are:

= You can run it in a firewall environment in which the Oracle HTTP Server runs on
a firewall-facing host while the database is hosted behind a firewall. You cannot
use this configuration with the embedded gateway.

s The embedded gateway does not support mod_plsqgl features such as dynamic
HTML caching, system monitoring, and logging in the Common Log Format.

9-2 Oracle Database Advanced Application Developer's Guide

Implementing PL/SQL Web Applications

Embedded PL/SQL Gateway

You can use an embedded version of the PL/SQL gateway that runs in the XML DB
HTTP Listener in the database. It provides the core features of mod_plsqgl in the
database but does not require the Oracle HTTP Server. You configure the embedded
PL/SQL gateway with the DBMS_EPG package in the PL/SQL Web Toolkit.

Some advantages of using the embedded gateway over mod_plsqgl are as follows:

= You can invoke PL/SQL Web applications such as Application Express without
installing Oracle HTTP Server, thereby simplifying installation, configuration, and
administration of PL/SQL based Web applications.

= You use the same configuration approach that is used to deliver content from
Oracle XML DB in response to FIP and HTTP requests.

PL/SQL Web Toolkit

This set of PL/SQL packages is a generic interface that enables you to use stored
subprograms invoked by mod_plsqgl at run time.

In response to a browser request, a PL/SQL subprogram updates or retrieves data
from Oracle Database according to the user input. It then generates an HTTP response
to the browser, typically in the form of a file download or HTML to be displayed. The
Web Toolkit API enables stored subprograms to perform actions such as:

= Obtain information about an HTTP request

» Generate HTTP headers such as content-type and mime-type

= Set browser cookies

s Generate HTML pages

Table 9-1 describes commonly used PL/SQL Web Toolkit packages.

Table 9-1 Commonly Used Packages in the PL/SQL Web Toolkit

Package Description of Contents

HTF Function versions of the subprograms in the htp package. The function
versions do not directly generate output in a Web page. Instead, they pass
their output as return values to the statements that invoke them. Use these
functions when you must nest function calls.

HTP Subprograms that generate HTML tags. For example, the procedure
htp.anchor generates the HTML anchor tag, <a>.

OWA_CACHE Subprograms that enable the PL/SQL gateway cache feature to improve
performance of your PL/SQL Web application.

You can use this package to enable expires-based and validation-based
caching with the PL/SQL gateway file system.

OWA_COOKIE Subprograms that send and retrieve HTTP cookies to and from a client Web
browser. Cookies are strings a browser uses to maintain state between HTTP
calls. State can be maintained throughout a client session or longer if a cookie
expiration date is included.

OWA_CUSTOM The authorize function used by cookies.

OWA__IMAGE Subprograms that obtain the coordinates where a user clicked an image. Use
this package when you have an image map whose destination links invoke a
PL/SQL gateway.

Developing PL/SQL Web Applications 9-3

Using mod_plsql Gateway to Map Client Requests to a PL/SQL Web Application

Table 9-1 (Cont.) Commonly Used Packages in the PL/SQL Web Toolkit

Package Description of Contents

OWA_OPT_LOCK Subprograms that impose database optimistic locking strategies to prevent
lost updates. Lost updates can otherwise occur if a user selects, and then
attempts to update, a row whose values were changed in the meantime by
another user.

OWA_PATTERN Subprograms that perform string matching and string manipulation with
regular expressions.

OWA_SEC Subprograms used by the PL/SQL gateway for authenticating requests.

OWA_TEXT Subprograms used by package OWA_PATTERN for manipulating strings. You
can also use them directly.

OWA_UTIL These types of utility subprograms:

= Dynamic SQL utilities to produce pages with dynamically generated
SQL code.

s HTML utilities to retrieve the values of CGI environment variables and
perform URL redirects.

= Date utilities for correct date-handling. Date values are simple strings in
HTML, but must be properly treated as an Oracle Database data type.

WPG_DOCLOAD Subprograms that download documents from a document repository that
you define using the DAD configuration.

See Also: Oracle Database PL/SQL Packages and Types Reference for
syntax, descriptions, and examples for the PL/SQL Web Toolkit
packages

Using mod_plsql Gateway to Map Client Requests to a PL/SQL Web
Application
As explained in detail in the Oracle HTTP Server mod_plsql User’s Guide, mod_plsql
maps Web client requests to PL/SQL stored subprograms over HTTP. See this
documentation for instructions.

See Also:

» Oracle HTTP Server mod_plsql User’s Guide to learn how to
configure and use mod_plsqgl

» Oracle Fusion Middleware Administrator’s Guide for Oracle HTTP
Server for information about the mod_plsgl module

Using Embedded PL/SQL Gateway

The embedded gateway functions very similar to the mod_plsql gateway. Before
using the embedded version of the gateway, familiarize yourself with the Oracle HTTP
Server mod_plsql User’s Guide. Much of the information is the same or similar.

Topics:

s How Embedded PL/SQL Gateway Processes Client Requests

s Installing Embedded PL/SQL Gateway

s Configuring Embedded PL/SQL Gateway

s Invoking PL/SQL Stored Subprograms Through Embedded PL/SQL Gateway

9-4 Oracle Database Advanced Application Developer's Guide

Using Embedded PL/SQL Gateway

Securing Application Access with Embedded PL/SQL Gateway
Restrictions in Embedded PL/SQL Gateway
Using Embedded PL/SQL Gateway: Scenario

How Embedded PL/SQL Gateway Processes Client Requests

Figure 9-2 illustrates the process by which the embedded gateway handles client
HTTP requests.

Figure 9-2 Processing Client Requests with Embedded PL/SQL Gateway

browser Gateway
'_;'5, Oracle e 2 WO
XDB

a—

N

N~

Web
User-level Embedded
caching in PL/SQL <

HTTP
oo Listener é (,

T
Browser o

(9 Authentication

Server é
PL/SQL
Application
Browser
PL/SQL

Web
Toolkit

=

sV]

The explanation of the steps in Figure 9-2 is as follows:

1.

The Oracle XML DB HTTP Listener receives a request from a client browser to
request to invoke a PL/SQL subprogram. The subprogram can either be written
directly in PL/SQL or indirectly generated when a PL/SQL Server Page is
uploaded to the database and compiled.

The XML DB HTTP Listener routes the request to the embedded PL/SQL gateway
as specified in its virtual-path mapping configuration.

The embedded gateway uses the HTTP request information and the gateway
configuration to determine which database account to use for authentication.

The embedded gateway prepares the call parameters and invokes the PL/SQL
subprogram in the application.

The PL/SQL subprogram generates an HTML page out of relational data and the
PL/SQL Web Toolkit accessed from the database.

Developing PL/SQL Web Applications 9-5

Using Embedded PL/SQL Gateway

6. The application sends the page to the embedded gateway.
7. The embedded gateway sends the page to the XML DB HTTP Listener.
8. The XML DB HTTP Listener sends the page to the client browser.

Unlike mod_plsqgl, the embedded gateway processes HITP requests with the Oracle
XML DB Listener. This listener is the same server-side process as the Oracle Net
Listener and supports Oracle Net Services, HTTP, and FIP.

Configure general HTTP listener settings through the XML DB interface (for
instructions, see Oracle XML DB Developer’s Guide). Configure the HTTP listener either
by using Oracle Enterprise Manager or by editing the xdbconfig.xml file. Use the
DBMS_EPG package for all embedded PL/SQL gateway configuration, for example,
creating or setting attributes for a DAD.

Installing Embedded PL/SQL Gateway

The embedded gateway requires these components:
= XML DB HTTP Listener
s PL/SQL Web Toolkit

The embedded PL/SQL gateway is installed as part of Oracle XML DB. If you are
using a preconfigured database created during an installation or by the Database
Configuration Assistant (DBCA), then Oracle XML DB is installed and configured. For
information about manually adding Oracle XML DB to an existing database, see Oracle
XML DB Developer's Guide.

The PL/SQL Web Toolkit is part of the standard installation of the database, so no
supplementary installation is necessary.

Configuring Embedded PL/SQL Gateway

You configure mod_plsql by editing the Oracle HTTP Server configuration files.
Because the embedded gateway is installed as part of the Oracle XML DB HTTP
Listener, you manage the embedded gateway as a servlet through the Oracle XML DB
servlet management interface.

The configuration interface to the embedded gateway is the PL/SQL package DBMS_
EPG. This package modifies the underlying xdbconfig.xml configuration file that
XML DB uses. The default values of the embedded gateway configuration parameters
are sufficient for most users.

Topics:
s Configuring Embedded PL/SQL Gateway: Overview
s Configuring User Authentication for Embedded PL/SQL Gateway

Configuring Embedded PL/SQL Gateway: Overview

As in mod_plsql, each request for a PL/SQL stored subprogram is associated with a
Database Access Descriptor (DAD). A DAD is a set of configuration values used for
database access. A DAD specifies information such as:

= The database account to use for authentication
s The subprogram to use for uploading and downloading documents

In the embedded PL/SQL gateway, a DAD is represented as a servlet in the XML DB
HTTP Listener configuration. Each DAD attribute maps to an XML element in the

9-6 Oracle Database Advanced Application Developer's Guide

Using Embedded PL/SQL Gateway

configuration file xdbconfig.xml. The value of the DAD attribute corresponds to the
element content. For example, the database-username DAD attribute corresponds
to the <database-username> XML element; if the value of the DAD attribute is HR
it corresponds to <database-username>HR<database-username>. DAD
attribute names are case-sensitive.

Use the DBMS_EPG package to perform these embedded PL/SQL gateway
configurations:

1. Create a DAD with the DBMS_EPG.CREATE_DAD procedure.

2. Set DAD attributes with the DBMS_EPG.SET_DAD_ATTRIBUTE procedure.

All DAD attributes are optional. If you do not specify an attribute, it has its initial

value.

Table 9-2 lists the embedded PL/SQL gateway attributes and the corresponding mod_
plsgl DAD parameters. Enumeration values in the "Legal Values" column are

case-sensitive.

Table 9-2 Mapping Between mod_plsql and Embedded PL/SQL Gateway DAD Attributes

Embedded PL/SQL Gateway Multiple
mod_plsql DAD Attribute DAD Attribute Occurr. Legal Values
PlsglAfterProcedure after-procedure No String
PlsglAlwaysDescribeProcedure always-describe-procedure No Enumeration of On, Off
PlsglAuthenticationMode authentication-mode No Enumeration of Basic, SingleSignOn,
GlobalOwa, CustomOwa,
PerPackageOwa
PlsglBeforeProcedure before-procedure No String
PlsglBindBucketLengths bind-bucket-lengths Yes Unsigned integer
PlsglBindBucketWidths bind-bucket-widths Yes Unsigned integer
PlsglCGIEnvironmentList cgi-environment-1list Yes String
PlsglCompatibilityMode compatibility-mode No Unsigned integer
PlsglDatabaseEdition database-edition No String
PlsglDatabaseUsername database-username No String
PlsglDefaultPage default-page No String
PlsglDocumentPath document-path No String
PlsglDocumentProcedure document-procedure No String
PlsglDocumentTablename document-table-name No String
PlsglErrorStyle error-style No Enumeration of ApacheStyle,
ModplsqlStyle, DebugStyle
PlsglExclusionList exclusion-list Yes String
PlsglFetchBuffersize fetch-buffer-size No Unsigned integer
PlsglInfoLogging info-logging No Enumeration of InfoDebug
PlsglInputFilterEnable input-filter-enable No String
PlsglMaxRequestsPerSession max-requests-per-session No Unsigned integer
PlsglNLSLanguage nls-language No String
P1lsglOWADebugEnable owa-debug-enable No Enumeration of On, Off
PlsglPathAlias path-alias No String
PlsglPathAliasProcedure path-alias-procedure No String
PlsglRequestValidationFuncti request-validation-functi No String

on

on

Developing PL/SQL Web Applications 9-7

Using Embedded PL/SQL Gateway

Table 9-2 (Cont.) Mapping Between mod_plsql and Embedded PL/SQL Gateway DAD Attributes

Embedded PL/SQL Gateway Multiple

mod_plsql DAD Attribute DAD Attribute Occurr. Legal Values
PlsglSessionCookieName session-cookie-name No String
PlsglSessionStateManagement session-state-management No Enumeration of

StatelessWithResetPackageState,
StatelessWithFastRestPackageState,
StatelessWithPreservePackageState

PlsglTransferMode transfer-mode No Enumeration of Char, Raw

PlsglUploadAsLongRaw upload-as-long-raw No String

The default values of the DAD attributes are sufficient for most users of the embedded
gateway. mod_plsqgl users do not need these attributes:

s PlsglDatabasePassword

» PlsglDatabaseConnectString (because the embedded gateway does not
support logon to external databases)

Like the DAD attributes, the global configuration parameters are optional. Table 9-3
describes the DBMS_EPG global attributes and the corresponding mod_plsgl global
parameters.

Table 9-3 Mapping Between mod_plsql and Embedded PL/SQL Gateway Global Attributes

Embedded PL/SQL Gateway Multiple

mod_plsql DAD Attribute DAD Attribute Occurr. Legal Values

PlsglLogLevel log-level No Unsigned integer

PlsglMaxParameters max-parameters No Unsigned integer
See Also:

» Oracle Fusion Middleware Administrator’s Guide for Oracle HTTP
Server for detailed descriptions of the mod_plsgl DAD attributes.
See this documentation for default values and usage notes.

» Oracle Database PL/SQL Packages and Types Reference to learn about
the DBMS_EPG package

» Oracle XML DB Developer’s Guide for an account of the
xdbconfig.xml file

Configuring User Authentication for Embedded PL/SQL Gateway

Because it uses the XML DB authentication schemes, the embedded gateway handles
database authentication differently from mod_plsgl. In particular, it does not store
database passwords in a DAD.

Note: To serve a PL/SQL Web application on the Internet but
maintain the database behind a firewall, do not use the embedded
PL/SQL gateway to run the application; use mod_plsql.

Use the DBMS_EPG package to configure database authentication.
Topics:
= Configuring Static Authentication with DBMS_EPG

9-8 Oracle Database Advanced Application Developer's Guide

Using Embedded PL/SQL Gateway

Configuring Dynamic Authentication with DBMS_EPG
Configuring Anonymous Authentication with DBMS_EPG
Determining the Authentication Mode of a DAD

Creating and Configuring DADs: Examples

Determining the Authentication Mode for a DAD: Example
Determining the Authentication Mode for All DADs: Example
Showing DAD Authorizations that Are Not in Effect: Example
Examining Embedded PL/SQL Gateway Configuration

Configuring Static Authentication with DBMS_EPG Static authentication is for the mod_
plsql user who stores database user names and passwords in the DAD so that the
browser user is not required to enter database authentication information.

To configure static authentication, follow these steps:

1.

Log on to the database as an XML DB administrator (that is, a user with the
XDBADMIN role assigned).

Create the DAD. For example, this procedure creates a DAD invoked HR_DAD and
maps the virtual path to /hrweb/:

EXEC DBMS_EPG.CREATE_DAD('HR_DAD', '/hrweb/*');
For this step, you need the ALTER ANY USER system privilege. Set the DAD
attribute database-username to the database account whose privileges must be

used by the DAD. For example, this procedure specifies that the DAD named HR_
DAD has the privileges of the HR account:

EXEC DBMS_EPG.SET_DAD_ATTRIBUTE('HR_DAD', 'database-username', 'HR');

The DAD attribute database-username is case-sensitive.

Assign the DAD the privileges of the database user specified in the previous step.
This authorization enables end users to invoke procedures and access document
tables through the embedded PL/SQL gateway with the privileges of the
authorized account. For example:

EXEC DBMS_EPG.AUTHORIZE_DAD('HR_DAD', 'HR');
Alternatively, you can log off as the user with XDBADMIN privileges, log on as the

database user whose privileges must be used by the DAD, and then use this
command to assign these privileges to the DAD:

EXEC DBMS_EPG.AUTHORIZE_DAD('HR_DAD');

Note: Multiple users can authorize the same DAD. The
database-username attribute setting of the DAD determines which
user's privileges to use.

Unlike mod_plsqgl, the embedded gateway connects to the database as the special
user ANONYMOUS, but accesses database objects with the user privileges assigned to the
DAD. The database rejects access if the browser user attempts to connect explicitly
with the HTTP Authorization header.

Developing PL/SQL Web Applications 9-9

Using Embedded PL/SQL Gateway

Note: The account ANONYMOUS is locked after XML DB installation.
To use static authentication with the embedded PL/SQL gateway, first
unlock this account.

Configuring Dynamic Authentication with DBMS_EPG Dynamic authentication is for the
mod_plsgl user who does not store database user names and passwords in the DAD.

In dynamic authentication, a database user does not have to authorize the embedded
gateway to use its privileges to access database objects. Instead, browser users must
supply the database authentication information through the HTTP Basic
Authentication scheme.

The action of the embedded gateway depends on whether the database-username
attribute is set for the DAD. If the attribute is not set, then the embedded gateway
connects to the database as the user supplied by the browser client. If the attribute is
set, then the database restricts access to the user specified in the
database-username attribute.

To set up dynamic authentication, follow these steps:

1. Log on to the database as a an XML DB administrator (that is, a user with the
XDBADMIN role).

2. Create the DAD. For example, this procedure creates a DAD invoked DYNAMIC_
DAD and maps the virtual path to /hrweb/:

EXEC DBMS_EPG.CREATE_DAD('DYNAMIC_DAD', '/hrweb/*');

3. Optionally, set the DAD attribute database-username to the database account
whose privileges must be used by the DAD. The browser prompts the user to
enter the username and password for this account when accessing the DAD. For

example, this procedure specifies that the DAD named DYNAMIC_DAD has the
privileges of the HR account:

EXEC DBMS_EPG.SET_DAD_ATTRIBUTE ('DYNAMIC_DAD', 'database-username', 'HR');

The attribute database-username is case-sensitive.

WARNING: Passwords sent through the HTTP Basic
Authentication scheme are not encrypted. Configure the embedded
gateway to use the HTTPS protocol to protect the passwords sent by
the browser clients.

Configuring Anonymous Authentication with DBMS_EPG Anonymous authentication is for
the mod_plsqgl user who creates a special DAD database user for database logon, but
stores the application procedures and document tables in a different schema and
grants access to the procedures and document tables to PUBLIC.

To set up anonymous authentication, follow these steps:

1. Log on to the database as an XML DB administrator, that is, a user with the
XDBADMIN role assigned.

2. Create the DAD. For example, this procedure creates a DAD invoked HR_DAD and
maps the virtual path to /hrweb/:

EXEC DBMS_EPG.CREATE_DAD('HR_DAD', '/hrweb/*');

9-10 Oracle Database Advanced Application Developer's Guide

Using Embedded PL/SQL Gateway

3. Set the DAD attribute database-username to ANONYMOUS. For example:

EXEC DBMS_EPG.SET_DAD_ATTRIBUTE('HR_DAD', 'database-username', 'ANONYMOUS');

Both database-username and ANONYMOUS are case-sensitive.

You need not authorize the embedded gateway to use ANONYMOUS privileges to
access database objects, because ANONYMOUS has no system privileges and owns
no database objects.

Determining the Authentication Mode of a DAD If you know the name of a DAD, then the
authentication mode for this DAD depends on these factors:

= Does the DAD exist?

» Is the database-username attribute for the DAD set?

» Is the DAD authorized to use the privilege of the database-username user?

s Isthe database-username attribute the one that the user authorized to use the
DAD?

Table 9—4 shows how the answers to the preceding questions determine the
authentication mode.

Table 9-4 Authentication Possibilities for a DAD

DAD Exists? database-username set? User authorized? Mode

Yes Yes Yes Static

Yes Yes No Dynamic restricted
Yes No Does not matter Dynamic

Yes Yes (to ANONYMOUS) Does not matter Anonymous

No N/A

For example, assume that you create a DAD named MY_DAD. If the
database-username attribute for MY_DAD is set to HR, but the HR user does not
authorize MY_DAD, then the authentication mode for MY_DAD is dynamic and
restricted. A browser user who attempts to run a PL/SQL subprogram through MY_
DAD is prompted to enter the HR database username and password.

The DBA_EPG_DAD_AUTHORIZATION view shows which users have authorized use of
a DAD. The DAD_NAME column displays the name of the DAD; the USERNAME column
displays the user whose privileges are assigned to the DAD. The DAD authorized
might not exist.

See Also: Oracle Database Reference for more information about the
DBA_EPG_DAD_AUTHORIZATION view
Creating and Configuring DADs: Examples Example 9-1 does this:

» Creates a DAD with static authentication for database user HR and assigns it the
privileges of the HR account, which then authorizes it.

» Creates a DAD with dynamic authentication that is not restricted to any user.

» Creates a DAD with dynamic authentication that is restricted to the HR account.

Example 9—1 Creating and Configuring DADs

Developing PL/SQL Web Applications 9-11

Using Embedded PL/SQL Gateway

--- DAD with static authentication

CONNECT SYSTEM AS SYSDBA

PASSWORD: password

EXEC DBMS_EPG.CREATE_DAD('Static_Auth_DAD', '/static/*');

EXEC DBMS_EPG.SET DAD_ATTRIBUTE('Static_Auth_DAD', 'database-username', 'HR');
GRANT EXECUTE ON DBMS_EPG TO HR;

-- Authorization

CONNECT HR

PASSWORD: password

EXEC DBMS_EPG.AUTHORIZE_DAD('Static_Auth DAD');

CONNECT SYSTEM AS SYSDBA
PASSWORD: password
EXEC DBMS_EPG.CREATE_DAD('Dynamic_Auth DAD', '/dynamic/*');

EXEC DBMS_EPG.CREATE_DAD('Dynamic_Auth_DAD_Restricted', '/dynamic/*');
EXEC DBMS_EPG.SET_DAD_ATTRIBUTE
('Dynamic_Auth_DAD_Restricted', 'database-username', 'HR');

The creation and authorization of a DAD are independent; therefore you can:

» Authorize a DAD that does not exist (it can be created later)

= Authorize a DAD for which you are not the user (however, the authorization does
not take effect until the DAD database-user attribute is changed to your
username)

Example 9-2 creates a DAD with static authentication for database user HR and assigns
it the privileges of the HR account. Then:

s Instead of authorizing that DAD, the database user HR authorizes a nonexistent
DAD.

Although the user might have done this by mistake, no error occurs, because the
nonexistent DAD might be created later.

» The database user OE authorizes the DAD (whose database-user attribute is set
to HR.

No error occurs, but the authorization does not take effect until the DAD
database-user attribute is changed to OE.

Example 9-2 Authorizing DADs to be Created or Changed Later

REM Create DAD with static authentication for database user HR

CONNECT SYSTEM AS SYSDBA

PASSWORD: password

EXEC DBMS_EPG.CREATE_DAD('Static_Auth_DAD', '/static/*');

EXEC DBMS_EPG.SET DAD_ATTRIBUTE('Static_Auth_DAD', 'database-username', 'HR');
GRANT EXECUTE ON DBMS_EPG TO HR;

9-12 Oracle Database Advanced Application Developer's Gu